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Probing quantum phase transitions via quantum speed limits
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The quantum speed limit (QSL) is the lower bound on the time required for a state to evolve to a desired
final state under a given Hamiltonian evolution. Three well-known QSLs exist: the Mandelstam-Tamm (MT),
Margolus-Levitin (ML), and dual ML (ML*) bounds. We consider one-dimensional systems that undergo a
delocalization-localization transition in the presence of quasiperiodic and linear potential. By performing sudden
quenches across the phase boundary, we find that the exact dynamics gets captured very well by QSLs. We show
that the MT bound is always tighter in the short-time limit for any arbitrary state, while the optimal bound for the
time of orthogonalization (time required to reach the orthogonal state) depends on the choice of the initial state.
Further, for extreme quenches, we prove that the MT bound remains tighter for the time of orthogonalization and
it can qualitatively describe the nonanalyticity in free energy for the dynamical quantum phase transition. We
also demonstrate that the localization-delocalization transition point can be exactly identified from QSLs for two
of the models of noninteracting fermions. Further, we also show that even for interacting systems, an ergodic to
many-body localization transition can also be efficiently predicted from QSLs, whose computation cost is much
less than other diagnostic tools.
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I. INTRODUCTION

The quantum speed limit (QSL) is a fundamental limit in
quantum mechanics on the rate at which any quantum sys-
tem evolves under a dynamical process [1–4]. It essentially
provides a bound on the minimal time required to transport
a system from its initial state to a final state under unitary
evolution. Apart from this theoretical interest in understand-
ing the basic features of a quantum system, the quantum
speed limit also remains an integral part of recent advances in
quantum engineering to investigate how quickly a transition
can take place between distinguishable states [5,6]. In other
practical examples, such as to estimate the speed of quan-
tum simulations involving quantum information processing
[7], quantum computation, and quantum metrology [8–10];
identifying decoherence time [8,11,12]; experimentally mea-
suring the environment-assisted speedup [13]; and even in
the context of the machine learning [14], the QSL plays a
vital role.

The first QSL was proposed by Mandelstam and Tamm
(MT), who realized that fundamentally the time-energy uncer-
tainty relation corresponds to the intrinsic timescale of unitary
evolution in quantum mechanics [2]. This relation restricts the
minimal time τMT for a unitary system to propagate between
two states that depend on its energy spread. On the other hand,
the time limit τML was derived by Margolus and Levitin (ML)
[15], which depends on the mean energy measured relative to
the energy of the the ground state. Very recently, a QSL was
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proposed which is referred to as the dual ML bound (ML∗)
[16]. This bound is essentially equivalent to the ML bound
in time-reversed dynamics. While Levitin and Toffoli unified
the MT and ML bounds [17], with the addition of the ML∗

bound all three QSLs can be unified and the lower bound for
the time required for arriving at an orthogonal state (time of
orthogonalization) t⊥ can be written as

t⊥ � τQSL = max{τMT, τML, τML∗ }. (1)

The phase transition in many-body systems is a most illus-
trious phenomenon. In equilibrium many-body systems, it is
witnessed as the nonanalytical behavior of its partition func-
tion at the thermodynamic limit [18,19]. Motivated by this,
the dynamical quantum phase transition (DQPT) is proposed
as nonanalytical behavior in the time expansion of the overlap
amplitude of the time-evolved initial quantum state [20–23].
The DQPT is characterized by the occurrence of zeros in
the Loschmidt echo L at specific critical times t∗

n [20,24,25],
with the Loschmidt echo defined by L(t ) = |〈ψi|e−iHf t |ψi〉|2,
where |ψi〉 is the ground state of the prequench Hamiltonian
Hi and Hf is the postquench Hamiltonian. These zeros of
L correspond to the nonanalytic behaviors of the dynamical
free energy f (t ) = − 1

N lnL(t ) at those critical times [26]. In
general, exact zeros of L or nonanalyticities of the dynamical
free energy only occur as the system size N approaches the
thermodynamic limit; however, recent studies have shown that
they can be observed for finite systems as well [27,28]. The
critical time at which the first exact zeros of L occurs, i.e., t∗

1 ,
can be identified as the minimum time required for an initial
state to reach an orthogonal state under the time evolution.
From the definition, it is obvious that t∗

1 � τQSL.
The DQPT has been mostly observed in systems that go

through an underlying equilibrium phase transition and it is a
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generic feature of quantum quenches across quantum critical
points. It also has been observed in topological [29,30] and
Floquet systems [31,32]. The DQPT has also been realized in
experiments [33,34].

Our main goal here is to investigate the QSL for a
Hamiltonian system that can be probed in experiments, e.g.
in cold-atom experiments. Given that the systems that show
the signature of the DQPT have the unique feature of having
zeros in the time evolution of L, they become a natural choice
to study QSLs for the time of orthogonalization. In this work
we focus on systems that display the DQPT while quenching
across the localization-delocalization transition point [35–37].
The dynamical regimes of applicability of particular QSLs
have been studied for few-level systems (qutrits) [16], and it
is important to investigate them in experimentally realizable
physical many-level systems.

The aim of our study is twofold: (i) to investi-
gate which one of the QSLs can more efficiently cap-
ture short-time dynamics and the nonanalytic nature of
the dynamical free energy and (ii) to determine if the
localization-delocalization transition point can be identified
using QSLs instead of studying the exact dynamics of the
system. We attempt to answer these questions by study-
ing two one-dimensional noninteracting models, specifically,
the Aubry-Andre (AA) model [38] and the Wannier-Stark
model, which supports the localization transition [39,40],
and the one-dimensional interacting many-body Hamiltonian,
which shows the transition from the ergodic phase to the
many-body localized (MBL) phase [41].

