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Improving robustness of quantum feedback control with reinforcement learning
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Obtaining reliable state preparation protocols is a key step toward practical implementation of many quantum
technologies, and one of the main tasks in quantum control. In this work, different reinforcement learning
approaches are used to derive a feedback law for state preparation of a desired state in a target system. In
particular, we focus on the robustness of the obtained strategies with respect to different types and amount of
noise. Comparing the results indicates that the learned controls are more robust to unmodeled perturbations with
respect to simple feedback strategy based on optimized population transfer, and that training on a simulated
nominal model retains the same advantages displayed by controllers trained on real data. The possibility of
effective off-line training of robust controllers promises significant advantages toward practical implementation.
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I. INTRODUCTION

The development of reliable control tools for state prepara-
tion and engineering of desired dynamics in target quantum
systems is a critical step toward quantum information pro-
cessing on a scale that is suitable for real world applications
[1–4]. Arguably, the main tool leveraged in classical control
theory to design robust control laws that are able to adapt to
unforeseen conditions and steer classical systems toward the
target behavior is feedback: measuring some key quantity in
real time and using the acquired information allows, among
other things, for disturbance rejection and noise mitigation
[5]. In the quantum domain, measurements and feedback be-
come nontrivial, as they introduce probabilistic evolution and
back action into the picture: models and methods for quantum
feedback have been extensively studied [6–19], as well as suc-
cessfully demonstrated experimentally [20]. Nonetheless, the
robustness advantage of feedback methods has been demon-
strated analytically to hold for quantum implementations only
in particular cases [21–25], mostly with respect to uncertainty
on the initial state or delays in the feedback loop, with some
general results on model perturbations just starting to be de-
rived [26].

In this work, we investigate the potential role of data-
based learning methods in deriving feedback strategy and
their robustness with respect to unknown model perturbations.
Reinforcement learning (RL) has already been considered as
a control design tool for quantum systems in Refs. [27–55],
toward both control and error-correction tasks. With respect

to the existing results, we focus on comparing different tech-
niques in order to investigate the following:

(1) The role of the a priori knowledge on the model, by
using different training scenarios for the controller;

(2) The robustness of RL methods, also compared to basic
controllers, by introducing unmodeled noise in the evolution;

(3) The role of the measurement accuracy in addressing the
control task; and

(4) The viability of of RL based on nominal models, rather
than experimental data.

We consider the last point to be particularly interesting, and
often overlooked in the literature: the time needed for obtain-
ing an amount of data sufficient enough to grant convergence
for the RL method could be a reason alone to discourage the
use of these methods in practical scenarios, where typically
preparations and measurements take significant time to be
performed.

The analysis we propose is based on numeric simulations
on a test-bed system, focusing on feedback state-preparation
problems: given a quantum system in contact with a Marko-
vian environment and subjected to repeated measurements,
design a feedback control law that implements unitary con-
trol action dependent on the measurement outcomes and the
system knowledge, aimed to minimize the distance between
a desired target state ρtarget and the actual state ρ(T ) at the
end of a finite time horizon [0, T ]. The model we consider
is inspired by the dynamics of multilevel atoms, in which the
task is to maximize the electron population in a certain energy
level [56], as well as recent works on feedback methods for
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optical cavity [20,28,57]. The results of our analysis, reported
in detail in Sec. VII, indicate that model-based RL feedback
laws are indeed a natural candidate when modeling errors and
noise are expected, and that an accurate measurement process
is crucial to obtain high fidelity.

The paper is organized as follows: Sec. II introduces the
general model for our discrete-time feedback system, and
Sec. III specializes it to the system that will be simulated.
A short review of the key ideas behind the RL methods we
employ is provided in Sec. IV, while Sec. V details the basic
control strategy as well as three learning scenarios we con-
sider; two learning scenarios employ a quantum description
of the system and the same RL method, based on a proximal
policy optimization (PPO) algorithm, while the third does not
rely on any a priori knowledge on the model and builds the
control law based only on classical data, i.e., the output of
the measurement. The numerical experiments we conducted
are reported in Sec. VI and the main findings summarized in
Sec. VII.

II. DISCRETE-TIME FEEDBACK STATE PREPARATION
WITH NOISE AND GENERALIZED MEASUREMENTS

In this section, we present the mathematical model for
the feedback state-preparation problem described above. We
define the various elements of the model, introduce the nota-
tion, and illustrate the interplay between quantum operations,
measurements, and control parameters. In this paper only
finite-dimensional systems are considered.

For open quantum systems undergoing Markovian evolu-
tions, the transition of the system’s state in Schroedinger’s
picture is associated to a linear, completely-positive trace-
preserving (CPTP) map [58]. These maps admit a Kraus
representation,

E (ρt ) =
∑

k

Ekρt E
†
k , (1)

where the operators Ek satisfy
∑

k E†
k Ek = I. In our setting,

quantum operations will be used to describe both the noise
and the control actions.

