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Fast adiabatic preparation of multisqueezed states by jumping along the path

Chuan Chen ,1 Jian-Yu Lu ,1 Xu-Yang Chen,1,* and Zhen-Yu Wang1,2,†

1Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education),
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter,

School of Physics, South China Normal University, Guangzhou 510006, China
2Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,

Guangdong–Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China

(Received 20 March 2024; accepted 6 June 2024; published 1 July 2024)

Multisqueezed states, also known as generalized squeezed states, are valuable quantum non-Gaussian re-
sources, because they can feature nonclassical properties such as large phase-space Wigner negativities. In
this paper, we introduce a shortcuts to adiabaticity (STA) method for the fast preparation of multisqueezed
states. In contrast to previous STA methods, which rely on the use of counterdiabatic control to suppress
unwanted nonadiabatic effects, our method simplifies the process and accelerates state preparation by selecting
an appropriate sampling along a quantum evolution path. We demonstrate the high fidelity and fast preparation
of multisqueezed states, as well as hybrid entangled states between a bosonic mode and a qubit.
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I. INTRODUCTION

Quantum adiabatic control is a fundamental concept in
quantum mechanics [1–3], which implies that a physical sys-
tem can be kept in its instantaneous eigenstates by applying
a slowly varying control field. This facilitates various robust
preparations of quantum states, such as coherent and squeezed
states [4–7].

However, slow evolution, which is required in the tradi-
tional adiabatic approximation [1], makes the quantum system
more susceptible to decoherence. To reduce the effects of
decoherence, shortcuts to adiabaticity (STA) methods [8–17]
have been developed to accelerate the adiabatic evolution. By
the use of counterdiabatic driving fields to cancel out the nona-
diabatic effects of the original Hamiltonian, STA schemes
achieve the same outcome as traditional quantum adiabatic
methods in a much shorter time.

Despite their great success, these STA methods [8–17] ne-
cessitate counterdiabatic driving, which is not always feasible
or practical, due to the potential requirement of experimen-
tal resources that are hard to access [13–15]. Furthermore,
counterdiabatic control fields also change the eigenstates of
the original Hamiltonian and potentially introduce additional
control errors, which might cause the quantum system to
deviate from the intended evolution path. These factors make
it difficult to design a robust STA method that can withstand
control errors.

To address the problems mentioned above, the shortcut
to adiabaticity by modulation (STAM) method has been
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proposed [18]. STAM is based on the necessary and suf-
ficient condition of quantum adiabatic evolution [19,20]. It
eliminates the nonadiabatic effects by dynamically adjusting
the Hamiltonian parameters, without the need of auxiliary
driving. Therefore, STAM method provides a new approach
to construct parametrized Hamiltonians for adiabatic control
[21,22] and new insights to manipulate quantum systems and
sensing [23,24].

Here we develop a STAM method to prepare multi-
squeezed states [25–30]. Multisqueezed states, the higher-
order generalization of coherent (first order) and squeezed
states (second order) [31–33], exhibit remarkable non-
Gaussian properties for third order and beyond, such as
large phase-space Wigner negativities, interference, and en-
hanced squeezing [25–30]. These unique characteristics have
made them considered as strictly quantifiable and valuable
non-Gaussian resources in quantum information technology
[34–39], despite initial beliefs that they were physically
impossible [25]. However, subsequent theoretical analyses
demonstrated the generation of multisqueezed states via spon-
taneous parametric down-conversion [27,28], with recent
experimental realization for the third order of multisqueezed
states [34].

The paper is organized as follows. In Sec. II, we construct
our STAM method and show superior performance of our
method over traditional adiabatic control in the preparation
of multisqueezed states. In Sec. III, we extend our method
to the preparation of hybrid entangled states. We draw our
conclusions in Sec. IV.

II. PREPARATION OF MULTISQUEEZED STATES

Consider a bosonic system initially prepared in one of the
Fock states, |n〉, which is an eigenstate of the free bosonic
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Hamiltonian (h̄ = 1):

H = ωca†a =
∞∑

n=0

nωc|n〉〈n|, (1)

where a (a†) represents the annihilation (creation) operator
and ωc is the angular frequency of the bosonic mode.

