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Efficient verification of two-colorable graph states
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Graph states known as the resource states for measurement-based quantum computation play an important
role in quantum information processing. Verifying the correctness of graph states in an efficient way is crucial
to scalable quantum computing. In this paper, we propose an efficient method for verifying two-colorable
graph states with Pauli measurements, where the number of required measurement settings is a constant that
is independent of the size of graph states. In addition, the number of required tests is less than the existing
protocols. We also present several examples, such as the brickwork state and the two-dimensional square lattice
state, to show how to get the specific verification strategy. Furthermore, we propose a robust verification of graph
states for resisting the noise acting on the measurement device. Finally, based on the verification of two-colorable
graph states in the adversarial scenario, we propose a verifiable blind quantum computing protocol, which can
realize the less resource overhead.
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I. INTRODUCTION

Quantum computing is capable of accomplishing several
tasks exponentially faster than classical computers, such as
boson sampling [1] and integer factorization [2]. The rapid
development of quantum technology has raised a question that
how to verify the correctness of quantum computing. Quan-
tum verification [3,4] can solve this task efficiently, which is
regard as a method that returns accept if the functionality of
the quantum device is correct and reject if the quantum device
runs wrong.

One type of quantum verification is aimed at verifying the
correctness of a quantum state produced by a quantum device.
Various methods are proposed for the verification of quantum
states, including state tomography [5], direct quantum-state
certification [6], direct-fidelity estimation [7], and self-testing
[8]. Another type of quantum verification is aimed at verifying
the correctness of quantum processes, which contains direct
quantum-process certification [9], randomized benchmarking
[10], cross-entropy benchmarking [11], and verifiable dele-
gated quantum computing [12–18].

Verifying quantum states with high fidelity is important
to quantum information processing. Traditional methods re-
quire an overhead in resources that increases exponentially
with the size of the quantum state. It has been an obstacle
to scalable quantum computing. It is significant to design
an efficient verification method such that the precision is
high and the overhead is low. Recently, an efficient approach
called quantum state verification (QSV) [19–22] has been
proposed, which can realize an exponential improvement of
the overhead in the number of tests with respect to the
traditional quantum state tomography [23]. Existing QSV pro-
tocols can verify various quantum states with local projective
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measurements, including bipartite pure states [19–21,24–27],
Greenberger-Horne-Zeilinger (GHZ) states [28], graph states
[18,19,29,30], hypergraph states [29], weighted graph states
[31], and Dicke states [32].

In this work, we focus on the verification of graph states
based on QSV. Towards the realization of quantum comput-
ing, there are mainly two models, i.e., quantum computing
based on quantum circuits [33] and measurement-based
quantum computing (MBQC) [34,35]. Graph states play an
important role in MBQC, which are the resource states used
to realize the universal quantum computation. In addition, the
verification of graph states in the adversarial scenario can be
used in many secure quantum information processing tasks,
such as verifiable blind quantum computing [13,16,18], where
the adversarial scenario means that the quantum states may
be prepared by an untrusted device. Verifiable blind quan-
tum computing allows a client with limited quantum ability
(preparing or measuring single qubits) to delegate quantum
computation tasks to a server with universal quantum ability
while preserving the privacy and correctness of the computa-
tion, even in the face of an adversarial server.

Recently, Zhu et al. proposed a cover protocol [29] which
can verify the graph states or hypergraph states efficiently with
Pauli X and Pauli Z measurements. Furthermore, Zhu et al.
constructed an optimal verification method of stabilizer states
[30], where Pauli X , Pauli Y , and Pauli Z measurements are
required. However this method relies on a search algorithm,
which makes it is difficult to find all measurement settings
when the number of qubits is large. Moreover, the number of
measurement settings increases with the size of the quantum
state. Our goal is to design a more effective and feasible
verification method for the graph states.

Our contributions can be summarized as follows:
(1) We propose a verification protocol for verifying two-

colorable symmetric graph states. Utilizing our method, finite
measurement settings can be obtained easily, where the
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total number of measurement settings is independent of the
number of qubits. In addition, our verification method has
a nice scalability, which can be extended from the case of
low-dimensional graph states to the case of high-dimensional
graph states. We also propose a verification protocol for ver-
ifying two-colorable asymmetric graph states, which is the
general case of two-colorable symmetric graph states.

(2) We analyze the spectral gap of the verification strat-
egy of our protocols, where this property has reflected the
efficiency of verification method. Compared with the cover
protocol, our protocols can achieve less overhead about the
number of required tests. Additionally, we give several exam-
ples to show the specific verification strategy, including the
brickwork state and the two-dimensional square lattice state.

(3) We consider the verification of graph states in the
noisy scenario, where the measurement device is subject to
noise. Moreover, we give the number of tests required for the
verification in the noisy scenario.

(4) We consider the verification of two-colorable graph
states in the adversarial scenario and apply it to the verification
of blind quantum computing. Compared with the traditional
protocols, our method has reduced the number of copies of
the graph state from the quadratic scale to nearly linear scale.

The remainder of this paper is organized as follows. In
Sec. II, we give some basic notations about quantum state
verification. In Sec. III, we construct an efficient verifica-
tion method for two-colorable graph states. In Sec. IV, we
present the verification of graph states in the noisy scenario. In
Sec. V, we give the verification of two-colorable graph states
in the adversarial scenario. In Sec. VI, we conclude with some
discussions and open problems.

II. PRELIMINARIES

A. Graph state

A graph G = (V, E ) consists of vertices vi ∈ V and edges
e(vi, v j ) ∈ E . A vertex is isolated if it has no neighbor. Two
different vertices vi, v j ∈ V are adjacent if e(vi, v j ) ∈ E . Let
the matrix A be the adjacency matrix of the graph G, where
Ai, j = 1 if the vertex vi and the vertex v j are adjacent and
Ai, j = 0 otherwise. The degree of a vertex vi ∈ V is the num-
ber of all vertices that are adjacent to the vertex vi. A graph is
called m-colorable if all vertices of the graph can be divided
into at least m disjoint subsets S1, S2, . . . , Sm of vertices such
that there is no edge connecting any pair of vertices in Si

for any i ∈ {1, 2, . . . , m}. We say that S1, S2, . . . , Sm are m
divided sets of the m-colorable graph.

The n-qubit graph state |G〉 associated with the graph G is
defined by

|G〉 =
⎛
⎝ ∏

e(vi,v j )∈E

Ui j

⎞
⎠|+〉⊗n, (1)

where Ui j is the controlled-Z gate |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z
acting on the qubits corresponding to the vertices vi, v j , and
|+〉 = (|0〉 + |1〉)/

√
2. There are n stabilizers {gi}n

i=1 for the
graph state |G〉, where

gi = Xi

∏
v j∈N (vi )

Zj . (2)

Here, N (vi ) is the set of neighbors of vertex vi, Xi is the
Pauli X operator acting on the qubit corresponding to the
vertex vi, and Zj is the Pauli Z operator acting on the qubit
corresponding to the vertex v j .

B. Quantum state verification

Let |ψ〉 be a target state, which is supposed to be generated
by a quantum device. In fact, the states generated by the
device in N rounds could be ρ1, ρ2, . . . , ρN . The goal of quan-
tum state verification is to ensure that the average infidelity
ε̄ = ∑N

i=1 (1 − 〈ψ |ρi|ψ〉)/N is less than a given threshold ε.
The verification is carried out by performing two-outcome
measurements {Pi, 1 − Pi} randomly from a set of projective
measurements in each round, where the test operator Pi means
passing the test. The target state |ψ〉 can pass all tests, i.e.,
Pi|ψ〉 = |ψ〉. Assume that the test Pi is implemented with
probability pi. The verification operator can be written as
Ψ = ∑

i piPi. To guarantee the average infidelity ε̄ < ε with
significance level δ, the minimum number of tests satisfies
[19]

N (ε, δ, Ψ ) �
⌈

ln δ−1

v(Ψ )ε

⌉
, (3)

where v(Ψ ) = 1 − β(Ψ ) is the spectral gap of the operator Ψ

and β(Ψ ) is the second-largest eigenvalue of the operator Ψ .
As for the verification of graph states, Ref. [30] has given

a lower bound of β(Ψ ), i.e.,

β(Ψ ) � max
i∈VNI

max
{

pX
i , pY

i , pZ
i

}
� 1/3, (4)

where VNI is the set of nonisolated vertices and pX
i , pY

i , pZ
i are

probabilities that the ith qubit is measured in the Pauli X basis,
Pauli Y basis, and Pauli Z basis, respectively. Let a symplec-
tic vector μ = (μX , μZ ) ∈ Z2n

2 determine each measurement
setting on an n-qubit graph state |G〉, where the ith qubit is

measured in the Pauli iμ
X
i μZ

i X μX
i

i ZμZ
i

i basis. Let

Aμ = diag(μX )A + diag(μZ ), (5)

where diag(·) means a diagonal matrix, and the matrix A is
the adjacency matrix of the graph G associated with the graph
state |G〉. Define

aμ, �w =
{

1, �w ∈ R(Aμ)

0, otherwise,
(6)

where the vector �w ∈ Zn
2, �w �= 0, and R(Aμ) is the row span

of the matrix Aμ. Let �aμ be a test vector corresponding to
test operator Pμ or the measurement setting μ, which consists
of 2n − 1 elements aμ, �w. It is shown in Ref. [30] that all
eigenvalues of Ψ = ∑

μ pμPμ except the largest eigenvalue
are contained in

�λ =
∑

μ

pμ�aμ. (7)
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III. EFFICIENT VERIFICATION OF TWO-COLORABLE
GRAPH STATES

A. Verification of two-colorable symmetric graph states

In this section, we propose an efficient method for verify-
ing two-colorable graph states. According to Eq. (3), the lower
β(Ψ ) results in the less tests. From Eq. (4), in order to get a
lower β(Ψ ), we need to construct a verification strategy satis-
fying pX

i �= 0, pY
i �= 0, pZ

i �= 0 for any i. Otherwise, β(Ψ ) �
1/2. Given a graph state |G〉 corresponding to a two-colorable
graph G = (V, E ), let the sets S1 and S2 be two divided sets
of G. The double degree for two adjacent vertices v1, v2 ∈ V
is defined by d (v1) + d (v2) − 1, where d (·) represents the
degree of the vertex. Our verification protocol is described as
follows:

Protocol 1: Verification of two-colorable symmetric graph states

(1) Perform two measurement settings (the first group of
measurement settings) based on Pauli X and Z measurements,
where each measurement setting is performed with proba-
bility pXZ . In the first setting, one measures in the Pauli Z
basis the qubits corresponding to the vertices of the set S1

and measures in the Pauli X basis the qubits corresponding to
the vertices of the set S2. In the second setting, one measures
in the Pauli Z basis the qubits corresponding to the vertices
of the set S2 and measures in the Pauli X basis the qubits
corresponding to the vertices of the set S1.

(2) Perform one measurement setting (the second group
of measurement settings) based on Pauli X and Y measure-
ments, where each measurement setting is performed with
probability pXY . One measures in the Pauli X basis the qubits
corresponding to the vertices whose degree is even and mea-
sures in the Pauli Y basis the qubits corresponding to the
vertices whose degree is odd.