The paper is organized as follows. In Sec. II we discuss
the preliminaries, which includes models we study in this
work and also different QSLs. Analytical results for extreme
quenches are presented in Sec. III, followed by numerical
results in Sec. IV. We summarize in Sec. V.

II. PRELIMINARIES

Here we briefly discuss the models investigated in this
paper and also define the different QSLs we use extensively
to compare with exact dynamics in the subsequent sections.

A. Model

We study a system that is described by the Hamiltonian on
a one-dimensional lattice,

H (J,�) = −J
N∑

j=1

(c†
j+1c j + H.c.) + �

N∑
j=1

ε jn j, (2)

where c j and c†
j are the fermionic annihilation and creation

operators, respectively, n j = c†
j c j is the number operator. J

is the hopping strength, and � is the strength of the on-site
potential, in units of h̄. We consider two types of on-site po-
tentials: an incommensurate potential εn = cos(2παn), with α

an irrational number, and a linear potential εn = n. The former
is known as the AA model and shows a localization transition
at � = 2J [38]. In the case of the latter, any infinitesimal
value of � is sufficient to localize all the states, a phenomenon
known as Wannier-Stark localization [39,40]. Both of these
Hamiltonians have been realized in experiments [42–48].

Motivated by the experimental setup, we mostly focus on a
quench from the localized phase to the delocalized phase. Ini-
tially, we prepare our system as an eigenstate |ψ0〉 of H (�i ),
with �i very large and keeping J constant throughout the pro-
cess. Next we quench the system to the delocalized phase and
study the time evolution of the Loschmidt echo L(t ). Later
in the paper we investigate the quench from the delocalized
phase to the localized phase as well. For all our numerical
results presented in the paper, we choose α = (

√
5 − 1)/2,

open boundary conditions, and J = 1.
We also test our prediction for the interacting many-body

systems of the fermions, and the Hamiltonian is given by [49]

HMBL(J,�,V ) = − J
N∑

j=1

(c†
j+1c j + H.c.) + �

N∑
j=1

ε jn j

+ V
N∑

j=1

n jn j+1, (3)

where V is the nearest-neighbor interaction strength between
the fermions, in units of h̄. In the absence of the on-site poten-
tial, i.e., � = 0, the Hamiltonian is integrable and the model
is solvable within the Bethe-ansatz framework [50]. How-
ever, for nonzero �, there are no analytical solutions for this
Hamiltonian, forcing us to use only numerical methodology.
In our analysis we focus on the quasirandom on-site po-
tential ε j = cos(2πα j + φ) with some phase factor φ. This
Hamiltonian shows an ergodic to many-body localization
phase transition [41] as the strength of the on-site potential
increases.

B. Quantum speed limits

Three QSLs bounds have already been introduced in the In-
troduction, where the consideration was that the time-evolved
state is orthogonal to the initial state |ψ0〉. After a sud-
den quench is performed using a postquench Hamiltonian
H (� f ), QSLs can be derived for any arbitrary state that is
not necessarily orthogonal to |ψ0〉. Three QSL bounds for any
time-evolved state |ψT 〉 are given by

TMT = 1

�H
arccos(|〈ψ0|ψT 〉|),

TML = 2

π (〈H〉 − E0)
[arccos(|〈ψ0|ψT 〉|)]2,

TML∗ = 2

π (Emax − 〈H〉)
[arccos(|〈ψ0|ψT 〉|)]2. (4)

The average 〈H (� f )〉 and uncertainty �H =√〈H2(� f )〉 − 〈H (� f )〉2 are computed with respect to
the initial state. Here E0 and Emax are the ground state and the
highest excited state energy of the postquench Hamiltonian
H (� f ). In the subsequent sections, we compare the results
obtained using the exact dynamics and different QSLs, using
the above expressions extensively.

III. ANALYTICAL RESULTS FOR EXTREME QUENCHES

For a general quench �i → � f across the phase bound-
ary, computing QSLs analytically is not that straightforward.
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However, for extreme quenches, i.e., �i → 0 to � f → ∞
(delocalized to localized) or �i → ∞ to � f → 0 (localized
to delocalized), QSLs can be obtained analytically. Since we
are quenching across the phase boundary, the final state is
expected to be orthogonal to the initial state for the AA and
Wannier-Stark models [35,37]. In this section we focus on
such cases and demonstrate that the MT bound is always
tighter for extreme quenches; it can also show a clear signature
of the dynamical quantum phase transition.

Consider the Hamiltonian H (J,� = 0), which is exactly
solvable, with the eigenstate and eigenenergy given by

|k〉 = 1

N

N∑
n=1

eiknc†
n|0〉, Ek = 2J cos(ka), (5)

where k = 2π (l−N/2)
aN ∈ (−π

a , π
a ] (l = 1, . . . , N) lies in the first

Brillouin zone. These eigenstates are delocalized plane waves.
Similarly, the Hamiltonian H (J,� → ∞) has the eigenstate
and eigenenergy

|m〉 =
N∑

n=1

δnmc†
n|0〉, Em = �εm, (6)

respectively. These states are localized. Throughout this paper
we refer to |k〉 as a delocalized state and |m〉 as a localized
state in an extreme quench regime. Also, for analytical cal-
culations we keep J constant, without mentioning it in the
further calculation.

