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Amorphous solids, i.e., systems which feature well-defined short-range properties but lack long-range order,
constitute an important research topic in condensed matter. While their microscopic structure is known to
differ from their crystalline counterpart, there are still many open questions concerning the emergent collective
behavior in amorphous materials. This is particularly the case in the quantum regime, where the numerical
simulations are extremely challenging. In this paper, we instead propose to explore amorphous quantum magnets
with an analog quantum simulator. To this end, we first present an algorithm to generate amorphous quantum
magnets, suitable for Rydberg simulators of the Ising model. Subsequently, we use semiclassical approaches to
get a preliminary insight of the physics of the model. In particular, for ferromagnetic interactions, we calculate
mean-field phase diagrams, and use the linear spin wave theory to study localization properties and dynamical
structure factors of the excitations. For antiferromagnetic interactions, we show that amorphous magnets exhibit
a complex classical energy landscape by means of simulated annealing. Finally, we outline an experimental
proposal based on Rydberg atoms in programmable tweezer arrays, thus opening the road towards the study of
amorphous quantum magnets in regimes difficult to simulate classically.
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I. INTRODUCTION

The study of many-body interacting quantum systems is
arguably one of the major challenges of modern physics
[1,2]. From a classical simulation perspective, extracting their
relevant physics is a hard problem due to the exponential
increase of the Hilbert space with the system size. This
fundamental bottleneck is typically circumvented in state-of-
the-art numerical methods [3–6] by taking advantage of the
special properties of physically relevant states [7], as well
as intrinsic system symmetries, e.g., discrete translational
symmetries in crystals. In this context, quantum simulators
[8] offer a promising alternative [9–11] to their classical
counterpart. These versatile quantum systems, used to mimic
complex quantum systems in a controllable way, allow for
the exploration of complex regimes that are hardly accessible
with classical numerics. A particularly relevant example is
the case of two-dimensional (2D) systems lacking intrinsic
spatial symmetries, such as disordered lattices, quasicrys-
tals, and amorphous solids. While the quantum simulation of
disordered systems [12] and quasicrystals [13–19] has been
recently discussed, in this paper we propose to simulate amor-
phous quantum magnets with Rydberg atoms [20] trapped in
optical tweezers [21,22], as sketched in Fig. 1, and benchmark
the properties of these systems in the quantum regime with a
perturbative approach.

Since the seminal works on noncrystalline materials
[23–26], a lot of theoretical [27–32] and experimental [33–36]
efforts have been made to determine the atomic structure and
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electronic properties of amorphous materials. In an amor-
phous solid, the lack of a crystal translational symmetry is also
accompanied by the absence of long-range orientational or-
der, in contrast to quasicrystals. Still, amorphous solids differ
from fully disordered systems in that they exhibit well-defined
short-range properties. In particular, their atomic constituents
have preferred bond lengths and bond angles, giving rise
to a well-defined coordination number C, i.e., the average
number of nearest neighbors (NNs) per atom. Remarkably,
these unique properties of amorphous solids have already
found technological applications such as, for instance, the
use of amorphous silicon to make solar cells and thin-film
transistors [37].

Amorphous solids are also interesting in the context of
emergent many-body phases. While this field has historically
focused on crystalline (lattice) systems, a few works have
already considered classical phase transitions in amorphous
magnets [38–41], and there is also a growing interest in the
study of quantum many-body phases in amorphous materials.
The latter has led to the concepts of amorphous supercon-
ductors [42–45], amorphous topological insulators [46–51],
and amorphous spin liquids [52,53]. However, due to the nu-
merical complexity of simulating quantum amorphous solids,
these works were restricted to single-particle [42,45,48] and
mean-field [49] approximations, integrable models [52], or
exact diagonalization studies of small systems [53]. Analog
quantum simulators are thus a good candidate to further un-
derstand the collective phenomena of quantum amorphous
solids from a microscopic perspective.

In this direction, in this paper we present a toolbox to
investigate amorphous magnets described by quantum Ising
Hamiltonians that are suitable for simulators based on neutral
atoms trapped with optical tweezers [20–22]. This platform
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stands out to investigate amorphous magnets, since both the
Ising [54] and XY [55] models can be synthesized by taking
advantage of large-dipole Rydberg transitions in setups that
can be scaled to hundreds of qubits. Furthermore, in contrast
to digital devices with limited connectivity [22,56], or ultra-
cold atoms trapped in optical lattices [57,58], the freedom in
the atomic register layout offered by programmable tweezer
arrays allows one to directly consider an amorphous configu-
ration without the need for additional resources.

With this quantum simulation goal in mind, we begin by
proposing a classical variational method that generates sam-
ples of amorphous layouts from a few physical inputs such as
the system size, and the average and variance of the coordi-
nation number. Importantly, this protocol takes into account
a power-law dependence of interactions with the interatomic
distance, and thus allows one to build physical real-space
amorphous Hamiltonians. In view of the fact that solving
accurately these Hamiltonians represents a hard numerical
challenge, we make a first step into understanding their under-
lying physics by using a mean-field ansatz for ground states
and the linear spin wave theory (LSWT) for the excitation
spectrum. This allows us to simulate large system sizes for
given parameter regions in which quantum effects can be
treated as perturbations to the classical solution. In particular,
we study both ground-state ferromagnetic transitions, as well
as localization properties and dynamical structure factors of
LSWT excitations. In the case of antiferromagnetic inter-
actions, due to the complexity of the quantum regime, we
limit ourselves to study the glassy classical energy landscape
of amorphous systems by using simulated annealing (SA).
In order to go beyond this preliminary numerical study, we
also describe a concrete experimental proposal to investigate
both the general equilibrium and nonequilibrium properties of
amorphous magnets, both in the ferromagnetic and antiferro-
magnetic regimes, by means of programmable tweezer arrays
of Rydberg atoms.

This paper is structured as follows. In Sec. II, we describe
the Hamiltonian model considered throughout this paper. In
Sec. III, we present a variational protocol to generate amor-
phous quantum Ising models. Section IV consists of a brief
review of the LSWT, which is used to diagnose the physics
of amorphous magnets in Secs. V–VII. More specifically, in
Sec. V we compute their mean-field phase diagram, while
in Secs. VI and VII we study, respectively, the localization
properties and dynamical structure factors of their LSWT
spectrum. In Sec. VIII, we discuss the complexity of the
antiferromagnetic energy landscape with classical SA. Sec-
tion IX is devoted to the experimental proposal for realizing
the present model with neutral atom simulators. Finally, we
draw the conclusions in Sec. X, where we also discuss possi-
ble future directions for research on amorphous magnets.

