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A method, termed controlled injection, is proposed for compiling three-qubit controlled gates within the
non-Abelian Fibonacci anyon model. Building on single-qubit compilation techniques with three Fibonacci
anyons, the approach showcases enhanced accuracy and reduced braid length compared to the conventional
decomposition method for the controlled three-qubit gates. This method necessitates only four two-qubit gates
for decomposition, a notable reduction from the conventional five. In conjunction, the study introduces a class of
controlled three-qubit gates and conducts a numerical simulation of the topological iToffoli gate to validate the
approach. In addition, we propose an optimization method for single-qubit gate approximation using algebraic
relations and numerical methods, including distributed computing.
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I. INTRODUCTION

In the previous two decades, there has been a signif-
icant interest in topological quantum computation (TQC)
due to its potential for scalable and fault-tolerant quantum
computing. The latter is crucial for fully harnessing the ca-
pabilities of quantum systems [1–7]. The foundation of TQC
relies on the existence of anyons, which were proposed by
Leinaas and Myrheim in 1976 [8] and quantum mechanically
formulated by Wilczek in 1982 [9]. In (2+1) space-time di-
mensions, particles can exhibit anyonic statistics, in contrast
to the (3+1) dimensions where particles are either bosons
or fermions. Consequently, the quantum evolution of anyons
moving around each other in an effective two-dimensional
space is determined by a topological phase that is independent
of the system’s dynamics and geometry in the same spirit of
the Aharonov-Bohm phase of an electron moving around a
confined magnetic flux [9]. Additionally, within the frame-
work of topological quantum field theory (TQFT), anyon
models can be described using braided monoidal category
theories [10]. In this context, there exists a correspondence
between the topological invariants of knots and the quantum
observables of the anyonic system [11]. In theory, a class of
anyons can be described within the Chern-Simons quantum
field theory. This theory is celebrated because of its successful
description of the fractional quantum Hall effect (FQHE) [12].
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Specifically, the SU(2) non-Abelian version of this theory
produces the SU(2)k anyon models, which include the most
famous Ising and Fibonacci (Yang-Lee) models for k = 2 and
k = 3, respectively. It is proven that SU(2)k anyon models
are Turing complete for k = 3 and k � 5 [13,14], while the
SU(2)2 model covers only the Clifford group. On the other
hand, anyons can emerge in some types of topological lat-
tice models. In his seminal work, Kitaev proposed the toric
code and quantum doubles as quantum error correction codes
that possess topological ground states protected by an en-
ergy gap [2]. In this framework, Abelian and non-Abelian
anyons emerge as excitations and serve as quantum infor-
mation processing agents. Recently, a modified version of
the surface code has been simulated in a superconducting
quantum processor, providing evidence of the non-Abelian
statistics of Ising anyons [15]. At the same time, a quantum
double code based on the dihedral group D4 implemented on
a trapped-ion quantum processor demonstrated experimental
observation of non-Abelian anyon statistics [16]. Moreover,
the experimental results from various condensed matter sys-
tems provide compelling evidence in support of the realization
of topological quantum computing systems in the near fu-
ture. Specifically, it has been shown experimentally that the
quasiparticles in the fractional quantum Hall systems exhibit
anyonic statistics [17,18]. Furthermore, a recent study sug-
gests the possibility of detecting Majorana zero modes in
semiconductor-superconductor heterostructure devices [19].

However, the compilation of quantum circuits in the TQC
framework is not generally trivial. Although the Fibonacci
anyon model ensures universality and is dense in the spe-
cial unitary group, significant efforts have been devoted to
achieving an efficient and optimal compilation scheme. Nu-
merous algorithms are available to map SU(2) quantum gates
to topological braiding operations within Fibonacci anyons,
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including the Solovay-Kitaev algorithm [20], the brute-force
algorithm [7,21], the evolutionary algorithm [22], and deep
reinforcement learning [23]. Additionally, an asymptotically
optimal and systematic algorithm based on ring theory has
been specifically designed for certain SU(2) quantum gates
with Fibonacci anyons [24]. Moreover, a recently developed
generic Monte Carlo approach has been introduced to compile
near-optimal braid words at the single-qubit level in SU(2)k

anyon models [25].
Additionally, it is necessary to compile two-qubit gates,

such as the controlled-NOT (CNOT) gate, to ensure universal-
ity. In this context, several procedures have been proposed.
Specifically, an injection method was introduced by Bones-
teel et al. [26] to compose two-qubit gates from single-qubit
gates of Fibonacci anyons. Another iterative procedure has
been designed to systematically generate entangling two-qubit
Fibonacci anyon braids [27]. Even though the compilation
of any single-qubit gate along with the CNOT gate is suffi-
cient to demonstrate the quantum computing universality of
a given anyon model, the implementation of larger quantum
circuits may require reduced compilation schemes to decrease
processing time. Specifically, the Toffoli gate, or the CNOT

gate, can be decomposed by concatenation of five two-qubit
controlled gates [28]. However, the pertinent query revolves
around the feasibility of reducing this requisite. In this con-
text, a general compilation scheme based on dense encoding
was proposed to construct the controlled-controlled phase gate
for a wide range of anyon models using six successive gates
acting on three qubits densely encoded on eight anyons [29].
This method does not address a wide range of controlled-
controlled gates such as the CNOT and Deutsch gates. In this
study, we present a procedure that we call controlled injection
to construct a class of controlled three-qubit gates within
the Fibonacci anyon model. The controlled-injection method
offers the advantage of reducing the complexity of the braids
compared to the conventional decomposition method. We
demonstrate our finding by comparing the resulting iToffoli
gates using both approaches. To ensure an accurate compari-
son using the most optimal compilation possible, we employ
the brute-force algorithm and implement several optimiza-
tions based on algebraic and numerical techniques, given the
computational complexity of the brute-force algorithm. Fur-
thermore, the controlled-injection method introduces unusual
quantum logic gates that can be used in specific applications.

This paper begins by introducing the fundamentals of
quantum computing with Fibonacci anyons, along with essen-
tial notations. We then delve into the key aspects of compiling
single-qubit gates within the Fibonacci model, using the
brute-force algorithm. Thereafter, we present the controlled
injection method, supplemented by a class of controlled
three-qubit gates. We conclude our study with a comparative
analysis between our method and the conventional decompo-
sition approach.

II. FIBONACCI MODEL

The Fibonacci anyon model is the simplest universal anyon
model among the SU(2)k family. Fibonacci anyons can the-
oretically emerge as quasiparticles in the FQHE at 12/5
filling factor [30]. They can also appear as defects in the

TABLE I. Size of the fusion space Fn in function of the number
of anyons n. dim(F0

n ) is the dimension of the fusion space given that
the total charge is 0, while dim(F1

n ) is the size of the fusion space
given that the overall charge is 1. Finally, dim(Fn) is the total size of
the fusion space.

n dim
(
F 0

n

)
dim

(
F 1

n

)
dim(Fn)

1 0 1 1
2 1 1 2
3 1 2 3
4 2 3 5
n

∑
i=1,2 dim

(
F 0

n−i

) ∑
i=1,2 dim

(
F 1

n−i

) ∑
i=1,2 dim(Fn−i )

so-called string-net (Levin-Wen) lattice models [31,32]. In
the Fibonacci model, we have only one nontrivial anyonic
charge, referred to as 1, along with the trivial vacuum charge,
0. The nontrivial Fibonacci fusion rule is defined as fol-
lows [21,33,34]:

1 × 1 = 0 + 1. (1)

