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Decompositions of multiple controlled-Z gates on various qubit-coupling graphs
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Efficient decomposition of multiqubit operators is critical in the execution of quantum algorithms. In this
paper, we introduce decompositions of the multiple controlled-Z (CCZ and CCCZ) gates tailored to various qubit-
coupling graphs. Specifically, we demonstrate that the CCZ gate is realized with CZ-depth 4 on a square-shaped
qubit-coupling graph utilizing one auxiliary qubit. As for the CCCZ gate, previous research indicated that the
decomposition requires 14 CZ gates in a fully connected topology. However, our findings reveal that only four
specific qubit couplings are needed to achieve a decomposition using the same number of CZ gates, 14. Our
research employs an optimization method to improve the alignment of parametrized quantum circuits with their
intended quantum gates, which facilitates these efficient decompositions. This methodology is versatile and
can be applied to decompose any quantum gates, not just the CCZ and CCCZ gates. These advancements in
decomposing multiqubit gates, coupled with our CCZ and CCCZ decompositions, are poised to reduce quantum
circuit execution times and enhance the efficiency of complex quantum algorithms in imminent quantum
computing applications.
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I. INTRODUCTION

The efficient execution of complex qubit operations on a
quantum processing unit (QPU) is a significant challenge in
quantum computation, especially in today’s quantum devices
[1], where the total error correction is not yet available. When
executing a given quantum circuit, the quantum compiler
replaces all high-level multiqubit operations with sequences
of primitive quantum gates that can be directly executed on
the QPU. For example, recent trapped-ion QPUs have high
connectivity, where we can perform two-qubit operations on
arbitrary pairs of qubits [2,3]. On the other hand, supercon-
ducting QPUs generally have sparse couplings, and thus one
can apply two-qubit gates only between limited pairs of qubits
[4–6]. Given the variety of coupling graphs in different QPU
technologies, it is crucial to develop novel decompositions
for multiple controlled-Z (CCZ and CCCZ) gates that adapt to
these different coupling constraints. This is particularly im-
portant when working with sparse couplings, where efficient
decompositions can significantly improve the performance
and feasibility of executing complex quantum operations.

The primitive gates supported by QPUs are usually one-
and two-qubit gates. In principle, arbitrary multiqubit opera-
tions can be built as sequences of one- and two-qubit gates
[7–9]. For example, Barenco et al. [10] and Cleve et al. [11]
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have developed methods for building multiqubit controlled
unitary operations. In the following, converting a multiqubit
operation into a sequence of primitive gates is called the
“decomposition.”

There are many studies on the decomposition of multiqubit
operations, but they can be classified roughly according to
whether they target fault-tolerant quantum computation or not.

In the context of fault-tolerant quantum computing, man-
aging the computational cost associated with the T gates,
which are single-qubit rotations by π/4 around the Z axis
of the Bloch sphere, is crucial as they demand significant
resources compared to the Clifford gates. This focus arises due
to the fact that, in fault-tolerant implementations, the T -gate
implementation is more complex and requires more overhead,
particularly when quantum error correction schemes are em-
ployed. Therefore, in efforts to optimize quantum circuits for
fault-tolerant applications, researchers prioritize minimizing
the T count, the number of the T gates used, in the circuit
design [12–21]. Jones [13] found an implementation of the
Toffoli gate using four T gates. Gidney and Jones [14] found
a decomposition of the CCCZ gate with six T gates. Various
strategies to minimize the T depth have also been proposed
[21–27]. Here, the T depth denotes the number of T stages
involved in a computation, and a T stage is defined as a set of
one or more T or T † gates that operate on distinct qubits and
can be executed concurrently [22].