A. Quench from the localized phase to the delocalized phase

1. The AA model

First, we focus on the AA model and consider the case
where the initial state is an eigenstate of the Hamiltonian
H (�i → ∞), hence localized by definition. This state is
quenched by the Hamiltonian H (� f = 0). We set J to be
constant throughout the quench. We study which bound is
tighter for such a quench for the time of orthogonalization and
also compare the QSL bound with the results obtained from
the exact dynamics. To calculate the ML and MT bounds,
we begin by calculating the expectation of the postquench
Hamiltonian with respect to the initial state

〈H (� f = 0)〉 = 〈0|cmHc†
m|0〉 = 0. (7)

The expectation value is zero because diagonal elements of
the Hamiltonian are zero. Similarly, the expectation value of
the square of the Hamiltonian reads

〈H2(� f = 0)〉 = 2J2. (8)

The details of the calculations are included in Appendix A.
The above results are true for all m except m = 1 and
m = N . Hence, the uncertainty in energy of the postquench
Hamiltonian �H =

√
〈H2〉 − 〈H〉2 = √

2J . By knowing the
ground-state energy E0 = −2J of the quench Hamiltonian,
the ML and MT bounds for the time of orthogonalization can
be written as

τ∞→0
ML = π

2(〈H〉 − E0)
= π

4J
,

τ∞→0
MT = π

2�H
= π

2
√

2J
, (9)

from which it is obvious that τMT > τML. Hence, for an ex-
treme quench, the MT bound is always tighter than the ML
bound.

Next, to understand whether τMT is a good approximation
to the orthogonalization time t⊥, we turn our attention to-
wards deriving the results for the exact time evolution of the
Loschmidt amplitude G(t ), which reads [35]

G(t ) = 〈m|e−iH (� f )t |m〉 =
N∑

k=1

〈m|−iH (� f )t |k〉〈k|m〉

=
N∑

k=1

e−2iJt cos(ka)|〈m|k〉|2 = 1

N

N∑
k=1

e−2iJ cos(ka)t ,

where k is distributed from −π/a to π/a. Hence, for a large
system size N → ∞, the summation can be replaced by an
integration,

G(t ) = a

2π

∫ π/a

−π/a
e−2iJ cos(ka)t dk = J0(2Jt ),

where J0 is the zeroth-order Bessel function, whose zeros
occur at

t

α = xα

2J
, (10)

where xα are roots of the Bessel function. From Eqs. (10) and
(9) we find that the times of orthogonalization obtained from
the QSL bound as well as from the exact dynamics are both
independent of � f . The exact first zero of L(t ) occurs at t∗

1 =
1.2024/J � τMT = 1.1072/J . Hence, the MT bound serves as
a very good approximation for the exact result.

2. Wannier-Stark model

For the Wannier-Stark model, both the ML bound and
the MT bound give the same result as that obtained
for the AA model, as the eigenstates of the prequench
Hamiltonian and the postquench Hamiltonian are the same
for both models for extreme quenches. Also, the dual ML
bound for the Wannier-Stark model is not defined, as this
model does not have an upper spectral bound to its energy. The
QSL bounds for the Wannier-Stark model are distinguished by
a tilde:

τ̃∞→0
ML = π

2(〈H〉 − E0)
= π

4J
,

τ̃∞→0
MT = π

2�H
= π

2
√

2J
. (11)

The orthogonalization time obtained from the exact dynamics
is also the same as before, i.e., t∗

α = xα/2J .

B. Quench from the delocalized phase to the localized phase

1. The AA model

Here we consider the initial state as the eigenstate of the
Hamiltonian H (�i = 0) and the postquench Hamiltonian is
the AA Hamiltonian H (� f → ∞). We compute 〈k|H |k〉 and
〈k|H2|k〉 for the postquench Hamiltonian H (� f → ∞). In
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the limit N → ∞, they are given by

〈H (� f → ∞)〉 = 1

N

N∑
n,p=1

e−ink〈0|cnHc†
p|0〉eipk

= � f

N

N∑
n=1

cos(2παn) ≈ 0 (12)

and

〈H2(� f → ∞)〉 = �2
f

N

N∑
n=1

cos2(2παn) ≈ �2
f

2
. (13)

The energy uncertainty �H = � f /
√

2 and the ground-
state energy of the postquench Hamiltonian is E0 = −� f .
The QSL bound for the time of orthogonalization can be
written as

τ 0→∞
ML = π

2� f
,

τ 0→∞
MT =

√
2π

2� f
, (14)

which automatically implies that τMT > τML. Once again, to
find out how tight the QSL bound is in comparison to the
exact dynamics, we turn our attention to the exact results, and
the time evolution of the exact Loschmidt amplitude can be
written as [35]

G(t ) = 〈k|e−iH (� f )t |k〉 =
N∑

m=1

〈k|e−iH (� f )t |m〉〈m|k〉

=
N∑

m=1

e−i� f cos(2παm)t |〈m|k〉|2.

Now from Eqs. (5) and (6), |〈m|k〉|2 = 1/N . Hence,

G(t ) = 1

N

N∑
m=1

e−i� f cos(2παm)t .

For an irrational number α, the phase 2παm is distributed
between −π and π . In the N → ∞ limit, the summation can
be converted into an integral and

G(t ) ≈ 1

2π

∫ π

−π

e−i� f cos(θ )t dθ = J0(� f t ).

The zeros of the Bessel function J0(� f t ) correspond to the
zeros of the Loschmidt amplitude, which are given by

t∗
α = xα

� f
. (15)

The first zero is t∗
1 = 2.4048/� f > τMT = 2.2214/� f , and

interestingly both the exact result and the MT bound are
inversely proportional to � f and they are reasonably close to
each other.

2. Wannier-Stark model

Unlike the previous scenario, QSL bounds for the extreme
quench from the delocalized phase to the localized phase give
rise to different results for the Wannier-Stark model compared

to the AA model. For the Wannier-Stark model, 〈H (� f →
∞)〉 and 〈H2(� f → ∞)〉 are given by

〈H (� f → ∞)〉 = 1

N

N∑
n,p=1

e−ink〈0|cnHc†
p|0〉eipk

= � f

N

N∑
n=1

n = � f
(N + 1)

2
,

〈H2(� f → ∞)〉 = �2
f

N

N∑
n=1

n2 = �2
f

(N + 1)(2N + 1)

6
.