The dimension of the fusion space F in terms of the num-
ber of Fibonacci anyons follows the famous Fibonacci series
such that dim(Fn+2) = dim(Fn) + dim(Fn+1), where n is the
number of anyons, as shown in Table I. Notice that a qubit can
be represented minimally by three or four anyons. While two
anyons introduce a trivial braid operation, three anyons form
a qubit with overall charge 1 and correspond to the minimum
qubit representation with Fibonacci anyons. Namely, all pos-
sible fusion processes for three Fibonacci anyons associated
with logical states are

|0〉 = |0, 1〉 = |((1, 1)0, 1)1〉, (2)

|1〉 = |1, 1〉 = |((1, 1)1, 1)1〉, (3)

|2〉 = |1, 0〉 = |((1, 1)1, 1)0〉, (4)

such that |i, j〉 refers to the fusion state |((1, 1)i, 1) j〉 for
reduction. The sector of an overall charge 0 is trivial with
a singular state {|0〉}. Four anyons with an overall charge 0
also form a qubit. Namely, four Fibonacci anyons allow the
following fusion states:

|0〉 = |0, 1, 0〉 = |(((1, 1)0, 1)1, 1)0〉, (5)

|1〉 = |1, 1, 0〉 = |(((1, 1)1, 1)1, 1)0〉, (6)

|2〉 = |1, 0, 1〉 = |(((1, 1)1, 1)0, 1)1〉, (7)

|3〉 = |0, 1, 1〉 = |(((1, 1)0, 1)1, 1)1〉, (8)

|4〉 = |1, 1, 1〉 = |(((1, 1)1, 1)1, 1)1〉. (9)

While the sector 0 forms a qubit, the sector 1 forms a qutrit as
we are going to see later. Representing a qubit with more than
four anyons is not recommended since it provokes leakage, as
proven for all anyon models [35].

To compute the matrix representation of the braid genera-
tors of a given set of anyons, the fusion matrix F that defines
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the basis transformation,

|((a, b)i, c) j〉 =
∑

k

(
F j

abc

)
ik|(a, (b, c)k ) j〉, (10)

and the rotation matrix Rab that defines the operation of ex-
changing two anyons a and b with a specific fusion outcome,

Rab|(a, b)i〉 = Ri
ab|(b, a)i〉, (11)

are required. Solving the pentagon identities reveals one
nontrivial fusion matrix F 1

111 for the Fibonacci model given
by [4,33]

F 1
111 =

((
F 1

111

)0
0

(
F 1

111

)0
1(

F 1
111

)1
0

(
F 1

111

)1
1

)
=

(
τ

√
τ√

τ −τ

)
, (12)

up to a global phase, where τ is the inverse of the golden ratio.
Then, solving the hexagon identities gives the right-handed
and the left-handed solutions of the rotation matrix R11 [4,33]:

R11 =
(

R0
11 R01

11

R10
11 R1

11

)
=

(
e±i4π/5 0

0 −e±i2π/5

)
, (13)

up to a global phase. Here, the (+) and (−) signs in the
exponents refer to right-handed and left-handed twisting,
respectively. The off-diagonal components of R11 are null be-
cause exchanging two particles preserves the fusion outcome.

Braiding, a fundamental operation in anyon models, con-
sists of exchanging two adjacent anyons. The braiding
operation between the nth and (n + 1)th particles is denoted
by the σn braid operator. In this work, all the necessary braid
operators matrix representations are calculated using a sys-
tematic numerical method developed in [36]. It is sufficient to
play with F and R transformations to express all braiding op-
erations. The main ingredient of this procedure is the braiding
matrix B that defines the exchange of any two adjacent anyons
b and c as follows:

Bbc|((a, b)i, c) j〉 =
∑

k

(
B j

abc

)i

k|((a, c)k, b) j〉, (14)

such that B j
abc = F j

abcRbcF † j
acb. This formula is generic when-

ever the fusion state is in the form |(· · · ((a0, a1)i1 , a2)i2 ,

· · · an)in〉. Consequently, in the case of three Fibonacci anyons,
we find that the braid operations’ matrix components that de-
scribe the transitions between the basis states in Eqs. (4), (2),
and (3) are given as follows:

〈i′, j′|σ1|i, j〉 = Ri
11δii′δ j j′ , (15)

〈i′, j′|σ2|i, j〉 = (
B j

111

)i

i′δ j j′ . (16)

Similarily, we can conclude the matrix representation of σ1,
σ2, and σ3 acting on four Fibonacci anyons in the basis states
Eqs. (5), (6), (7), and (8):

〈i′, j′, k′|σ1|i, j, k〉 = Ri
11δii′δ j j′δkk′ , (17)

〈i′, j′, k′|σ2|i, j, k〉 =
∑

m

(
B j

111

)i

mδmi′δ j j′δkk′ , (18)

〈i′, j′, k′|σ3|i, j, k〉 =
∑

m

(
Bk

i11

) j

mδii′δm j′δkk′ , (19)

such that

B1
111 =

(
e−i6π/5τ e−i3π/5√τ

e−i3π/5√τ −τ

)
(20)

up to a global phase, while other B components are trivial.
Before going further on the quantum computing with sin-

gle and multiple qubits using the Fibonacci model, it is worthy
to note that the dimension of the fusion space of anyons
differs from that of the Hilbert space of qubits. For instance,
simulating two qubits requires a fusion space of size four
or larger. In the context of Fibonacci models, two practical
options arise. The first is to use five anyons prepared with
an overall charge of 1, resulting in a fusion space of five
dimensions. The second is to allocate three anyons to each
qubit, resulting in five and eight fusion states depending on
whether the overall charge is 0 or 1, respectively. The former
option, termed dense encoding, is considered optimal in terms
of resource utilization. The latter, called sparse encoding, is
compatible with the picture of quantum circuits decomposed
into separate qubits. A general scheme for gate compilation
within the dense encoding framework is explored in [29].
However, in this work, we opt for sparse encoding, align-
ing with the mainstream [7,26,37]. Additionally, this study
demonstrates several advantages of this convention.

III. COMPILING SINGLE-QUBIT GATES

The algebraic group generated by Fibonacci braiding op-
erations is densely mapped to the SU(N ) group and is
polynomially equivalent to a quantum circuit [13,14]. In the
context of three Fibonacci anyons, the matrix representation
ρ(�) of any Fibonacci braid sequence � of σ1 and σ2 given
in Eqs. (15) and (16) assumes a general form [37],

ρ(�) =
( ±e−iW (�)π/10[SU(2)]

ei3W (�)π/5

)
, (21)

acting on the basis states Eqs. (4), (2), and (3), where W (�),
the winding number, is defined as the sum of the powers of the
braid sequence. Consequently, the global phase of � in both
blocks is determined solely by the winding number, up to a ±
sign. While the global phase factor may not be of significant
importance when compiling single-qubit gates, it manifests
measurable effects in the design of two and three-qubit con-
trolled gates. Furthermore, the phase difference between the
two independent sectors of fusion charges 1 and 0 gains
relevance when executing mixing operations between two
qubits [37]. As a result, it is advisable to employ a global
phase-independent distance metric, given that the formula in
Eq. (21) precisely determines the global phases.

In the context of four Fibonacci anyons, the Hilbert
space of anyon states is five dimensional. As a result of
Eqs. (17), (18), and (19), the matrix representations of σ1,
σ2, and σ3 in the basis {|0〉, |1〉, |2〉, |3〉, |4〉} given in Eqs. (5)
to (9) are as follows:

ρ(σ1) =

⎛
⎜⎜⎜⎜⎝

R0
11

R1
11

R1
11

R0
11

R1
11

⎞
⎟⎟⎟⎟⎠, (22)
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FIG. 1. In the injection method, three-strand gates can imple-
ment two-qubit gates. Notice that each lower pair of anyons in the
same qubit should yield the vacuum if the state is |0〉 and yield
an anyon if it is |1〉. Therefore, weaving a pair of anyons around
the anyons of the controlled qubit and then returning to the initial
position does not affect the state unless the state is |1〉. That is the
spirit of a controlled gate.

ρ(σ2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
B1

111

)0
0

(
B1

111

)1
0(

B1
111

)0
1

(
B1

111

)1
1

R1
11 (

B1
111

)0
0

(
B1

111

)1
0(

B1
111

)0
1

(
B1

111

)1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(23)

ρ(σ3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

R0
11

R1
11 (

B1
111

)0
0

(
B1

111

)1
0

R1
11(

B1
111

)0
1

(
B1

111

)1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (24)

Notice that, in the sector of global charge 0, the braid
operator σ3 has the same effect as σ1 and the compilation of
single-qubit gates in this sector is equivalent to the case of
three anyons. However, the sector of global charge 1 provides
a complete set of operations to process a qutrit up to a global
phase determined by the winding number. Consequently, the
general form will be

ρ(�) =
(

±e−iW (B̂)π/10[SU(2)]
±eiW (B̂)π/5[SU(3)]

)
.