We aim to adiabatically prepare the state |nJ (�)〉 with

|nJ (λ)〉 ≡ e−iGJ λ|n〉 (2)

by the change of the dimensionless parameter λ ≡ λ(t ) which
is a monotonic function with respect to the time t . The param-
eter changes from λ(0) = 0 to λ(T ) = � for a total evolution
time T . We use the Jth-order bosonic interactions

GJ = i[ε(a†)J − ε∗aJ ], (3)

where J is a positive integer and ε is a complex number, for
the preparation of multisqueezed states. Note that the matrix
elements of GJ satisfy

gn,m ≡ 〈n|GJ |m〉 = 〈nJ (λ)|i d

dλ
|mJ (λ)〉. (4)

The Hamiltonian corresponding to multisqueezed states for
adiabatic control reads

HJ (λ) = e−iGJ λHeiGJ λ =
∞∑

n=0

En|nJ (λ)〉〈nJ (λ)|, (5)

where En = nωc.
When J = 1, e−iG1λ is a displacement operator, and it gives

rise to the first-order parametrized Hamiltonian H1(λ) for the
bosonic mode:

H1(λ) = e−iG1λHeiG1λ

= ωca†a − λωc(εa† + ε∗a) + ωc|λε|2, (6)

where the last term ωc|λε|2 can be dropped out.
When J = 2, e−iG2λ corresponds to a squeezing operator

with ε = reiϑ by the use of real parameters r and ϑ . This
transforms the original Hamiltonian into

H2(λ) = e−iG2λHeiG2λ

= ωc[a†a cosh2(2λr) + aa† sinh2(2λr)

− (a2e−iϑ + H.c.) sinh(2λr) cosh(2λr)]. (7)

In traditional quantum adiabatic control, one slowly varies
λ from λ = 0 to �, and in the infinitely slow limit, the initial
state |nJ (0)〉 = |n〉 will evolve to |nJ (�)〉. While this adiabatic
control has a strong robustness against amplitude fluctuation
of the control fields, the long control time limits its appli-
cation, e.g., due to the short coherence time of the quantum
system. Here we employ the STAM method [18], which is
originated from the theory of the necessary and sufficient
condition of quantum adiabatic evolution [19], to prepare the
target state |nJ (�)〉 with unit fidelity in a fast and robust
manner.

According to Ref. [19], the evolution operator U = T
e−i

∫ t
0 HJ dt ′

(where T represents time ordering) driven by HJ

can be decomposed as

U = UadiaUerr, (8)

FIG. 1. Connection of all the Fock states |n〉 and |m〉 with gn,m �=
0 forming a graph for each given value of J . For the GJ given by
Eq. (3), all the states are divided into two groups R (in red color) and
B (in blue color) with only states of distinct groups being connected.
For the Hamiltonian Eq. (5) the energy differences between each pair
of the connected states are Jωc.

where

Uadia(λ) =
∞∑

n=0

e−iϕn |nJ (λ)〉〈nJ (0)| (9)

describes the desired ideal adiabatic evolution. Since gn,n = 0
for all n [see Eqs. (3) and (4)], each ϕn in Eq. (9) is the
accumulated dynamic phase for the nth state. Meanwhile,
using the path ordering P with respect to λ in a way similar to
the time ordering, the nonadiabatic evolution reads

Uerr(λ) = Pei
∫ λ

0 W (λ′ )dλ′
, (10)

where

W (λ) =
∑
n �=m

Fn,m(λ)gn,m|n〉〈m|, (11)

with Fn,m(λ) = ei[ϕn (λ)−ϕm (λ)].
In the following we describe how to choose a functional

form of λ(t ) such that all nonadiabatic effects vanish (i.e.,
Uerr = I).

The quantities gn,m with nonzero values form the graphs in
Fig. 1, where the Fock states |n〉 and |m〉 are either connected
(gn,m �= 0) or disconnected (gn,m = 0). In our case, only

gn+J,n = iε

√
(n + J )!

n!
(12)

and gn,n+J = g∗
n+J,n with n � 0 have nonzero values. An im-

portant property of these graphs is that all the Fock states can
be divided into two groups: group R and group B, illustrated
in red and blue colors in Fig. 1, respectively. Additionally,
only states from different groups can be connected. Therefore,
if we keep the dynamic phases ϕn(λ) = 2kn(λ)π for n ∈ B
while ϕm(λ) = km(λ)π + π for m ∈ R with both kn(λ) and