On the other hand, non-fault-tolerant quantum computing
approaches do not emphasize heavily the cost of T gates. In
these contexts, researchers generally focus more on the count
or depth of two-qubit primitive gates to optimize performance
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TABLE I. Decomposition of CCZ gate into CZ and one-qubit gates
on various coupling graphs. The third one is the decomposition found
in the present study. In the first column, the circles represent the
qubits, the white circle represents the auxiliary qubit, and the lines
represent the qubit couplings. The indices assigned to the qubits in
the coupling graphs correspond to those in Fig. 1.

Coupling graph CZ count CZ depth Reference

6 6 Textbook implementation

8 8 Gwinner et al. [46]

8 4 Fig. 1

on near-term quantum devices, which are yet to implement
full quantum error correction protocols [28–36]. A typical
two-qubit gate in a quantum algorithm is the controlled-NOT

(CNOT) gate, but not all QPUs can execute this operation
directly. Available two-qubit elementary gates vary depending
on the architecture of the QPU. Typical two-qubit elementary
gates besides the CNOT gate are the iSWAP gate [37] and the
CZ gate [38]. Schuch and Siewert [29] found decompositions
of the CCCZ gate for several qubit-coupling graphs (Table II).
Shende and Markov [31] determined that the minimum num-
ber of CZ gates, the CZ count, required to construct a CCZ gate
is 6.

In this paper, we discuss the decomposition of multiqubit
operations for the non-fault-tolerant quantum computing ap-
proach. In the following, in addition to the CZ count, we also
focus on the CZ depth, the number of CZ stages involved in
a computation, where a CZ stage is defined as a set of one
or more CZ gates that operate on distinct qubits and can be
executed concurrently.

We have devised an optimization method for parametrized
quantum circuits to find efficient decompositions of given
multiqubit operations. There are many previous studies on the

TABLE II. Decomposition of CCCZ gate into CZ and one-qubit
gates on various coupling graphs. The second and fourth are the
decompositions found in the present study. In the first column, the
circles represent the qubits, and the lines represent the qubit cou-
plings. The indices assigned to the qubits in the coupling graphs
correspond to those in Figs. 2 and 3.

Coupling graph CZ count CZ depth Reference

14 8 Schuch and Siewert [29]

16 16 Nemkov et al. [47], Fig. 2

16 8 Schuch and Siewert [29]

14 Fig. 3

18 12 Schuch and Siewert [29]

methods for finding the efficient decomposition of multiqubit
operations [22,34,39–45]. In the present paper, we propose
a method to search for the decomposition of multiqubit
operations using a classical computer, taking moderate-
sized qubit gates that fit the current classical computers
as the targets. Several methods have been devised to de-
compose multiqubit operations by optimizing the rotation
parameters in a parametrized quantum circuit. The steep-
est descent, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method, and simulated annealing methods have been used so
far [39,41,44]. We have devised a technique that significantly
reduces the computational complexity of the parameter op-
timization. Using this method, we can rapidly optimize the
circuit parameters for a given parametrized quantum circuit to
match the target quantum gate if possible. By examining var-
ious parametrized quantum circuits, we can find an efficient
decomposition of the target multiqubit operations. It is also
possible to replace the optimization part of the existing studies
with our algorithm. Moreover, the proposed method can help
us to check whether or not the already known decomposition
of multiqubit operations is optimal.

We apply our optimization method to find decompositions
of the CCZ and CCCZ gates on various qubit-coupling graphs.
The CCZ and CCCZ gates are multi-qubit operations commonly
used in quantum algorithms. As shown in Table II, efficient
decompositions have been found for the CCZ and CCCZ gates
on some graphs [28,29]. We found more decompositions on
different graphs. We assume only the CZ gate is a two-qubit
primitive gate. When the qubit-coupling graph is square-
shaped and contains one auxiliary qubit, the CCZ gate can be
decomposed with CZ-depth 4. The same applies to the Toffoli
gate, which can be made with one CCZ and two one-qubit
gates. The smallest number of CZ gates currently known to
build a CCCZ gate is 14, which has been realized for the fully
connected graph, which has six qubit couplings. We, however,
found that this lower bound can be achieved using only four
couplings between qubits. These decompositions are expected
to shorten the execution time of quantum circuits and improve
the accuracy of quantum algorithms on QPUs.