II. MODEL

In this paper we consider the transverse field Ising model
describing N interacting spin S = 1

2 sites in two spatial
dimensions:

H = −
∑
i< j

Ji jS
z
i Sz

j + hx

∑
i

Sx
i , (1)

where Sα
i = 1

2σα
i , in which σα

i are the usual Pauli matrix
operators on the ith site located at a position ri. Here hx � 0
is a spatially uniform transverse field, and the spin-spin in-
teraction, Ji j , is assumed to follow a power-law decay with
distance, i.e., Ji j = J0/|ri − r j |α . Throughout this paper we
will use α = 6 to reflect the Ising model realizable in a neutral
atom quantum simulator [22].

The magnetic couplings of the Hamiltonian in Eq. (1)
are therefore fully defined through the positions ri of the
spins, which we consider to correspond to a two-dimensional
amorphous solid. Note, in the remainder of this paper we stan-
dardize the interaction landscape by setting both J0 and the
minimum distance between two atoms, rmin ≡ mini, j |ri − r j |,
to unity. As a result, the interaction strengths in this model are
such that Ji j � 1.

As previously mentioned, these systems lack long-range
spatial order, but its short-range order leads to a well-defined
C, i.e., the average number of NNs for each atom [27]. How-
ever, to define which atoms are NNs in an amorphous solid is
more involved than in a lattice system where the separation of
every nth-order NN is fixed.

To generalize the notion of each nth-order NN we use the
radial distribution function, g(r). This function describes how
the density of the solid varies as a function of distance, r, from
a given qubit. In particular, the radial distribution function for
a material is given by

g(r) = 1

ρ

〈∑
i

δ(r − ri )

〉
, (2)

where ρ is the density of the solid prepared, ri is the dis-
tance between the ith atom and the reference atom, and the
summation is taken over all atoms other than the reference
atom. However, in practice a representative subset of atoms is
typically used. For a given g(r), the NN coordination number
of a solid is given by

n1 = 2π

∫ R1

0
rg(r)dr, (3)

where R1 is the first minimum in the radial distribution
function. Two atoms are considered nth neighbors if their
separation, r, is such that Ri−1 < r < Ri in which R0 = 0.
Note, while in systems with long-range order we are able to
define nth-order NNs for large n, in an amorphous solid we
are limited to a few orders of nearest neighbors.

We furthermore use the definition of NNs to scale the
energies in the remainder of this paper. In particular, we define
J̄ as the average NN interaction (i.e., the average interaction
between atoms whose distance is smaller than R1), and scale
our transverse field strength as hx/J̄ , as well as the other
energies. Importantly, this normalization of the energy scale
is particularly convenient for a direct comparison with known
results in regular lattices.

In Fig. 2 we show the radial distribution function for a
square lattice, disordered square lattice, amorphous solid, and
random configuration. The well-defined lattice structure of the
square lattice manifests itself as sharp peaks at fixed values
of r [see Fig. 2(e)]. The radial distribution function for the
disordered square lattice shares this structure but the added
positional disorder leads to a spreading of each peak [see
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FIG. 1. A schematic showing the process to perform simulations
of an amorphous solid either through classical methods like, e.g.,
perturbation theory, tensor networks (TN), quantum Monte Carlo
(QMC), and neural quantum states (NQS), or through the use of
Rydberg atoms in optical tweezers.

Fig. 2(f)]. Despite this spreading, the peaks are clearly visible
even at large r—this is a signature of the inherent long-range
order of the system due to the underlying lattice. For an
amorphous solid it is known that the short-range order man-
ifests as well-defined peaks in g(r) for small r, whereas g(r)
tends to 1 at large r due to the lack of long-range order [see
Fig. 2(g)]. This trend to g(r) = 1 at large atomic separation
reflects complete randomness that we exemplify by plotting
the radial distribution function for a random configuration in
Fig. 2(h).

III. AMORPHOUS SOLID GENERATION

While some works have had success approximating amor-
phous solids through completely random atomic positions
[45,48], in order to accurately simulate the physics of these
materials in our model both the known short-range order and
lack of long-range order need to be realized in the atomic
positions. A simple and popular method used to approximate
amorphous structures is a random network model in which
the atoms are placed in a lattice but distortions of both bond
lengths and angles are introduced resulting in effective ran-
domness in next-NNs and beyond [33,59].

An approach that completely removes any underlying lat-
tice structure is the Voronoi tessellation [47,60–62]. Here,
generating points are placed in a given space and polygons are
defined through the areas of which any point within a given
region shares a closest generating point. The resulting graph
constructed through the vertices and edges of these polygons
can be used to define an amorphous configuration with C � 3.
One shortcoming of this method is that the lengths of the
edges, which correspond to interactions in the amorphous
solid, are not well controlled. Thus, seemingly noninteracting
atoms can be closer in real space than NN pairs. As the
interaction strength is defined through atomic separation in
the model we consider, Voronoi tessellation is nonphysical in
our setup. Note, a structured variation on Voronoi tessellation
is given in Ref. [52]; however, while the variation of bond
lengths can be reduced, the issue still persists for the interac-
tion landscape we consider.

In this paper, we propose a method to generate an amor-
phous solid through a gradient based variational method
designed such that the separation of two atoms directly corre-
sponds to their interaction strength. In particular, we propose
a continuous loss function depending on the atomic positions
such that, when minimized, the output is an amorphous solid
with the desired properties. This loss function will be com-
posed of three terms, namely, (i) a first term that controls
the average and variance in the coordination number of the
solid; (ii) a second term that controls the minimum distance
between atoms; and (iii) a third term that controls the maximal
separation between two atoms. By tuning these terms we are
able to readily, and efficiently, generate unique amorphous
solids of a given family of materials we are interested in
defined through chosen inputs.

A. Generation protocol

The loss function we use in this paper is given by three
terms, L = a1LC + a2Lmin + a3Lmax, where each ai is a con-
stant coefficient. In particular,

LC =
∑

j

∣∣∣∣∣
∑

i

k(ri j ) − mj

∣∣∣∣∣
2

,

Lmin =
∑

i j

(
1 − 1

1 + e−γ (ri j−rmin )

)
,

Lmax =
∑

i j

eri j−rmax

1 + e−β(ri j−rmax )
.

(4)

where, ri j is the distance between the ith and jth qubit, k(r)
is a Gaussian kernel in which we define the mean and vari-
ance, mj is the desired number of NNs for the jth atom,
and {γ , β, rmin, rmax} are hyperparameters. Note, the set of
integers {mj} is picked from a normal distribution in which
the mean is the desired coordination number of the solid—
which itself can be a noninteger—and the variance controls
the fluctuations from this coordination number. Intuitively,
the mean of the Gaussian kernel gives the desired NN sep-
aration, the variance of this kernel controls the variance in
the NN separations, and rmin (rmax) is the minimum (max-
imum) qubit separation. Given this loss function, we can
prepare an amorphous solid from an initial state consisting
of N qubits randomly placed inside the unit square such that
that no two qubits are closer than a minimum distance, rmin.
We then use the PYTORCH ADAM optimizer to minimize the
loss [63,64].