(3) Find two adjacent vertices v′, v′′ whose double degree
is the maximum. Denote the edges connecting the vertex v′
or v′′ by e1, . . . , ed (v′ )+d (v′′ )−1. Perform d (v′) + d (v′′) mea-
surement settings (the third group of measurement settings)
based on Pauli X , Y , and Z measurements, where each mea-
surement setting is performed with probability pXY Z . With
the help of the Principles 1 and 2, ones can choose subsets
E1, . . . , Ed (v′ )+d (v′′ ) of the edge set E such that

E1 ∪ · · · ∪ Ed (v′ )+d (v′′ ) = E , (8)(
∪

e(vi,v j )∈Ek

{N (vi )/{v j}}
)

∩
(

∪
e(vi,v j )∈Ek

{vi, v j}
)

= �, (9)

where the set Ek includes the edge ek for k =
1, 2, . . . , d (v′) + d (v′′) − 1 and the set Ed (v′ )+d (v′′ ) does
not contain the edges e1, . . . , ed (v′ )+d (v′′ )−1. In other words,
the set Ek consists of all fixed edges (red edges) derived
from Principles 1 and 2 in the kth measurement setting. As
for the kth measurement setting, k = 1, . . . , d (v′) + d (v′′),
one measures in the Pauli Y basis the qubits corresponding
to the vertices connected by the edges of the set Ek . If the
qubit is adjacent to a qubit measured in the Pauli Y basis,
one measures it in the Pauli Z basis. One then measures in
the Pauli X basis the qubits whose all adjacent qubits are
measured in the Pauli Z basis. We denote by SX

k (or SZ
k or SY

k )
the set of vertices corresponding to the qubits measured in the

Pauli X (or Z or Y ) basis. There is a restrictive condition for
the selection of subsets E1, . . . , Ed (v′ )+d (v′′ ), i.e.,

d (v′ )+d (v′′ )∑
k=1

fk (vi ) �
d (v′) + d (v′′)

2
(10)

holds for any vertex vi ∈ V , where fk (vi ) is equal to one if and
only if vi ∈ SZ

k .
In step 1 of Protocol 1, the first measurement setting means

measuring all the stabilizer operators gi for i ∈ S2. The test
projector corresponding to passing the test is written by

P1 =
∏
i∈S2

I + gi

2
. (11)

Similarly, the second measurement setting means measuring
all the stabilizer operators gi for i ∈ S1. The test projector
corresponding to passing the test is

P2 =
∏
i∈S1

I + gi

2
. (12)

In step 2 of Protocol 1, the measurement setting indicates
measuring the products of all stabilizer operators gi for i ∈ V .
The test projector corresponding to passing the test is

P3 = 1

2

(
I +

∏
i∈V

gi

)
. (13)

In step 3 of Protocol 1, the kth measurement setting indicates
measuring the products of all stabilizer operators gi for i ∈
(∪e(vi,v j )∈Ek {vi, v j}) ∪ SX

k . The test projector corresponding to
passing the test is

P′
k = 1

2

⎛
⎜⎝I +

∏
i∈(∪e(vi ,v j )∈Ek {vi,v j })∪SX

k

gi

⎞
⎟⎠. (14)

Thus, the verification operator is characterized by

Ψ = pXZ P1 + pXZ P2 + pXY P3 + pXY Z

d (v′ )+d (v′′ )∑
k=1

P′
k . (15)

Since the target state |G〉 is stabilized by gi for all i ∈
V , |G〉 can always pass the tests of steps 1–3. Note that
our verification protocol needs just 3 + d (v′) + d (v′′) mea-
surement settings, which is independent of the size of the
graph state |G〉. Protocol 1 has considered the verification of
two-colorable symmetric graph state, where the terminology
“symmetric” means that d (v′) = d (v′′).

Now we give three examples to illustrate our method. Here
we consider the brickwork state, the two-dimensional square
lattice state, and a four-qubit ring cluster state. The reason why
we choose these examples is that d (v′) = d (v′′) = 2 holds
for the four-qubit ring cluster state, d (v′) = d (v′′) = 3 holds
for the brickwork state, and d (v′) = d (v′′) = 4 holds for the
two-dimensional square lattice state. Moreover, the brickwork
state and the two-dimensional square lattice state are two
typical resource states for universal blind quantum computing.

Figure 1 shows a 27-qubit brickwork state. We first ex-
plain how to derive the verification strategy for a 10-qubit
brickwork state, which consists of qubits denoted by numbers
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FIG. 1. A 27-qubit brickwork state.

1–5 and 10–14. Recall Protocol 1, the first measurement
setting is performed by measuring in the Pauli X ba-
sis the qubits denoted by odd numbers and measuring in
the Pauli Z basis the qubits denoted by even numbers.
Similarly, the second measurement setting is performed by
measuring in the Pauli X basis the qubits denoted by even
numbers and measuring in the Pauli Z basis the qubits denoted
by odd numbers. The third measurement setting is performed
by measuring in the Pauli Y basis the qubits 1, 3, 10, 12, and
measuring in the Pauli X basis the qubits 2, 4, 5, 11, 13, 14.
As for the group of the Pauli measurements in the step 3, we
find the double degree of the adjacent vertices v3 and v12 is
the largest, which is five. The six measurement settings based
on Pauli X , Y and Z measurements are illustrated in Fig. 2.
We have marked the selection of the subsets E1, . . . , E6 of the
edge set E in red. The principle about selection is as follows:

Principle 1.
(1) We can fix one edge denoted by e1 that connects one of

two adjacent vertices that have maximum double degree. We
then perform the Pauli Y measurements on two qubits corre-
sponding to vertices connected by the fixed edge. We measure
in the Pauli Z basis the qubits corresponding to vertices that
are adjacent to the vertices on the edge.

(2) We ignore the vertices whose corresponding qubits
have determined measurement type, and ignore all edges
connecting these vertices. We can obtain a subgraph G′ =
(V ′, E ′). We then measure in the Pauli X basis the qubits
corresponding to isolated vertices.

(3) We fix one edge of set E ′ and measure in the Pauli Y
basis the qubits corresponding to the vertices on this edge. We
then measure in the Pauli Z basis the qubits corresponding to
vertices that are adjacent to the vertices on this edge.

FIG. 2. The third group of measurement settings for a 10-qubit
brickwork state.

(4) Repeat steps 2 and 3 until all qubits of the graph state
|G〉 have determined measurement type, i.e., the first measure-
ment setting of step 3 of Protocol 1 is done.

(5) The ith (i = 2, . . . , d (v′) + d (v′′) − 1) measurement
setting of step 3 of Protocol 1 can be completed by the rep-
etition of steps 1–4, where the fixed edge in step 1 is replaced
with the edge ei.

(6) We perform the Pauli Z measurements on two qubits
corresponding to two adjacent vertices that have maximum
double degree. Repeat steps 2 and 3 until all qubits of the
graph state |G〉 have determined measurement type, i.e., the
last measurement setting of step 3 of Protocol 1 is done.

(7) Remark. To satisfy the constraint of Protocol 1, the
overlap degree of the selected edge of set E ′ between all
measurement settings of step 3 of Protocol 1 should be as low
as possible.

In the first measurement setting of Fig. 2, the edge
e1 = e(v3, v4) is fixed, and the qubits 3 and 4 are mea-
sured in the Pauli Y basis. The qubits 2, 5, and 12 are
measured in the Pauli Z basis. Then, a subgraph is ob-
tained, which consists of V ′ = {v1, v10, v11, v13, v14} and E ′ =
{e(v10, v11), e(v13, v14)}. Qubit 1 is measured in the Pauli X
basis. Next, the edge e(v10, v11) is selected from the set E ′,
and the qubits 10 and 11 are measured in the Pauli Y basis. Af-
terward, a new subgraph is obtained, which consists of V ′ =
{v13, v14} and E ′ = {e(v13, v14)}. Finally, the edge e(v13, v14)
is selected from the set E ′, and the qubits 13 and 14 are
measured in the Pauli Y basis. The remaining measurement
settings in Fig. 2 is obtained similarly, where e2 = e(v11, v12),
e3 = e(v12, v13), e4 = e(v3, v12), and e5 = e(v2, v3).

Our method has a great scalability. We now show how to
expand the scheme for the selection of the edge sets to higher
dimensional situations. The new principle about selection is
as follows:

Principle 2.
(1) As for the subgraph with the same structure, we adopt

the same measurements obtained by Principle 1. The qubits
measured in the Pauli X basis need to be assigned to new
measurement types by subsequent steps.

(2) We measure in the Pauli Z basis the qubits which are
adjacent to the qubits measured in the Pauli Y basis.

(3) Repeat steps 2 and 3 of Principle 1 until all qubits of
the graph state |G〉 have determined measurement type.

(4) To get the remaining measurement settings, we repeat
steps 1–3.

(5) If the graph has many pairs of adjacent qubits, which
have the largest double degree, we need to ensure that for
any edge connecting one of such adjacent qubits there is one
measurement setting performing Pauli Y measurements on the
qubits on this edge. In addition, we need to ensure that there
is one measurement setting performing Pauli Z measurements
on such adjacent qubits. Therefore, we need to adjust some
measurement settings to satisfy these conditions and get the
ultimate measurement settings.

According to Principle 1, if the qubits on the edge ei ∈ Ei

are chosen to be measured in the Pauli Y basis, then there is
at least one qubit on any edge e j for j �= i and it is measured
in the Pauli Z basis. Thus, the edge set Ei will not contain
e j for j �= i. To cover all edges ek for k = 1, 2, . . . , d (v′) +
d (v′′) − 1, it is necessary to select d (v′) + d (v′′) − 1 edge
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FIG. 3. The third group of measurement settings for an 18-qubit
brickwork state.

sets, i.e., E1, E2, . . . , Ed (v′ )+d (v′′ )−1. Since for any edge e ∈
E , where e /∈ {e1, e2, . . . , ed (v′ )+d (v′′ )−1}, the double degree of
two vertices on the edge e is less than the maximum double
degree, i.e., d (v′) + d (v′′) − 1. This property ensures that the
edge e can be selected and included in at least one edge set
Ek , k ∈ {1, 2, . . . , d (v′) + d (v′′) − 1}. As for the extension to
higher-dimensional two-colorable graph states, let edge set
E ′ consist of all edges connecting any one of two vertices
with the maximum double degree. Principle 2 has guaranteed
that, for any edge e′ ∈ E ′, there is one measurement setting
measuring in the Pauli Y basis the qubits on the edge e′. It
means that the edge e′ is included in only one edge set Ek ,
k ∈ {1, 2, . . . , d (v′) + d (v′′) − 1}. For any edge e′′ /∈ E ′, the
double degree of two vertices on the edge e′′ is less than
the maximum double degree, this property ensures that the
edge e′′ can be selected and included in at least one edge
set Ek , k ∈ {1, 2, . . . , d (v′) + d (v′′) − 1}. To sum up, for any
edge e ∈ E , we have e ∈ E1 ∪ · · · ∪ Ed (v′ )+d (v′′ )−1. Therefore,
Eq. (8) always holds.

Consider an 18-qubit brickwork state consisting of
qubits denoted by numbers 1–18. Using Principle 2,
we can obtain the measurement settings of step 3 of
Protocol 1 for such an 18-qubit brickwork state, as
shown in Fig. 3. As for the first measurement setting,
the subgraph represents the graph corresponding to a
10-qubit brickwork state of Fig. 2. We apply the first
measurement setting of Fig. 2 to the subgraph. Excluding

the qubit measured in the Pauli X basis, i.e., qubit 1,
we can determine the measurement type of qubits 2–5
and 10–14. The qubit 15 is adjacent to the qubit 14
measured in the Pauli Y basis. We then measure qubit
15 in the Pauli Z basis. As a result, a subgraph is obtained,
which consists of V ′ = {v1, v6, v7, v8, v9, v16, v17, v18} and
E ′ = {e(v6, v7), e(v7, v8), e(v8, v9), e(v16, v17), e(v17, v18)}.
Qubit 1 is measured in the Pauli X basis. Next, the edge
e(v6, v7) is selected from the set E ′, and qubits 6 and 7 are
measured in the Pauli Y basis. Qubit 8 is measured in the Pauli
Z basis. As a result, a subgraph is obtained, which consists
of V ′ = {v9, v16, v17, v18} and E ′ = {e(v16, v17), e(v17, v18)}.
Qubit 9 is measured in the Pauli X basis. The edge e(v16, v17)
is selected from the set E ′, and qubits 16 and 17 are measured
in the Pauli Y basis. Qubit 18 is measured in the Pauli Z basis.
The remaining five measurement settings can be obtained in
a similar way.