012601-2



FAST ADIABATIC PREPARATION OF MULTISQUEEZED … PHYSICAL REVIEW A 110, 012601 (2024)

km(λ) being integers along the path, we can write

W (λ) = F (λ)
∑
n �=m

gn,m|n〉〈m|, (13)

with a common F (λ) ∈ {+1,−1}. In this manner, W (λ) at dif-
ferent λ commute and hence Uerr(λ) = ei

∫ λ

0 W (λ′ )dλ′
, where the

path ordering has been removed. All nonadiabatic errors are
eliminated at the end of the evolution time T , i.e., Uerr(�) = I
when ∫ �

0
F (λ)dλ = 0. (14)

We achieve these by applying HJ (λ) [Eq. (5)] at N equally
spaced points of the parameter λ = λk subsequently with k =
1, 2, . . . , N . Here

λk = �

2N
(2k − 1). (15)

The control at each λk has a time duration tp = π/(Jωc) such
that each bosonic control pulse

Pk ≡ e−iHJ (λk )tp (16)

introduces a sign change to F (λ) at λ = λk , because the di-
rectly connected states in Fig. 1 have an energy difference
of Jωc. That is, F (λ) = (−1)k for λ ∈ [λk, λk+1) with λ0 ≡ 0
and λN+1 ≡ �. Since the sequence Eq. (15) satisfies Eq. (14),
we have Uerr(�) = I at the end of the evolution, i.e.,

U (�) = PN PN−1 · · · P2P1 = Uadia(�). (17)

Because
∫ �k

0 F (λ)dλ = 0 for any

�k ≡ k�/N, (k = 0, 1, 2, . . . , N ) (18)

we also achieve the target adiabatic evolution perfectly with-
out any nonadiabatic errors (i.e., U = Uadia) at all these
parameter points λ = �k (k = 1, 2, . . . , N).

The bosonic control pulse Pk [Eq. (16)] for the Gaussian
cases (i.e., J = 1, 2) can be implemented in various systems
[7,40]. For the non-Gaussian cases where J � 3, the realiza-
tion of the control Hamiltonian HJ (λ) is more challenging. A
way to implement Pk is to use the composite pulse

Pk = e−iGJ λk e−iωca†atpeiGJ λk , (19)

where the transformations e−iGJ λk and eiGJ λk can be realized
by the protocol in Ref. [38], e.g., in strongly coupled super-
conducting qubits and microwave resonators [41–44].

Our method avoids the long evolution time required by the
traditional adiabatic methods that use slowly varying Hamil-
tonians. We can generate a Jth-order bosonic quantum state
from the vacuum state |0〉 or other initial states, by applying
the control sequence Eq. (17).

A physical picture of how the multisqueezed state is pre-
pared by our method is provided in Fig. 2 by considering the
case of J = 1 and the initial state being the vacuum state |0〉
(which is a coherent state). As illustrated in Fig. 2, during
each control pulse Pk the state (which remains a coherent
state) rotates clockwise around the point λkε with the radius
|(�k−1 − λk )ε| and an angular frequency ωc in the phase

FIG. 2. STAM method for fast adiabatic control of bosonic
states. (a) Control sequence for the bosonic mode. (b) The evolution
trajectories of the coherent state in the phase space under the control
sequence illustrated in (a).

space as [45]

e−iH1(λk )t |�k−1ε〉 = |	(t )ε〉e−iθ , (20)

where 	(t ) = (�k−1 − λk )e−iωct + λk and the global phase θ

can be neglected. When t = tp, the pulse Pk is complected and
it transforms the coherent state |�k−1ε〉, which corresponds to
the ground state of H1(�k−1), into the ground state of H1(�k ).

To demonstrate that our method is much faster than
traditional techniques for achieving the same outcome, in
Figs. 3 and 4, we compare our STAM method with the tradi-
tional adiabatic control which uses a continuous variation of
parameters, for J = 1 and 2, respectively. The results were
simulated by using QUTIP [46,47]. Figure 3 shows the fidelity
of coherent-state preparation during the control for |�ε =
20〉. Our STAM method provides a much faster and much
higher fidelity than the traditional adiabatic control. In Fig. 3,
a fidelity of 100% can be reached within 0.5 µs by using
our method, while for the traditional adiabatic control, the
time for a fidelity higher than 95% is approximately 5 µs, an
order of magnitude longer than the time used in our method.
Note that our method performs much better than the tradi-
tional adiabatic control when the amplitude � is larger, since
the time required in our method is a fixed pulse duration tp

while the traditional adiabatic control needs more time for a
larger �. Similarly, Fig. 4 demonstrates the advantages of our
STAM method for the preparation of squeezed vacuum state
|n =0, ξ = 3i〉. These results indicate that the STAM method
can achieve the target states in a much shorter time than the
traditional adiabatic control.