Note, the above protocol realizes an amorphous solid with
open boundary conditions; however, using the slightly altered
approach we can also readily realize amorphous solids on a
torus with periodic boundary conditions in both the x and y
directions. To do so, we remove Lmax from the loss function
and utilize Mitchell’s best-candidate algorithm to initialize the
atomic positions [52,65]. See Appendix A for examples of
amorphous solids generated through this variational protocol
with both types of boundary conditions. Throughout this pa-
per we will work with systems with open boundaries as they
are more readily studied experimentally.
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FIG. 2. The radial distribution function for a square lattice, disordered square lattice, amorphous solid, and random configuration. (a)–(d)
Atomic positions of a given realization of each of these systems. (e)–(h) Corresponding radial distribution functions, g(r). In panel (e) and (f)
we see both well-defined short- and long-range order that is a consequence of the lattice and underlying lattice of the square and disordered
square lattices respectively. Both panel (g) and (f) show no long-range order, i.e., g(r) → 1 for large r; note, we have highlighted this via a
horizontal dashed line at g(r) = 1. However, panel (g), which corresponds to the amorphous solid, shows clear peaks at small r. This reflects
the short-range order in this two-dimensional system. The first and second minima of g(r) are highlighted as r1 and r2. These can be used to
define both NN atomic pairs and next-NN atomic pairs in the amorphous solid.

B. Structure factor

Typically, the precise positions of atoms in an amorphous
solid are not known. However, the static structure factor can
be measured in scattering experiments. The latter is given by

S(k) = 1

N

N∑
j=1

N∑
l=1

e−ik·(r j−rl ). (5)

These results can then be used to diagnose properties of
the solid in consideration. In particular, the radius of this
circle reflects well-defined average NN separation, and by
computing the Hankel transform we can approximate the ra-
dial distribution function and by extension the coordination
number [66].

As a verification of the solids generated we calculate their
static structure factor. In regular lattices the structure factor
contains sharp Bragg peaks at regular intervals due to the
long-range order of these materials. However, in an amor-
phous layout such peaks do not appear. In fact, we observe
a circle surrounding the origin due the isotropic nature of
amorphous materials [27].

In Figs. 3(a), 3(b), and 3(c) we present the static structure
for an amorphous solid with C ≈ 3, 4, and 3.5 respectively;
representative sections of the real-space atomic positions are
included in this figure as insets. In each of these plots we
clearly see the expected circular pattern in the structure fac-
tor. Furthermore, for the cases C ≈ 3 and 4 we outline the
Brillouin zone for the regular lattice that shares the coordina-
tion number of each amorphous material, i.e., the honeycomb
lattice for C = 3 and the square lattice for C = 4. By ensuring
that each regular lattice has the same NN separation as the
average NN separation of the respective amorphous solid,
we are able to predict the radius of the circles in the static
structure factor in both cases. Note, the structure factor of

the C ≈ 3.5 solid is expected to be similar to that of the
C ≈ 3 solid as it mainly consists of hexagonal and kagome-
type palettes and thus shares the same reciprocal-lattice
vectors.

FIG. 3. The static structure factor of amorphous solids with co-
ordination number C ≈ 3 (a) and C ≈ 4 (b) and C ≈ 3.5 (c). The
inset of all panels shows a patch of each amorphous solid. In panels
(a) and (b) we highlight the correspondence to the Brillouin zone of
the regular lattice with the equivalent coordination number for each
case—honeycomb for C = 3 and square for C = 4—by plotting this
in orange. Furthermore, we show the reciprocal-lattice vectors, k3

and k4, for these regular lattices. Clearly these vectors predict the
radius of both circles that appear in each amorphous solid structure
factor.
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IV. REVIEW OF LINEAR SPIN WAVE THEORY

Solving the Hamiltonian (1) for the spin positions ri of a
quantum amorphous solid represents a hard numerical task.
In this regard, note that, despite the well-known exponen-
tial increase of computational needs with the system size N ,
many equilibrium properties of 2D regular spin lattices have
been studied with state-of-the-art techniques such as sparse
state vector methods [3], quantum Monte Carlo (QMC), or
tensor network (TN) approaches [4,5] targeting the relevant
many-body Hilbert-space region for the ground state. While
using these methods for nonequilibrium studies generally rep-
resents an even harder numerical task, they can be still used to
benchmark the unitary dynamics of finite systems at shorter
times. Both in the equilibrium and nonequilibrium case, the
translational symmetry of regular lattices typically allows one
to extract relevant physics from finite-size scaling of relatively
small systems, or to reduce the number of degrees of freedom
by assuming a repeated unit cell [67–69] commensurate with
the lattice. Moreover, in the context of tensor networks, the
lattice provides a natural starting point to find the optimal
topology of the network minimizing the amount of entangle-
ment needed to simulate the properties of the material [70]. In
stark contrast, amorphous solids can only be properly defined
for large N due to their characteristic lack of long-range order,
which in turn prevents a natural choice for a network topology
or a unit cell. In view of these numerical challenges, here we
use a perturbative approach, the LSWT, which can be used to
benchmark the nature of the excitations in disordered 2D spin
systems [12,71,72]. In particular, within the LSWT approx-
imation we can characterize part of the phase diagram and
linear excitations of amorphous solids at very large system
sizes N ≈ 1000. While this analysis provides a first intuition
of the quantum regime in amorphous spin systems, general
phase diagrams and dynamical properties of quantum amor-
phous solids should be studied with more advanced numerical
methods, or quantum simulators.

The LSWT (see Appendix B for an extended discussion)
relies on the approximation of highly polarized semiclassical
spins satisfying 〈S̃z

i 〉 ≈ 1/2 in a proper rotated basis given by

Sz
i = S̃z

i cos θi + S̃x
i sin θi,

Sx
i = S̃x

i cos θi − S̃z
i sin θi, (6)

where the optimal angles θi are found via minimization of
the semiclassical mean-field energy of the system. Within
this mean-field approximation, one can express the mean-field
ferromagnetic order parameter as

M = 1

N

∑
i

〈
Sz

i

〉 � 1

2N

∑
i

cos θi. (7)

The LSWT considers excitations on top of this mean-field
phase. That is, under the assumption of harmonic quantum
fluctuations, the spins can be bosonized around their classical
value following the Holstein-Primakoff approximate mapping
[73] S̃z

j = 1
2 − a†

i ai, S̃x
j = 1

2 (a†
i + ai ), where ai (a†

i ) is the an-

nihilation (creation) bosonic operator satisfying [ai, a†
j ] = δi j .