We can find that there is no measurement setting perform-
ing Pauli Y measurements on the both qubits on the edge
e(v5, v6) or e(v14, v15). In addition, there is no measurement
setting performing Pauli Z measurements on the both qubits
on the edge e(v5, v14). Recall step 5 of Principle 2, we first
modify the third measurement setting. We measure in the
Pauli Y basis the qubits on the edge e(v5, v6). Qubits 4, 7,
14 that are adjacent to qubits 5, 6 are measured in the Pauli Z
basis. The measurement type of remaining qubits that belong
to a 10-qubit brickwork state of Fig. 2 is invariant. As a re-
sult, one subgraph consists of V ′ = {v8, v9, v15, v16, v17, v18}
and E ′ = {e(v8, v9), e(v15, v16), e(v16, v17), e(v17, v18)}. Re-
peating steps 2 and 3 of Principle 1 can result in one ultimate
measurement setting. Similarly, the fifth measurement set-
ting is altered, where the qubits on the edge e(v14, v15) are
measured in the Pauli Y basis. Finally, we modify the last mea-
surement setting. We measure in the Pauli Z basis the qubits
on the edge e(v5, v14). The measurement type of remaining
qubits that belong to a 10-qubit brickwork state of Fig. 2 is
invariant, except that qubit 13 whose all adjacent qubits are
measured in the Pauli Z basis should be measured in the Pauli
X basis. Repeating steps 2 and 3 of Principle 1 can obtain one
ultimate measurement setting.

Now we return to the verification of a 27-qubit brickwork
state in Fig. 1. According to Principles 1 and 2, we can derive
the measurement settings of step 3 of Protocol 1 for such a
27-qubit brickwork state, as shown in Fig. 4. In the graph
corresponding to the 27-qubit brickwork state, there are three
pairs of adjacent vertices that have the largest double degree,
i.e., (v3, v12), (v5, v14), and (v16, v25). The edge set Ẽ1 consists
of edges that are associated with a pair of adjacent vertices
(v3, v12). The edge sets Ẽ2 and Ẽ3 are defined in the similar
way.

Ẽ1 = {(v2, v3), (v3, v4), (v3, v12), (v11, v12), (v12, v13)},
Ẽ2 = {(v4, v5), (v5, v6), (v5, v14), (v13, v14), (v14, v15)},
Ẽ3 = {(v15, v16), (v16, v17), (v16, v25),

(v24, v25), (v25, v26)}. (16)

One can check that for any edge ẽ ∈ Ẽ1 ∪ Ẽ2 ∪ Ẽ3, there
is one measurement setting such that all qubits on this edge
are measured in the Pauli Y basis. In addition, it is guaranteed
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FIG. 4. The third group of measurement settings for the 27-qubit
brickwork state.

that there is one measurement setting such that both qubits
corresponding to vertices (v3, v12) or (v5, v14) or (v16, v25) are
measured in the Pauli Z basis.

In the special case of a 16-qubit two-dimensional square
lattice state, as shown in Fig. 5, we find the double degree of

FIG. 5. A 16-qubit two-dimensional square lattice state.

FIG. 6. The third group of measurement settings for a 12-qubit
two-dimensional square lattice state.

the adjacent vertices 6 and 7 is the largest, which is 7. In the
first measurement setting of Protocol 1, the qubits denoted by
the odd number are measured in the Pauli X basis, and the
qubits denoted by the even number are measured in the Pauli
Z basis. In the second measurement setting of Protocol 1, the
qubits denoted by even numbers are measured in the Pauli X
basis, and the qubits denoted by odd numbers are measured in
the Pauli Z basis. In the third measurement setting of Protocol
1, qubits 1, 4, 6, 7, 10,11, 13, 16 are measured in the Pauli
X basis, and qubits 2, 3, 5, 8, 9,12, 14, 15 are measured in
the Pauli Y basis. We first consider the verification strategy of
step 3 of Protocol 1 for a 12-qubit state that consists of qubits
1–12. Utilizing Principle 1, we can get eight measurement
settings, as shown in Fig. 6. Using Principle 2, we can extend
the verification from such a 12-qubit state to the 16-qubit two-
dimensional square lattice state, where the eight measurement
settings of step 3 of Protocol 1 are demonstrated in Fig. 7.

A 4-qubit ring cluster state is shown in Fig. 8(a), where
the double degree of the adjacent vertices v1 and v2 is the
largest. According to Principle 1, two measurement settings
required for the step 1 of Protocol 1 are illustrated in Fig. 8(b),
one measurement settings required for step 2 of Protocol 1 is
illustrated in Fig. 8(c), and four measurement settings required
for step 3 of Protocol 1 are illustrated in Fig. 8(d).

B. Analysis of the property for the verification
strategy of Protocol 1

To characterize the performance of verification protocol,
we show how to compute the spectral gap of the verification
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FIG. 7. The third group of measurement settings for the 16-qubit
two-dimensional square lattice state.

operator, where a higher spectral gap means a higher effi-
ciency of verification.

For any two-colorable symmetric graph state |G〉, without
loss of generality, we assume that d (v′) = d (v′′) = ξ . Theo-
rem III B gives the spectral gap of the verification operator for
the general two-colorable symmetric graph state.

FIG. 8. The example of a 4-qubit ring cluster state. (a) A 4-qubit
ring cluster state. (b) The first group of measurement settings. (c) The
second group of measurement settings. (d) The third group of mea-
surement settings.

Theorem 1. The second largest eigenvalue and spectral
gap of the verification operator Ψ of Protocol 1 for the two-
colorable symmetric graph state |G〉 are

β(Ψ ) = 2ξ + 1

4ξ + 3
, v(Ψ ) = 2ξ + 2

4ξ + 3
. (17)

Proof. We call matrix Aμ corresponding to the mea-
surement setting μ by the measurement matrix. From the
definition of the matrix Aμ, we present a scheme in order to
calculate the value of each element of the matrix Aμ quickly.
Consider the ith row of matrix Aμ. If the qubit denoted by
number i is measured in the Pauli X basis, let the set ΔX

consist of the numbers corresponding to the qubits which
are adjacent to qubit i. If the number j ∈ ΔX , then the el-
ement of the ith row and the jth column of the matrix Aμ

is one. Otherwise, the value is zero. If the qubit denoted by
number i is measured in the Pauli Y basis, let the set ΔY

consist of the number i and numbers corresponding to the
qubits adjacent to qubit i. If the number j ∈ ΔY , then the
element of the ith row and the jth column of the matrix Aμ

is one. Otherwise, the value is zero. If the qubit denoted by
number i is measured in the Pauli Z basis, then the element
of the ith row and the ith column of the matrix Aμ is one,
and the remaining elements of the ith row of the matrix
Aμ are zero. Let {μ1, μ2, . . . , μ3+d (v′ )+d (v′′ )} be all measure-
ment settings. Then the corresponding probabilities {pμi}i are
{pXZ , pXZ , pXY , pXY Z , . . . , pXY Z}.

Let

�λ( �w) =
∑

μ

pμaμ, �w. (18)

Note that the set {�λ( �w)| �w ∈ Zn
2, �w �= 0} contains all eigen-

values of Ψ except the first largest eigenvalue. To solve the
second largest eigenvalue of Ψ , we need to solve the following
optimization problem, where fmax(·) is a function that finds
the maximum element in a set.

min fmax
({�λ( �w)

∣∣ �w ∈ Zn
2, �w �= 0

})
s.t.

∑
μ

pμ = 1, 0 � pμ � 1, ∀ μ. (19)

We can pick out all elements that may be the maximum value
of the set {�λ( �w)| �w ∈ Zn

2, �w �= 0} as follows. By Eq. (18), if
the vector �w belongs to the row span of as many measure-
ment matrices as possible, then the element �λ( �w) can be a
candidate. Hence, we need to consider seven situations. Recall
that R(Aμ) is the row span of the measurement matrix Aμ. It
means that each element of R(Aμ) is one linear combination
of all rows of Aμ, where the operator is the modulo two
addition.

Let the three groups of measurement settings of Pro-
tocol 1 be expressed by Ξ1 = {1, 2}, Ξ2 = {3}, Ξ3 =
{4, . . . , 3 + d (v′) + d (v′′)}. The first situation needs to find
one vector �w such that the Eq. (20) is maximum.∣∣∣∣∣∣

⎧⎨
⎩i
∣∣ �w ∈ R

(
Aμi

)
, �w /∈

⋃
j∈Ξ2∪Ξ3

R
(
Aμ j

)
, i ∈ Ξ1

⎫⎬
⎭
∣∣∣∣∣∣, (20)
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where | · | means the size of a set. The second situation needs
to find one vector �w such that Eq. (21) is maximum:∣∣∣∣∣∣

⎧⎨
⎩i| �w ∈ R

(
Aμi

)
, �w /∈

⋃
j∈Ξ1∪Ξ3

R
(
Aμ j

)
, i ∈ Ξ2

⎫⎬
⎭
∣∣∣∣∣∣. (21)

The third situation needs to find one vector �w such that
Eq. (22) is maximum:∣∣∣∣∣∣

⎧⎨
⎩i| �w ∈ R

(
Aμi

)
, �w /∈

⋃
j∈Ξ1∪Ξ2

R
(
Aμ j

)
, i ∈ Ξ3

⎫⎬
⎭
∣∣∣∣∣∣. (22)

The fourth situation needs to find one vector �w such that
Eq. (23) is maximum:∣∣∣∣∣∣

⎧⎨
⎩ (i, j)| �w ∈ R

(
Aμi

) ∩ R
(
Aμ j

)
,

�w /∈
⋃

k∈Ξ3

R
(
Aμk

)
, i ∈ Ξ1, j ∈ Ξ2

⎫⎬
⎭
∣∣∣∣∣∣. (23)

The fifth situation needs to find one vector �w such that
Eq. (24) is maximum:∣∣∣∣∣∣

⎧⎨
⎩ (i, j)| �w ∈ R

(
Aμi

) ∩ R
(
Aμ j

)
,

�w /∈
⋃

k∈Ξ2

R
(
Aμk

)
, i ∈ Ξ1, j ∈ Ξ3

⎫⎬
⎭
∣∣∣∣∣∣. (24)

The sixth situation needs to find one vector �w such that
Eq. (25) is maximum:∣∣∣∣∣∣

⎧⎨
⎩ (i, j)| �w ∈ R

(
Aμi

) ∩ R
(
Aμ j

)
,

�w /∈
⋃

k∈Ξ1

R
(
Aμk

)
, i ∈ Ξ2, j ∈ Ξ3

⎫⎬
⎭
∣∣∣∣∣∣. (25)

The last situation needs to find one vector �w such that Eq. (26)
is maximum:∣∣{(i, j, k)| �w ∈ R

(
Aμi

) ∩ R
(
Aμ j

) ∩ R
(
Aμk

)
,

i ∈ Ξ1, j ∈ Ξ2, k ∈ Ξ3
}∣∣. (26)

As for the first situation, since the intersection of R(Aμ1 )
and R(Aμ2 ) is an empty set, the upper bound of Eq. (20) is
one. As a result, the element �λ( �w) = pXZ is a candidate. As
for the second situation, since only one measurement matrix
Aμ3 is considered, the upper bound of Eq. (21) is one. More-
over, the element �λ( �w) = pXY is a candidate. As for the third
situation, the upper bound of Eq. (22) is d (v′) + d (v′′). The
element �λ( �w) = [d (v′) + d (v′′)]pXY Z is a candidate. As for
the fourth candidate, the upper bound of Eq. (23) is one. Thus,
the element �λ( �w) = pXZ + pXY is a candidate.