(25)

It has been established that the weave group, which is a
subgroup of the braid group, is also dense to SU(N ) [38].
Weaves are defined as sequences of braids wherein a sin-
gle anyon navigates around other stationary anyons. In

TABLE II. Truth table of M4(I, S) gate.

Input Output

Qubit 1 Qubit 2 Qubit 3 Qubit 1 Qubit 2 Qubit 3

|0〉 |0〉 |η〉 |0〉 |0〉 |η〉
|0〉 |1〉 |η〉 |0〉 |1〉 S|η〉
|1〉 |0〉 |η〉 |1〉 |0〉 S|η〉
|1〉 |1〉 |η〉 |1〉 |1〉 |η〉

FIG. 2. General scheme of the proposed three-qubit gate by the
controlled-injection method. The two upper qubits are the controlling
qubits, while the lower qubit is the controlled qubit. The R operation
prepares the controlling qubits while the S operation is the target
operation, which is applied whenever the injected four anyons have
a nontrivial overall topological charge.

diagrammatic terms, there exists a solitary warp strand that
weaves around the remaining weft strands. The primary ob-
jective of this method is to simplify the implementation of
braiding circuits. In scenarios involving three anyons, weav-
ing sequences are restricted to braiding operations with even
powers.

In scholarly discourse, numerous algorithms have been
proposed to identify the most accurate braid sequence of
a certain length that approximates a targeted unitary gate.
The Solovay-Kitaev algorithm is a seminal method in this
context, as it demonstrates that an approximation of a given
quantum gate with a braid sequence up to the desired level
of accuracy can be achieved efficiently in polylogarithmic
time [37]. As per the Solovay-Kitaev theorem, the relation-
ship between the error ε and the braiding length L is as
follows:

L = poly[log(1/ε)]. (26)

Here, ε is proportional to any properly defined distance metric
between the braid unitary matrix and the target unitary matrix
in the space of unitary matrices. In this study, we utilize the

FIG. 3. (a) Matrix representation of the approximated M4(I, iX )
in the computational basis. The full braid matrix is 89 × 89 in the
sector of charge 0, while the sector 1 is irrelevant because the over-
all charge cannot be 1. (b) Exact M4(I, iX ) matrix representation.
(c) Color representation of complex numbers where the argument
is φ and the modulus r is less than or equal to 1. The arguments
are linearly transformed into the RGB color spectrum, while the
modulus is converted into brightness. The brightness decreases in
proportion to e−r/σ , starting from 1 (white) at the center and reaching
0.5 (fully saturated) at the boundary. In this case, σ = 0.01 represents
the average radius.
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TABLE III. Braid sequence and accuracy of the necessary three-strand gates to approximate the M4(I, iX ) gate with an overall error of
6.64 × 10−4 and leakage εL = 3.26 × 10−6.

M4(R, S) gates M4(I, iX ) gates Weave sequence Length Error

R I σ−3
1 σ 2

2 σ 4
1 σ−2

2 σ−4
1 σ−2

2 σ 2
1 σ 2

2 σ 4
1 σ 4

2 σ 2
1 σ−4

2 σ−2
1 σ 2

2 σ−2
1 σ−2

2 σ 2
1 σ−3

2 48 1.51 × 10−3

I I σ 3
1 σ 2

2 σ 4
1 σ 4

2 σ 4
1 σ 2

2 σ 4
1 σ 2

2 σ 2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ 2

2 σ 2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ−1

2 48 1.51 × 10−3

S iX σ 5
2 σ−2

1 σ−2
2 σ−2

1 σ−4
2 σ−2

1 σ 2
2 σ 2

1 σ−4
2 σ 2

1 σ 4
2 σ−2

1 σ 4
2 σ−2

1 σ−4
2 σ−2

1 σ−3
2 48 8.55 × 10−4

spectral distance metric [26,39] to quantify the error ε:

D(U1,U2) =
√

max eigenvalue(AA†), (27)

such that A is the difference between U1 and U2 after eliminat-
ing the global phases.

Despite the fact that the brute-force algorithm imposes an
exponential demand on computational resources, it yields an
optimal fundamental approximation. This suffices to provide
a proof of concept for the gates introduced in subsequent
sections. To render the brute-force algorithm more practical,
its performance has been augmented with a number of op-
timizations. First, for the optimization of linear calculations,
it is advantageous to map the SU(2) components of the ele-
mentary braid matrices (21) to quaternions. This approach is
computationally more efficient as it reduces the number of pa-
rameters and necessitates fewer real number multiplications.
Secondly, the cyclicity of the braid matrix powers should be
taken into account. Specifically, σ 10

1 = σ 10
2 = I . As a result,

in the context of weaves, it is adequate to span only sequences
of the form σ

p
i , where i = 1, 2 and p = 2, 4, 6, 8. Thirdly, the

braid group enforces algebraic relations that can effectively
reduce the number of iterations over the search space. This is
achieved by leveraging the similarity relation that associates
each braid sequence with its counterpart, wherein σ1 and σ2

are permuted. Namely,

σ
pn

1 σ
qn
2 · · · σ p1

1 σ
q1
2 = �†σ

pn
2 σ

qn
1 · · · σ p1

2 σ
q1
1 �, (28)

where pi and qi are integers and � = σ1σ2σ1. The physical in-
terpretation of the similarity relation, along with its proof and
generalization, are elaborated in Appendix A. Furthermore,
we illustrate in Appendix B that if the target gate is Hermitian,
it suffices to span merely half of the search space. In essence,
a Hermitian target gate H introduces a symmetry in the metric
space since for each matrix U

D(U, H ) = D(U †, H ). (29)

From a computational perspective, the utilization of a high-
performance programing language can lead to substantial
savings in terms of computational time, energy, memory, and
development duration [40]. Furthermore, a linear acceleration
is achievable by partitioning the search space across available
processing units. Collectively, all algebraic and numerical op-
timizations significantly reduced the search time.

IV. COMPILING TOPOLOGICAL CONDITIONAL
TWO-QUBIT GATES USING

CONTROLLED-INJECTION METHOD

Since universality necessitates at least one entangling
gate, it is imperative to devise an efficient method for

constructing a two-qubit entangling gate. Employing three
anyons per qubit yields five braid generators that act as
SU(5) ⊕ SU(8) matrices, whereas employing four anyons
per qubit necessitates seven braid generators in the form
of SU(13) ⊕ SU(21) unitary matrices. Due to the vast
dimensionality of the Hilbert space, the emergence of non-
computational states that begin to mix with the computational
space, and the substantial number of braid generators leading
to an exponentially large search space, utilizing brute-force
algorithms and the Solvay-Kitaev procedure may not be the
most practical approach to constructing a controlled two-qubit
gate [37]. Indeed, it has been found that there are systematic
methods for generating controlled two-qubit gates [26,27,37].
In this section, we will review the injection method introduced
in Refs. [26,37] and we will extend it to controlled three-qubit
gates in the subsequent section.

The first main concept underlying the injection method
that we must keep in mind is the existence of an anyonic
charge that encodes the qubit. For instance, in the case of
three anyons, the basis states |0〉 and |1〉 in Eqs. (2) and (3)
respectively form the qubit state, with the charge of the first
pair encoding the qubit state. For |0〉, the first pair has the
charge 0 and, for |1〉, the first pair has the charge 1. Hence
there is an inclination to weave this charge to perform specific
gates. In the scenario of four anyons per qubit, the states
|0〉 = |0, 1, 0〉 and |1〉 = |1, 1, 0〉 form a qubit. However, we
observe that

|0, 1, 0〉 = |((1, 1)0, (1, 1)0)0〉, (30)

|1, 1, 0〉 = |((1, 1)1, (1, 1)1)0〉. (31)

Therefore, the two pairs of anyons have the same charge,
which is 0 when the state is |0〉 and 1 when the state is
|1〉. The second key idea is the ability to approximate the
identity gate by weaving a single anyon using three anyons,
with any desired level of accuracy. Consequently, the identity
weave can be utilized to inject the desired controlling anyon
into a specific controlled qubit and implement any targeted
single-qubit gate.