We assume our system to undergo a time-homogeneous
Markovian noisy dynamics associated with a CPTP map Nα,

with the parameter α to weigh the amount of noise injected in
the system. Such map is represented by the ensemble of Kraus
operators {Nα

k }.
The noise action is followed by a generalized measurement

with a finite set of outcomes l = 1, . . . , m, associated with
a set of measurement operators Mε

l , where ε is a parameter
associated with how informative the measurements are. In
particular, ε = 0 will correspond to projective measurements.
The operators are such that

∑
l Mε†

l Mε
l = I. The probability

p(lt ) for a specific outcome l at time t is computed as

p(lt ) = tr(Mε†
l Mε

l ρ ′
t ). (2)

Once the measurement outcome lt is obtained, the postmea-
surement state ρt+1|lt is updated as follows:

Mlt ,ε (ρt ) = ρt+1|lt = Mε
lt
ρt M

ε†
lt

tr
(
Mε†

lt
Mε

lt
ρt

) . (3)

The measurements are followed by a unitary control action,
conditioned on the last measurement outcome. The unitary
control is assumed to take the form Uβ = e−iHc (β ), with Hc

a control Hamiltonian and β the control parameter. In the
following we will consider feedback laws of the form βt =
φ(ρ0, �lt−1), where �lt−1 represents the sequence of outcomes
up to time t − 1 and the functional φ can be determined either
analytically or via reinforcement learning. The unitary control
superoperator then becomes Uβ :

Uβ (ρ) = UβρU †
β . (4)

The evolution of the system is then obtained by iterating these
steps. From a physical viewpoint, we consider the actual time
scales of the measurement and control processes to be faster
than the noise ones, so we can neglect the noise while mea-
surements and control are acting. The dynamical evolution,
conditional on a sequence of measurements outcomes �lt , is
obtained as the composition of Nα , U

φ(ρ0,�lt−1 ), and Mlt ,ε :{
ρ(t + 1) = Mlt ,ε ◦ U

φ(ρ0,�lt−1 ) ◦ Nα[ρ(t )]
ρ(0) = ρ0,

(5)

with ρ0 the initial condition for the dynamics. While the
concatenated dynamics is not a CPTP map, as it is not linear
due to the conditioning, its expectation over the measurements
outcomes is such, and takes the form

ρ(t + 1) =
∑
k,l

Mε
l Uφ(ρ0,lt−1 )N

α
k ρ(t )Nα†

k U †
φ(ρ0,lt−1 )M

ε†
l . (6)

The design of stabilizing control laws φ is aimed to ob-
tain convergence of the quantum state ρ(t ) toward the target
state ρtarget [59] independently of the initial condition, namely,
∀ρ(0), we want the dynamics above to ensure:

lim
t→∞ ρ(t ) = ρtarget, (7)

where ρtarget(t ) is the desired target state at time step t .
In what follows, we consider instead the related problem of

state preparation in finite time, where the control task is, for
some fixed time T , to

minimize
φ

d[ρ(T ) − ρtarget], (8)

where d is a suitable norm or pseudodistance. A stabilizing
law on the infinite control horizon then represents an approx-
imate solution for the finite-time state preparation problem,
with its accuracy improving for larger T .

In the subsequent sections, we propose different ways to
build feedback strategies under different assumptions regard-
ing the available information on the system, and compare their
robustness and performance toward state preparation in finite
time.

III. A TEST-BED SYSTEM

For our numerical analysis, we consider a three-level quan-
tum system inspired by that of Ref. [57]. Define the Hilbert
space of interest as H = C3, and the basis vector as

|0〉 =
⎛
⎝1

0
0

⎞
⎠, |1〉 =

⎛
⎝0

1
0

⎞
⎠, |2〉 =

⎛
⎝0

0
1

⎞
⎠. (9)
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A. Noise

Two key noise models, namely, the depolarizing noise and
the random permutation channel, are considered in the simu-
lations presented in the next section.

The depolarizing channel is a fundamental noise model
that describes the effects of “isotropic” random errors and
disturbances in quantum systems. It can be defined through
its action on a quantum state ρ as follows:

Nα (ρ) = α
I

3
+ (1 − α)ρ. (10)

Nα (ρ) represents the quantum state after the application of the
depolarizing noise and α ∈ [0, 1] is a parameter that quantifies
the strength of the noise.

The amplitude damping channel for a qutrit system is a
nonunital noise which reduces the energy of the system due to
an interaction with the environment. The amplitude damping
channel is described by its Kraus representation {|0〉, |1〉, |2〉},
defined as follows:

N0 =

⎛
⎜⎝

1 0 0

0
√

1 − γ1 0

0 0
√

1 − γ2 − γ3

⎞
⎟⎠,

N01 =

⎛
⎜⎝

0
√

γ1 0

0 0 0

0 0 0

⎞
⎟⎠, N12 =

⎛
⎜⎝

0 0 0

0 0
√

γ2

0 0 0

⎞
⎟⎠,

N03 =

⎛
⎜⎝

0 0
√

γ3

0 0 0

0 0 0

⎞
⎟⎠, (11)

with the following constraint:{
0 � γi � 1 ∀i ∈ {1, 2, 3}
γ2 + γ3 � 1.