As for the fifth situation, if one nonzero vector �w satisfies

�w ∈ R
(
Aμi

)
, �w /∈

⋃
k∈Ξ2

R
(
Aμk

)
, i ∈ Ξ1, (27)

it means that the amount of ones in the vector �w =
(w1, . . . ,wn) is odd and supp( �w) ∈ Si, where

supp( �w) = {l|wl = 1 }. (28)

In addition, for i ∈ Ξ1, j ∈ Ξ3, if two nonzero vectors �w1 and
�w2 that have an odd number of ones satisfy

supp( �w1) ∈ Si, supp( �w2) ∈ Si, supp( �w1) ⊆ supp( �w2),
(29)

then

�w2 ∈ R
(
Aμi

) ∩ R
(
Aμ j

)
(30)

leads to

�w1 ∈ R
(
Aμi

) ∩ R
(
Aμ j

)
. (31)

To clarify Eq. (31), let us focus on Eq. (30). The condition
�w2 ∈ R(Aμi ) means that for any l ∈ supp( �w2) the measure-
ment setting μi (i ∈ Ξ1) measures in the Pauli Z basis the
qubit denoted by the number l . Combining �w2 ∈ R(Aμi ) with
�w2 ∈ R(Aμ j ) implies that, for any l ∈ supp( �w2), the mea-
surement setting μ j ( j ∈ Ξ3) measures in the Pauli Z basis
the qubit denoted by the number l . Note that if the measure-
ment setting μ j measures in the Pauli X basis qubit l , then
l /∈ supp( �w2) results in a contradiction. If the measurement
setting μ j measures in the Pauli Y basis qubit l , then l ∈
supp( �w2) ∈ Si leads to l ′ ∈ supp( �w2), where l ′ /∈ Si. It reflects
a contradiction. From the condition supp( �w1) ⊆ supp( �w2), we
can know that for any l ∈ supp( �w1) both measurement set-
tings μi and μ j measure in the Pauli Z basis the qubit denoted
by the number l . According to the definition of R(Aμ), the
conditions �w1 ∈ R(Aμi ) and �w1 ∈ R(Aμ j ) are established.

So we just need to find a vector �w satisfying
∑n

l=1 wl = 1
and supp( �w) ∈ Si, i ∈ Ξ1 such that the following Eq. (32) is
maximum. ∣∣{ j

∣∣ �w ∈ R
(
Aμ j

)
, j ∈ Ξ3

}∣∣. (32)

In other words, in the third group of measurement settings we
need to find as many measurement settings as possible which
perform the Pauli Z measurement on one fixed qubit. There
are at most ξ measurement settings that measure in the Pauli
Z basis the same qubit due to the restrictive condition of step
3 of Protocol 1. The upper bound of Eq. (24) is ξ . The element
pXZ + ξ pXY Z is a candidate.

As for the sixth situation, the upper bound of Eq. (25) is
2ξ . Thus, the element pXY + 2ξ pXY Z is a candidate.

As for the seventh situation, if one nonzero vector �w
satisfies

�w ∈ R
(
Aμi

) ∩ R
(
Aμ j

)
, i ∈ Ξ1, j ∈ Ξ2, (33)

it means that the amount of ones in the vector �w =
(w1, . . . ,wn) is even and supp( �w) ∈ Si. In addition, for i ∈
Ξ1, j ∈ Ξ2, k ∈ Ξ3, if two nonzero vectors �w1 and �w2 that
have an even number of ones satisfy Eq. (29) then

�w2 ∈ R
(
Aμi

) ∩ R
(
Aμ j

) ∩ R
(
Aμk

)
(34)

012606-8



EFFICIENT VERIFICATION OF TWO-COLORABLE GRAPH … PHYSICAL REVIEW A 110, 012606 (2024)

leads to

�w1 ∈ R
(
Aμi

) ∩ R
(
Aμ j

) ∩ R
(
Aμk

)
. (35)

So we just need to find a vector �w satisfying
∑n

l=1 wl = 2
and supp( �w) ∈ Si, i ∈ Ξ1 such that the following Eq. (36) is
maximum. ∣∣{k∣∣ �w ∈ R

(
Aμk

)
, k ∈ Ξ3

}∣∣. (36)

In other words, in the third group of measurement settings
we have to find as many measurement settings as possible,
where two fixed qubits corresponding to two vertices of the
set S1 or S2 are all measured in the Pauli Z basis. Since the
number of measurement settings that measure two qubits with
the same color in the Pauli Z basis is not more than the number
of measurement settings that measure one qubit in the Pauli Z
basis. In addition, by the principles of the selection of edge
sets, if there are ξ measurement settings that measure in the
Pauli Z basis the qubit corresponding to one vertex vi, then
there is no other vertex v j such that all these ξ measurement
settings measure in the Pauli Z basis the qubit corresponding
to the vertex v j . It means that the number of measurement
settings that measure two qubits with the same color in the
Pauli Z basis is not more than ξ − 1. Therefore, the element
pXZ + pXY + (ξ − 1)pXY Z is a candidate.

Our verification strategy has several remarkable properties.
Let us consider a vector �w ∈ R(Aμi ) for i ∈ Ξ3. If v j ∈ SY

i−3
and j ∈ supp( �w), where SY

i−3 means the set of vertices corre-
sponding to the qubits measured in the Pauli Y basis in the
measurement setting μi, then there is a vertex vk adjacent
to the vertex v j such that k ∈ supp( �w). It implies that �w /∈
R(Aμ1 ) ∪ R(Aμ2 ). Furthermore, for any i ∈ Ξ1, if there is a
vertex v j satisfying v j ∈ Si⊕1, where the symbol ⊕ represents
modulo two addition, then each vector �w ∈ R(Aμi ) satisfies
j /∈ supp( �w). Similarly, for any i ∈ Ξ3, if there is a vertex
v j satisfying v j ∈ SX

i−3, then each vector �w ∈ R(Aμi ) satisfies
j /∈ supp( �w).

Let Φ consist of all the vectors �w ∈ Zn
2 having an even

number of ones. Note that R(Aμ3 ) belongs to Φ, i.e.,
R(Aμ3 ) ⊆ Φ. We have already replaced R(Aμ3 ) with Φ in
this paper. The candidates obtained by Φ are greater than
or equal to the candidates obtained by R(Aμ3 ). It indicates
the worst case for the spectral gap v(Ψ ) of the verification
operator Ψ .

Based on the above analysis, all candidates that may be the
maximum value of the set {�λ( �w)| �w ∈ Zn

2, �w �= 0} are

{pXZ , pXY , 2ξ pXY Z , pXZ + pXY , pXZ + ξ pXY Z ,

pXY + 2ξ pXY Z , pXZ + pXY + (ξ − 1)pXY Z}. (37)

To solve the maximum value, we just need to consider the last
three candidates. Therefore, the optimization problem can be
written as

min fmax(Θ )

s.t. Θ = {pXZ + ξ pXY Z , pXY + 2ξ pXY Z ,

pXZ + pXY + (ξ − 1)pXY Z},
2pXZ + pXY + 2ξ pXY Z = 1,

pXZ , pXY , pXY Z ∈ [0, 1]. (38)

The analytical solution is obtained when three candidates are
equal, which implies

pXZ = ξ + 1

4ξ + 3
, pXY = 1

4ξ + 3
,

pXY Z = 1

4ξ + 3
, β(Ψ ) = 2ξ + 1

4ξ + 3
. (39)

Thus, the spectral gap of the verification operator Ψ is v(Ψ ) =
1 − β(Ψ ) = (2ξ + 2)/(4ξ + 3). �

The value v(Ψ ) with regard to the graph state with spe-
cial structures can be further improved, such as the 4-qubit
ring cluster state and the two-dimensional square lattice state.
Theorem 2 gives the spectral gap of the verification operator
when the graph state is a 4-qubit ring cluster state.

Theorem 2. The second largest eigenvalue and spectral gap
of the verification operator Ψ of Protocol 1 for the 4-qubit ring
cluster state are

β(Ψ ) = 3/7, v(Ψ ) = 4/7. (40)

Proof. Let {μ1, μ2, . . . , μ7} be the measurement settings
of Fig. 8. Then the corresponding probabilities {pμi}7

i=1 are
{pXZ , pXZ , pXY , pXY Z , pXY Z , pXY Z , pXY Z}. According to the
definition of the matrix of Aμ, we have

Aμ1 =

⎛
⎜⎜⎝

0 1 1 0
0 1 0 0
0 0 1 0
0 1 1 0

⎞
⎟⎟⎠, Aμ2 =

⎛
⎜⎜⎝

1 0 0 0
1 0 0 1
1 0 0 1
0 0 0 1

⎞
⎟⎟⎠,

Aμ3 =

⎛
⎜⎜⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞
⎟⎟⎠, Aμ4 =

⎛
⎜⎜⎝

1 1 1 0
1 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

Aμ5 =

⎛
⎜⎜⎝

1 1 1 0
0 1 0 0
1 0 1 1
0 0 0 1

⎞
⎟⎟⎠, Aμ6 =

⎛
⎜⎜⎝

1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 1

⎞
⎟⎟⎠,

Aμ7 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 1 1
0 1 1 1

⎞
⎟⎟⎠. (41)

Similarly, the first three candidates are pXZ , pXY , and
4pXY Z . As for the fourth situation, there is one vector �w =
(0, 1, 1, 0) that belongs to R(Aμ1 ) ∩ R(Aμ3 ) and is not a part
of
⋃

k∈Ξ3
R(Aμk ). The maximum value of Eq. (23) can be

attained, which is one. Thus, the element �λ( �w) = pXZ + pXY

is a candidate. As for the fifth situation, we can find that
the first measurement setting, the fifth measurement setting,
and the seventh measurement setting measure in the Pauli
Z basis the qubit denoted by the number two. So the vector
�w = (0, 1, 0, 0) belongs to R(Aμ1 ) ∩ R(Aμ5 ) ∩ R(Aμ7 ) and
is not a part of R(Aμ3 ). The maximum value of Eq. (24) can
be attained, which is two. The element �λ( �w) = pXZ + 2pXY Z

is a candidate. As for the sixth situation, there is one vec-
tor �w = (1, 1, 1, 1) that belongs to R(Aμ3 ) ∩ (∩ j∈Ξ3R(Aμ j ))
and is not a part of

⋃
k∈Ξ1

R(Aμk ). The maximum value of
Eq. (25) can be attained, which is four. Thus, the element
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�λ( �w) = pXY + 4pXY Z is a candidate. Let us consider the sev-
enth situation. If we choose a pair of vertices from the set S1,
i.e., (v2, v3), then there is no measurement setting in step 3 of
Protocol 1 measuring in the Pauli Z basis both qubits denoted
by the numbers two and three. If we choose a pair of vertices
from the set S2, i.e., (v1, v4), then there is no measurement
settings in step 3 of Protocol 1 measuring in the Pauli Z basis
both qubits denoted by the numbers one and four. As a result,
The maximum value of Eq. (26) can be attained, which is zero.
The element �λ( �w) = pXZ + pXY + 0pXY Z is a candidate.

Therefore, the optimization problem can be written as

min fmax({pXZ + 2pXY Z , pXY + 4pXY Z , pXZ + pXY })

s.t. 2pXZ + pXY + 4pXY Z = 1,

pXZ , pXY , pXY Z ∈ [0, 1]. (42)

The analytical solution is obtained when three candidates
are equal, i.e., pXZ + 2pXY Z = pXY + 4pXY Z = pXZ + pXY . It
implies that pXY = 2pXY Z and pXZ = 4pXY Z . Bringing these
into the condition 2pXZ + pXY + 4pXY Z = 1 leads to

pXZ = 2
7 , pXY = 1

7 , pXY Z = 1
14 , β(Ψ ) = 3

7 . (43)

Using Matlab, we can obtain the numerical solution, which is
the same as the analytical solution. Thus, the spectral gap of
the verification operator Ψ is v(Ψ ) = 1 − β(Ψ ) = 4/7. �

Theorem 3 gives the spectral gap of the verification op-
erator when the graph state is a 27-qubit brickwork state.
Theorem 3 also holds for higher-dimensional brickwork
states.