TABLE IV. Truth table of the M4(iX, S) gate.

Input Output

Qubit 1 Qubit 2 Qubit 3 Qubit 1 Qubit 2 Qubit 3

|0〉 |0〉 |η〉 |0〉 |0〉 |η〉
|0〉 |1〉 |η〉 |0〉 |1〉 S|η〉
|1〉 |0〉 |η〉 |1〉 |0〉 S|η〉
|1〉 |1〉 |η〉 |1〉 |1〉 S|η〉
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TABLE V. Braid approximation of the necessary three-strand gates to compile the M4(iX, iX ) gate with an overall error of 6.64 × 10−4

and leakage εL = 3.99 × 10−6.

M4(R, S) gates M4(iX, iX ) gates Weave sequence Length Error

R iX σ−1
1 σ 2

2 σ−4
1 σ 2

2 σ−2
1 σ 2

2 σ−2
1 σ 4

2 σ−2
1 σ−2

2 σ−2
1 σ 4

2 σ−2
1 σ−2

2 σ 2
1 σ 2

2 σ−2
1 σ−2

2 σ−2
1 σ−2

2 σ−2
1 σ 1

2 48 8.55 × 10−4

I I σ 3
1 σ 2

2 σ 4
1 σ 4

2 σ 4
1 σ 2

2 σ 4
1 σ 2

2 σ 2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ 2

2 σ 2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ−1

2 48 1.51 × 10−3

S iX σ 5
2 σ−2

1 σ−2
2 σ−2

1 σ−4
2 σ−2

1 σ 2
2 σ 2

1 σ−4
2 σ 2

1 σ 4
2 σ−2

1 σ 4
2 σ−2

1 σ−4
2 σ−2

1 σ−3
2 48 8.55 × 10−4

For further insights into implementing controlled two-qubit
gates using three Fibonacci anyons per qubit, it is worthwhile
to refer to Refs. [26,37]. In this section, we give the essence
of the injection method using four anyons per qubit, which
suffices for our purposes. The general structure of the gate is
depicted in Fig. 1. Here, the injection gate I is employed to
inject one encoding pair of anyons from the controlling qubit
(the upper one) into the controlled qubit. If the controlling
qubit is in the state |0〉, or equivalently the encoding pair
has a trivial charge, the entire circuit is trivial and all the
sequence is equivalent to the identity. However, when the
injected pair has the charge 1, the pair will, asymptotically,
after the injection, assume the role of the replaced anyon
in the controlled qubit. Consequently, it becomes possible
to approximate the targeted gate S to any desired accu-
racy before reinjecting the pair back to its original position
using the adjoint weave, thus avoiding any global phase
residues.

V. COMPILING TOPOLOGICAL CONDITIONAL
THREE-QUBIT GATES USING

CONTROLLED-INJECTION METHOD

We introduce a class of quantum three-qubit gates
Mn(R, S) that perform controlled logic operations inherently
compatible with the structure of the Fibonacci model using
n anyons per qubit where n = 3, 4. We call this method the
controlled-injection method. We start with the case of four
anyons per qubit since it is simpler to understand for this
method and is the simplest encoding whose topological charge
0 sector has two dimensions. The topological sector of charge
0 for n = 4 serves the purpose of the exact implementation of

FIG. 4. (a) Matrix representation of the approximated
M4(iX, iX ) as expressed in the basis of the computational
states. (b) Exact M4(iX, iX ) matrix representation. The color map is
depicted in Fig. 3(c).

the SWAP gate since the braiding of two 0 charges is trivial.
The latter is frequently needed to implement controlled gates
between nonadjacent qubits. As shown in Fig. 2, the general
form of this class of three-qubit gates encodes qubits in four
anyon groups. In addition, the introduced M4(R, S) three-
qubit gate involves three-anyon gates labeled R, I , and S,
which act as SU(2) ⊕ U(1) operations, where the SU(2) part
acts on the topological charge 1 sector while the U(1) part acts
on the topological sector of charge 0 as shown in Eq. (21). We
compile these three-anyon gates by weaving only one input
anyon as explained in Sec. III. However, we are allowed to
weave pairs and groups of anyons keeping in mind only the
fusion outcomes of each group. In this case, the three-anyon
gates will affect only the fusion state of the fusion outcomes
regardless of the constituent anyons. As shown in Fig. 2, the
gate R takes pairs of anyons as inputs while weaving only the
upper pair, the gate I injects the upper grouped two pairs in
yellow and red colors into the lower strand, and the S gate
weaves the upper grouped two pairs returning them to the
same strand position. In general, the M4(R, S) gate works in
such a way that the R gate prepares the controlling qubits,
so we call it the initialization gate, while the S gate is the
target operation to be applied on the controlled qubit; then,
we call it the target gate. We call the intermediary identity gate
the injection gate. To understand precisely the mechanism of
this gate, we will introduce two variations of the controlled-
injection three-qubit gates: M4(I, S) and M4(NOT, S), whose
initialization gates are the identity and the NOT gate,
respectively.

FIG. 5. To compile the CCS gate with fewer braids, it is sufficient
to add NOT gates, replaced by iX and its Hermitian conjugate, and S
gate to the previously defined M4(iX, S†) three-qubit gate.
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TABLE VI. Truth table of the CCS gate.

Input Output

Qubit 1 Qubit 2 Qubit 3 Qubit 1 Qubit 2 Qubit 3

|0〉 |0〉 |η〉 |0〉 |0〉 |η〉
|0〉 |1〉 |η〉 |0〉 |1〉 |η〉
|1〉 |0〉 |η〉 |1〉 |0〉 |η〉
|1〉 |1〉 |η〉 |1〉 |1〉 S|η〉

A. M4(I, S) controlled-injection gate

Let us consider the initialization gate to be the identity
operation, i.e., R = I . Notice that in the case of a four anyons
qubit of overall topological charge 0, the two constituent
anyon pairs fuse simultaneously to 0 if the state is |0〉:

|0〉 = |((1, 1)0, (1, 1)0)0〉, (32)

and fuse simultaneously to 1 if the state is |1〉:
|1〉 = |((1, 1)1, (1, 1)1)0〉. (33)

Therefore, the identity initialization gate will have no effect
but injecting the lower pair of anyons from the upper qubit
into the middle qubit. If one and only one qubit of the two
controlling qubits is in the state |0〉, the middle two pairs will
have different topological charges with overall topological
charge 1. In contrast, when the controlling qubits are both
in the state |0〉 or both in the state |1〉, the middle two pairs
will have the same topological charges, and since the initial-
ization gate approximates the identity in M4(I, S), the overall
topological charge of the middle two pairs will remain 0. We
summarize the truth table of this gate in Table II, where the
target gate S is applied if the controlling qubits have opposite
logic states. As a result, the exact matrix representation of
M4(I, S) should be given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 S 0 0 0 0
0 0 0 0 0 0
0 0 0 0 S 0 0
0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

In conclusion, the M4(I, S) gate can be represented as the
application of three consecutive two-qubit controlled gates.

Specifically, it can be expressed as follows:

M4(I, S) = (CNOT ⊗ I )(I ⊗ CS)(CNOT ⊗ I ). (35)

This representation provides a clear understanding of the oper-
ation of the M4(I, S) gate in terms of standard quantum gates.