In particular, in the simulated system we will set the γi param-
eters in function of a single parameter α:⎧⎨

⎩
γ1 = 0
γ2 + γ3 = α

γ2 = γ3.

With random permutation channel or random qutrit ro-
tation channel, we denote quantum noise that captures
randomized cycling between quantum states. To describe this
channel for our qutrit system, we utilize a set of cyclic permu-
tation matrices:

Nα
0 =

√
1 − 2α

3
I,

Nα
1 =

√
α

3

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠,

Nα
2 =

√
α

3

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, (12)

with the corresponding CPTP map defined as follows:

Nα (ρ) =
∑

k

Nα
k ρNα†

k . (13)

Similar to the depolarizing channel noise, the parameter α

plays a crucial role in characterizing the random qutrit flip
channel. It defines the probability of the qutrit system under-
going a flip operation. A larger value of α indicates a higher
likelihood of state flips, while a smaller value corresponds to
a reduced probability of flipping.

B. Measurements

The measurement process we consider is associated with
a set of operators, denoted as Mε

0 , Mε
1 , Mε

2 , which satisfy the
completeness constraint:

I =
∑
i=0

Mε†
i Mε

i . (14)

In our simulated quantum system, we consider an “imprecise”
version of projective measurement, which provides useful yet
incomplete information about the basis state in which the
system is in. The ε parameter limits the amount of information
provided by the measurements.

To represent this operator, we define its Kraus representa-
tion as follows:

Mε
0 =

⎛
⎝

√
1 − 2ε 0 0

0
√

ε 0
0 0

√
ε

⎞
⎠,

Mε
1 =

⎛
⎝

√
ε 0 0

0
√

1 − 2ε 0
0 0

√
ε

⎞
⎠,

Mε
2 =

⎛
⎝

√
ε 0 0

0
√

ε 0
0 0

√
1 − 2ε

⎞
⎠. (15)

Notice that (1) each basis state is invariant for conditioning
on any output of the measurement, and (2) the variable ε

introduces an error in detecting the correct basis state, which is
correctly represented by the outcome with probability 1 − 2ε.

C. Unitary control and state-preparation problem

Recall from the previous section that the control action is
associated with a unitary of the form

Uβ (t ) = e−iHc (βt ), (16)

where we recall that βt represents the time-dependent control
parameter, acting on a time scale much faster than the noise
one. Hence, its action can be considered decoupled from the
rest of the dynamics and generating impulsive unitary control
actions. For our model, we consider

Hc(βt ) = i[βt (a − a†)], (17)

where βt is a real-valued function of time with codomain
between -1 and 1, and the operator a is given by

a =
⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠. (18)
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FIG. 1. Reinforcement learning interaction scheme.

To this unitary matrix corresponds the control superoperator
Uβ (ρ) = UβρU †

β as defined before.
The target for designing the causal feedback law βt =

φ(ρ0, �lt−1) is to obtain a state as close as possible to ρtarget =
|2〉〈2| at the end of the control period T . Notice that since
the outcomes {lt } form a discrete-time stochastic process,
both ρ and βt become stochastic. More precisely, we aim
to solve problem (8) with pseudo distance d (ρ, ρtarget ) = 1 −
F (ρ, ρtarget ), where the fidelity is defined as

F (ρ, ρtarget ) = tr[
√√

ρρtarget
√

ρ]2. (19)

IV. REINFORCEMENT LEARNING:
A BRIEF INTRODUCTION

A. Essential elements

Reinforcement learning (RL) can be considered as a
subfield of machine learning that focuses on training intelli-
gent agents to make sequential decisions through interaction
with their training environment (Fig. 1). Unlike supervised
learning, where models are provided with labeled data, or un-
supervised learning, which seeks to uncover hidden patterns
in data, RL is focused on the learning of optimal policies by
an agent in an environment that provides feedback in the form
of rewards [60]. Optimality, in the context of RL, is associated
with long-term objectives, aiming at maximizing a (weighted)
sum of rewards in subsequent steps of a trajectory.

In the RL field, the state space, denoted as S, represents the
set of all possible states in which an agent can be [61]. The
state space can be discrete or continuous, and it captures all
relevant information about the environment’s current configu-
ration. To determine the action that transitions the agent from
st , the state at time t , to the next state st+1, the agent relies
on a defined policy. Formally, this latter can be defined as a
map that determines the probability distribution of selecting
actions (a) in a given state (s). It is represented as π (a|s).
States in RL are considered Markovian, i.e., the current state
contains all the relevant information for the agent and its dy-
namic, making the information about the past states irrelevant.