Theorem 3. The second largest eigenvalue and spectral gap
of the verification operator Ψ of Protocol 1 for the 27-qubit
brickwork state are

β(Ψ ) = 7/15, v(Ψ ) = 8/15. (44)

Proof. Let {μ1, μ2} be the first group of measurement
settings, {μ3} be the second group of measurement settings,
and {μ4, μ5, . . . , μ9} be the third group of measurement
settings, as illustrated in Fig. 4. Then the correspond-
ing probabilities {pμi}9

i=1 are {pXZ , pXZ , pXY , pXY Z , pXY Z ,

pXY Z , pXY Z , pXY Z , pXY Z}. Let Ξ1 = {1, 2}, Ξ2 = {3}, Ξ3 =
{4, 5, 6, 7, 8, 9} label the three groups of measurement
settings.

The first three candidates are pXZ , pXY , 6pXY Z . As for the
fourth candidate, the upper bound of Eq. (23) is one. Thus,
the element �λ( �w) = pXZ + pXY is a candidate. As for the
fifth candidate, the measurement settings {μ5, μ6, μ7} mea-
sure in the Pauli Z basis the qubit denoted by the number 26.
Let the vector �w satisfy wl = 1 for l = 26 and wl = 0 for
l �= 26. Therefore, the vector �w belongs to R(Aμ1 ) ∩
R(Aμ5 ) ∩ R(Aμ6 ) ∩ R(Aμ7 ) and is not a part of R(Aμ3 ).
The maximum value of Eq. (24) can be attained, which is
three. The element �λ( �w) = pXZ + 3pXY Z is a candidate. As
for the sixth candidate, the upper bound of Eq. (25) is six.
Thus, the element �λ( �w) = pXY + 6pXY Z is a candidate. As
for the last candidate, we choose a pair of vertices (v6, v26).
Then the measurement settings {μ5, μ7} perform Pauli Z mea-
surements on both qubits denoted by the numbers six and 26.
Therefore the maximum value of Eq. (26) can be attained,

which is two. Thus, the element �λ( �w) = pXZ + pXY + 2pXY Z

is a candidate.
Therefore, the optimization problem can be written as

min fmax(Θ )

s.t. Θ = {pXZ + 3pXY Z , pXY + 6pXY Z ,

pXZ + pXY + 2pXY Z},
2pXZ + pXY + 6pXY Z = 1,

pXZ , pXY , pXY Z ∈ [0, 1]. (45)

Similarly, we can obtain the analytical solution as follows:

pXZ = 4
15 , pXY = 1

15 , pXY Z = 1
15 , β(Ψ ) = 7

15 . (46)

Thus, the spectral gap of the verification operator Ψ is v(Ψ ) =
1 − β(Ψ ) = 8/15. �

Theorem 4 has given the spectral gap of the verification
operator when the graph state is a 16-qubit two-dimensional
square lattice state.

Theorem 4. The second largest eigenvalue and spectral gap
of the verification operator Ψ of Protocol 1 for the 16-qubit
two-dimensional square lattice state are

β(Ψ ) = 3/7, v(Ψ ) = 4/7. (47)

Proof. Let {μ1, μ2} be the first group of measure-
ment settings, {μ3} be the second group of measure-
ment settings, and {μ4, μ5, . . . , μ11} be the third group
of measurement settings, as shown in Fig. 7. Then the
corresponding probabilities {pμi}11

i=1 are {pXZ , pXZ , pXY ,

pXY Z , pXY Z , pXY Z , pXY Z , pXY Z , pXY Z , pXY Z , pXY Z}. Let the
three groups of measurement settings be labeled by Ξ1 =
{1, 2}, Ξ2 = {3}, Ξ3 = {4, 5, 6, 7, 8, 9, 10, 11}.

Similarly, the first two candidates are pXZ , pXY , and the
fourth candidate is pXZ + pXY . As for the third candidate, we
just need to find a vector �w such that the following Eq. (48) is
maximum. ∣∣{i∣∣ �w ∈ R

(
Aμi

)
, i ∈ Ξ3

}∣∣, (48)

where �w has an odd number of ones and satisfies

{supp( �w)/{supp( �w) ∩ S1}} ∩ S2 �= �,

{supp( �w)/{supp( �w) ∩ S2}} ∩ S1 �= �. (49)

The vector �w = (1, 1, 1, 0, 0, . . . , 0) can be chosen to reach
the maximum value of Eq. (22). It is easy to check that

�w ∈ R
(
Aμ9

) ∩ R
(
Aμ11

)
,

�w /∈ R
(
Aμ1

) ∪ R
(
Aμ2

) ∪ R
(
Aμ3

)
. (50)

As a result, we obtain the third candidate 2pXY Z . Recall Fig. 7.
In the measurement settings μ9, the qubits 1 and 2 are mea-
sured in the Pauli Y basis, and qubits 3, 7, and 8 (which
are adjacent to qubits 1 and 2) are measured in the Pauli Z
basis. According to the definition of the matrix of Aμ, the
first row of Aμ9 is r1 = (1, 1, 0, 0, 0, 0, 0, 1, 0, . . . , 0). The
second row of Aμ9 is r2 = (1, 1, 1, 0, 0, 0, 1, 0, 0, . . . , 0). The
third row of Aμ9 is r3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, . . . , 0).
The seventh row of Aμ9 is r7=(0, 0, 0, 0, 0, 0, 1, 0, 0, . . . , 0).
The eighth row of Aμ9 is r8 = (0, 0, 0, 0, 0, 0, 0, 1, 0, . . . , 0).
Adding the rows r1, r3, r8, i.e., r1 ⊕ r3 ⊕ r8, (or adding the
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rows r2, r7) leads to the vector (1, 1, 1, 0, 0, 0, 0, 0, 0, . . . , 0),
which is one element of Aμ9 . In the measurement settings
Aμ11 , qubits 2 and 3 are measured in the Pauli Y basis, and
qubits 1, 4, 6, and 7 (which are adjacent to qubits 2 and 3)
are measured in the Pauli Z basis. In a similar way, the vector
(1, 1, 1, 0, 0, 0, 0, 0, 0, . . . , 0) belongs to Aμ11 .

We now consider the fifth candidate. The measurement
settings {μ4, μ5, μ6, μ10} measure in the Pauli Z basis the
qubit denoted by the number two. Let the vector �w satisfy
wl = 1 for l = 2 and wl = 0 for l �= 2. Then

�w ∈ R
(
Aμ1

) ∩ R
(
Aμ4

) ∩ R
(
Aμ5

) ∩ R
(
Aμ6

) ∩ R
(
Aμ10

)
,

�w /∈ R
(
Aμ3

)
. (51)

The maximum value of Eq. (24) can be attained, which is four.
The element �λ( �w) = pXZ + 4pXY Z is a candidate.

As for the sixth candidate, we just need to find a vector �w
that has the even number of ones and satisfies Eq. (49), such
that Eq. (25) is maximum. Let the vector �w satisfy wl = 1 for
l ∈ {6, 7, 10, 11} and wl = 0 for l /∈ {6, 7, 10, 11}. Then the
vector �w can reach the maximum value of Eq. (25). We get
the sixth candidate pXY + 4pXY Z due to

�w ∈ R
(
Aμ3

) ∩ R
(
Aμ4

) ∩ R
(
Aμ6

) ∩ R
(
Aμ8

) ∩ R
(
Aμ11

)
,

�w /∈ R
(
Aμ1

) ∪ R
(
Aμ2

)
. (52)

For the convenience of calculation, we have replaced
the set R(Aμ3 ) with the set Φ. Thus, the vector
(0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, . . . , 0) that has the even num-
ber of ones belongs to R(Aμ3 ).

As for the seventh candidate, we choose a pair of vertices
(v7, v11). Then the measurement settings {μ9, μ10} perform
Pauli Z measurements on both qubits denoted by the numbers
seven and eleven. Therefore the maximum value of Eq. (26)
can be attained, which is two. Thus, the element �λ( �w) =
pXZ + pXY + 2pXY Z is a candidate.

Therefore, the optimization problem can be written as

min fmax(Θ )

s.t. Θ = {pXZ + 4pXY Z , pXY + 4pXY Z ,

pXZ + pXY + 2pXY Z},
2pXZ + pXY + 8pXY Z = 1,

pXZ , pXY , pXY Z ∈ [0, 1]. (53)

Similarly, we can obtain the analytical solution as follows:

pXZ = 1
7 , pXY = 1

7 , pXY Z = 1
14 , β(Ψ ) = 3

7 . (54)

Thus, the spectral gap of the verification operator Ψ is v(Ψ ) =
1 − β(Ψ ) = 4/7. �

Theorem 4 also holds for large-scale two-dimensional
square lattice states. As for any two-dimensional square lattice
state with a larger scale, the third group of measurement
settings can be obtained by the extension of measurement set-
tings of Fig. 7. For example, given a 4n-qubit two-dimensional
square lattice state (including n rows and four columns), the
measurement setting μ4 is constructed as follows: The re-
maining measurement settings {μ5, μ6, μ7, μ8, μ9, μ10, μ11}
can be derived in the similar way.

If n = 4k, where k � 2 is a positive integer, then the mea-
surement setting μ4 measures in the Pauli Y basis each qubit

located in row 4l + 2 and column 2 or located in row 4l + 3
and column 2 or located in row 4l + 2 and column 4 or
located in row 4l + 3 and column 4, where l = 0, . . . , k − 1.
In addition, the measurement setting μ4 measures in the Pauli
Y basis the each qubit located in row 4l + 4 and column 1 or
located in row 4l + 5 and column 1 or located in row 4l + 4
and column 3 or located in row 4l + 5 and column 3, where
l = 0, . . . , k − 2. Each qubit located in row 1 and column 1
or located in row 1 and column 3 or located in row 4k and
column 1 or located in row 4k and column 3 is measured in
the Pauli X basis. The remaining qubits are measured in the
Pauli Z basis.

If n = 4k + 1, then the measurement setting μ4 measures
in the Pauli Y basis each qubit located in row 4l + 2 and col-
umn 2 or located in row 4l + 3 and column 2 or located in row
4l + 2 and column 4 or located in row 4l + 3 and column 4,
where l = 0, . . . , k − 1. In addition, the measurement setting
μ4 measures in the Pauli Y basis the each qubit located in row
4l + 4 and column 1 or located in row 4l + 5 and column 1 or
located in row 4l + 4 and column 3 or located in row 4l + 5
and column 3, where l = 0, . . . , k − 1. Each qubit located
in row 1 and column 1 or located in row 1 and column 3
is measured in the Pauli X basis. The remaining qubits are
measured in the Pauli Z basis.

If n = 4k + 2, then the measurement setting μ4 measures
in the Pauli Y basis each qubit located in row 4l + 2 and col-
umn 2 or located in row 4l + 3 and column 2 or located in row
4l + 2 and column 4 or located in row 4l + 3 and column 4,
where l = 0, . . . , k − 1. In addition, the measurement setting
μ4 measures in the Pauli Y basis the each qubit located in row
4l + 4 and column 1 or located in row 4l + 5 and column 1 or
located in row 4l + 4 and column 3 or located in row 4l + 5
and column 3, where l = 0, . . . , k − 1. Each qubit located in
row 1 and column 1 or located in row 1 and column 3 or
located in row 4k + 2 and column 2 or located in row 4k + 2
and column 4 is measured in the Pauli X basis. The remaining
qubits are measured in the Pauli Z basis.