1. Numerical simulation of M4(I, NOT)

In practice, the initialization, injection, and target gates are
approximated to a predetermined braid length. This approxi-
mation process inevitably leads to a degree of inaccuracy and
leakage. To assess the efficacy of the M4(I, NOT) gate, we
conducted a numerical simulation with the target gate chosen
as the typical NOT gate, specifically ±iX , the special unitary
version of the NOT gate. The initial step involves identifying
the weave approximation of the ±I gate for the initialization
and injection gates, under the stipulation that the weft strand’s
initial tip takes the upper rank while its end tip takes the lower
rank. Concurrently, we search for the weave approximation
of the S gate, which acts on three strands, weaving the upper
strand without changing its final rank. Through the optimized
brute-force approach, we derived relevant weaving sequences
by setting a fixed braid length of 48 braid operators and
accounting for global phases. It is noteworthy that there exists
a multitude of weaving sequences that exhibit optimal accu-
racy. In our numerical implementation, we select the weaving
sequences that combine to provide the best accuracy for the
M4(I,±iX ) gate. The sequences pertinent to this case are
delineated in Table III.

The subsequent phase involves the conversion of these
three-strand gates into a six-strand braiding circuit, as de-
picted in Fig. 2. Ultimately, employing the relevant matrix
representations of the five elementary braid operations, a sys-
tematic numerical method developed in [36] is utilized to
obtain the representation of the approximated M4(I, iX ) gate,
as illustrated in Fig. 3. The accuracy is quantified by calculat-
ing the error using the distance metric defined in Eq. (27). The
overall error of this M4(I, iX ) approximation is computed as
6.64 × 10−4. The error measured solely on the controlled gate
[the S ≡ ±iX block in the M4(I, iX ) matrix] is approximately
6.64 × 10−4. This value is commensurate with the error com-
puted on the ±iX approximation itself. The overall error is
comparable to the error on the target because the M4(R, S)
is always accurate when the controlled gate is not applied
since trivial braids are involved and the target gate contributes
significantly to the inaccuracy.

The leakage error, denoted as εL, can also be computed.
This error represents the quantity of information that the sim-
ulated gate inevitably transmits to noncomputational states. It

TABLE VII. Braid approximation of the necessary three-strand gates to build the ±iToffoli gate with overall error of 1.84 × 10−3 and
leakage εL = 1.62 × 10−6.

CCS gates ±iToffoli gates Weave sequence Length Error

R iX σ 3
1 σ 2

2 σ−2
1 σ 2

2 σ−2
1 σ−2

2 σ−2
1 σ 4

2 σ−2
1 σ−2

2 σ−2
1 σ 2

2 σ−2
1 σ 2

2 σ−2
1 σ 2

2 σ 2
1 σ 2

2 σ−2
1 σ−2

2 σ 2
1 σ−1

2 48 8.55 × 10−4

I I σ 3
1 σ 2

2 σ 2
1 σ 2

2 σ−2
1 σ 2

2 σ 4
1 σ 2

2 σ−2
1 σ 2

2 σ 2
1 σ−2

2 σ 4
1 σ 4

2 σ 2
1 σ−2

2 σ 2
1 σ 4

2 σ 2
1 σ−1

2 48 1.51 × 10−3

S iX σ 5
2 σ−2

1 σ−2
2 σ−2

1 σ−4
2 σ−2

1 σ 2
2 σ 2

1 σ−4
2 σ 2

1 σ 4
2 σ−2

1 σ 4
2 σ−2

1 σ−4
2 σ−2

1 σ−3
2 48 8.55 × 10−4

NOT iX σ 5
2 σ−2

1 σ−2
2 σ−2

1 σ−4
2 σ−2

1 σ 2
2 σ 2

1 σ−4
2 σ 2

1 σ 4
2 σ−2

1 σ 4
2 σ−2

1 σ−4
2 σ−2

1 σ−3
2 48 8.55 × 10−4
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FIG. 6. (a) Matrix representation of the approximated iToffoli
matrix in the basis of the computational states. It represents iToffoli
up to 1.02 × 10−4 distance error. (c) Exact iToffoli matrix represen-
tation. The color map is depicted in Fig. 3(c).

is calculated using a modified form of the spectral distance.
Specifically, the leakage induced by a given gate U of d
dimensions is defined as

εL = 1 −
√

min eigenvalue(UU †). (36)

In this equation, the second term yields the minimum factor by
which the matrix U can alter the norm of a quantum state [7].
The leakage amount measured on the simulated M4(I, iX )
gate is approximately 3.26 × 10−6. It is important to note
that the initialization and injection gates are anticipated to be
primarily responsible for this leakage of information.

B. M4(NOT, S) controlled-injection gate

Let us now examine the scenario where the initialization
gate assumes the role of the NOT gate, i.e., R = ±iX . The
complex phase ±i is essential for maintaining gates in the
SU(2) group and preventing complex phases in the sector 1,
as illustrated in Eq. (21). To comprehend the effect of the
initialization gate, one must revisit how the NOT gate operates
on the fusion states of three Fibonacci anyons [36]. When
both controlling gates are in the state |1〉, the initialization gate
reverses the overall topological charge of the middle two pairs
from the charge 0 to the charge 1:

NOT|((1, 1)0, 1)1〉 = |((1, 1)1, 1)1〉, (37)

since the fusion states |((1, 1)0, 1)1〉 and |((1, 1)1, 1)1〉 are
the only logic states in the case of three Fibonacci anyons

FIG. 7. Matrix representations of the approximated M3(I, iX )
in the computational basis considering different possible sectors:
(a) sector (0, 1), (b) sector (1, 0), and (c) sector (1, 1). The full braid
matrix is 55 × 55, encompassing computational and noncomputa-
tional sectors.

FIG. 8. This is the general scheme of the three-qubit gate by
controlled-injection method using three Fibonacci anyons per qubit.
The two upper qubits are the controlling qubits, while the lower qubit
is the controlled qubit. R operation prepares the controlling qubits,
while the S operation is the target operation implemented whenever
the injected four anyons have a nontrivial overall topological charge.

in the sector of charge 1. In other cases, the action of the
initialization gate is analogous to the R = I case and is trivial.
Therefore, the target gate will only be operational when nei-
ther of the controlling qubits are in the |0〉 state. The truth table
of M4(iX, S) should align with that shown in Table IV. Conse-
quently, the relevant matrix representation of the M4(NOT, S)
is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 S 0 0 0 0
0 0 0 0 0 0
0 0 0 0 S 0 0
0 0 0 0 0 0
0 0 0 0 0 0 S0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

1. Numerical simulation of M4(NOT, NOT)

As an illustrative instance, we consider S = ±iX and set
the length of the three-anyon braid gates to 48. The initial step
involves identifying the compilation of ±iX and ±I , ensuring
that the weaving process commences from the upper strand
and concludes at the lower strand. Subsequently, we seek an
approximate weave for the S = ±iX gate, which operates on
three strands, initiating the weaving process from the upper
strand and terminating at the same strand. Utilizing an opti-
mized brute-force approach, we derive the necessary weave
sequences, as presented in Table V. These sequences are pro-
cured by spanning all combinations of the optimal individual
braid sequences to enhance the accuracy of the M4(iX, iX )
gate.

The matrix representation of the simulated M4(iX, iX )
gate is depicted in Fig. 4. The computed error distance of the
braid approximation is found to be 6.64 × 10−4. However, the
error of the controlled gate in the level of S blocks is approx-
imately 6.644 × 10−4 if the controlling qubits are either in
the |01〉 state or in the |10〉 state, while it is computed to be
6.637 × 10−4 if the controlling qubits are in the |11〉 state. The
amount of leakage is around 3.99 × 10−6.
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C. Controlled-controlled-S gate
with controlled-injection method

A direct application of the topological gates previously
introduced is the construction of the controlled-controlled-S
(CCS) gate for any unitary S up to the global phase determined
by Eq. (21). The operationality of the target gate S of this
controlled-controlled gate is contingent upon both controlling
qubits being in the state |1〉. The implementation of the CCS

gate implies the execution of the Deutsch gates D(θ ), which
are intrinsically universal [41]. The Deutsch gate is character-
ized by its target gate S, defined as

S(θ ) =
(

cos θ −i sin θ

−i sin θ cos θ

)
(39)

for any angle θ . A notable gate within this class is the Tof-
foli gate, renowned for its ability to compute any arbitrary
Boolean function, thereby qualifying it as a universal re-
versible logic gate [42].