After the above-mentioned approximations, H can be written

FIG. 4. Evolution of (a) the mean-field ferromagnetic order pa-
rameter |M| and (b) the LSWT bulk gap 
 as a function of the
transverse field hx for amorphous solids with different coordination
numbers. Here we fix N = 400 and a power-law interaction decay of
α = 6. The vertical blue (orange) line corresponds to the transition
point predicted by LSWT in the square (honeycomb) regular lattice,
which has a coordination number of C = 4 (C = 3).

as the quadratic bosonic form

H = − 1

4

∑
i< j

Ji j sin θi sin θ j (a
†
i + ai )(a

†
j + a j )

+
∑

i

⎡
⎣hx sin θi + cos θi

2

∑
j

Ji j cos θ j

⎤
⎦a†

i ai. (8)

The last step in the LSWT approach consists of diagonalizing
the Hamiltonian by defining the so-called Bogoliubov modes
ai = ∑

μ ui,μbμ + vi,μb†
μ. In terms of the bosonic Bogoliubov

modes the Hamiltonian takes the diagonal form

H =
N∑

μ=1

ωμb†
μbμ + Eg, (9)

where the frequencies ωμ constitute the LSWT spectrum of
the system, and Eg is a global energy shift. One can then ac-
cess relevant quantities of the original problem. For instance,
the bulk gap of the LSWT spectrum is given by


 = min
{
ωbulk

μ

}
, (10)

where {ωbulk
μ } is the set of energies corresponding to Bogoli-

ubov modes with a finite support in the bulk of the system (see
details in Appendix B).

V. MEAN-FIELD PHASE DIAGRAM FOR J0 > 0

We start by discussing the phase diagram of H as a function
of both the ratio hx/J̄ and the properties of the amorphous
solid encoded in ri. For simplicity, we consider ferromagnetic
interactions (J0 > 0) to avoid frustrated antiferromagnetic
phases that cannot be properly studied with LSWT due to the
presence of a large amount of entanglement. Figure 4 shows
the relevant LSWT quantities as a function of hx/J̄ across
the ferromagnet to quantum paramagnet phase transition for
amorphous solids with C ≈ 3, 3.5, and 4. In particular, we
show the mean-field ferromagnetic order parameter |M|, and
the LSWT energy gap 
, which is expected to close for a con-
tinuous quantum phase transition. By comparing the behavior
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of the three coordination numbers, we note that, as expected,
increasing this parameter leads to a larger interaction energy
scale, and shifts the critical point to a larger hx/J̄ . While the
phase diagram is qualitatively similar to that of regular lattices
(see vertical lines in Fig. 4) we note two main differences
for the amorphous solid case. First, even if we fix the same
NN coordination number and average interaction strength J̄ ,
the critical point will in general differ from that of a regular
lattice, due to the difference between longer-range interactions
under a fixed power-law decay. Second, while regular lattices
are restricted to integer coordination numbers, the coordina-
tion number of an amorphous solid can also take fractional
values, leading to a C ≈ 3.5 critical point that interpolates
between the transition points of two integer coordination num-
bers. As a final comment, note that the mean-field approxima-
tion used to compute the transition points in Fig. 4 in general
overestimates the ferromagnetic order. For instance, for the
paradigmatic 2D transverse field Ising model in the square lat-
tice with only NN interactions, the mean-field transition point
is at hx = 2J , while it is known from more accurate numerical
methods that the true transition occurs at hx ≈ 1.5J [39,74].

VI. DELOCALIZED NATURE
OF THE SPECTRUM FOR J0 > 0

Let us now investigate the nature of the LSWT excitations
in the ferromagnetic phase of amorphous solids described
by the Ising model of Eq. (1). In the classical ferromagnet
limit hx/J0 → 0, the Bogoliubov modes coincide with the
local modes, i.e., bi = ai. If all these local modes have the
same local energy, as, e.g., in a regular square lattice without
disorder, a finite transverse field hx leads to a strong mode hy-
bridization and a delocalized dispersive band. Local disorder
competes with such a delocalization mechanism, as it induces
energy shifts in the local mode energies, effectively preventing
hybridization. As an example of such a disorder-induced lo-
calization in a similar model, the authors of Ref. [12] recently
considered the effect of local disorder in the positions ri of
a regular square lattice. Due to the strong dependence of the
interaction with position through the |ri − r j |6 decay, it was
shown that, for a fixed hx = J̄ , the LSWT spectrum exhibits
a smooth transition from delocalized modes at positional dis-
orders below 3%, to fully localized modes when disorder is
5% or larger. It is thus natural to investigate what are the
localization properties of the LSWT spectrum in amorphous
solids, which bear some similarities both with regular lat-
tices and disordered systems. For this analysis, we work with
amorphous solids with C ≈ 4, and sizes up to N = 1000. The
results are presented in Fig. 5, where we compare the behavior
at different transverse fields hx. Note that, for these hx, the
system is still deep in the mean-field ferromagnetic phase,
with |M| ≈ 0.7|M|max at most.

Figure 5(a) shows that the dispersion of the LSWT spec-
trum is apparently similar for the different values of hx. We
observe that larger hx lead to slightly higher dispersion at the
center of the band. The strong dispersion close to the band
minima is related to the open boundary condition, which leads
to in-gap states that have lower energy than the bulk ones. The
localization properties of these LSWT spectra can be studied

FIG. 5. Properties of the LSWT spectrum for an amorphous solid
with C ≈ 4 and for three different values of hx/J̄; the legend indi-
cates the color and line code used in all the panels. (a), (b) Energy
dispersion and inverse participation ratio for N = 1000. (c) Scaling
of I with the system size at a fixed energy ω∗(hx ), indicated as a
vertical line in (b) for the largest hx . (d) Spatial profile of a mode
with ωα = ω∗, for three values of hx and N = 500.

by means of the inverse participation ratio defined as

I (ω̃) ≡ 1

N (ω̃, ε)

∑
|ω̃α−ω̃|<ε,i

[(viα )2 − (uiα )2]2, (11)

where ω̃α = (ωα − ωmin)/(ωmax − ωmin) ∈ [0, 1] is the nor-
malized LSWT spectrum, ε provides a discrete energy
window (here we set ε = 0.02), and N (ω̃, ε) counts the num-
ber of modes within this energy window around ω̃. I (ω̃) thus
gives the average inverse volume of the Bogoliubov modes
around the normalized energy ω̃. In particular, I (ω̃) tends to
a finite value in the thermodynamic limit for localized modes,
while it goes to zero as N−1 for fully extended modes.