(16)

The uncertainty �H = � f

√
N2−1

2 . Noting that the ground-
state energy of H (� f → ∞) is zero, the QSL bound can be
written as

τ̃ 0→∞
ML = π

� f (N + 1)
,

τ̃ 0→∞
MT =

√
3π

� f

√
N2 − 1

. (17)

Once again, it is obvious that τ̃MT > τ̃ML, which automatically
makes MT a tighter bound. Now to compare τ̃MT with the
zeros of the exact Loschmidt amplitude, we compute G(t ), i.e.,

G(t ) = 〈k|e−iH (� f )t |k〉 =
N∑

m=1

〈k|e−iH (� f )t |m〉〈m|k〉

=
N∑

m=1

e−i� f mt |〈m|k〉|2 = 1

N

N∑
m=1

e−im� f t .

With some simplifications, we can end up with L(t ) =
|sin(x)/x|2, where x = � f tN/2. The L(t ) has zeros at t∗

n =
2πn
� f N . Hence, for a large but finite value of N , the first zero is

given by t∗
1 = 2π

� f N > τ̃MT. The important thing to note here is
that the orthogonalization time is inversely proportional to the
system size N , whereas for the AA model, the orthogonaliza-
tion time was independent of N . In the thermodynamic limit
N → ∞, both t∗

1 → 0 and τ̃MT → 0.

C. Detection of the transition point

Our main finding from the preceding section was that,
for the extreme quenches, τQSL = τMT, i.e., the MT bound is
always tighter for the time of orthogonalization; we also ob-
tained the exact expression for τ 0→∞

MT and τ∞→0
MT . For the AA

model, interestingly, it turns out that τ 0→∞
MT = τ∞→0

MT when
� f = 2J , which is also the transition point for this model.

If one were to draw a conclusion from the AA model that at
the transition point τQSL should be the same for two opposite
extreme quenches, for the Wannier-Stark model, once again,
one would expect that τ̃ 0→∞

MT = τ̃∞→0
MT at the boundary of the

phase transition. This implies � f =
√

24
N2−1 J , and the transi-

tion point for the Wannier-Stark model should scale to zero
as N−1 in the N → ∞ limit. Indeed, it is well known that the
transition point approaches zero for the Wannier-Stark model
in the thermodynamic limit [37].
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FIG. 1. Region of the best bounds. Each bound is plotted as a
function of energy for (a) � f = 0, (b) � f = 1, and (c) � f = 2, with
�i = 1000 and system size N = 100. (d) Plot of rescaled �H vs 〈H〉.
The Hamiltonian’s ground state is already set to zero H = H (�i ) −
E0. The initial states are taken as eigenstates of H (�i = 1000). The
quench Hamiltonian H (� f ) is taken for different � f , varying from
0 to 10.

IV. NUMERICAL RESULTS

Earlier, we focused on the extreme quenches. Here we
show the numerical results for �i and � f , both of which
are nonzero but finite. First, we discuss the quench from the
localized phase to the delocalized phase. Then we show the
results corresponding to the delocalized to localized quench.
Finally, we demonstrate how the τQSL can be used to detect
the transition point for the AA and the Wannier-Stark Hamil-
tonian, along with the many-body Hamiltonian. Recall that for
all numerical results we set J = 1.

A. Quench from the localized phase to the delocalized phase

We focus on the AA model and consider the situation
where the initial state is still a highly localized eigenstate
of H (�i � 2), and � f < 2. It was shown in the preceding
section that for � f = 0, the MT bound corresponding to the
orthogonal time is tighter for any eigenstates of H (�i � 2).
From Fig. 1 it is clear that for � f �= 0 the region of best
bounds depends on the initial state, i.e., the energy eigenstate
of H (�i ). Figures 1(b) and 1(c) show that for the high-energy
and low-energy states, the ML∗ and ML bounds, respectively,
are tighter, whereas for the intermediate-energy states the MT
bound remains tighter. As expected, with decreasing � f , more
and more states start respecting the MT bound, and in the limit
� f → 0, the MT bound becomes tighter for all the states.

When this bound was derived, we excluded the state cor-
responding to the first and last lattice points. For the first and
last lattice points the MT bound can be written as τMT = π/2J
(see Appendix A). Bounds at these points are always greater
than the other points. Hence, in Fig. 1 we can see that those
two points of the MT bound are always higher than the rest of
the values. Note that this is simply the boundary effect, which
will go away if we use periodic boundary conditions instead of
open boundary conditions. The results shown in Fig. 1 can be
well understood by investigating the energy expectation value
and the uncertainty in energy for the postquench Hamiltonian.
Figure 1(d) gives an idea about regimes in which the bound
becomes tighter (note that we have subtracted the ground-state
energy E0 from the energy expectation 〈H〉). The states for
which �H � 〈H〉 correspond to the green-shaded ML-bound
regime. Similarly, states with �H � Emax − 〈H〉 belong to
the red shaded ML∗-bound regime. The orange-shaded re-
gion corresponds to the MT bound. The upper limit of all
these bounds is further constrained by Popoviciu’s inequality
[16,51], i.e.,

�H �
√

〈H〉(Emax − 〈H〉). (18)

From this inequality, �H becomes maximum at 〈H〉 =
Emax/2, that is, �H = Emax/2. At the intersection of the
�H = 〈H〉 and �H = Emax − 〈H〉 lines, all three bounds will
coincide [16]. For our Hamiltonian H , the �H never saturates
the Popoviciu’s inequality. Hence all three bounds never coin-
cide with each other.