This paper is organized as follows: We present the efficient
decompositions of the CCZ and CCCZ gates we found (Sec. II).
Next, we describe the overall framework for searching for
decompositions of multiqubit operations (Sec. III). Then, we
explain the optimization method we used for finding optimal
rotation angles of a parametrized quantum circuit (Sec. IV).
Finally, we summarize the present study and give an outlook
of future works (Sec. V).

II. MAIN RESULTS: DECOMPOSITIONS
OF CCZ AND CCCZ GATES

To execute quantum algorithms on QPU efficiently and
with high accuracy, we should reduce the execution time and
the number of two-qubit operations.

The noise associated with the operations of a QPU arises
cumulatively from the noise inherent in the primitive gates
utilized in these operations. In real devices, two-qubit gates
have smaller fidelities than one-qubit gates due to more noise
involved in implementing the former. The two-qubit count
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FIG. 1. Decomposition of the CCZ gate for a square-shaped
qubit-coupling graph (third row in Table I). X a := RX (aπ ), Za :=
RZ (aπ ). The CCZ gate can be decomposed with CZ-depth 4 (defined
in Sec. II). The numbers assigned to each qubit correspond to the
qubit indices in the coupling graph in Table I. The qubit at the bottom
is used as an auxiliary qubit. Each gray zone represents a CZ stage,
in which multiple CZ gates can be executed simultaneously.

after the decomposition should be as small as possible to
reduce the noise.

To further reduce noise, it is crucial to minimize the execu-
tion time. For such a purpose, we consider the decomposition
of multiqubit operations into as short a sequence of primi-
tive gates as possible by assuming that qubit operations on
nonoverlapping sets of qubits can be executed simultaneously.
Significantly, the depth of two-qubit primitive gates, such as
the CZ depth, is an essential metric for designing efficient
decomposition [31].

Before going into the details of the methods, we present
efficient decompositions of CCZ and CCCZ gates we found
under different qubit-coupling graphs. These gates are typical
three- and four-qubit gates. Here, we assume that the CZ gate
is the only two-qubit primitive gate. Our main focus is on
reducing the CZ count and/or the CZ depth of the decom-
posed multiqubit operations. Tables I and II summarize the
decompositions of CCZ and CCCZ gates, respectively, for vari-
ous qubit-coupling graphs. The decompositions we found are
shown in Figs. 1–3.

III. SEARCH FOR DECOMPOSITIONS
OF MULTIQUBIT OPERATIONS

This section describes the overall framework for searching
for decompositions of multiqubit operations. In the following,
we denote the X (Z) gate with rotation angle θ as RX (θ )
[RZ (θ )].

A. Parametrized quantum circuit generation

We start our search by determining the following: (1) type
of two-qubit primitive gate to use, (2) QPU qubit-coupling

graph, and (3) initial two-qubit count or two-qubit depth of
the circuit.

First, we enumerate all possible sequences of two-
qubit primitive gates according to these conditions. Then,
we insert parametrized one-qubit gates, more specifically,
RZ (θ )-RX (θ ′)-RZ (θ ′′), before and after each two-qubit prim-
itive gate. [Especially when we consider the CZ gate as the
two-qubit primitive gate, we can use RZ (θ )-RX (θ ′) instead,
except at the end of the circuit. This is because the CZ and
RZ gates commute with each other, and thus, omitting either
one of the RZ gates before or after the CZ gate does not spoil
the representability of the parametrized circuit.] This way, we
generate all the possible parametrized quantum circuits under
the assumed conditions.