One way to compile the CCS gate is to combine M4(I, S†)
and M4(iX, S) since

CCS = M4(I, S†)M4(iX, S) (40)

= M4(iX, S)M4(I, S†). (41)

However, it is possible to construct a CCS gate with a single
implementation of the M4(R, S) gate. Initially, it should be
noted that if we apply the S gate on the target qubit prior to
applying the M4(iX, S†) gate, we should obtain a controlled-
controlled gate which operates exclusively when both of the
controlling qubits are in the |0〉 state. Consequently, to pro-
duce the desired CCS gate, NOT gates should be applied on
the controlling qubits both before and after the M4(iX, S)
is applied. Given that such NOT gates occur symmetrically,
we can set them to be ±iX then ∓iX , specifically, to elim-
inate the additional phase factor on the controlling qubits.
The illustration of the CCS braid circuit is depicted in Fig. 5.
The corresponding truth table is detailed in Table VI. There-
fore, the resulting matrix representation should be as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 S0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (42)

1. Numerical simulation of the controlled-controlled ±iX gate

To obtain a special unitary version of the Toffoli gate,
let us consider S = ±iX . Initially, we should identify the
compilation of ±I and ±iX such that the weaving process
commences from the upper strand and concludes at the lower
strand. We should also find the target S = ±iX gate act-
ing on three strands, initiating the weaving process from
the upper strand and terminating at the same strand. By
employing a brute-force approach, we derived the weaving
sequences, as explicitly presented in Table VII. It is important
to note that these sequences are not the only possible optimal

TABLE VIII. All possible fusion sectors of nine Fibonacci
anyons grouped into three sets (qubits), comprising 55 fusion states
distributed among four different sectors.

Independent Sector

subspaces j1 j2 Number of states Computational

Subspace 0 0 0 5 No
1 0 16 Yes

Subspace 1 0 1 10 Yes
1 1 24 Yes

sequences. However, their combination yields the most accu-
rate ±iToffoli gate.

Subsequently, the three-strand gates should be translated
into a six-strand braiding circuit, as depicted in Fig. 2. The
relevant braid matrices are then calculated, following the
method employed in previous sections. Ultimately, we obtain
the representation of the approximated M4(I, iX ) gate, as
illustrated in Fig. 6. The overall distance of the approximated
iToffoli gate is approximately 1.84 × 10−3. However, the er-
ror solely on the controlled gate is about 8.55 × 10−4. Lastly,
the amount of leakage reaches 1.62 × 10−6.

D. Controlled injection method using three anyons per qubit

The controlled injection method is based on the manip-
ulation of the pair of anyons responsible for encoding. In
the case of three anyons, we derive the encoding basis as
shown in Eqs. (4), (2), and (3). Within the charge sector 1, the
charge of the first pair encodes the qubit state. Remarkably,
it is possible to replicate the M4(NOT, S) gate, as depicted in
Fig. 4, from the M3(R, S) gate using three anyons per qubit
such that R = I . The controlled injection method using three
anyons is illustrated in Fig. 8. Additionally, it is observed
that R = NOT fails when both controlling qubits are in the |1〉
state. In this scenario, the noncomputational state becomes in
superposition with the computational states, causing the NOT

weave to act as the identity on the noncomputational state
since it is single. Nevertheless, the case R = I is sufficient for
constructing the iToffoli gate and other controlled three-qubit
gates.

Generally, when we have a group of nine anyons grouped
in three sets, we can represent the fusion process state of them
as follows:

|(((i11, i12), (i21, i22)) j1 , (i31, i32)) j2〉, (43)

such that (iq1 , iq2 ) = ((1, 1)iq1 , 1)iq2
is the fusion tree of the qth

set or qubit. Consequently, the structure of the fusion space is
branched into different sectors as shown in Table VIII. How-
ever, only the sectors that allow iq2 = 1 for all q = 1, 2, 3 are
computational. In conclusion, we have three computational
sectors that are possible.

1. Numerical simulation of M3(I, iX )

First, we approximate the necessary weaves and select
the best combinations that yield better overall accuracy. The
approximated weaves are listed in Table IX. As a result, the
evolution matrices in the computational sectors are depicted
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TABLE IX. Braid sequence and accuracy of the necessary three-strand gates to approximate the M3(I, iX ) gate with an overall error of
1.43 × 10−3, 2.50 × 10−3, and 1.43 × 10−3 and leakage εL = 1.71 × 10−6, 1.39 × 10−6, and 2.57 × 10−6 in the sectors (1, 0), (0, 1), and
(1, 1), respectively.

M3(R, S) gates M3(I, iX ) gates Weave sequence Length Error

R I σ 3
1 σ 2

2 σ 2
1 σ 2

2 σ−2
1 σ 2

2 σ 4
1 σ 2

2 σ−2
1 σ 2

2 σ 2
1 σ−2

2 σ 4
1 σ 4

2 σ 2
1 σ−2

2 σ 2
1 σ 4

2 σ 2
1 σ−1

2 48 1.51 × 10−3

I I σ−1
1 σ 2

2 σ 4
1 σ 2

2 σ−2
1 σ 2

2 σ 4
1 σ 4

2 σ−2
1 σ 2

2 σ 2
1 σ−2

2 σ 2
1 σ 4

2 σ 2
1 σ−2

2 σ 2
1 σ 2

2 σ 2
1 σ 3

2 48 1.51 × 10−3

S iX σ−2
1 σ−2

2 σ 2
1 σ−2

2 σ−2
1 σ−2

2 σ 4
1 σ−2

2 σ−2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ 2

2 σ 2
1 σ−2

2 σ−2
1 σ 2

2 σ−2
1 σ−2

2 48 8.55 × 10−4

in Fig. 7. With this method, we are able to achieve errors
of approximately 1.43 × 10−3 in the sectors (1, 0) and (1, 1)
and 2.50 × 10−3 in the sector (1, 1). These values are rel-
atively larger in order of magnitude compared to the error
obtained from the approximated M4(iX, iX ) as shown in
Fig. 4. However, there is a tradeoff between this accuracy
and the reduction in braiding cost, as will be explained later.
More details about accuracies in the controlled gate are shown
in Table X, which are in agreement with the visualization in
Fig. 7. Finally, we observe that the amount of leakage takes
the values 1.71 × 10−6 and 2.57 × 10−6, which are slightly
better than the leakage estimated for M4(iX, iX ) previously.

E. Comparison between controlled three-qubit gates
of three and four allocations

Using three anyons per qubit for the controlled three qubit
gate M3(iX, iX ) yields less number of braids which is in av-
erage 2(3L + 4L + 4L) = 22L instead of 24L that is required
by M4(iX, iX ) gate, such that L is the length of R, I , and
S weaves. On the other hand, M4(iX, iX ) gate is symmetric
in implementation, i.e., we can reverse the controlling qubits
easily by reversing the gate operations symmetrically relative
to the horizontal line. In the case of the three anyons per qubit,
it is possible to reverse controlling qubits by at least one way,
which involves the application of the F = σ1σ2σ1 gate (the
fusion matrix), which serves as the basis transformation, to
each qubit before and after the implementation of the protocol
in Fig. 8.