While so far we have mostly focused on the bound cor-
responding to the time of orthogonalization τQSL, here we
redirect our attention to a time window [0, T ], where T <

τQSL. Figure 2 shows not only that the MT bound is tighter for
the midspectrum states, but also that the differences between
the exact dynamics and the bound are quite small. On the other
hand, for low-energy states (and also for high-energy states)
the bound is not that close to the exact result. Moreover, in
Fig. 2(c) we study a particular case where the initial state and
the postquench Hamiltonian are chosen in such a way that for
some time the MT bound is tighter, followed by a crossover,
and finally the ML bound becomes tighter.

The fact that in the initial time the MT bound is tighter
can be well understood from Eq. (4) Inverting Eq. (4) the
Loschmidt echoes corresponding to the bounds can be cal-
culated as

L(tML) = cos2

(√
π〈H〉tML

2

)
,

L(tMT) = cos2(�HtMT).

(19)

At the crossover point both bounds are equal, i.e., �HTcross =√
π〈H〉Tcross

2 ; (tML = tMT = Tcross). Hence, we get the crossover
time as

Tcross = π〈H〉
2(�H )2

. (20)

Also, the crossover takes place only if �H � 〈H〉. Includ-
ing this additional constrain, from Eq. (19) it can be seen
that L(tML) < L(tMT) ∀ t < Tcross. This also can be observed
in Fig. 2.
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FIG. 2. State evolution of the system in different dynami-
cal regimes, with energy equal to (a) −4.61, (b) −60.09, and
(c) −100.00. From Eq. (4) the Loschmidt echo is plotted as a
function of time as well as for exact state evolution. The initial
Hamiltonian is taken to be H (�i = 100) and the quench Hamiltonian
is taken as H (� f = 1.5). The system size is N = 100. (a) The MT
bound dominates and the orthogonal time of the MT bound and the
exact time evolution are quite close. (b) The time of orthogonaliza-
tion of exact evolution is at t⊥ = 5.4. In this case the ML and MT
bounds coincide. (c) The time of orthogonalization of exact evolution
is t⊥ = 33.9. The ML bound dominates in this energy state.

Next we repeat our argument for the Wannier-Stark model.
As expected, the QSL in the Wannier-Stark model shows
behavior similar to that of the AA model. The MT bound
dominates midspectrum, while the ML bound dominates for
low-energy states. Even the crossover is observed in Fig. 3,
which was also observed in the case of the AA model.

B. Quench from the delocalized phase to the localized phase

Here we concentrate on the quench from the delocalized
phase to the localized phase. First, we consider the AA model.
Similar to the results in the preceding section, once again
we find that the τQSL for low- and high-energy states are
obeyed by the ML and ML∗ bounds, respectively, whereas
the midspectrum states are MT bounds. As we tend towards
the extreme quench regime by increasing � f , the MT bound
starts dominating the entire spectrum. Given these results are
very similar to those demonstrated in Fig. 1, we do not discuss
them explicitly in this section anymore. We choose to analyze
in detail how well the bound depicts the exact evolution and
the zeros in Loschmidt echo while quenching across the phase
boundary. In Fig. 4 we show the results for � f > 2 for the
midspectrum states. It can be seen that the MT bound matches
with the exact evolution remarkably well until some time
and then it starts to deviate from the exact evolution. The

FIG. 3. State evolution of the system for different energy regimes
for the Wannier-Stark model, i.e., energy equal to (a) 4900, (b) 3000,
and (c) −0.01. Analogously to Fig. 2, we plot the Loschmidt echo
from Eq. (4) and from numerical simulation. The initial state is
taken to be the eigenstate of the Hamiltonian H (�i = 100) and
this state is quenched by the Hamiltonian H (� f = 1.5). The system
size is N = 100.

FIG. 4. Comparison of the bound with exact results for an in-
commensurate lattice. We used Eq. (4) to obtain the Loschmidt echo.
The QSL remains consistent with the change in � f : (a) � f = 2.5,
(b) � f = 5, and (c) � f = 10. The QSL is the maximum of all three
bounds. Here �i = 0 and the system size N = 100. (d) The first zero
in the Loschmidt echo and the QSL at orthogonal time for different
� f values.
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FIG. 5. Comparison of the bound with exact results for the
Wannier-Stark model. The QSL bound is compared with the exact
dynamics for (a) � f = 0.5, (b) � f = 1.5, and (c) � f = 3, with
�i = 0 and system size N = 100. (d) First zero in the Loschmidt
echo vs � f . We have used Eq. (4) to obtain L(t ).

orthogonalization time of the bound is still quite close to the
exact orthogonal time t⊥.

Figure 4(d) also shows that the orthogonalization times ob-
tained from both the bound and exact dynamics are inversely
proportional to � f . The Wannier-Stark model also shows the
same behavior. In the case of the Wannier-Stark model, all
states are localized for � f > 0. In Fig. 5 one can see that the
Loschmidt echo reaches zero much faster compared to the AA
model. Once again, like the AA model, the MT bound matches
with the exact evolution remarkably. The orthogonalization
time of the bound is reasonably close to the exact orthogo-
nal time, both of which scale as �−1

f . This result confirms
that indeed the QSL can mimic the exact dynamics of L(t )
reasonably well for both models.

C. Detection of the transition point from the QSL

Here the goal is to identify the transition point using the
QSL. Motivated by the analytical results for the extreme
quench, we study the variation of τQSL [see Eq. (1)] with � f .
We consider two situations: �i = 0 and �i � 2. We find that
in a τQSL vs � f plot for the AA model (Fig. 6), two curves
(one corresponding to �i = 0 and the other to �i = 10 000)
intersect at � f = 2 for all initial states. Note that � = 2 also
corresponds to the localization-delocalization transition point
of the AA model. This result does not depend on N as long N
is reasonably large.