B. Exhaustive optimization of all prepared circuits

Next, we optimize rotation angles in the parametrized
quantum circuits we prepared. Optimization details will be
presented in Sec. IV. Since the optimization of rotation angles
may stop at some local optimum, we repeat the optimization
for each parametrized quantum circuit. The goal is achieved
if the optimization finds a parametrized quantum circuit that
matches the target quantum gate. Typically, a few optimiza-
tion trials are enough to find the solutions, though more than
one hundred trials are required for the CCCZ gates on the T-
shaped coupling graph (the second row in Table II). We found
that the CCCZ gate decomposition with 14 CZ gates can be
achieved using only four couplings between qubits (the fourth
row in Table II) instead of the fully connected graph. For the
T-shaped qubit-coupling graph, we found a decomposition of
the CCCZ gate with 16 CZ gates, which has the same CZ count
as the one obtained by Nemkov et al. [47], but a different
CZ-gate sequence. Our search for the T-shaped coupling graph
case took about 37 h using a single NVIDIA GeForce RTX
4090. A detailed analysis of the efficiency of our method and
theirs is subject to future work.

C. Further circuit simplification

Once optimal rotation angles are identified in a
parametrized quantum circuit, we simplify the circuit by
strategically reducing the number of single-qubit gates.
This is achieved through extensive optimization, performing
thousands to millions of iterations, each starting from random
initial rotation angles. The goal is to converge on the target
quantum gate configuration.

0

1

2

3

FIG. 2. Decomposition of CCCZ gate for a T-shaped qubit-coupling graph (second row in Table II). X a := RX (aπ ), Za := RZ (aπ ). The
CCCZ gate requires 16 CZ gates on the T-shaped qubit-coupling graph. The CZ count is the same as the decomposition obtained by Nemkov
et al. [47], but the CZ-gate sequence is different. The numbers assigned to each qubit correspond to the qubit indices in the coupling graph in
Table II.
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FIG. 3. Decomposition of CCCZ gate for qubit-coupling graph with only four couplings (fourth row in Table II). X a := RX (aπ ), Za :=
RZ (aπ ). The smallest CZ count currently known is 14, which has been found for the fully connected graph. However, this lower bound can be
achieved using only four couplings between qubits. The numbers assigned to each qubit correspond to the qubit indices in the coupling graph
in Table II. Each gray zone represents a CZ stage, in which multiple CZ gates can be executed simultaneously.

After convergence, we analyze the distribution of each
rotation angle. Any gate whose rotation angle converges fre-
quently to zero or displays a near-uniform distribution can be
eliminated by setting that angle to zero. This pruning process
is repeated until no further reductions are feasible without
compromising the circuit’s functionality.

Subsequently, we refine the circuit by fixing the remaining
nonzero rotation angles to simple rational multiples of π (e.g.,
π/2, π/4, π/8). This adjustment is iterated until all rota-
tion angles stabilize at simple values, improving the circuit’s
efficiency and understandability.

IV. SEQUENTIAL OPTIMIZATION OF ROTATING GATES

In this section, we describe our sequential optimization al-
gorithm for finding optimal rotation angles of a parametrized
quantum circuit. While Nakanishi et al. [48] also employs
a similar sequential optimization method, the calculation
method for updating the parameters in the technique we
propose is different. The two values required to update the
parameters in our method are shown in Eqs. (14) and (15). Our
method is also applicable to a circuit with auxiliary qubits.
We design this algorithm to run on a classical computer. In
Sec. IV A, we explain the property to be satisfied by the
rotation gates in a parametrized quantum circuit and define
the objective function Eq. (6). Then, in Sec. IV B, we explain
the flow of the sequential optimization method to maximize
the objective function Eq. (6).

A. Objective function

We assume that all rotation gates RA(θ ) in a parametrized
quantum circuit are expressed as

RA(θ ) = exp

(
− iθ

2
A

)
, (1)

with A satisfying the following condition:

A2 = I. (2)

We also assume that the input quantum states are in the space
spanned by D mutually orthogonal quantum states {|�d〉}D

d=1,
and P is defined as follows:

P :=
D∑

d=1

|�d〉〈�d |. (3)

If the input space is the whole Hilbert space of the prepared c
qubits, P is the 2c-dimensional identity operator.