If n = 4k + 3, then the measurement setting μ4 measures
in the Pauli Y basis each qubit located in row 4l + 2 and
column 2 or located in row 4l + 3 and column 2 or located in
row 4l + 2 and column 4 or located in row 4l + 3 and column
4, where l = 0, . . . , k. In addition, the measurement setting
μ4 measures in the Pauli Y basis the each qubit located in row
4l + 4 and column 1 or located in row 4l + 5 and column 1 or
located in row 4l + 4 and column 3 or located in row 4l + 5
and column 3, where l = 0, . . . , k − 1. Each qubit located
in row 1 and column 1 or located in row 1 and column 3
is measured in the Pauli X basis. The remaining qubits are
measured in the Pauli Z basis.

To solve the spectral gap, we only need to consider the
fifth candidate, the sixth candidate, and the seventh candi-
date. According to the construction of the third group of
measurement settings, there are at most four measurement
settings that measure the same qubit in the Pauli Z basis. It
implies the fifth candidate is pXZ + 4pXY Z . In addition, for
any higher dimensional cluster state, we can find a subgraph
corresponding to an 4-qubit ring cluster state. There is al-
ways one measurement setting that measures in the Pauli Y
basis qubits on one edge of such a ring graph. It implies
the sixth candidate is pXY + 4pXY Z . Moreover, there are at
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most two measurement settings that measure in the Pauli Z
basis two fixed qubits with the same color. It shows that
the seventh candidate is pXZ + pXY + 2pXY Z . Therefore, the
optimization problem has no change and the spectral gap is
identical.

C. Verification of two-colorable asymmetric graph states

In this section, we present an efficient verification of two-
colorable asymmetric graph states. Consider a graph state
|G〉 corresponding to a graph G = (V, E ). the terminology
“asymmetric” means that d (v′) �= d (v′′), where v′ and v′′ are
two adjacent vertices of the graph G that have the maxi-
mum double degree. Our verification protocol is described as
follows:

Protocol 2: Verification of two-colorable asymmetric graph states

(1) Perform the measurement settings of step 1 of Protocol
1, where the first measurement setting is performed with prob-
ability p′

XZ and the second measurement setting is performed
with probability p′′

XZ .
(2) Follow step 2 of Protocol 1.
(3) Follow step 3 of Protocol 1. Assume that v′ ∈ S2, v

′′ ∈
S1. The restrictive condition is rewritten as

d (v′ )+d (v′′ )∑
k=1

fk (vi ) � d (v′), ∀ vi ∈ S1,

d (v′ )+d (v′′ )∑
k=1

fk (vi) � d (v′′), ∀ vi ∈ S2. (55)

The verification operator of Protocol 2 is

Ψ = p′
XZ P1 + p′′

XZ P2 + pXY P3 + pXY Z

d (v′ )+d (v′′ )∑
k=1

P′
k . (56)

To derive Eq. (55), recall step 3 of Protocol 1. The
edge sets E1, E2, . . . , Ed (v′ )+d (v′′ )−1 contain the edges e1, e2,

. . . , ed (v′ )+d (v′′ )−1, respectively. Let ev′
1 , . . . , ev′

d (v′ )−1 be the
edges, which connect the vertex v′ ∈ S2 and do not
connect the vertex v′′ ∈ S1. Let ev′′

1 , . . . , ev′′
d (v′′ )−1 be the

edges, which connect the vertex v′′ and do not con-
nect the vertex v′. As a result, {e1, e2, . . . , ed (v′ )+d (v′′ )−1} =
{ev′

1 , . . . , ev′
d (v′ )−1, ev′′

1 , . . . , ev′′
d (v′′ )−1e(v′, v′′)}. For any edge e ∈

{ev′
1 , . . . , ev′

d (v′ )−1}, there is one measurement setting that mea-
sures in the Pauli Y basis the qubits on the edge e. It implies
that in the first d (v′) + d (v′′) − 1 measurement settings of the
third group of measurement settings, there are d (v′) − 1 mea-
surement settings that measure in the Pauli Z basis the qubit
corresponding to the vertex v′′. Note that the last measurement
setting of the third group of measurement settings measure the
Pauli Z basis the qubits on the edge e(v′, v′′). Thus, we can
know that there are d (v′) measurement settings that measure
in the Pauli Z basis the qubit corresponding to the vertex v′′
in total, which leads to the first inequality of Eq. (55). The
second inequality of Eq. (55) can be obtained in the same way.
In addition, if we set d (v′) = d (v′′), then Eq. (55) becomes
Eq. (10) of Protocol 1.

For any two-colorable asymmetric graph state |G〉,
without loss of generality, we assume that d (v′) = ξ1,

d (v′′) = ξ2. Theorem 5 has given the spectral gap of the
verification operator for the general two-colorable asymmetric
graph state.

Theorem 5. The second-largest eigenvalue and spectral
gap of the verification operator Ψ of protocol 2 for the two-
colorable asymmetric graph state |G〉 are

β(Ψ ) = ξ1 + ξ2 + 1

2(ξ1 + ξ2) + 3
, v(Ψ ) = ξ1 + ξ2 + 2

2(ξ1 + ξ2) + 3
. (57)

Proof. Similar to the proof of Theorem 1, the proof is
as follows: Let Ξ ′

1 = {1}, Ξ ′′
1 = {2}, Ξ1 = {1, 2}, Ξ2 = {3},

Ξ3 = {4, . . . , 3 + d (v′) + d (v′′)}. The first situation needs to
find one vector �w such that Eq. (58) is maximum:

∣∣∣∣∣∣
⎧⎨
⎩i
∣∣ �w ∈ R

(
Aμi

)
, �w /∈

⋃
j∈Ξ2∪Ξ3

R
(
Aμ j

)
, i ∈ Ξ ′

1

⎫⎬
⎭
∣∣∣∣∣∣. (58)

The second situation needs to find one vector �w such that
Eq. (59) is maximum:

∣∣∣∣∣∣
⎧⎨
⎩i
∣∣ �w ∈ R

(
Aμi

)
, �w /∈

⋃
j∈Ξ2∪Ξ3

R
(
Aμ j

)
, i ∈ Ξ ′′

1

⎫⎬
⎭
∣∣∣∣∣∣. (59)

The third situation is just the second situation of the proof of
Theorem 2. The fourth situation is just the third situation of
the proof of Theorem 2. The fifth situation needs to find one
vector �w such that Eq. (60) is maximum:

∣∣∣∣∣∣
⎧⎨
⎩ (i, j)

∣∣ �w ∈ R
(
Aμi

) ∩ R
(
Aμ j

)
,

�w /∈
⋃

k∈Ξ3

R
(
Aμk

)
, i ∈ Ξ ′

1, j ∈ Ξ2

⎫⎬
⎭
∣∣∣∣∣∣. (60)

The sixth situation needs to find one vector �w such that
Eq. (61) is maximum:

∣∣∣∣∣∣
⎧⎨
⎩ (i, j)

∣∣ �w ∈ R
(
Aμi

) ∩ R
(
Aμ j

)
,

�w /∈
⋃

k∈Ξ3

R
(
Aμk

)
, i ∈ Ξ ′′

1 , j ∈ Ξ2

⎫⎬
⎭
∣∣∣∣∣∣. (61)

The seventh situation needs to find one vector �w such that
Eq. (62) is maximum:

∣∣∣∣∣∣
⎧⎨
⎩ (i, j)

∣∣ �w ∈ R
(
Aμi

) ∩ R
(
Aμ j

)
,

�w /∈
⋃

k∈Ξ2

R
(
Aμk

)
, i ∈ Ξ ′

1, j ∈ Ξ3

⎫⎬
⎭
∣∣∣∣∣∣. (62)
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The eighth situation needs to find one vector �w such that
Eq. (63) is maximum:∣∣∣∣∣∣

⎧⎨
⎩ (i, j)| �w ∈ R

(
Aμi

) ∩ R
(
Aμ j

)
,

�w /∈
⋃

k∈Ξ2

R
(
Aμk

)
, i ∈ Ξ ′′

1 , j ∈ Ξ3

⎫⎬
⎭
∣∣∣∣∣∣. (63)

The ninth situation is just the sixth situation of the proof of
Theorem 2. The tenth situation needs to find one vector �w
such that Eq. (64) is maximum:∣∣{(i, j, k)| �w ∈ R

(
Aμi

) ∩ R
(
Aμ j

) ∩ R
(
Aμk

)
,

i ∈ Ξ ′
1, j ∈ Ξ2, k ∈ Ξ3

}∣∣. (64)

The last situation needs to find one vector �w such that Eq. (65)
is maximum:∣∣{(i, j, k)| �w ∈ R

(
Aμi

) ∩ R
(
Aμ j

) ∩ R
(
Aμk

)
,

i ∈ Ξ ′′
1 , j ∈ Ξ2, k ∈ Ξ3

}∣∣. (65)

Similarly, the first six candidates are p′
XZ , p′′

XZ , pXY , (ξ1 +
ξ2)pXY Z , p′

XZ + pXY , p′′
XZ + pXY . We just need to consider

the last five candidates. Let us focus on the third group of
measurement settings. First, there are at most ξ1 measurement
settings that measure in the Pauli Z basis the same qubit whose
corresponding vertex belongs to the set S1 due to Eq. (55)
of step 3 of Protocol 2. The upper bound of Eq. (62) is ξ1.
The element p′

XZ + ξ1 pXY Z is a candidate. Second, there are
at most ξ2 measurement settings that measure in the Pauli
Z basis the same qubit whose corresponding vertex belongs
to the set S2 due to Eq. (55) of step 3 of Protocol 2. The
upper bound of Eq. (63) is ξ2. The element p′′

XZ + ξ2 pXY Z is
a candidate. Third, the upper bound of Eq. (25) is ξ1 + ξ2.
Thus, the element pXY + (ξ1 + ξ2)pXY Z is a candidate. Since
the number of measurement settings that measure two qubits
of the set S1 in the Pauli Z basis is not more than the number of
measurement settings that measure one qubit of the set S1 in
the Pauli Z basis. In addition, by the principles of the selection
of edge sets, if there are ξ1 measurement settings that measure
in the Pauli Z basis the qubit corresponding to one vertex vi

of the set S1, then ones cannot find another vertex v j from the
set S1 such that all these ξ1 measurement settings measure in
the Pauli Z basis the qubit corresponding to the vertex v j . It
means that the number of measurement settings that measure
two qubits of the set S1 in the Pauli Z basis is not more than
ξ1 − 1. Therefore, the element p′

XZ + pXY + (ξ1 − 1)pXY Z is
a candidate. Similarly, there are at most ξ2 − 1 measurement
settings that measure in the Pauli Z basis two fixed qubits
whose corresponding vertices belong to the set S2. Therefore,
the element p′′

XZ + pXY + (ξ2 − 1)pXY Z is a candidate.
The optimization problem can be written as

min fmax(Θ )

s.t. Θ = {p′
XZ + ξ1 pXY Z , p′′

XZ + ξ2 pXY Z ,

pXY + (ξ1 + ξ2)pXY Z ,

p′
XZ + pXY + (ξ1 − 1)pXY Z ,

FIG. 9. The example of a 12-qubit asymmetric graph state.

p′′
XZ + pXY + (ξ2 − 1)pXY Z},

p′
XZ + p′′

XZ + pXY + (ξ1 + ξ2)pXY Z = 1,

p′
XZ , p′′

XZ , pXY , pXY Z ∈ [0, 1]. (66)

Similarly, we can obtain the analytical solution as follows:

p′
XZ = ξ2 + 1

2(ξ1 + ξ2) + 3
, p′′

XZ = ξ1 + 1

2(ξ1 + ξ2) + 3
,

pXY = 1

2(ξ1 + ξ2) + 3
, pXY Z = 1

2(ξ1 + ξ2) + 3
,

β(Ψ ) = ξ1 + ξ2 + 1

2(ξ1 + ξ2) + 3
. (67)

Thus, the spectral gap of the verification operator Ψ is v(Ψ ) =
1 − β(Ψ ) = (ξ1 + ξ2 + 2)/(2(ξ1 + ξ2) + 3). �

Note that if we substitute d (v′) = ξ1, d (v′′) = ξ2 with
d (v′) = d (v′′) = ξ , then Theorem 5 will be converted to
Theorem 1. It means that the verification of two-colorable
symmetric graph states is a special case for the verification
of two-colorable asymmetric graph states.