In contrast to the AA model, for the Wannier-Stark
Hamiltonian, in the N → ∞ limit, any infinitesimal � is
sufficient to localize all eigenstates. However, for finite N ,
one can have a localization-delocalization phase transition for

FIG. 6. Plot of τQSL vs � f for an incommensurate lattice for
different energy eigenkets of the Hamiltonian H (�i = 0): (a) −2.00,
(b) −1.41, and (c) 0.00. Here τQSL is the orthogonalization time of
the maximum of all three bounds (4). The system size is taken to be
N = 1000.

finite �. By following the same procedure as before, we plot
in Fig. 7(a) τQSL vs � f ; the two curves (one corresponding
to �i = 0 and the other to �i = 10 000) intersect at � f =
0.004 899 for N = 1000.

This transition point depends on the system size N . In
Fig. 7(b) we plot the phase transition point as a function
of system size. From the figure it is apparent that as the
system size increases, the transition point heads towards zero
as N−1. Our finding is consistent with the results obtained
from normalized participation ratio calculations as well (see
Appendix B).

FIG. 7. Transition point for the Wannier-Stark model. (a) Tran-
sition point for system size N = 1000. (b) A log-log plot of the
variation of the transition point with system size N .
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FIG. 8. Plot of average level-spacing characteristics vs on-site
potential �. Lattice size is taken to be N = 12 with half filling.

D. Detection of the MBL transition point from the QSL

Finally, we consider the interacting system to test our pre-
diction to its full potential. We focus on the Hamiltonian HMBL

(3). It is well established that for a fixed interaction strength
V , as we increase the strength of the incommensurate potential
�, the system undergoes an ergodic to many-body localization
transition. As we already discussed earlier, in the absence of
an interaction, the delocalization-localization transition point
corresponds to � = 2J , but with the increase of interaction
strength, one needs a larger value of � to see the transition
[49]. Previously, in Sec. IV C, we demonstrated that the QSL
can successfully predict the � = 2J transition point for a
noninteracting system. Now the question arises whether the
QSL can also capture the MBL transition point.

First, we use the level-spacing characteristics to detect
the MBL transitions. The level statistics of the many-body
Hamiltonian vary from Wigner-Dyson statistics (ergodic
phase) to Poissonian statistics (many-body localized
phase)[49]. If the energies of the Hamiltonian are written in
ascending order E1, E2, . . . , En, the gap between successive
energies is given as δn = En+1 − En. Then the correlation
between successive gaps in the spectrum can be written as

rn = min(δn, δn+1)

max(δn, δn+1)
. (21)

We are mainly interested in the average correlation
〈rn〉. For Poissonian statistics, we have 〈rn〉 ≈ 0.386, and
for Wigner-Dyson statistics, 〈rn〉 ≈ 0.5295. Thus, when we
vary � in the Hamiltonian HMBL (for a fixed V ), we ex-
pect the value of the r parameter to decrease from 0.529
(Wigner-Dyson statistics) to 0.386 (Poissonian statistics) with
increasing � as we approach the ergodic to MBL phase
transition. From Fig. 8 we see that for V = 4, 4.5, 5, after
some critical value of �c, 〈rn〉 reaches close to 0.529 and
then approaches 0.386 with increasing � for N = 12. We
emphasize, though, that one would expect any tiny amount of
� to ensure Wigner-Dyson statistics, given the Hamiltonian

FIG. 9. Detection of many-body localization transitions from the
QSL and level-spacing characteristics. We have taken lattice site N =
12 with half filling.

HMBL is nonintegrable; however, it has been shown that for
the finite-size system, one needs a critical value of the inte-
grability breaking parameter to see Wigner-Dyson statistics in
level spacing. This critical value of the integrability parameter
approaches zero in the thermodynamic limit N → ∞ [52,53].
It has been argued in Ref. [54] that at the MBL transition
point, the value of the r parameter is expected to be close to
0.45 for N = 12; we use that as a diagnostic tool to identify
the transition point for different values of V (see Fig. 8).

Next we focus on finding the MBL transition point from the
QSL. First, we take the initial state of the system as the ground
state of the prequench Hamiltonian HMBL(J = 1,�i = 0,V )
and find the QSL as a function of � for the postquench
Hamiltonian HMBL(J = 1,� > 0,V ). Similarly, we also find
the QSL for the initial state, that is, the ground state of the
prequench Hamiltonian HMBL(J = 1,�i = 100,V ), and the
postquench Hamiltonian is HMBL(J = 1,� < �i,V ). As dis-
cussed in the previous section, we identify the value of � for
which these two QSLs will intersect as the transition point for
a fixed V . We plot this transition point for different interaction
strengths V in Fig. 9. We plot transition points obtained by
level-spacing statistics in the same figure. (Note that we have
recognized the transition point by identifying � for which
the value of the r parameter is 0.45 [54]). Remarkably, the
transition points obtained from level spacing and the QSL are
in great agreement for V ∈ [4, 6]. However, we emphasize
that for system size N � 16 (i.e., what is accessible to us
using exact diagonalization for the interacting system), if V
is reasonably small (V < 2) or large (V > 6.5), the maximum
value of the r parameter remains much smaller than 0.53,
which makes our analysis of r parameter to detect the ergodic
to MBL transition extremely inefficient for such parameters
(see Appendix. D).
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V. CONCLUSION

Our main goals were to identify the dynamical regimes
of QSL applicability for the many-body physical model and
to study the QSL for a many-body system that undergoes
phase transitions. To achieve these objectives, we considered
the noninteracting Aubry-Andre model, the Wannier-Stark
model that shows localization transitions, and the interacting
many-body model that shows MBL transitions. We found out-
standing agreement between the localization-delocalization
transition point obtained using the QSL and the one we found
from the normalized participation ratio in the case of the
Aubry-Andre and Wannier-Stark Hamiltonians. Furthermore,
we also compared the ergodic to MBL transitions found by
the QSL and level-spacing characteristics of the many-body
interacting Hamiltonian.