Moreover, we define a reward function, denoted as R,
which quantifies the immediate consequence of the agent’s
action. Formally, R(s, a) maps a state-action pair (s, a) to a
real number, representing the reward obtained when applying

action a from state st+1. Formally, the agent’s goal is to max-
imize the expected cumulative reward, often expressed as the
expected return, defined as E[

∑∞
t=0 γ t R(st , at , st+1)], where

γ ∈ [0, 1] represents a discount factor.

B. Policy gradient approach

In the realm of RL, Q-learning and policy gradient (PG)
methods represent two distinct approaches. Q-learning esti-
mates the value of state-action pairs and works well in discrete
action spaces with fully observable environments. In contrast,
PG directly optimizes policies, making it more effective for
continuous action spaces and non-fully observable environ-
ments, where discretization and complete state information
can be challenging for Q-learning. In this work we concentrate
on PG methods: this section provides a brief introduction
about the foundational principles of PG approaches.

We recall that a policy π (a|s) determines the probability
of selecting action a given the current state s of the RL envi-
ronment. In the PG framework we assume that each policy is
associated with a set of parameters θ.

As previously highlighted, the objective of RL lies in find-
ing an optimal policy that maximize the expected return; in
the PG framework this goal can be achieved by iteratively
updating the θ parameters via the policy gradient RL update
rule:

δθ j = η
∂E[R]

∂θ j
= η

[
R

∑
t

∂

∂θ j
ln πθ (at |st )

]
. (20)

Here, η denotes the learning rate parameter, which is a real
value parameter on which the converging proprieties of the
RL algorithm depend (usually it takes values between 10−3

and 10−5) and E[·] represents the expectation value computed
over all possible rewards. These fundamental elements form
the core policy gradient approach. In practical applications,
enhancements and refinements of the above equation are often
employed.

Furthermore, Eq. (20) serves as the standard recipe for
policy-based RL in fully observed environments. This ap-
proach can be extended to accommodate partially observed
environments, where the policy relies solely on observations
rather than the complete state information. These observa-
tions offer only partial insights into the actual state of the
environment, introducing additional complexities in the RL
framework.

In our work, we choose to adopt the Stable Baselines3
implementation [30] in which a neural network is used to
compute the πθ policy, with the multidimensional parameter
(θ ) encompassing all the network’s weights and biases. The
neural network takes the current state (st ) as an input vector
and produces the action probabilities (πθ ) as its output.

C. RL for feedback quantum control

This section aims to connect the general RL framework
recalled above to the specifics of the problem at hand. An
in-depth discussion of the details will be provided in Sec. V.
In a quantum feedback control problem, quantum states and
their dynamics are manipulated using control operations from
some available set, while adapting the strategies depending on
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(a)

(b)

FIG. 2. (a) The first feedback scenario in which the environ-
ment (square outlined with dashed lines) outputs the estimated state.
(b) The second feedback scenario in which the environment (square
outlined with dashed lines) provides to the agent just the outcomes
of the measurements performed on the quantum system.

the results of quantum measurements. Our approach consists
of training a RL agent able to learn adaptive strategies through
trial and error, iteratively refining its control policies based on
the outcomes of quantum measurements or on an estimated
state of the quantum system. The key elements of the RL
setting are described in the following.

1. RL environment

The RL environment in this context is associated with
a quantum system undergoing potential noisy evolution,
coupled with a measurement apparatus. The best available
description of the environment is quantum, where the state is
described by density operators and may be subject to proba-
bilistic changes as described in Sec. II. The environment takes
as input the control parameter β and outputs the outcome of
the measurement or, when available, the updated estimation of
the state computed through a filtering equation (Fig. 2). The
selection of the environment output depends on the training
model.

2. Agent task

In the context of the state preparation problem, the ob-
jective is to identify the optimal control law that determines
β based on the measurement outcome and, when accessible,
on the estimated state, to drive the quantum state as close as
possible to a target state. This is necessary to optimize the
policy πθ that dictates the selection of β. We want to remark
that the representation of the state plays a key role in the
optimization of the policy, as important as the design of the
reward function.

3. Reward function

The choice of the reward function is a key element toward
the optimization of the agent’s policy. Our work addresses
two main scenarios: in the first the RL agent is supplied with
an estimated density operator, while in the second the agent
receives only measurement outcomes. In the former case, hav-
ing access to the system’s density operator, we naturally opt
for fidelity as the reward function, quantifying the proximity
between the estimated state and the target state. In the latter
scenario, characterized by a less informative environment, our
strategy involves assigning a positive reward when the mea-
surement outcome aligns with our target state and a negative
reward otherwise.

V. CONTROL AND LEARNING SCENARIOS

A. Nominal and filtering dynamics

Before delving deeper into the control scenarios and, in
particular, RL scenarios, we need to define two additional
states and their evolution: the nominal state and the filtered
state. The need for considering such states emerges because,
while our RL agent is assumed to have full information about
some key quantities entering the model [depending on the
particular setup, these might include the initial state of the
system (ρ0, ρt ), the control parameters βt , and the measure-
ment operator and outcomes Ml,ε and lt ], we suppose that it
does not account for the noise present in the actual system
dynamics. This will allow us to test the robustness to these
strategies derived under ideal conditions to the introduction of
noise.