In Fig. 5(b), we can observe that for the smaller field hx

the modes are localized, as I (ω̃) is clearly different from
zero and the system is already close to the thermodynamic
limit. For increasing hx, we observe a smooth transition to
delocalized modes around the most delocalized frequency ω∗.
The edge frequencies remain localized, as they are related
to edge sites or bulk defects with a different coordination
number than the average, which lead to the characteristic
mobility edge of disordered systems. To rigorously certify the
localization properties of the modes, in Fig. 5(c) we show the
finite-size scaling of I (ω̃∗) [see vertical lines in Fig. 5(b)]. We
observe that I (ω̃∗) remains finite for small hx/J̄ , as it does not
decay with the system size, consistent with a fully localized
spectrum. For hx/J̄ � 1, we observe quasidelocalized modes
with I (ω̃∗) decaying slower than the fully delocalized scal-
ing N−1. Further increasing hx leads to a smooth transition
to an approximate N−1 scaling, consistent with almost fully
delocalized modes. Finally, in Fig. 5(d) we show the spatial
profile of mode instances at ω∗ for different hx, from which
one can clearly visualize the smooth evolution from localized
to delocalized modes in a real-space picture.
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FIG. 6. Dynamical structure factors for an amorphous solid with
N = 1000 and C ≈ 4 at a fixed ky = 0. The upper panels (a)–
(c) show the transverse dynamical structure factor Sxx , while the
lower panels (d)–(f) correspond to the longitudinal one Szz. The value
of transverse field hx/J̄ is indicated on each plot.

VII. DYNAMICAL STRUCTURE FACTOR FOR J0 > 0

The excitation properties inside the ferromagnetic phase of
an amorphous solid can also be studied in momentum space
by computing dynamical structure factors. For the LSWT
eigenmodes, these take the simple form

Szz(ω̃, k) =
∑

|ω̃α−ω̃|<ε

[∑
i

e−ik·ri (ui,α + vi,α )
sin θi√

4N

]2

, (12)

Sxx(ω̃, k) =
∑

|ω̃α−ω̃|<ε

[∑
i

e−ik·ri (ui,α + vi,α )
cos θi√

4N

]2

. (13)

For regular lattices with large disorder, which strongly breaks
translational invariance, the momentum k ceases to be a good
quantum number. As a consequence, the dynamical structure
factors are expected to exhibit finite momentum widths related
to the appearance of localized modes. In the case of amor-
phous solids, while translational invariance is clearly broken,
the fact that there is a well-defined coordination number can
lead to much richer properties. In this regard, note that despite
the strong breaking of translational invariance in amorphous
solids, we have already seen in the previous sections that their
static structure factor exhibits well-defined rings in momen-
tum space, and that the LSWT spectrum is delocalized for
sufficiently large hx.

Figure 6 shows the dynamical structure factors of an amor-
phous solid with N = 1000 and C ≈ 4. In particular, here
we consider the dispersion relation given by Sμμ(ω̃, kx ) at a
fixed ky = 0 and for three values of the transverse field hx/J̄ ,
already studied in Fig. 5. A first comment is that, for the
ferromagnetic phase under consideration, which is polarized
close to the z axis, the transverse component Sxx, shown in
Figs. 6(a) and 6(b), is generally larger than the longitudinal
one Szz, shown in Figs. 6(d)–6(f). This can be readily inferred
from the trigonometric factors in Eqs. (12) and (13). Besides
this, in all the panels we can identify a bright bulk band
whose minimum is located in the middle of the normalized
LSWT spectrum, and a fainter band at low energy, mainly
due to open boundary excitations. The effect of the transverse

FIG. 7. Dynamical structure factor Sxx for hx/J̄ = 1.36. Each
panel corresponds to a different frequency cut, indicated in each plot.

field is consistent with our analysis of Fig. 5. In Figs. 6(a)
and 6(d), the large transverse field hx/J̄ = 1.36 leads to a
localized bulk band in momentum space, which implies de-
localized real-space excitations. For an intermediate value
hx/J̄ = 1.16 [see Figs. 6(b) and 6(e)], the bulk band acquires
a larger momentum width, implying less delocalized real-
space modes. Finally, for the smallest transverse field hx/J̄ =
0.77 the band is clearly delocalized within the bandwidth
in momentum space, signaling highly localized real-space
excitations.

In order to further characterize the bulk band unveiled by
the dynamical structure factor, in Fig. 7 we show the trans-
verse component Sxx(ω̃, k) in the delocalized regime at three
different cuts of increasing frequency, corresponding to the
dashed lines of Fig. 6(a). In the three panels, we can clearly
observe that the dynamical structure factor exhibits rotational
invariance in momentum space, i.e., the band energy cuts take
the form of rings. Note that, while these resemble the ring
observed in the static structure factor (Fig. 3), here we are
dealing with dynamical properties, and thus the dispersion
translates into a ring radii that increases with energy. A final
comment is in order concerning the effect of the frequency
on the localization of the rings. The momentum width is rel-
atively small at the band minima and it becomes particularly
narrow in the middle of the band, corresponding to the most
delocalized spectral region. In contrast, the higher-energy ring
of Fig. 7(c) is delocalized in momentum space, as the band
hybridizes with localized states at the edge of the bulk spec-
trum. Interestingly, this behavior complements the analysis of
Fig. 5(b), where one can also identify the most delocalized
spectral region around ω̃∗.

VIII. ANTIFERROMAGNETIC CASE J0 < 0:
GEOMETRICAL FRUSTRATION AND DISORDER

For antiferromagnetic interactions J0 < 0, spin glass
physics [75,76] can naturally arise in the model of Eq. (1),
since an amorphous magnet exhibits in general both frustrated
and unfrustrated plaquettes. Note that this is in stark contrast
with regular lattices, in which at T = 0 and zero transverse
field hx = 0, one has either an unfrustrated geometry leading
to a long-range antiferromagnetic state (e.g., in the square
lattice), or a frustrated geometry leading to a spin liquid
(e.g., in the triangular or kagome lattices). Interestingly, such
a scenario of spatially inhomogeneous magnetic frustration
bears strong similarities with paradigmatic models of 2D spin
glasses, such as the Edwards-Anderson (EA) model [75] in
the square lattice, in which a randomized NN coupling with a
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bimodal (±J) or Gaussian distribution leads to a 2D spin glass
at T = 0 [77–82]. The main difference, however, is that, in an
amorphous solid, glassiness arises from the interplay between
antiferromagnetic interactions and the real-space geometry
[40], rather than the competition between antiferromagnetic
and ferromagnetic couplings. For instance, for C = 4 we
can generate amorphous layouts with large subregions that
are similar to a square or kagome lattice, with completely
different properties at T = 0. Moreover, we can tune the co-
ordination number to intermediate values without a regular
lattice analog, such as, e.g., C = 3.5 or 5.

While, therefore, antiferromagnetic amorphous magnets
are expected to exhibit a rich low-energy landscape, the nu-
merical benchmark of these systems in the quantum regime
is beyond the scope of this paper, since it is much more
complex than in the ferromagnetic case. In particular, the
absence of a long-range ordered classical reference state pre-
vents the perturbative LSWT analysis of the previous sections.
Instead, in this section we focus on the analysis of the classical
low-energy landscape of amorphous antiferromagnets, which
by itself represents a complex numerical task. To this aim,
we use SA [83], a simple method that illustrates the com-
plexity of antiferromagnetic amorphous magnets, and some
common features with both regular lattices and spin-glass
models. Nevertheless, we note that it would also be interest-
ing to perform this classical analysis with more sophisticated
methods, such as parallel tempering Monte Carlo sampling
[84–87] in the limit T → 0, or optimization methods for find-
ing classical ground-state energies and configurations of spin
systems [88,89].