In the case of the Aubry-Andre and Wannier-Stark
Hamiltonians, we found that for the quench across the phase
boundary, the dynamics of the Loschmidt echo can be well
described by QSLs. We proved, in the small-time limit, that
the MT bound is always tighter compared to the ML and
ML∗ bounds, but for the time of orthogonalization t⊥, the
tighter bound can also be a ML or ML∗ bound, depending
on the average energy and energy uncertainty of the initial
state. For extreme quenches, i.e., � → 0 to � → ∞ or vice
versa, we showed that the MT bound is always tighter for
all the states. Moreover, a comparison was made between
the time required for the first zero of the Loschmidt echo
and the QSL bound corresponding to the time of orthogo-
nalization. While the exact values are a bit different, both
of them show qualitatively similar behavior as a function of
the quench parameter, e.g., in the case of a quench from the
delocalized phase to the localized phase, they scale inversely
with �, and for the opposite quench, they remain indepen-
dent of �. Most strikingly, we found that if the prequench
Hamiltonian is either deep inside the delocalized phase or
deep into the localized phase, for both cases, the τQSL re-
mains the same if the postquench Hamiltonian corresponds
to the Hamiltonian at the transition point. This fact can be
used as a diagnostic tool to detect the transition point. More-
over, we also used the same QSL protocol for interacting
systems that show the ergodic to MBL transition. First, we
used the level-spacing statistic to identify the transition point
and then compared it with the one obtained using the QSL
protocol to find very good agreement for a certain parameter
regime.

The time development of the mean return probability of the
projectors provides a universal bound [55,56] for the spec-
tral form factor [57–59] through which the minimum time
required for certain versions of scrambling can be detected.
Also, universal results on the minimum time required for the
scrambling, and thereby the time at which the application of
the equilibrium thermodynamics is studied, were obtained.
The dependence of the QSL on the initial state was averaged
by considering mean return probability, a function of the QSL.
Our work complements these studies, in which we studied
localization transitions, and even though the QSL depends on
the initial state, the quenching from two extreme states (com-
pletely localized and completely delocalized states) provides

a kind of averaging and the QSL captures the transition and
dynamics effectively. We expect that the QSL will play an
important part in further understanding the many-body theory
and phase transitions. In particular, it would be interesting to
study the role of the universal bound proposed in Refs. [55,56]
in future studies.

While there exist a large number of tools to detect
localization-delocalization transition points such as participa-
tion ratio [60,61], entanglement entropy [62], energy spacing
statistics [60], and observational entropy [63], computation-
wise τQSL is much simpler compared to any of them. It
does not involve diagonalization of the entire Hamiltonian,
nor does one need to compute the exact dynamics; one
simply needs to calculate the energy expectation and the en-
ergy variance. Given the Hamiltonian of interest is usually a
sparse matrix, such operations are much less cumbersome.
We believe that, especially in the case of the many-body
Hamiltonian, to detect the ergodic to many-body localization
transition, our diagnostic tool should be a great advantage over
the existing ones.
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APPENDIX A: DETAILS OF THE CALCULATION
OF 〈H2(� f = 0)〉

In this Appendix we discuss the details of the calculation of
〈H〉 and 〈H2〉 for extreme quench, i.e., �i → ∞ to � f → 0.
At � f = 0 the diagonal entries of the Hamiltonian are zero.
Thus, the Hamiltonian and square of the Hamiltonian take the
form

H = −J
N∑

k=1

(c†
k+1ck + c†

kck+1),

H2 = J2
N∑

k=1

N∑
l=1

(c†
k+1ck + c†

kck+1)(c†
l+1cl + c†

l cl+1),

H2 = J2
N∑

k=1

N∑
l=1

(c†
k+1ckc†

l+1cl + c†
kck+1c†

l+1cl

+ c†
k+1ckc†

l cl+1 + c†
kck+1c†

l cl+1).

As the initial state is taken as one of the eigenstates of
the Hamiltonian H (�i → ∞), the eigenstates have the form
|ψ〉 = c†

m|0〉, m = 1, 2, . . . , N . The expectation value of the
Hamiltonian with respect to the above initial states can be
computed as

〈H〉 =
N∑

k=1

[〈0|cmc†
k+1ckc†

m|0〉

+ 〈0|cmc†
kck+1c†

m|0〉],
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FIG. 10. Average normalized participation ratio vs � for the
incommensurate model. The dotted line indicates the phase transition
calculated from the QSL.

〈H〉 = 0.

Similarly, the average of the square can be written as

〈H2〉 = J2
N∑

k=1

N∑
l=1

[〈0|cmc†
k+1ckc†

l+1cl c
†
m|0〉

+ 〈0|cmc†
kck+1c†

l+1cl c
†
m|0〉

+ 〈0|cmc†
k+1ckc†

l cl+1c†
m|0〉

+ 〈0|cmc†
kck+1c†

l cl+1c†
m|0〉]. (A1)

For an initial state where m �= 1 or m �= N , the first term and
last term go to zero and the other term equals one. Hence
〈H2〉 = 2J2. For the initial state where m = 1 or m = N , the
third or fourth term and the first and second terms go to zero.
Hence, for such a state, 〈H2〉 = J2.

APPENDIX B: PARTICIPATION RATIO CALCULATIONS
TO DETECT THE TRANSITION POINT

In this Appendix we use the participation ratio as another
diagnostic tool to detect the localization-delocalization transi-
tion point. The normalized participation ratio (NPR) N [64]
of an eigenstate |ψk〉 of the Hamiltonian H (�) (we set J = 1)
is given by

Nk = 1

N
∑N

n=1 |〈n|ψk〉|4
.

Here |n〉 = c†
n|0〉 stands for the Fock space basis for the lattice.

If states are completely localized on a given site then N =
1/N . If states are completely delocalized then N = N . Here
we calculate the average NPR by taking an average over all
the eigenstates of the Hamiltonian H (�).