Consider the 12-qubit two-colorable asymmetric graph
state illustrated in Fig. 9, where v′ = v6, v′′ = v5, and d (v′) =
2, d (v′′) = 4. In the first measurement setting of Protocol 2,
the qubits denoted by the numbers 1, 3, 5, 7 are measured in
the Pauli Z basis, and the remaining qubits are measured in the
Pauli X basis. In the second measurement setting of Protocol
2, the qubits denoted by the numbers 2, 4, 6, 8, 9, 10, 11, 12
are measured in the Pauli Z basis, and the remaining qubits
are measured in the Pauli X basis. In the third measurement
setting of Protocol 2, the qubits denoted by the numbers 1,
8, 9, 10, 11, 12 are measured in the Pauli Y basis, and the
remaining qubits are measured in the Pauli X basis. Utilizing
Principles 1 and 2, we can get six measurement settings (the
third group of measurement settings), as shown in Fig. 10.
Note that the second condition of step 5 of Principle 2 is not
required for Protocol 2. It is easy to check that

6∑
k=1

fk (vi ) � 4, ∀ vi ∈ {v2, v4, v6, v8, v9, v10, v11, v12},

6∑
k=1

fk (vi ) � 2, ∀ vi ∈ {v1, v3, v5, v7}. (68)

This implies that the restrictive condition of step 3 of Protocol
2 is satisfied.

Theorem 6 has given the spectral gap of the verification
operator when the graph state is the 12-qubit asymmetric
graph state illustrated in Fig. 9.

Theorem 6. The second largest eigenvalue and spectral gap
of the verification operator Ψ of Protocol 2 for the 12-qubit
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FIG. 10. The third group of measurement settings for the 12-
qubit asymmetric graph state.

two-colorable asymmetric graph state are

β(Ψ ) = 7/15, v(Ψ ) = 8/15. (69)

Proof. The first six candidates are invariant. As for the
seventh candidate, in the third group of measurement settings
we need to find as many measurement settings as possible,
which perform the Pauli Z measurement on one fixed qubit
corresponding to a vertex that belongs to the set S1. Note
that the measurement settings {μ8, μ9} measure in the Pauli
Z basis the qubit denoted by the number five. Let the vector �w
satisfy wl = 1 for l = 5 and wl = 0 for l �= 5. Then

�w ∈ R
(
Aμ1

) ∩ R
(
Aμ8

) ∩ R
(
Aμ9

)
,

�w /∈ R
(
Aμ3

)
. (70)

The maximum value of Eq. (62) can be attained, which is
two. The element �λ( �w) = p′

XZ + 2pXY Z is a candidate. The
eighth candidate can be obtained in a similar way, where the
set S1 is replaced with the set S2. Note that the measurement
settings {μ4, μ6, μ8, μ9} measure in the Pauli Z basis the
qubit denoted by the number nine. Let the vector �w satisfy
wl = 1 for l = 9 and wl = 0 for l �= 9. Then

�w ∈ R
(
Aμ2

) ∩ R
(
Aμ4

) ∩ R
(
Aμ6

) ∩ R
(
Aμ8

) ∩ R
(
Aμ9

)
,

�w /∈ R
(
Aμ3

)
. (71)

The maximum value of Eq. (63) can be attained, which is four.
The element �λ( �w) = p′′

XZ + 4pXY Z is a candidate. The ninth
candidate is pXY + 6pXY Z .

As for the tenth candidate, in the third group of measure-
ment settings we need to find as many measurement settings
as possible, where two fixed qubits corresponding to two
vertices of the set S1 are all measured in the Pauli Z basis.
Here, we choose a pair of vertices (v3, v7). Then the mea-
surement setting μ7 performs Pauli Z measurements on both
qubits denoted by the numbers three and seven. Therefore the
maximum value of Eq. (64) can be attained, which is one.
Thus, the element �λ( �w) = p′

XZ + pXY + pXY Z is a candidate.
The last candidate can be obtained in a similar way, where
the set S1 is replaced with the set S2. Here, we choose a pair of
vertices (v6, v10). Then the measurement settings {μ4, μ5, μ9}
perform Pauli Z measurements on both qubits denoted by
the numbers six and ten. Therefore the maximum value of
Eq. (65) can be attained, which is three. Thus, the element
�λ( �w) = p′′

XZ + pXY + 3pXY Z is a candidate.
Therefore, the optimization problem can be written as

min fmax(Θ )

s.t. Θ = {p′
XZ + 2pXY Z , p′′

XZ + 4pXY Z , pXY + 6pXY Z ,

p′
XZ + pXY + pXY Z , p′′

XZ + pXY + 3pXY Z},
p′

XZ + p′′
XZ + pXY + 6pXY Z = 1,

p′
XZ , p′′

XZ , pXY , pXY Z ∈ [0, 1]. (72)

Similarly, we can obtain the analytical solution as follows:

p′
XZ = 5

15 , p′′
XZ = 3

15 , pXY = 1
15 ,

pXY Z = 1
15 , β(Ψ ) = 7

15 . (73)

Thus, the spectral gap of the verification operator Ψ is v(Ψ ) =
1 − β(Ψ ) = 8/15. �

D. Comparison with previous protocols

Figure 11 has demonstrated the spectral gap v(Ψ ) of the
verification operator of our protocols, which is a function
of d (v′) and d (v′′). It shows that v(Ψ ) > 0.5 and v(Ψ ) ap-
proaches 0.5 when d (v′) or d (v′′) becomes larger. The cover
protocol of Ref. [29] can achieve v(Ψ ) = 0.5. To verify a
two-colorable graph state |G〉 within infidelity ε and signifi-
cance level δ, by Eq. (3), the number of tests required for our
protocols is

N =

⎡
⎢⎢⎢⎢

ln δ

ln
(

1 − d (v′ )+d (v′′ )+2
2(d (v′ )+d (v′′ ))+3ε

)
⎤
⎥⎥⎥⎥ �

⌈
ln δ−1

d (v′ )+d (v′′ )+2
2(d (v′ )+d (v′′ ))+3ε

⌉
.

(74)
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FIG. 11. The spectral gap v(Ψ ) of our verification operator as a
function of d (v′) and d (v′′).

The number of tests required for the cover protocol of
Ref. [29] is

N =
⌈

ln δ

ln
(
1 − 1

2ε
)
⌉
�
⌈

2 ln δ−1

ε

⌉
. (75)

The left plot of Fig. 12 has shown the number of tests re-
quired for different protocols as a function of the significance
level δ when the infidelity is ε = 0.001. The right plot of
Fig. 12 has shown the number of tests required for different
protocols as a function of the infidelity ε when the signif-
icance level is δ = 0.001. Here, our protocol with v(Ψ ) =
6/11 means our verification method for a two-colorable graph
state satisfying d (v′) + d (v′′) = 4. Our protocol with v(Ψ ) =
8/15 means our verification method for a two-colorable graph
state satisfying d (v′) + d (v′′) = 6. Our protocol with v(Ψ ) =
10/19 means our verification method for a two-colorable
graph state satisfying d (v′) + d (v′′) = 8. Figure 12 indicates
that our protocols are more efficient than the cover protocol of
Ref. [29].

IV. VERIFICATION OF GRAPH STATES
IN THE NOISY SCENARIO

In this section, we propose a method that verifies graph
states in a realistic experimental scenario where the measure-
ments are subject to noise. Existing methods [19,29,30] using
quantum state verification (QSV) need perfect measurements
to verify graph states. Here, we extend QSV to the case where
the measurement devices are noisy.

In previous works [18,36–38] on fault tolerant quantum
verification, the purpose and method are different. The veri-
fication framework of Fujii et al. [36] has used the technology
of topological protection to verify three-dimensional two-
colorable graph states. Hayashi et al. [37] have utilized
self-testing to verify three-colorable graph states, where the
prior-trusted devices for performing measurements or prepar-
ing entangled states are not needed. The verification protocol
of Takeuchi et al. [38] has used Serfling’s bound to verify
multiple quantum states (including qudit graph states and
hypergraph states), where the noisy robustness just considered
slightly noisy graph states. Li et al. [18] have realized the
robust verification of graph states under the framework of
QSV, where fault tolerance is based on the design of threshold
for the permitted number of failed tests. Here, our fault toler-
ant verification protocol has settled the robust verification of
two-colorable graph states by overcoming the effect of noisy
measurement device on the QSV technology.

If the measurement devices are perfect, the verification
operator is

Ψ =
∑

i

piPi. (76)

We start by introducing a noise parameter η ∈ [0, 1]. If the
measurements corresponding to the projector Pi are noisy, we
denote the projector onto the pass eigenspace as

ηPi + (1 − η)
I

2
. (77)

It means that each measurement proceeds perfectly with prob-
ability η, and each measurement randomly gives either a
±1 outcome with probability 1 − η. Thus, the verification

FIG. 12. A comparison of the number of tests in our protocols and the cover protocol. (a) To verify the graph state within infidelity
ε = 0.001, the number N of tests is a function of the significance level δ. (b) To verify the graph state within significance level δ = 0.001, the
number N of tests is a function of the infidelity ε.
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operator in the noisy scenario is written as

Ψ ′ =
∑

i

pi

[
ηPi + (1 − η)

I

2

]
= ηΨ + (1 − η)

I

2
. (78)

When the infidelity of one quantum state σ is at least ε, i.e.,
〈G|σ |G〉 � 1 − ε, the maximum average probability that σ

can pass a test is given by

max
〈G|ρ|G〉�1−ε

Tr(Ψ ′ρ) = max
〈G|ρ|G〉�1−ε

ηTr(Ψ ρ) + 1 − η

2

= η(1 − v(Ψ )ε) + 1 − η

2
. (79)

The probability that all states ρ1, ρ2, . . . , ρN in N tests are
passed is

N∏
i=1

Tr(Ψ ′ρi ) �
N∏

i=1

[
η(1 − v(Ψ )εi ) + 1 − η

2

]

�
[
η(1 − v(Ψ )ε̄) + 1 − η

2

]N

, (80)

where ε̄ = ∑
i εi/N with εi = 1 − 〈G|ρi|G〉 is the average in-

fidelity. If N tests are passed, the condition ε̄ < ε holds with
significance level

δ =
[
η(1 − v(Ψ )ε) + 1 − η

2

]N

. (81)

Therefore, the number of tests required for verifying quantum
states within infidelity ε and significance level δ is

N (ε, δ, Ψ, η) =
⌈

ln δ

ln
[
η(1 − v(Ψ )ε) + 1−η

2

]
⌉

. (82)

V. VERIFICATION OF TWO-COLORABLE GRAPH
STATES IN THE ADVERSARIAL SCENARIO

Section III has accomplished the verification of two-
colorable graph states in the nonadversarial scenario, where
all quantum states ρ1, ρ2, . . . , ρN prepared in N tests are in-
dependent of each other. However, the device in adversarial
scenario may be controlled by any malicious adversary and
prepare an arbitrary entangled state. The verification of graph
states in the adversarial scenario is important to secure quan-
tum computing, such as blind quantum computing [15,39,40].
In this section, we extend our verification protocols to the
adversarial scenario and apply it to verifiable blind quantum
computing.