A. Review of simulated annealing

In order to provide a first benchmark of the complex an-
tiferromagnetic energy landscape of the amorphous layouts
studied in this paper, we consider the classical low-energy
states obtained through SA of classical Ising magnets de-
scribed by the limit hx → 0 of the Hamiltonian (1):

Hclassical = −
∑
i< j

Ji jσiσ j, σi = ±1. (14)

In particular, for a given layout Ji j , we anneal NR = 60 statis-
tically independent replicas, hereafter labeled by the index α,
during nsteps Monte Carlo sweeps. Each Monte Carlo sweep
consists in flipping N randomly selected spins, according to
the METROPOLIS update rule. After each Monte Carlo sweep,
we decrease the temperature according to

Ti = T0

(
1 − i

nsteps

)
, i = 1, . . . , nsteps. (15)

A first quantity of interest is then the final classical energy of
the different annealed replicas

Eα
SA ≡ 〈Hclassical〉α, (16)

which corresponds to the ground-state energy in the limit of
an infinitely slow annealing time, i.e., nsteps → ∞.

FIG. 8. SA results for a squarelike amorphous solid (a), (c) and a
kagomelike amorphous solid (b), (d), both with N = 400. Yellow,
purple, and blue colors are used for nsteps = 105, 106, and 107,
respectively. (a), (b) Final SA energies of the NR = 60 statistically
independent replicas. (c), (d) Probability distribution of the overlap
between the 20 lowest-energy replicas. The insets in (c) and (d) cor-
respond to the regular square (N = 400) and kagome (N = 432)
lattices’ replica overlaps in the ground state (see Appendix C for
details).

We are also interested in the EA parameter, defined as the
averaged spin overlap between two replicas α and β after SA,

q2
SA ≡ 1

NR(NR − 1)

∑
α �=β

∣∣qαβ

SA

∣∣2
,

qαβ

SA ≡ 1

N

N∑
i

σ
(α)
i σ

(β )
i , (17)

and its density distribution P(qαβ

SA). To compute this quantity,
we reduce the set of 60 replicas, and only use the 20 replicas
with lower final energy. Note that, the form of P(qαβ

SA) provides
a lot of information about the low-energy states of the system,
and it is directly related to the replica symmetry-breaking
picture of the spin-glass phenomenon.

B. Simulated annealing in amorphous solids

Figure 8 shows the SA results corresponding to two
amorphous solids with N = 400, shown in Appendix C. In
particular, here we consider an amorphous solid with C ≈ 4
with local NN plaquettes resembling the ones of a square
lattice, and another amorphous solid with C ≈ 4 and local NN
plaquettes resembling the ones of a kagome lattice.

A first general remark is that, for the large system size
under consideration, the glassy nature of the low-energy land-
scape manifests itself in the fact that the SA is not able to
find the ground state of the system. That is, as shown in
Figs. 8(a) and 8(b), the final energies Eα

SA still depend on the
annealing time at the largest annealing times considered here,
nsteps = 106–107. As shown in Appendix C, a similar lack of
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convergence is observed for EA models at comparable system
sizes. The latter is in agreement with the picture that the anti-
ferromagnetic amorphous layouts lead to energy landscapes of
comparable complexity to those of models with ferromagnetic
and antiferromagnetic couplings.

The lack of convergence of the SA also implies that the
replica overlaps and their distributions, depicted in Figs. 8(c)
and 8(d), no longer correspond to ground states, but rather
correspond to the overlaps of low-energy annealed solu-
tions. Still, the distributions P(qαβ

SA) shown in Figs. 8(c)
and 8(d) suggest that there are strong differences between
the low-energy landscapes of the squarelike and kagome-
like amorphous solids, despite both having the same C ≈ 4
and lacking long-range (lattice) order. The squarelike amor-
phous solid exhibits two peaks at large |qαβ

SA|, reminiscent
of the square-lattice antiferromagnet delta functions, shown
in the inset. The value of q2

SA ≈ 0.45, for the largest an-
nealing time, also suggests a strong spin-glass order, despite
clearly deviating from a unit value, due to the frustration
of a long-range antiferromagnetic unit cell. In contrast, the
kagomelike amorphous solid exhibits a finite but small spin-
glass order parameter q2

SA ≈ 0.11 for the largest annealing
time, as P(qαβ

SA) has a single wide peak structure centered
at qαβ

SA = 0. Again, the latter is reminiscent of the behav-
ior observed in the regular kagome lattice, as shown in
the inset.

In conclusion, these SA results support, on the one hand,
that for antiferromagnetic couplings, amorphous solids ex-
hibit a complex classical low-energy landscape, similar to
paradigmatic spin-glass models at comparable system size
(see Appendix C). On the other hand, they also suggest
that the interplay between the coordination number and the
local bond angle distribution can have a large impact on
the properties of this landscape, with a behavior that can
be partially explained by that of parent regular lattices. In
this context, a quantum annealing protocol could poten-
tially help in unveiling the low-energy classical landscape
of amorphous magnets. Furthermore, it would also be very
interesting to take into account the effect of quantum fluc-
tuations in the finite hx/J0 phase diagram and study, for
example, the competition between the glassy phase and the
potential spin-liquid phase. This is however extremely chal-
lenging for TN and QMC numerical methods, due to the large
system sizes and the presence of frustration already at the
classical level. In the next section, we discuss how such a com-
plex antiferromagnetic case can be studied with a quantumx
simulator.

IX. QUANTUM SIMULATION OF AMORPHOUS SOLIDS

The Hamiltonian (1) can be naturally simulated in arrays
of optical tweezers loaded with Rydberg atoms [21,22], which
exhibit large dipole-dipole interactions [20]. In particular, the
use of programmable moving optical tweezers during the
loading stage is highly suited to deterministically trap individ-
ual atoms at positions ri corresponding to different amorphous
solids in the 2D plane. Moreover, large systems with N > 300
have been already realized in this platform [90], and larger
systems are expected to become available in the near future.

A. Hamiltonian engineering

By considering the local qubit consisting of the atomic
ground state |0〉 and a given Rydberg state |1〉, the Hamil-
tonian of the simulator taking into account the effect of the
Rydberg interaction and an external laser can be expressed as

HRyd =
∑
i< j

C6

|ri − r j |6 nin j + h̄
(t )

2

∑
i

σ x
i −

∑
i

h̄δi(t )

2
σ z

i ,

(18)

where ni = (1 + σ z
i )/2, C6 > 0 is the strength of the van der

Waals interaction due to the dipole-dipole Rydberg interac-
tion, and 
(t ) and δi(t ) are the Rabi frequency and local
detuning induced by the external laser. By setting C6 = |J0|,
and assuming time-independent laser parameters h̄
 = hx

and h̄δi = ∑
j Ji j/2, one can readily see that the Hamiltonians

of Eqs. (1) and (18) become equivalent up to an irrelevant con-
stant. It is worth noticing that, despite HRyd always consisting
of antiferromagnetic interactions (J0 < 0), we can also probe
the dynamics of the ferromagnetic regime, as discussed below.