The idea of our method can be generalized to other quan-
tum systems. In the following section we demonstrate the
preparation of entangled states for a hybrid quantum system
consisting of a qubit and a bosonic mode using our method.

III. PREPARATION OF HYBRID ENTANGLED STATES

In this section, we consider a hybrid system consisting of a
bosonic mode and a qubit with the Hamiltonian

H ′
1(λ) = ωca†a − λωc(a† + a)σx, (21)

where σx = |e〉〈g| + |g〉〈e| with {|e〉, |g〉} being the qubit
states. This type of interaction could be realized across vari-
ous platforms, including superconducting circuits [40,48–51],
trapped atoms [52–55], and neutral atoms [56,57].
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T

T

(a)

(b)

FIG. 3. Fidelity of the evolved state to the target coherent
state during the control with J = 1. (a) The results of our
STAM method for different number N of control pulses. (b) The
results of the traditional adiabatic control for different total
evolution time T , with a continuous variation of the control pa-
rameter λ(t ) = A exp[−B(t/T − 1)2] − C, where A = 20.377, B =
4,C = 0.376 974. Here the parameters ωc = 2π × 1 MHz, ε = 1,
and � = 20.

Our goal is to prepare a hybrid entangled state of the form

|ψ〉AB = 1√
2

(|α〉A|+〉B ± | − α〉A|−〉B), (22)

where | ± α〉 represent the coherent states of the bosonic mode
and |±〉 = 1√

2
(|e〉 ± |g〉) are the eigenstates of the Pauli ma-

trix σx. This pure state is known as the Schrödinger-cat state
[48–50,52,53,55,58–60].

A. STAM without qubit control

Regarding the states |±〉 of the qubit, the bosonic Hamilto-
nian Eq. (21) becomes

H±(λ) = ωca†a ∓ λωc(a† + a), (23)

which corresponds to Eq. (6) with ε = 1.
Therefore, according to the theory in Sec. II, applying the

Hamiltonian H ′
1(λk ) in Eq. (21) for a time duration tp = π/ωc

would generate the pulse

P′
k = e−iH+(λk )tp |+〉〈+| + e−iH−(λk )tp |−〉〈−|, (24)

which transforms the given initial state |0〉|g〉 to a hybrid
entangled state

|ψ〉 = 1√
2

(|�k〉|+〉 − | − �k〉|−〉). (25)

N

N

N

N

T

T

T

FIG. 4. Fidelity of the evolved state to the target squeezed
state during the control with J = 2. (a) The results of our STAM
method for different number N of control pulses. (b) The results
of the traditional adiabatic control for different total evolution
time T , with a continuous variation of the control parameter
λ(t ) = A exp[−B(t/T − 1)2] − C, where A = −0.509 165, B =
4,C = −0.009 164 97. Here ωc = 2π × 1 MHz, ε = 3i, and
� = −0.5.

For the STAM illustrated in Fig. 5, we achieve the target
hybrid entangled state

|ψtarget〉 = 1√
2

(|�〉|+〉 − | − �〉|−〉). (26)

We first consider the evolution of the von Neumann en-
tanglement entropy [61–63] between the bosonic mode and
the qubit during the STAM control. The von Neumann entan-
glement entropy is calculated as S (ρA) = − Tr[ρA log2(ρA)],
where ρA = TrB(ρAB) and ρB = TrA(ρAB) represent the

FIG. 5. Preparation of the hybrid entangled state by STAM con-
trol on a bosonic mode coupled with a qubit. (a) Control sequence for
bosonic STAM. (b) Evolution of the coherent state under the control
sequence illustrated in (a) is conditional to the qubit states |+〉
and |−〉.
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N

N

N

N

FIG. 6. Entanglement entropy evolution of the hybrid entangled
state using the STAM method illustrated in Fig. 5, for different pulse
number N , � = 2, and ωc = 2π × 1 MHz.

reduced density matrices for each partition [61–63]. As
Eq. (22), here we refer to the bosonic mode (qubit) as the
subsystem A (B). For the given final state |ψtarget〉 with � = 2
in Eq. (26), Fig. 6 shows the evolution of the von Neu-
mann entanglement entropy. The entanglement between the
bosonic mode and the qubit can reach its maximum in a
short time.