VI. DISCUSSION

A distinctive feature of the CCS gate, compiled using the
controlled-injection method, is its requirement for fewer than
five two-qubit gates. Specifically, only four two-qubit gates
are required: the initialization gates R and R† and the injection
gates I and I†. At first glance, this seems to contradict the

theorem established in [28] which asserts that five two-qubit
gates are necessary to implement the Toffoli gate. Neverthe-
less, it is crucial to acknowledge that this theorem relies on the
Hilbert space of qubits, whereas the fusion space of anyons
exhibits a distinct structure with additional dimensions. The
noncomputational subspace assumes a pivotal role in the
functioning of initialization gates, facilitating the formation
of M4(R, S) gates. In summary, the inclusion of noncompu-
tational states makes it feasible to diminish the number of
necessary two-qubit gates for the construction of a controlled
three-qubit gate. Furthermore, it is instructive to examine the
disparities between the controlled-injection method and the
standard decomposition method of CCS gates, detailed in Ap-
pendix C. Primarily, it is worth noting that the logic tables of
M4(R, S) gates can additionally contribute to the diversity of
quantum logic gates. Additionally, the performances of these
two methods are compared in terms of four aspects: length
(number of elementary braids), accuracy, leakage, and ease
of implementation. A numerical comparative study of Toffoli
gate compilation using both methods is depicted in Table XI.
In our study, we chose the braid length to be 48 to give a rea-
sonably acceptable approximation of the target gates up to an
order of magnitude of 10−3, without requiring unreasonable
computational resources and long braid sequences.

Indeed, the controlled-injection method exhibits a shorter
compilation length compared to the standard decomposition
method. Assuming three-anyon gates of identical lengths, i.e.,
compiled with the same number L of braids and consuming
the same amount of time to search for the best compilation,
the standard decomposition method would require 6L braids
for each controlled two-qubit gate and 16 for each SWAP

gate, resulting in a total of (30L + 32) braids. In contrast,
the controlled-injection method requires 4L braids for each
three-anyon gate, i.e., 20L braids for the M4(iX, S) gate, and
an additional 5L braids to compile the extra single-qubit gates,
yielding a total of 25L braids. When comparing them accord-

TABLE X. Estimated accuracies and leakage amounts obtained from the simulation of the controlled-injection controlled three-qubit gate
using three anyons per qubit, as illustrated in Fig. 8, with S = iNOT. Errors in the controlled gate are provided for the controlling qubits in the
states |01〉, |10〉, and |11〉, along with overall errors and leakage amounts. Corresponding matrix representations are shown in Fig. 7.

Errors

Controlled gate

Sector |01〉 case |10〉 case |11〉 case Overall Leakage

(1, 0) 1.43 × 10−3 4.97 × 10−4 6.31 × 10−4 1.43 × 10−3 1.71 × 10−6

(0, 1) 6.31 × 10−4 2.24 × 10−3 2.25 × 10−3 2.50 × 10−3 1.39 × 10−6

(1, 1) 1.43 × 10−3 5.70 × 10−4 6.30 × 10−4 1.43 × 10−3 2.57 × 10−6
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TABLE XI. Comparative table of the controlled-injection
method and the decomposition method applied on the Toffoli CCX

gate as shown in Sec. V C 1 and Appendix C, respectively. The
parameters considered in this comparison include the number of
required three-anyon gate approximations, the total number of braids
needed to compile the gate (referred to as the required braid length),
and the number of sequential braids in each gate (referred to as
the depth). Additionally, numerical accuracy and leakage were also
evaluated. In this context, L denotes the braid length of single three-
anyon gates. For the purpose of this numerical study, L was set to
48. The error statistics in the target gate and leakage values were
computed over all possible combinations of the optimal weaves.

Decomposition Controlled injection

Two-qubit gates 7 4
Three-anyon gates 3 3
Length 30L + 32 25L
Depth 30L + 32 22L
Best error 1.90 × 10−3 1.84 × 10−3

Leakage of the best 3.96 × 10−6 1.62 × 10−6

Avg error in target 2.32 × 10−3 2.35 × 10−3

Min error in target 1.76 × 10−3 8.54 × 10−4

Max error in target 3.16 × 10−3 3.34 × 10−3

Avg leakage 1.75 × 10−6 2.031 × 10−6

Min leakage 3.93 × 10−7 3.59 × 10−7

Max leakage 4.09 × 10−6 3.99 × 10−6

ing to depth, which is the number of sequential braids, we
get (30L + 32) for decomposition and 22L for the controlled-
injection method. Generally, depth is more significant in
terms of compilation time. Therefore, the controlled-injection
method provides gates that are at least 27% times shorter.
Secondly, the controlled-injection method is as accurate as
the standard decomposition method or at least within the
same order of magnitude, given that the composing gates are
compiled with similar accuracies. Asymptotically, both meth-
ods should exhibit behavior identical to that of the iToffoli
gate. This demonstrates the efficacy of the controlled-injection
method in terms of accuracy, making it a viable alternative
to the standard decomposition method. Thirdly, both methods
were found to yield a numerically similar amount of leakage.
Generally, the injection and initialization gates are the primary
sources of leakage. Given that we employ injection braids of
the same accuracy and leakage in both methods, a significant
difference in the amount of leakage between the two methods
is not anticipated. This observation underscores the compa-
rable performance of the controlled-injection method and the
standard decomposition method in terms of leakage. Lastly,
the implementation of the controlled-injection method may
present certain challenges, as it involves braids of multiple
anyons (four anyons simultaneously), as opposed to weaving
a single particle through the entire circuit. The manipula-
tion of numerous anyons could pose significant technological
hurdles [38]. Conversely, the standard decomposition can be
partially transformed at the level of CNOT gates into a weaving
sequence of a single particle. This transformation is feasible
due to the FPF−1 braid circuit introduced in [37]. Thus, while
the controlled-injection method offers certain advantages, its

practical implementation may require overcoming additional
complexities.

VII. CONCLUSION

In this study, we present an efficient topological quan-
tum circuit model for compiling controlled-controlled gates
within the Fibonacci anyon model, a versatile framework for
universal quantum computing. We elevate the conventional
numerical brute-force method by incorporating algebraic re-
lations, such as similar braid sequences, and leveraging
the symmetry by Hermitian target gates. Complemented by
numerical methods like distributed computing, we achieve
optimal approximations of single-qubit gates with three Fi-
bonacci anyons.

In the concluding phase, we present a class of conditional
three-qubit gates designed for approximating controlled logic
operations, including fundamental gates like Deutsch and Tof-
foli. These gates are seamlessly compatible with the inherent
structure of the Fibonacci model. A comparative analysis be-
tween the conventional decomposition method of three-qubit
gates and the controlled-injection approach reveals that the
latter allows for a more concise compilation, achieving shorter
lengths and depths in implementing controlled-controlled
gates, while preserving a comparable degree of accuracy and
leakage.

Remarkably, the introduced controlled three-qubit gates
are decomposed into four, rather than the conventional five,
two-qubit gates, as stipulated by the decomposition theorem.
This reduction is made possible by harnessing the noncom-
putational topological states within the fusion space. The
controlled-injection method leverages on the unique logical
attributes of the Fibonacci anyon model, presenting a potential
generacy for analogous strategies across diverse anyon models
or with an increased number of qubits.
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APPENDIX A: SIMILAR BRAID SEQUENCES

The similarity relation between the braid sequences of
three anyons starting with σ1 and σ2 has a practical use in
optimizing the search for the best approximation of a given
target unitary gate. The main observation that leads to similar
braid sequences is the fact that applying σ1 and σ2 braid
operations on the state |((a, b)i, c) j〉 of three anyons a, b, and
c is equivalent to applying σ2 and σ1, respectively, on the state
|(c, (b, a)i ) j〉, as another observer may choose to look at the
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FIG. 9. Controlled-controlled-S (CCS) gate can be systematically
decomposed into a sequence of five two-qubit controlled gates. This
sequence comprises two controlled-NOT (CNOT) gates and two con-
trolled gates that implement the square root of the S gate.

same set of anyons from the opposite side. In other words, σ1

transforms to σ2 when rotating the surface 180◦. Namely,

|〈((a, b)i′ , c) j |σ1|((a, b)i, c) j〉|2

= |〈(c, (b, a)i′ ) j |σ2|(c, (b, a)i ) j〉|2, (A1)

|〈((a, b)i′ , c) j |σ2|((a, b)i, c) j〉|2

= |〈(c, (b, a)i′ ) j |σ1|(c, (b, a)i ) j〉|2. (A2)

This is true because, topologically, the three following
operations are equivalent:

σ1σ2σ1|((a, b)i, c) j〉 ≡ σ2σ1σ2|((a, b)i, c) j〉,
≡ RabRic|((a, b)i, c) j〉,

and

RabRic|((a, b)i, c) j〉 = Ri
abR j

ic|(c, (b, a)i ) j〉. (A3)

These three operations do nothing but rotate the frame of
anyons 180◦. The first equivalence relation of the three is one
of the Artin relations of the braid group.