In light of this, we define the nominal state ρ̄ as the solution
to the following nominal dynamics:

{
ρ̄(t + 1) = Mε

l̄ (t )
◦ Uβt [ρ̄(t )]

ρ̄(0) = ρ0,
(21)

where βt represents the actual control input fed to the system,
and l̄ (t ) indicates the measurement outcome without noise in
the system dynamics, artificially sampled from a distribution
with probabilities:

p[l̄ (t )] = tr{M†
lt
Mlt [ρ̄(t )]}. (22)

Next, we define the evolution for the filtered state ρ̂(t ),
where we consider the real measurement outcomes, but evolve
the state using only the nominal, noiseless dynamics. This
filtered state is then the solution of the filtering dynamics:{

ρ̂(t + 1) = Mε
l (t ) ◦ Uβt [ρ̂(t )]

ρ̂(0) = ρ0.
(23)

It is worth highlighting that the difference with respect to the
previous equation lays in the different origin and distribution
of the outcomes: for the filtered state we consider the actual
outcomes l (t ), with associated distribution depending on the
presence of noise and the evolution of the true state of the
system ρ(t ), which evolves as in (5):

p[l (t )] = tr{M†
lt
MltNα[ρ(t )]}. (24)
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FIG. 3. Basic controller block scheme.

B. Basic controller

One possible control policy to stabilize the system de-
scribed in the previous section is the use of a simple feedback
law derived from the nominal system with perfect (projective)
measurements, that is, when α = ε = 0. The main idea is
to select the control parameter according to the outcome of
the most recent measurement, maximizing the probability of
transition toward the target (Fig. 3). To do so we call β0 and
β1 the control parameter to be applied when the outcomes are,
respectively, l = 0 and l = 1, while we pose β2 = 0 since it
corresponds, at least in this setting, to the target. These two
fixed parameters are computed solving the following opti-
mization problem:

β0 = arg max
β

tr[|2〉〈2|Uβ (|0〉〈0|)]

= arg max
β

〈2|Uβ (|0〉〈0|)|2〉, (25)

β1 = arg max
β

tr[|2〉〈2|Uβ (|1〉〈1|)]

= arg max
β

〈2|Uβ (|1〉〈1|)|2〉. (26)

The values of the two parameters that maximize the previ-
ous figure of merit are β0 = β1 = 1.

C. Model-based learning scenario

In the model-based scenario (MBS), we consider a quan-
tum system with a known initial state represented by the
density operator ρ̄0. In this scenario, we assume the agent
has access to the system’s state at time t , the controls βt ,
and the measurement set {Mε

l }. During the training phase, the
agent is training on the evolution and measurements statistics
associated with the nominal dynamics (21). Indeed, in this
phase the noise operator, denoted by Nα , is not included in
the model (α = 0), and the distribution of the measurement
outcomes is the one provided in Eq. (22).

In this phase, the agent receives the current state of the
quantum system ρ̄t as input at each time step t and outputs
the control parameter β (Fig. 4). The agent learns to make
decisions about β based on the observed state and the ultimate

FIG. 4. Training scheme of the model-based scenario.

FIG. 5. Training scheme of the data-based scenario.

goal, which consists of maximization of the fidelity function
as a figure of merit.

During the validation phase, noise is injected in the system
(Nα with α �= 0), so that the dynamic of the system follows
Eq. (5). The agent has to choose the control parameter β

at every time step t , but this time the dynamics of the gym
environment follow the filtered equation (23).

D. Data-based learning scenario

In the data-based scenario (DBS), we consider a quantum
system with a known initial state represented by the density
operator ρ̂0. As for the one before, the agent is aware of
the system’s state at time t , the control parameter β, and the
measurement set M. During the training phase, the dynamics
of the gym environment where the agent is trained is rep-
resented by the filtered state. When we get a measurement
outcome, which in this case is sampled from the real dis-
tribution [Eq. (24)], we compute the current state with the
best estimation possible, which is given from the following
filtering equation:

ρ̂t+1 =
Mε

l̂t
Uβρ̂tU

†
β Mε†

l̂t

tr(·) . (27)

In the training phase we fed the agent with the estimate
of the current state ρt , and we collect as output the control
parameter β(t ) (Fig. 5). Also, in this scenario the reward
function the agent tries to maximize is the fidelity, which is
computed as in Eq. (19).

During the validation phase we keep the same dynamics as
in the training phase. Also, this time the agent has to select at
every time step t the best control parameter β to stabilize the
state.