A general method of Refs. [41,42] has considered the ver-
ification of pure quantum states in the adversarial scenario. It
indicates that, in order to verify the target state |Ψ 〉 within in-
fidelity ε and significance level δ, the number of tests required
by the verification operator Ψ in the adversarial scenario is

N �
⌈

1 − δ

v(Ψ )δε

⌉
. (83)

As for the cover protocol of Ref. [29], the number of tests
required for verifying the graph state |G〉 within infidelity

ε and significance level δ is

N �
⌈

2(1 − δ)

δε

⌉
. (84)

As for our verification protocols for two-colorable graph
states, the number of tests required for verifying the graph
state |G〉 within infidelity ε and significance level δ is

N �
⌈

1 − δ
d (v′)+d (v′′ )+2

2(d (v′)+d (v′′ ))+3δε

⌉
. (85)

To reduce the overhead of the number of tests in the adver-
sarial scenario, we can construct a new verification protocol
referred to the hedged protocol as follows. The hedged verifi-
cation operator is written as

Ψγ = (1 − γ )Ψ + γ I, (86)

where γ ∈ [0, 1]. It means that the verification protocol per-
forms the verification operator Ψ with probability 1 − γ and
performs the trivial test with probability γ . According to
Ref. [42]. If γ = v(Ψ )/e, then the number of tests required
for verifying the graph state |G〉 within infidelity ε and signif-
icance level δ is

N � [1 + ev(Ψ ) − v(Ψ )] ln (Fδ)−1

v(Ψ )ε
, (87)

where F = 1 − ε. To verify |G〉 within infidelity ε and sig-
nificance level δ, the number of tests required for the hedged
cover protocol of Ref. [29] is

N � (1 + e) ln (Fδ)−1

ε
. (88)

To verify |G〉 within infidelity ε and significance level δ, the
number of tests required for our hedged protocol is

N �
(

2[d (v′) + d (v′′)] + 3

d (v′) + d (v′′) + 2
+ e − 1

)
ln (Fδ)−1

ε
. (89)

According to above analysis, it indicates that in the adversarial
scenario, our verification protocols for two-colorable graph
states are more efficient than the cover protocol of Ref. [29].

Since the adversarial scenario has considered that the de-
vice may prepare an arbitrary entangled state ρ on the system
H⊗(N+1) and is aimed at keeping the infidelity of the reduced
state on the remaining system less than ε by performing N
tests on N systems which are chosen uniformly at random.
In each test, one verification strategy Ψ is performed on one
system. The state on the remaining system is accepted if and
only if all N tests are passed. Therefore, bring our verification
strategy Ψ [see Eqs. (15) and (56)] for two-colorable graph
states into above adversarial scenario results in the sampling
complexity of Eq. (85) or Eq. (89).

The relation of our verification strategy to homogeneous
strategy is explained as follows: Here, a verification strategy
for the graph state |G〉 is homogeneous if the verification
operator Ψ can be written as the following form:

Ψ = |G〉〈G| + t (I − |G〉〈G|), (90)

where 0 � t < 1. All eigenvalues of the homogeneous veri-
fication strategy are equal to t except for the largest one. In
addition, the homogeneous verification strategy means that
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the verification protocol performs the test |G〉〈G| with prob-
ability 1 − t and the trivial test with probability t . Since the
projector onto |G〉 reads

|G〉〈G| =
∏

i∈V

I + gi

2
, (91)

our verification operator [see Eqs. (15) and (56)] cannot be
characterized by above form. It indicates that our verification
strategy is not homogeneous. Readers can refer to Ref. [42]
for the sample complexity of homogeneous strategies in
the adversarial scenario. The homogeneous strategy can be
implemented by local projective measurements when t is suf-
ficiently large [19]. However, our verification strategy can be
realized by Pauli X , Pauli Y , and Pauli Z measurements.

Now we show how to apply our verification protocols for
two-colorable graph states in the adversarial scenario to the
verification of blind quantum computation. The two-colorable
graph states used to achieve blind quantum computation
are mainly the brickwork state and the two-dimensional
square lattice state. According to Eqs. (44) and (87), the num-
ber of tests required for verifying the brickwork state in the ad-
versarial scenario within infidelity ε and significance level δ is

N � (7/8 + e)
ln (Fδ)−1

ε
. (92)

Similarly, from Eqs. (47) and (87), the number of tests
required for verifying the two-dimensional square lattice state
in the adversarial scenario within infidelity ε and significance
level δ is

N � (3/4 + e)
ln (Fδ)−1

ε
. (93)

Recall our verification strategy for the two-dimensional
square lattice state. There are 11 measurement settings needed
to achieve efficient verification, i.e., v(Ψ ) > 1/2. In the
following, we propose a new verification strategy for the
two-dimensional square lattice state, which requires less
measurement settings and satisfies v(Ψ ) > 1/2. Consider a
verification operator which is characterized by

Ψ = pXZ P1 + pXZ P2 + pXY P3 + pXY Z

d (v′ )+d (v′′ )−1∑
k=1

P′
k . (94)

It means that the verification strategy does not contain the
measurement setting that performs the Pauli Z measurements
on two qubits corresponding to two adjacent vertices v′, v′′
that have maximum double degree. Thus the new verification
strategy for the two-dimensional square lattice state is the
same as before except that the last measurement setting of
Fig. 7 is removed. Similarly, the seven candidates remain un-
changed, i.e., Eq. (53). Therefore, solving the second largest
eigenvalue of the verification operator Ψ is equal to solving
the following optimization problem:

min fmax(Θ )

s.t. Θ = {pXZ + 4pXY Z , pXY + 4pXY Z ,

pXZ + pXY + 2pXY Z},
2pXZ + pXY + 7pXY Z = 1,

pXZ , pXY , pXY Z ∈ [0, 1]. (95)

Similarly, we can obtain the analytical solution as follows:

pXZ = 2
13 , pXY = 2

13 , pXY Z = 1
13 , v(Ψ ) = 7

13 .

(96)

According to Eqs. (87) and (96), the number of tests required
for verifying the two-dimensional square lattice state in the
adversarial scenario within infidelity ε and significance level
δ is

N � (6/7 + e)
ln (Fδ)−1

ε
. (97)

Verifiable blind quantum computing is a secure quantum
computing, where a client Alice can delegate a computational
task to a quantum server Bob while keeping the privacy and
correctness of the computation. Our verification protocol for
blind quantum computing is shown as follows:

Protocol 3: Efficient verification of blind quantum computation

(1) Alice asks Bob to prepare N + 1 copies of an n-qubit
graph state |G〉 and send all copies to Alice. If the used graph
state is the brickwork state, then the number N is set to be
the maximum value of Eq. (92). If the used graph state is the
two-dimensional square lattice state, then the number N is set
to be the maximum value of Eq. (93) [or Eq. (97)]. However,
an adversarial Bob will generate an arbitrary state that may be
entangled.

(2) Alice uniformly and randomly chooses N copies for
testing. For each copy, Alice chooses one measurement setting
and performs corresponding measurements on this copy. As
for the case of the brickwork state, each measurement setting
of the first group of measurement settings is chosen with prob-
ability 4/15, each measurement setting of the second group of
measurement settings and Fig. 4 is chosen with probability
1/15. As for the case of the two-dimensional square lattice
state, each measurement setting of the first group and the
second group of measurement settings is chosen with prob-
ability 1/7, each measurement setting of Fig. 7 is chosen with
probability 1/14. Otherwise, Alice can adopt the verification
strategy corresponding to Eq. (94), i.e., each measurement
setting of the first group and the second group of measurement
settings is chosen with probability 2/13, each measurement
setting of the first seven measurement settings of Fig. 7 is
chosen with probability 1/13.

(3) The remaining copy is used to accomplish the compu-
tational task, where we assume the state is ρtgt .

(4) If all tests are passed, Alice accepts the result of the
computation performed on the last copy.

According to Eqs. (92), (93), and (97), we have the follow-
ing theorem:

Theorem 7. In Protocol 3, if all tests are passed with the
significance level δ, we can ensure that the state ρtgt satisfies
〈G|ρtgt|G〉 � 1 − ε.

Recently, the protocol of Ref. [16] has given a verification
method of graph states without the use of QSV. To verify an n-
qubit two-colorable graph state |G〉, Ref. [16] needs �n2 ln n�
copies of the graph state to guarantee that if all tests are passed
with the significance level 4n−λ/2, the state ρtgt of the copy
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TABLE I. Performance of our verification protocol compared with existing protocols, including the total number Σ of measurement
settings, the spectral gap v(Ψ ) of the verification operator, the coloring type of verifiable graph states.

Method Σ v(Ψ ) m-colorable graph states

Optimal verification protocol [30] Uncertain 2/3 m � 2
Cover protocol [29] m 1/m m � 2

Minimax optimal measurement protocol [19] 2n 2n−2n−1

2n−1 m � 2
Our protocol d (v′) + d (v′′) + 3 d (v′ )+d (v′′ )+2

2(d (v′ )+d (v′′ ))+3 m = 2

used for computation satisfies

〈G|ρtgt|G〉 � 1 − 1 + 4
√

λ

n
, (98)

where λ is an arbitrary constant satisfying logn 16 < λ <

(n − 1)2/16. To compare our verification protocol of blind
quantum computing with Ref. [16], if we require our Protocol
3 to satisfy the same infidelity and the same significance as
the protocol of Ref. [16], i.e.,

ε = 1 + 4
√

λ

n
, δ = 4n−λ/2, (99)

then the number of copies of the graph state required for
Protocol 3 is

N + 1 � 1

ε

(
1

v(Ψ )
+ e − 1

)
ln [(1 − ε)δ]−1 + 1

≈ 1

1 + 4
√

λ

(
1

v(Ψ )
+ e − 1

)
n ln nλ/2

= O(n ln n). (100)

It shows that our method of verifiable blind quantum comput-
ing can reduce the resource overhead from the quadratic scale
to the nearly linear scale.

VI. CONCLUSION

To verify two-colorable graph states with high precision
and low resource overhead, we have proposed a verification
protocol for the symmetric case and the asymmetric case,
respectively. Using our method, the verification strategy of the
high-dimensional graph states can be obtained from the veri-
fication strategy of the low-dimensional graph states. Table I
has compared the performance of our verification protocol
with existing protocols [19,29,30]. The results indicate that for
the verification of the two-colorable graph states, our protocol
needs less measurement settings than the optimal verification
protocol [30] and the minimax optimal measurement protocol
[19] and needs more measurement settings than the cover

protocol [29]. Note that the number of measurement settings
in our protocol is a constant that is not related to the size n of
the graph state. However, the verification strategy of optimal
verification protocol [30] is unknown, which depends on a
classical algorithm. Therefore, our method is more feasible in
practice. In addition, the spectral gap v(Ψ ) of the verification
operator of our protocol is more than the cover protocol [29]
and the minimax optimal measurement protocol [19] and is
less than the optimal verification protocol [30]. It reflects that
our verification protocol is efficient. We have given several ex-
amples, such as the brickwork state and the two-dimensional
square lattice state, to demonstrate how to obtain concrete
verification strategies.

We have extended the verification of graph states to the
noisy scenario. In this scenario, the measurement device is not
perfect. It is significant to the quantum verification of noisy
intermediate-scale quantum (NISQ) [43] era. In addition, we
have extended the verification of two-colorable graph states
to the adversarial scenario. One important application of our
verification method is the verifiable blind quantum comput-
ing, which has achieved the quadratic improvement over the
resource overhead than the known best approach [16] that is
not based on the QSV technology.

In the future, one can consider how to construct an efficient
verification method for m-colorable graph states when m > 2.
Moreover, the ultimate purpose is to realize the higher spectral
gap of the verification operator with the less measurement
settings. Finally, one can consider a robust verification of
graph states, where the noise on measurement device is in a
more complex form.
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