Let UT be the target quantum gate we want to decom-
pose, and U be a parametrized quantum circuit. The goal of
the present algorithm is to optimize the parameters in U so
that the output {U |�d〉}D

d=1 becomes identical {UT |�d〉}D
d=1

except for the global phase common to all D states. This opti-
mization problem is identical to finding U such that f (U ) = 0
by minimizing f (U ) defined by

f (U ) := min
φ

‖eiφU †
T UP − P‖2

F , (4)

where ‖ · ‖F denotes the Frobenius norm. Equation (4) can be
transformed into the following equation:

f (U ) = 2D − 2|tr[U †
T UP]|. (5)

Thus, minimizing f (U ) until f (U ) = 0 is equivalent to
maximizing

|tr[U †
T UP]|2 (6)

until

|tr[U †
T UP]|2 = D2. (7)

B. Rotation-angle optimization flow

Next, we describe how to optimize the parametrized quan-
tum circuit sequentially. The optimization flow is shown in
Fig. 4. Suppose that the parametrized quantum circuit U has
K rotation gates. Then U can be written as

U (θ1, . . . , θK ) = VK RK (θK ) · · ·V1R1(θ1)V0, (8)

where θk (k = 1, . . . , K) is the rotation angle of the kth rota-
tion gate, and Vk (k = 0, . . . , K) denotes a fixed multiqubit
unitary gate or an identity gate. Note that V −1

k = Vk (k =
0, . . . , K).

Let Un = U (θ (n)
1 , . . . , θ

(n)
K ) be the parametrized quantum

circuit after n optimization steps. At the (n + 1)th step, first,
we choose one of the rotation gates, say Rk (θ (n)

k ), in the
parametrized quantum circuit Un. We rewrite the parametrized
circuit Un as

Un = U ′
nRk

(
θ

(n)
k

)
U ′′

n , (9)

where

U ′
n = VK RK

(
θ

(n)
K

) · · · Rk+1
(
θ

(n)
k+1

)
Vk, (10)

U ′′
n = Vk−1Rk−1

(
θ

(n)
k−1

) · · · R1
(
θ

(n)
1

)
V0. (11)

Now we define Ũn(θ ) as

Ũn(θ ) := U ′
nRk

(
θ

(n)
k + θ

)
U ′′

n . (12)
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example of      :

choose a rotation gate and split

add parameter 

optimise 

concatenate

FIG. 4. Rotation-angle optimization flow. U0 denotes the initial
state of the parametrized quantum circuit, where the rotation angles
are initialized uniformly randomly.

By using Eq. (12), the trace in Eq. (6) can be transformed as

tr[U †
T Ũn(θ )P]

= tr

[
U †

T Ũn(0)P cos
θ

2
+ U †

T Ũn(π )P sin
θ

2

]

= tr[U †
T Ũn(0)P] cos

θ

2
+ tr[U †

T Ũn(π )P] sin
θ

2

= t0 cos
θ

2
+ tπ sin

θ

2
, (13)

where

t0 := tr[U †
T Ũn(0)P] = tr[U †

T UnP], (14)

tπ := tr[U †
T Ũn(π )P]. (15)

By taking the square of the absolute value of Eq. (13), we
finally obtain

|tr[U †
T Ũn(θ )P]|2

=
∣∣∣∣t0 cos

θ

2
+ tπ sin

θ

2

∣∣∣∣
2

= |t0|2 cos2 θ

2
+ |tπ |2 sin2 θ

2
+ (t0t∗

π + t∗
0 tπ ) cos

θ

2
sin

θ

2

= |t0|2 − |tπ |2
2

cos θ + t0t∗
π + t∗

0 tπ
2

sin θ + |t0|2 + |tπ |2
2

,

(16)

where t∗ denotes the complex conjugate of t . From Eq. (16),
we can find θ̌ that maximizes |tr[U †