E. Model-free scenario: Quantum observable
Markov decision process

In the model-free scenario we train the controller without
any reference model, quantum or classical. The approach
will be called quantum observable Markov decision processes
(QOMDPs), as it is inspired by the works of Refs. [27,29]. We
consider a quantum system characterized by an initial state
ρ0 that evolves over time according to its dynamics, which
depends on a noise parameter α [as specified in Eq. (5)].
In this scenario, the distribution of measurement outcomes
follows the true distribution of outcomes, similar to the DBS
approach.
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FIG. 6. Training scheme of the QOMDP scenario.

The agent in this QOMDP framework does not receive
the state of the quantum system ρt or any estimation thereof,
as is the cases of MBS or DBS. It receives only two pieces
of information at each time step t : the outcome of the last
measurement, denoted as lt−1, and the previous control action,
denoted as βt−1.

At each time step t , the agent has to make two decisions:
selecting the control action βt and specifying the value of
the stop action. If the stop action equals 1, the episode ends;
otherwise, if it takes the value 0, the episode continues. At
the initial time step t = 0, no action is performed, i.e., β = 0
and stop = 0. This leads to a unitary evolution represented
by the identity operator U (0) = In×n. After this, the first state
provided to the agent is always in the form of the column
vector [lt=0, 0]T .

To set up the training environment, we introduce a new set
of measurements called the last observation, denoted as llast

(Fig. 6). This observation is obtained by measuring the quan-
tum system using a projective set of measurement operators
Mend

0 , Mend
1 , Mend

2 as follows:

Mend
0 =

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦,

Mend
1 =

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦,

Mend
2 =

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦. (28)

Once the last observation llast is measured, we can compute
the reward function as follows:

R(stop, llast, done) =

⎧⎪⎨
⎪⎩

0, if stop = 0 done = false

−1, if stop = 0 done = true

rfun(llast ), if stop = 1

,

(29)
where rfun is defined as

rfun(llast ) =
{

+1, if llast = ltarget

−1, otherwise
. (30)

TABLE I. RL models summary.

Model Training Train α Train ε Validation

MBs Nominal dynamics 0 Every ε Filtered dynamics
DBs Filtered dynamics Every α Every ε Filtered dynamics
QOMDP Nominal data 0 Every ε Real data

In this expression, ltarget represents a target observation
value for the quantum state we want to reach.

During the validation phase, the quantum system’s dy-
namics remain unchanged. The reward function is no longer
utilized or considered, since it is part of the learning process.
The primary focus is on evaluating the agent’s performance
and decision-making without incorporating the reward func-
tion. The agent’s actions are assessed solely based on their
impact on the quantum system’s evolution and fidelity with
respect to the target state.

VI. NUMERICAL ANALYSIS

A. Experiments setup

In this section of the paper, we report on the results of the
simulations [62] in order to assess the performance of various
RL models with respect to variation in the measurement ac-
curacy and the noise level. We summarize in the following
table the main peculiarities of each model (Table I). Our
comparative analysis focused on evaluating the fidelity of the
state ρ(t ), which was generated by applying the true dynamics
while accounting for noise and utilizing control parameters
determined by the RL agent or by the basic controller. We
considered the three types of noise that we had previously
introduced: the random permutation noise, the depolarizing
channel, and the amplitude damping channel.

We trained and subsequently tested the various RL models
for all possible configurations of the following parameters
[63].

To ensure a robust evaluation of our simulations, we
adopted a standardized approach. Specifically, for each sim-
ulation, we gathered a dataset consisting of 1000 samples.
Subsequently, we computed both the mean and the standard
deviation from this dataset, visually represented by lines and
shaded regions. respectively, in the plots.

It is noteworthy that our modeling approaches, MBS
and DBS, were trained using the PPO algorithm. For these
methods, we employed a conventional multilayer perceptron
(MLP) network architecture. In contrast, the QOMDP ap-
proach underwent training using PPO in conjunction with
a long short-term memory (LSTM) network. This choice
was made to enable the tracking of previous measurement
outcomes.

B. Results

In the first plot (Fig. 7) we display the highest intensity
of noise that an agent can handle while maintaining a final
fidelity of at least 0.9, for each ε. Some observations follow
from the comparison of Fig. 7. Firstly, when dealing with
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FIG. 7. The highest value of noise intensity α that can be handled by each controller while maintaining a fidelity of at least 0.9. Missing
points in the curve indicate that the target fidelity cannot be guaranteed.

precise measurements (i.e., with ε = 0.1), it is evident that
the RL agents exhibit superior performance compared to the
basic controller.