B. Adiabatic state preparation and unitary evolution

In the experimental protocol, one typically assumes that
the initial state is the atomic ground state |0〉⊗N , which corre-
sponds to a fully polarized ferromagnet in the spin language.
For a very large initial detuning δ > 0 or δ < 0, the atomic
ground state is the nondegenerate ground state or highest
excited state of HRyd, respectively. Following the adiabatic
theorem, one can then use an initial large negative (posi-
tive) detuning to prepare the ground state (highest excited
state) of HRyd by slowly bringing the detuning and Rabi fre-
quency to the final desired value. Interestingly, this means
that, despite the fixed sign of the interactions J0 < 0 in the
above-mentioned setup, one can adiabatically prepare both an-
tiferromagnetic and ferromagnetic phases. After preparing an
eigenstate of HRyd, the quantum simulator can also be used to
study the unitary evolution of the system after a sudden quan-
tum quench in which the Hamiltonian is abruptly changed
from HRyd → H ′

Ryd. Concerning such unitary dynamics, note
that for initial states preserving time-reversal symmetry, and
under the condition h̄δi = ∑

j Ji j/2, the evolutions under HRyd

and −HRyd are indistinguishable, which means that the sign of
J0 is irrelevant for states with real coefficients in the computa-
tional basis.

C. Detection schemes

As the final step of the quantum simulation, one can access
relevant microscopic quantities of the system. In particular,
the local magnetization 〈σ z

i 〉 and its moments (e.g., 〈σ z
i σ z

j 〉)
can be directly accessed via fluorescence images of the final
state, which for each experimental run provides a snapshot
with single-site resolution of the atomic populations ni. From
this, one can compute local order parameters of magnetic
phases [e.g., Eq. (7) for the ferromagnetic case] and study
quantum phase transitions in amorphous solids. Concerning
the properties of excitations, they can be typically investi-
gated through their impact in the spectral properties of the
postquench unitary dynamics. In this direction, recent works
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discussed the possibility of measuring dynamical structure
factors with quantum simulators [91–93].

X. CONCLUSION AND OUTLOOK

In this paper, we investigated the properties of quantum
amorphous magnets that could be simulated in state-of-the-
art Rydberg atom arrays. To this end, we first developed a
variational protocol that generates well-defined amorphous
configurations for systems with quasi-long-range Ising in-
teractions, i.e., decaying as 1/r6. We then used perturbative
techniques to benchmark the physics of these newly generated
Hamiltonians assuming finite but small quantum fluctuations.
We started by studying their mean-field ferromagnetic phase
transitions, for which we revealed that the effect of the coordi-
nation number in amorphous magnets is similar as in regular
lattices. We further unveiled the nature of linear spin wave
excitations inside the ferromagnetic phase. By computing the
inverse participation ratio, we observed that, in contrast to
fully disordered systems, this spectrum can still be delocal-
ized in amorphous magnets with a moderate transverse field.
This result was supported by the behavior of the dynamical
structure factors, which exhibited full rotational symmetry,
and that were consistent with a dispersive band in the delocal-
ized regime. Importantly, note that our perturbative analysis
fails to describe regimes with large quantum fluctuations,
which prevented us to study quantum critical regions accu-
rately, or to consider the antiferromagnetic quantum regime,
where frustrated amorphous magnets are expected to arise.
In this antiferromagnetic case, we have carried out a sim-
ulated annealing analysis of the model in its classical Ising
limit, which indeed unveiled a complex low-energy classical
landscape. A natural research line would thus be to study
the interplay between such classical magnetic frustration and
quantum fluctuations. With the motivation to tackle these
more challenging regimes with the help of a quantum sim-
ulator, we proposed an experimental setup based on neutral
atoms trapped in programmable optical tweezers, and laser
coupled to their Rydberg states, to realize the same class
of amorphous magnet Hamiltonians studied in this paper. In
particular, we described how this Hamiltonian could be en-
gineered in a platform with N > 100 qubits, the possibility
to adiabatically prepare ground states or perform postquench
unitary dynamics, and the available detection schemes. This
opens the road to study amorphous solids described as a
collection of interacting two-level systems in regimes that are
difficult to simulate classically. In this regard, note that some
low-temperature properties of amorphous solids have been
already explained by models based on noninteracting two-
level systems [94,95], but there are still many open questions
concerning the nature of the two-level systems, and the effect
of interactions [96–103].
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APPENDIX A: EXAMPLES OF AMORPHOUS SOLIDS

In Fig. 9 we show all amorphous solids generated with the
variational protocol proposed in this paper, each consisting
of N ≈ 1000 sites. In particular, we show examples of amor-
phous solids with C = 3, C = 3.5 and 4 with both periodic
and open boundaries, exemplifying the range of solids that
can be realized with this method.

APPENDIX B: LINEAR SPIN WAVE THEORY

Our starting point is the Ising Hamiltonian introduced in
the main text:

H = −
∑
i< j

Ji jS
z
i Sz

j + hx

∑
i

Sx
i . (B1)
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We first minimize the mean-field ground-state energy with
respect to classical angular variables:

EMF = −1

4

∑
i< j

Ji j cos θ j cos θi − hx

2

∑
i

sin θi. (B2)

Here we have used a rotation of the initial basis given by

Sz
i = S̃z

i cos θi + S̃x
i sin θi,

Sx
i = S̃x

i cos θi − S̃z
i sin θi (B3)

and the classical assumption that in the transformed basis the
state is highly polarized in the z axis, leading to 〈S̃x

i 〉 � 0. In
the new rotated basis, the Hamiltonian reads

Ĥ = −
∑
i< j

Ji j
[
cos θi cos θ j S̃

z
i S̃z

j + sin θi sin θ j S̃
x
i S̃x

j

+ cos θi sin θ j S̃
z
i S̃x

j + sin θi cos θ j S̃
x
i S̃z

j

]
+ hx

∑
i

(
cos θiS̃

x
i − sin θiS̃

z
i

)
. (B4)

As the next step, we perform a bosonization of the spins given
by

S̃z
i = 1

2 − a†
i ai, S̃x

i = 1
2 (a†

i + ai ). (B5)

Note that this bosonization is a good approximation only if
〈a†

i ai〉 � 1/2. Under this assumption, we can rewrite H as a
quadratic bosonic Hamiltonian:

H = − 1

4

∑
i< j

Ji j sin θi sin θ j (a
†
i + ai )(a

†
j + a j )