T Ũn(θ )P]|2 as

θ̌ := arg maxθ (|tr[U †
T Ũn(θ )P]|2)

=

⎧⎪⎨
⎪⎩

arctan
(

t0t∗
π +t∗

0 tπ
|t0|2−|tπ |2

)
, |t0|2 − |tπ |2 > 0,

arctan
(

t0t∗
π +t∗

0 tπ
|t0|2−|tπ |2

)
+ π, |t0|2 − |tπ |2 < 0,

(17)

which defines Un+1 for the next iteration:

Un+1 := Ũn(θ̌ ). (18)

In other words, without having to calculate the gradient, local
optimization for θ can be performed just by calculating the
two values, t0 and tπ .

From Eqs. (14), (16), and (18), the following inequality can
be derived,

|tr[U †
T Un+1P]|2 � |tr[U †

T UnP]|2, (19)

that is, the objective function (6) increases monotonically as
the optimization proceeds. By updating each rotation gate
Rk (θk ) (k = 1, . . . , K) sequentially according to the above
procedure, we can optimize U so that |tr[U †

T UP]|2 is maxi-
mized. If |tr[U †

T UP]|2 is maximized until D2, the parametrized
quantum circuit becomes identical to the target quantum gate,
meaning that we successfully find a decomposition of UT .

C. Reduction of computation complexity

To reduce the computation complexity, we can exploit the
cyclic property of the trace. In the objective function at the
(n + 1) step, we can bring the chosen rotation gate to the
leftmost as

|tr[U †
T Ũn(θ )P]|2 = ∣∣tr[Rk (θ (n)

k + θ
)
Mn

]∣∣2
, (20)

where

Mn = U ′′
n PU †

T U ′
n. (21)

If we choose Rk−1(θk−1) or Rk+1(θk+1) as the target rotation
gate of the next step, Mn+1 can be easily calculated as

Mn+1 = Rk−1
(−θ

(n)
k−1

)
Vk−1MnRk (θ̌ )Vk−1 (22)

or

Mn+1 = VkRk (θ̌ )MnVkRk+1
(−θ

(n)
k+1

)
, (23)

respectively, by using the following properties: R−1
k (θk ) =

Rk (−θk ) and V −1
k = Vk . In the present calculation, we choose

the rotation gates in the following order:

K → K − 1 → · · · → 2 → 1 → 2 → · · · → K − 1 → K

→ K − 1 → · · · .

Using this technique, we can reduce the computational cost
significantly compared to calculating Un from scratch at each
optimization step.

V. CONCLUSION

In the present paper, we presented efficient decomposi-
tions of the CCZ and CCCZ gates under various qubit-coupling
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graphs. The CCZ and CCCZ gates are multiqubit gates com-
monly used in quantum circuits. We can achieve more efficient
and less error-prone quantum circuits using these decomposi-
tions, especially for QPUs with sparse coupling graphs, such
as the superconducting QPUs.

Contributing to this finding is our sequential optimization
algorithm of a parametrized quantum circuit. By using our
method, we can optimize the rotation angles for a given
parametrized quantum circuit to achieve the target quantum
gate. The present optimization method can be used not only
for the CCZ and CCCZ gates but also for arbitrary qubit gates.
Since the method does not depend on any particular primitive
gate set, it can be modified and applied to various QPUs. Us-
ing this method to find a suitable decomposition of multiqubit
operations for particular QPUs will reduce the execution time
of quantum circuits on QPUs and improve the accuracy of
quantum algorithms. It is also possible to replace the parame-
ter optimization part of the existing decomposition research
with this method. We believe that the present optimization
method will be an essential tool for error reduction. Not

only that, but the analysis of the decomposition of multiqubit
operations found in the present study may provide hints for
designing larger-scale multiqubit gates in the future.
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