Notably, when confronted with random permutation noise,
both the DBS and MBS agents demonstrate their robustness
by effectively managing the situation up to α = 0.5. Similarly,

FIG. 8. Simulation results for ε = 0.175 are depicted. (Top) Behavior of various agents concerning the depolarizing channel and (bottom)
their performance with respect to the random permutation channel. A discernible trend emerges wherein RL agents exhibit a gradual decline
in performance, whereas the deterministic controller shows a stark deterioration beyond a certain α value.
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when faced with the challenges of introducing the depolariz-
ing channel noise at ε = 0.1, the MBS scenario outperforms
other approaches, extending its capability to handle noise
levels up to α = 0.4. For the amplitude damping channel,
it is evident across all considered scenarios that controllers
exhibit a higher noise threshold compared to the other two
noise models—see Fig. 7 for high measurement accuracy
(ε � 0.15). Notably, the DBS agent demonstrates superior
performance, achieving target fidelity value with noise in-
tensity α = 0.9. Following closely are both the MBS and
QOMDP approaches, attaining similar fidelity values till α =
0.8. The deterministic approach remains limited, achieving
target fidelity for α = 0.6. For ε > 0.1, MBS, DBS, and the
deterministic controller exhibit comparable performances. On
the other hand, the performance of the QOMDP approach
degrades quickly, and does not reach target fidelity ε > 0.1.

It is worth observing that in general the QOMDP agent
displays commendable performance as long as measurements
are informative. This outcome can be attributed to the reliance
of the QOMDP agent on the quality of the latter, which plays
a pivotal role in determining when to execute control actions
effectively. On the other hand, it is not able to guarantee target
fidelity as soon as the measurement quality decreases. The
simulations also confirm the presence of a trade-off between
measurement accuracy and the level of noise that all the
controllers can effectively cope with.

To further elucidate this phenomenon, we present two
paradigmatic plots illustrating the performance of the various
methods at various noise levels when ε = 0.175. These two
plots offer some critical insights: (1) while there is an initial
resemblance in behavior between the basic controller and
the MBS and DBS agents when confronted with low noise
intensity, as the noise intensity escalates, the performance of
the basic controller drops; and (2) the performance of the
QOMDP is lower than the other RL methods.

It is important to note that we do not contend that the
fidelity achieved by the RL agents is necessarily optimal.
Instead, our contention is that RL presents a more robust
control approach compared to the basic controller. In other
words, it excels in maintaining control performance as noise
levels increase.

Last, it is possible to note that the number of necessary
steps in order to achieve a fidelity greater than or equal to 0.9
in general is lower for the RL agents compared to the basic
controller. This result is summarized in Fig. 9. Summarizing
the findings of the extended simulations we ran, we can con-
clude that:

(1) For low noise intensity, the basic controller and the RL
controllers have similar performance;

(2) It is enough, however, to raise the measurement inac-
curacy ε to 0.1 to notice a significant advantage of the RL
controllers in terms of the amount of noise they can withstand
while maintaining the fidelity threshold (Fig. 8);

(3) The model-based controller competes with the data-
based one;

(4) The trade-off between measurement accuracy and
noise is evident, and becomes less taxing for RL-based con-
trollers;

(5) The RL controller tends to converge to high fidelity in
less steps than the basic controller.

FIG. 9. Examples indicating the necessary number of time steps
required to achieve a fidelity of � 0.9. It is evident that RL agents
outperform the basic controller in terms of speed in both scenarios.

VII. CONCLUSIONS

In this study, we conducted an assessment of the perfor-
mance of various RL models in controlling quantum systems
subject to noise and uncertainties toward a state preparation
task. Our performance analysis focused on the fidelity of a
quantum state ρ(t ) with respect to a target pure state, which
was generated by applying true dynamics while accounting
for noise and utilizing control parameters determined by RL
agents or a basic controller.

The study investigated a range of RL models, including
MBS, DBS, and QOMDP. To empower these models, we
utilized the PPO algorithm and distinct network architectures.

In the MBS and DBS the agents harnessed the PPO al-
gorithm, paired with a traditional MLP network architecture.
Their training phases were based on data obtained from the
nominal dynamics [as defined in Eq. (21)] for the MBS, and
real data fed to the filtering dynamics [as defined in Eq. (23)]
equations for the DBS.

In contrast to MBS and DBS, the QOMDP agent employed
PPO in conjunction with a LSTM network architecture. This
approach allowed the QOMDP agent to track and incorpo-
rate previous measurement outcomes into its decision-making
process. Importantly, the QOMDP agent did not construct an
updated system state; instead, its actions were solely informed
by measurement outcomes.

We considered a testbed system on which running the
simulations in order to compare the behavior of the different
control scenarios. We tested the performance of each model
with respect to both the depolarizing channel and a random
permutation channel accounting for different noise intensity
and measurements inaccuracy parameters (Table II).

To establish a benchmark for the aforementioned models,
we introduced a reference control strategy, referred to as the

TABLE II. Training and test parameters.

Parameter Values

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ε 0.1 0.15 0.175 0.2 0.25 0.3
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basic controller. This basic controller is designed to obtain
perfect state preparation when both uncertainty in measure-
ments and noise intensity parameters, ε and α, are set to zero,
maximizing the probability of transitioning from the quantum
states |0〉〈0| and |1〉〈1| to the target state |2〉〈2|.