In Fig. 7 we further demonstrate the fidelity between the
target state, Eq. (26), and the prepared state using the STAM
sequence in Fig. 5. The simulated results show that our STAM
sequence gives a high fidelity of the state preparation. The
robustness of the sequence against pulse errors is better for a
larger number N of pulses.

FIG. 7. Fidelity of hybrid entangled state preparation via the
STAM control illustrated in Fig. 5 for various numbers N of bosonic
control pulses when there are static relative fluctuations to the
ideal sequence parameters λk [Eq. (15)] and the ideal frequency
ωc = 2π × 100 MHz. Here � = 2.

(a)

(b)

FIG. 8. Large hybrid entangled state realized by synchronized
STAM control and qubit control. (a) Bosonic STAM and qubit con-
trol sequence. (b) The control sequence illustrated in (a) amplifies
the trajectories of the coherent state evolution.

B. STAM with qubit control

We note that the STAM sequence in Fig. 5 restricts the
possibility of preparing coherent states with an arbitrarily
large �, because of the limited values of λ in the Hamiltonian.
To address this challenge, we apply a π pulse on the qubit
after each STAM pulse on the bosonic mode [see Fig. 8(a)],
following a similar idea in Ref. [55]. Each qubit π pulse
swaps the qubit states |+〉 and |−〉 and hence realizes the
transformation σx → −σx. After the application of k qubit π

pulses, the Hamiltonian Eq. (21) becomes

HI = ωca†a − (−1)kλωc(a† + a)σx. (27)

As illustrated in Fig. 8, each qubit π pulse swaps the qubit
states |+〉 and |−〉 and hence the rotating centers of the con-
ditional bosonic evolution. Consequently, the achieved value
� = 2Nλ of the target state [Eq. (26)] can be arbitrarily large
by increasing the number of bosonic pulses N while keeping
parameter fixed, i.e., λk ≡ λ (see Fig. 8). To enhance the
robustness of the control on the qubit, we apply the qubit
control Hamiltonian Hctrl = (−1)k �

2 σz for the kth qubit π

pulse, where the alternation of the sign mitigates potential
amplitude fluctuation of the control on the qubit.

Figure 9 illustrates the simulated fidelity between the pre-
pared state with the target states |ψtarget〉 [Eq. (26)] using the
sequence in Fig. 8. The results show that one can reliably
prepare the target state |ψtarget〉 with increasing values of
� = 2Nλ. The state fidelity remains very high even with a
relatively large static error in the qubit control � → (1 + δ)�.
Even when N = 50 and the error reaches δ = ±25%, the
fidelity still remains above 90%.

IV. CONCLUSION AND OUTLOOK

In summary, we have proposed a STAM method to greatly
speed up the adiabatic preparation of the multisqueezed states
of a bosonic mode as well as the entanglement of these
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FIG. 9. Fidelity of hybrid entangled state preparation via the
STAM with qubit control illustrated in Fig. 8 as a function of control
error δ for various numbers N of bosonic pulses. The control ampli-
tude (1 + δ)� of the qubit control has a static fluctuation with respect
to the ideal one � = 2π × 50 MHz. Here ωc = 2π × 100 kHz and
λ = 0.05.

states with a qubit. Our STAM method achieves the adi-
abatic speedup by dynamically adjusting the Hamiltonian
parameters such that the nonadiabatic effects are coherently

eliminated. Using our method, the target multisqueezed states
can be prepared in a short finite time, e.g., less than 10%
of the time required in the traditional adiabatic control as
demonstrated by our numerical simulations. For the case of
Schrödinger-cat state preparation in a hybrid system of a
qubit and a bosonic mode, we show linear increase of the
amplitude of the Schrödinger-cat state with the number of
pulses. This enables fast preparation of arbitrarily high am-
plitude entangled multisqueezed states. The STAM method
has some intrinsic robustness against some kinds of errors.
The robustness of our method could be further enhanced by
numerical optimization methods such as the gradient ascent
pulse engineering algorithm [64,65] and other advanced tech-
niques such as enhanced shortcuts to adiabaticity methods as
discussed in recent research [66–69].
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