Now, let us define the operator � such as

� = σ1σ2σ1 = σ2σ1σ2.

It is easy to see that

σ1 = �†σ2�, (A4)

σ2 = �†σ1�. (A5)

In general, a braid sequence Braid(σ1, σ2) applied on three
anyons takes the form:

Braid(σ1, σ2) = σ
pn

1 σ
pn−1

2 · · · σ p2
1 σ

p1
2 , (A6)

where pi can be any integer and n � 2. Therefore, the
permutation between σ1 and σ2 yields the braid sequence

Braid(σ1, σ2) such that

Braid(σ1, σ2) = Braid(σ2, σ1) = σ
pn

2 σ
pn−1

1 · · · σ p2
2 σ

p1
1 . (A7)

The previous relations Eqs. (A4) and (A5) imply that Braid
and Braid are related by the similarity relation

Braid(σ1, σ2) = �†Braid(σ1, σ2)�. (A8)

This similarity relation can be deduced immediately by sub-
stitution.

1. Similarity relation for arbitrary number of anyons

To generalize the similarity relation mentioned above, we
will begin by generalizing Eqs. (A4) and (A5) in Theorem 1.
Subsequently, we will derive the generalized similarity rela-
tion, as expressed in Eq. (A17).

Theorem 1. For n braid generators σ1, σ2, . . . , σn acting on
n + 1 anyons, it holds true that

σi = �†
nσn−i+1�n (A9)

for i = 1, 2, . . . , n, where �n is defined as

�n =
n∏

j=1

j∏
k=1

σ j−k+1. (A10)

Here, the ordering convention of the
∏

operation is de-
fined such that

∏l
k=1 Ok = Ol · · · O1. For instance, �2 =∏2

j=1

∏ j
k=1 σ j−k+1 = σ1σ2σ1.

Proof. It suffices to use induction. First, we establish that
the n = 1 case is trivial and, for n = 2, we obtain the Artin re-
lation. Second, assuming the validity of the identity Eq. (A9)
up to n = m, i.e., σi = �†

mσm−i+1�m for all i = 1, . . . , m, we
can demonstrate that for all i = 1, . . . , m + 1

σi = �
†
m+1σm−i+2�m+1. (A11)

To achieve this, we should observe the recursion relation
between �m and �m+1. Specifically,

�m+1 =
(

m+1∏
k=1

σm−k+2

)
�m. (A12)

Thus, by substituting the latter and Artin relations repeat-
edly, we can establish Eq. (A11). Consequently, based on
the validity of the first and second statements, we conclude
through induction the veracity of Theorem 1. �

For example, in the case of four anyons,

σ1 = �
†
3σ3�3, (A13)

TABLE XII. Braid approximation of the necessary three-strand gates to build the iToffoli gate with the decomposition method. We use two
different best braid sequences to approximate I for controlled-NOT CNOT and C

√
NOT and optimize accuracy and leakage.

Gates Target gates Weave sequence Length Error

CNOT injection I σ−3
1 σ 2

2 σ 4
1 σ 2

2 σ 4
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ 4

2 σ 2
1 σ−2

2 σ 2
1 σ−4

2 σ−2
1 σ−4

2 σ−2
1 σ−3

2 48 1.51 × 10−3

C
√

NOT injection I σ 3
1 σ 2

2 σ 4
1 σ 4

2 σ 4
1 σ 2

2 σ 4
1 σ 2

2 σ 2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ 2

2 σ 2
1 σ−2

2 σ 2
1 σ−2

2 σ 2
1 σ−1

2 48 1.51 × 10−3

√
NOT −i

√
iX σ−1

2 σ 2
1 σ 4

2 σ−2
1 σ−4

2 σ 2
1 σ−2

2 σ 2
1 σ 4

2 σ−2
1 σ 2

2 σ 2
1 σ 4

2 σ 2
1 σ−2

2 σ 4
1 σ 4

2 σ 2
1 σ−1

2 48 1.24 × 10−3

NOT iX σ 5
2 σ−2

1 σ−2
2 σ−2

1 σ−4
2 σ−2

1 σ 2
2 σ 2

1 σ−4
2 σ 2

1 σ 4
2 σ−2

1 σ 4
2 σ−2

1 σ−4
2 σ−2

1 σ−3
2 48 8.55 × 10−4
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σ2 = �
†
3σ2�3, (A14)

σ3 = �
†
3σ1�3. (A15)

According to this theorem, the natural generalization of the
definition of permuted braids is as follows. Given a braid
sequence Braid(σ1, . . . , σn) applied on a number of anyons
larger than or equal to n, the permuted braid is defined as

Braid(σ1, . . . , σn) = Braid(σn, . . . , σ1). (A16)

In conclusion, similarly to Eq. (A8), and using the same
method, we can demonstrate that

Braid(σ1, . . . , σn) = �†
nBraid(σ1, . . . , σn)�n. (A17)

APPENDIX B: DISTANCE SYMMETRY INDUCED
BY HERMITIAN TARGET

Proposition. Let (G,D) be a metric space such that the set
G forms a group and D is a bi-invariant metric. Then, for all
a, b ∈ G, if b is its own inverse (i.e., b = b−1), it follows that
D(a, b) = D(a−1, b).

A metric D is defined to be bi-invariant if, for all a, b, c ∈
G, we have D(a, b) = D(ac, bc) = D(ca, cb) [43]. Given that
the set of special unitary matrices forms a group and the
spectral distance Eq. (27) is bi-invariant, let H be a target
unitary that is a Hermitian matrix. If D(B, H ) is known for
a given braid matrix B, then D(B†, H ) holds the same value.

APPENDIX C: APPROXIMATED TOFFOLI GATE
WITH DECOMPOSITION METHOD

The CCS gate can be decomposed to at least five two-qubit
controlled operations [28,44] as shown in Fig. 9. Namely, for
any unitary U ∈ U(2),

CCU = (SWAP ⊗ I )(I ⊗ C
√

U)(SWAP ⊗ I )

× (CNOT ⊗ I )(I ⊗ C
√

U
†
)(CNOT ⊗ I )(I ⊗ C

√
U).

The SWAP gate is needed because the arrangement of
anyons does not allow two-qubit operation between non-
neighboring three-anyons qubits without making nontrivial

FIG. 10. (a) Matrix representation of the approximated −iToffoli
gate, expressed in the computational basis. (b) Exact matrix represen-
tation of the −iToffoli gate. The color map is depicted in Fig. 3(c).

exchanges with the intermediary anyons. Therefore, to com-
pile the CCS gate by decomposition, it is necessary to construct
CiNOT, C

√
S, and SWAP gates with sufficient accuracy.

While the SWAP gate is trivial in the context of encoding
qubits with groups of four anyons whose overall topological
charge is 0, the involved two-qubit controlled gates CiNOT and
C

√
S can be approximated by the injection method introduced

in [26] as explained in Sec. IV and depicted in Fig. 1.

a. Numerical simulation

We should find first the compilation of ±I such that it
starts weaving from the upper strand and ends up in the
lower strand. We need also to approximate ±iX and

√±iX
gates acting on three strands starting weaving from the upper
strand and ending up in the same strand. By brute forcing,
we find the required weaving sequences as shown in Ta-
ble XII. The simulated −iToffoli gate by decomposition is
represented in Fig. 10. The distance error of this approxi-
mated −iToffoli gate is 1.90 × 10−3. However, the error on
the controlled gate only is about 1.77 × 10−3. The leakage is
computed as well and it is 3.96 × 10−6. These values exhibit
a similar magnitude of approximation as those obtained using
the controlled-injection method. However, the decomposition
method generates longer braid sequences, as discussed in
Sec. VI.
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