The numerical analysis we performed analyzed the per-
formance of various controllers in the presence of noise and
measurement inaccuracy. We here make an attempt of distill-
ing a few key messages and physical insight on the behavior of
RL controllers. In scenarios with low noise intensity, both the
basic controller and RL controllers demonstrate, as expected,
comparable performance. This implies that traditional control
methods can be as effective as reinforcement learning-based
controllers in relatively noise-free environments. However,
when we increase the measurement inaccuracy to a modest
value of ε = 0.1, the RL controllers exhibit a clear advantage.
They excel in withstanding noise while still maintaining the
desired fidelity threshold (greater than or equal to 0.9). This
showcases the robustness and adaptability of RL-based con-
trol in challenging conditions.

Our analysis also highlights a clear trade-off between
measurement accuracy and noise tolerance for all methods,
which is, however, less constraining for RL-based controllers.
The latter appear to be better suited to navigate this delicate
balance.

Moreover, RL controllers require fewer steps to reach a
high level of fidelity compared to the basic controller. This
suggests that RL methods can offer faster and more efficient
control solutions in certain scenarios.

Lastly, one of the most remarkable observations is that
such superior robustness with respect to noise, i.e., unmodeled
Markovian dynamics on the system, is obtained even if the
controller is trained with data coming from a simulation that
does not include noise. This opens the possibility of using RL
techniques in practical scenarios, where the amount of data
needed to obtain the controller would entail a prohibitively
long time to be obtained. In fact, even for classical systems,
these issues can represent critical hurdles to the successful
employments of RL for real world systems.

In summary, our study underscores the adaptability and
resilience of reinforcement learning controllers in the face of
noise and measurement inaccuracy. While traditional control
methods are effective in low noise conditions, RL controllers
show a clear advantage when confronted with more challeng-
ing and uncertain environments. The choice between these
approaches should be made based on the specific requirements
and conditions of the task at hand.

APPENDIX: NETWORK ARCHITECTURES
AND TRAINING PARAMETERS

This Appendix provides a detailed description of the
network architecture and hyperparameters employed in the
experiments. An understanding of these details is crucial for
replicating and extending the presented work.

1. MBS and DBS scenarios

The actor-critic policy networks employed in the MBS and
DBS scenarios consist of three main components:

(1) Flatten extractor: This component flattens the
input state vector, converting it into a one-dimensional
representation.

(2) Policy and value function extractors: These extractors
further process the flattened state representation using two
separate MLP architectures, one for policy estimation and the
other for value function approximation. Each MLP consists of
three hidden layers with 64 nodes each, using Tanh activation
functions.

(3) Action and value nets: These nets receive the output of
the respective extractors and generate the policy distribution
and value function estimate, respectively. The action net is
a single-layer linear transformation with one output node,
representing the predicted action probabilities. The value net
also utilizes a single-layer linear transformation to output a
scalar representing the predicted state value.

The trainings of the networks for these two scenarios were
conducted with the following parameters:

(1) Batch size: The batch size for each training update was
set to 512. This value represents the number of state-action
pairs used to update the network parameters.

(2) Number of steps per update: For each training update,
the agent interacts with the environment for a total of 512
steps. This corresponds to the number of state-action pairs
sampled before updating the policy and value function param-
eters.

(3) Learning rate: The learning rate for the optimizer was
set to 1×10−4. This value controls the step size during gradi-
ent descent updates, ensuring a balance between exploration
and exploitation.

For all the other parameters we used the default Stable-
Baselines3 settings.

2. QOMDP scenario

The LSTM policy network employed in this scenario con-
sists of four main components:

(1) Flatten extractor: This component flattens the input
state vector, converting it into a one-dimensional representa-
tion.

(2) Policy and value function extractors: These extractors
further process the flattened state representation using two
separate MLP architectures, one for policy estimation and the
other for value function approximation. Each MLP consists of
three hidden layers with 64 nodes each, using Tanh activation
functions.

(3) Action and value nets: These nets receive the output of
the respective extractors and generate the policy distribution
and value function estimate, respectively. The action net is
a single-layer linear transformation with two output nodes,
representing the predicted action probabilities for the two pos-
sible actions. The value net also utilizes a single-layer linear
transformation to output a scalar representing the predicted
state value.

(4) Recurrent architecture: To capture temporal dependen-
cies in the environment, the network utilizes two LSTM units,
one for policy and one for value function estimation. These
LSTM units process the sequences of state and action inputs,
enabling the network to learn long-range dependencies and
adapt its behavior accordingly.
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The training of the recurrent actor-Ccritic policy network
was conducted with the following parameters:

(1) Batch size: The batch size for each training update was
set to 512. This value represents the number of state-action
pairs used to update the network parameters.

(2) Number of steps per update: For each training update,
the agent interacts with the environment for a total of 512
steps. This corresponds to the number of state-action pairs

sampled before updating the policy and value function param-
eters.

(3) Learning rate: The learning rate for the optimizer was
set to 3×10−4. This value controls the step size during gradi-
ent descent updates, ensuring a balance between exploration
and exploitation.

For all the other parameters we used the default Stable-
Baselines3 settings.
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