+
∑

i

⎡
⎣hx sin θi + cos θi

2

∑
j

Ji j cos θ j

⎤
⎦a†

i ai. (B6)

Note that here we neglected higher-order or constant terms,
and the linear term in bosonic operators is proportional to
∂EMF
∂θi

= 0. It is useful to rewrite this quadratic Hamiltonian in
a compact form:

H = 1
2�†M�, (B7)

with the column vector of operators � ≡
(a1, a2, . . . , aN , a†

1, a†
2, . . . , a†

N )T , and the matrix

M ≡ 2

(
Gi j + δi jHi Gi j

Gi j Gi j + δi jHi

)
(B8)

with Gi j = − 1
8 Ji j sin θi sin θ j and Hi = 1

2 [hx sin θi +
cos θi

2

∑
j Ji j cos θ j]. Next, we use a Bogoliubov trans-

formation of the bosonic operators to diagonalize the
Hamiltonian. We define the Bogoliubov modes via
the transformation matrix U such that � = U�, with
� ≡ (b1, b2, . . . , bN , b†

1, b†
2, . . . , b†

N )T . In terms of the
Bogoliubov modes the Hamiltonian reads

H = 1

2
�†U †MU� = 1

2
�†MD� = 1

2
�†

(
ωi 0
0 ωi

)
�,

(B9)

FIG. 10. Amorphous solids with C ≈ 4 used in the SA simula-
tions of the main text. (a) Squarelike amorphous solids, with local
plaquettes resembling those of a regular square lattice. (b) Kagome-
like amorphous solids, with local plaquettes resembling those of a
regular kagome lattice.

where ωi is the LSWT spectrum. Here the transformation U
has the structure

U =
(

u v

v∗ u∗
)

. (B10)

For systems with open boundary conditions, such as the amor-
phous solids studied in this paper, it is useful to distinguish
between bulk and edge Bogoliubov modes. For an amorphous
solid centered at the origin and with an open boundary that can
be well approximated by a circle of radius Redge, we define the
bulk sites i as the ones satisfying ri < Rbulk, where Rbulk <

Redge is the radius of the subsystem that we consider as the
bulk, leading to an edge subsystem consisting of a ring with a
width Rbulk − Redge. We then consider that a Bogoliubov mode
bμ is a bulk mode if its contribution from the original bulk
modes is larger that a certain threshold εbulk, a condition that
can be expressed as∑

i mod N∈bulk

∣∣U −1
μ,i �i

∣∣2
< εbulk. (B11)

In this paper, we use εbulk = 0.1.

APPENDIX C: SIMULATED ANNEALING:
COMPLEMENTARY RESULTS

1. Amorphous solids used in the simulations

In Fig. 10 we show the squarelike and kagomelike
solids used in the SA calculations, both with N = 400
sites.

2. Simulated annealing in fully converged regimes

In Fig. 11 we revisit the properties obtained with the SA
method in well-known models to get some intuition. For sim-
plicity, in all these cases we use periodic boundary conditions
and NN interactions only, and work in regimes of system size
and annealing time where SA is able to find the ground state
of the system.

Fig. 11(a) shows the difference between the regular square
and kagome lattices with antiferromagnetic NN coupling
−J , with sizes N = 20 × 20 and 3 × 12 × 12, respectively.
In the square lattice, the presence of a long-range ordered
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FIG. 11. Probability distribution of the replica overlap for well-
studied models. (a) Regular square and kagome lattice, with PBC
and N = 20 × 20 and 3 × 12 × 12, respectively. (b) EA models in
the square lattice with bimodal and Gaussian couplings, PBC, and
N = 6 × 6. In both (a) and (b), we show the results for nsteps = 105,
which are equivalent to those obtained for nsteps = 104, signaling SA
convergence.

state implies that P(qαβ

SA) simply consists of two delta func-
tions at qαβ

SA = ±1, as there are only two ground states
related by a global spin flip. Alternatively, the kagome
Ising antiferromagnet model leads to classical spin liquid,
and P(qαβ

SA) exhibits a finite-width peak at qαβ

SA = 0, since
the system remains highly disordered even at T = 0, due
to magnetic frustration. For these systems, SA can eas-
ily find the ground state even at the large system size
under consideration, for moderately slow annealings with
nsteps > 103, due to the simple form of the square lattice
antiferromagnet, and the huge degeneracy of the kagome
liquid.

In Fig. 11(b), we consider the EA model on the square
lattice, with NN couplings randomly selected from a bimodal
(±J) distribution, or a Gaussian distribution with zero mean
and unit variance. Here we consider a small system size of
N = 6 × 6, such that we are able to find the exact ground
states with SA, despite the complex energy landscape of these
systems. For a spin-glass state at finite T , one of the general
features is a nontrivial form of P(qαβ

SA), as it is directly related
to the replica symmetry-breaking picture of this phenomenon.
In the 2D EA model with bimodal couplings we observe
such a nontrivial form of P(qαβ

SA) at T = 0, since the model
has a degenerate ground-state manifold. This also leads to a
finite EA parameter q2

SA = 0.48, the order parameter of this
spin-glass state, which in the thermodynamic limit takes the
value q2

SA ≈ 0.39 [81,104]. For the Gaussian 2D EA model,
the exact ground state is nondegenerate, and therefore P(qαβ

SA)
exhibits a simple two-peak structure at qαβ

SA = ±1, leading to
q2

SA = 1.

FIG. 12. SA results for the bimodal EA model (a), (c) and the
Gaussian EA model (b), (d), both with N = 400. Yellow, purple,
and blue colors are used for nsteps = 105, 106, and 107, respectively.
(a), (b) Final SA energies of the NR = 60 statistically independent
replicas. (c), (d) Probability distribution of the overlap between the
20 lowest-energy replicas.

3. Simulated annealing of Edwards-Anderson models
in the large N case

For larger system sizes than the ones considered in
Fig. 11(b), the EA models typically require large annealing
times in order to find the ground state of the system, due to
the complex low-energy landscape of these models, which
are known to host a spin-glass state at T = 0 [77–82]. To
illustrate this behavior, in Fig. 12 we show the SA results for
both the bimodal and Gaussian EA models, for N = 400. In
this case, we observe that the replica energies [Figs. 12(a) and
12(b)] still depend on the annealing time for nsteps > 106. We
also observe differences between the bimodal and Gaussian
cases. The bimodal EA model seems to have converged, at
least for the lowest-energy replicas, for the largest SA run
with nsteps = 107. This is because such a model has an infinite
ground-state degeneracy in the thermodynamic limit, which
makes it easier for the SA to find one of such solutions. In
contrast, we observe that the Gaussian EA model converges
much slower, since this model has a nondegenerate ground
state (up to a global spin flip). Indeed, without annealed solu-
tions corresponding to excited states, the Gaussian EA model
should exhibit the same two delta functions as in Fig. 11(b).
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