In the case of the AA model, from Fig. 10 it is clear that
there is a phase transition point at � = 2. In the region � < 2,
all the states are delocalized (the mean NPR increases with N),

FIG. 11. Average normalized participation ratio vs � for the
Wannier-Stark model. The vertical line indicates the phase transition
calculated from the QSL.

and for � > 2, all the states are localized (the mean NPR is
independent of N).

For the finite-size Wannier-Stark model, it is known that
the transition point varies with system size. However, finding
such an N-dependent transition point is quite nontrivial. In the
case of the AA model, such an issue does not arise. Hence, we
could plot the NPR for different values of N , and if N is suffi-
ciently large, we could easily distinguish the delocalized and
localized phases. In the case of the Wannier-Stark model, we
expect that if we plot N for two system sizes N and N + �N
(where �N is small) beyond a certain �c, the NPR data will
almost become indistinguishable, which can be identified as
the transition point for system size N . To see this, we plot 〈N 〉
for two systems whose system size differences are very small.
In Fig. 11 we consider system sizes of 100 and 102; the point
from which the 〈N 〉 of both systems start overlapping will be
the transition point. We also plot the same for system sizes 200
and 202. From the plot it is clear that the transition point tends
to decrease with increasing system size. The vertical lines in
the figure, which represent the QSL, also predict the same.
Furthermore, the QSL prediction of the transition points is
approximately equal to those points from which the data of
the NPR start overlapping. For N → ∞, the NPR data will
start overlapping even from an infinitesimal value of �, and
so will the transition point obtained from the QSL, implying
any tiny value of the potential � is enough to localize all the
eigenstates.

APPENDIX C: FINITE-SIZE DEPENDENCE
ON THE QSL OF THE AA MODEL

For the thermodynamic limit, in Eqs. (12) and (13) we
have approximated averages of cos and cos2 as 0 and 1/2,
respectively. However, for a finite value of N , we can calculate
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FIG. 12. Plot of average level-spacing statistics vs � for different
values of the interaction potential V . The system size is taken to be
L = 12 with half filling

the exact summation as
N∑

n=1

cos(2παn) =
N∑

n=1

(
e2iπαn + e−2iπαn

2

)
. (C1)

From geometric series, it can be proved that

N∑
n=1

xn = x(1 − xn)

1 − x
. (C2)

Using this, Eq. (C1) can be simplified to

g(N, α) ≡
N∑

n=1

cos(2παn)

= cos(2πα) − cos[2πα(N + 1)] + cos(2παN ) − 1

2[1 − cos(2πα)]
.

(C3)

Similarly, it is easier to obtain

N∑
n=1

cos2(2παn) = N

2
+ g(N, 2α). (C4)

Thus, the uncertainty reads [referring to Eqs. (12) and (13)]

�H = � f

√(
1

2
+ 1

N
g(N, 2α) − 1

N2
g2(N, α)

)
. (C5)

Thus, at the thermodynamic limit, the leading-order term of
(�H )2 for the AA model is �2

f /2. In the case of the Wannier-
Stark model, we observed that the leading order of (�H )2

itself was proportional to �2
f (N2 − 1), with a missing higher-

order term.
APPENDIX D: LEVEL-SPACING STATISTICS

FOR V = 0.5 AND 10

As we discussed in Sec. IV D, for small V and large V ,
the maximum value of the r parameter remains much smaller
than 0.529. This is illustrated in Fig. 12. This makes our
level-spacing analysis inefficient in detecting the transition
point.

[1] J. Anandan and Y. Aharonov, Geometry of quantum evolution,
Phys. Rev. Lett. 65, 1697 (1990).

[2] L. Mandelstam and I. Tamm, The Uncertainty Relation
Between Energy and Time in Non-relativistic Quantum Me-
chanics, in Selected Papers edited by B. M. Bolotovskii, V.
Y. Frenkel, and R. Peierls (Springer, Berlin, Heidelberg, 1991),
pp. 115–123.

[3] M. Okuyama and M. Ohzeki, Quantum speed limit is not quan-
tum, Phys. Rev. Lett. 120, 070402 (2018).

[4] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo,
Quantum speed limits across the quantum-to-classical transi-
tion, Phys. Rev. Lett. 120, 070401 (2018).

[5] K. Kobayashi and N. Yamamoto, Quantum speed limit for ro-
bust state characterization and engineering, Phys. Rev. A 102,
042606 (2020).

[6] T. Hatomura, Performance evaluation of invariant-based in-
verse engineering by quantum speed limits, Phys. Rev. A 106,
L040401 (2022).

[7] J. M. Epstein and K. B. Whaley, Quantum speed limits
for quantum-information-processing tasks, Phys. Rev. A 95,
042314 (2017).

[8] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V.
Giovannetti, and G. E. Santoro, Optimal control at the quantum
speed limit, Phys. Rev. Lett. 103, 240501 (2009).

[9] S. Lloyd, Computational capacity of the universe, Phys. Rev.
Lett. 88, 237901 (2002).

[10] Y. Maleki, B. Ahansaz, and A. Maleki, Speed limit of quantum
metrology, Sci. Rep. 13, 12031 (2023).

[11] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso,
and D. O. Soares-Pinto, Generalized geometric
quantum speed limits, Phys. Rev. X 6, 021031
(2016).

[12] A. Chenu, M. Beau, J. Cao, and A. del Campo, Quan-
tum simulation of generic many-body open system dynam-
ics using classical noise, Phys. Rev. Lett. 118, 140403
(2017).

[13] A. D. Cimmarusti, Z. Yan, B. D. Patterson, L. P. Corcos, L. A.
Orozco, and S. Deffner, Environment-assisted speed-up of the
field evolution in cavity quantum electrodynamics, Phys. Rev.
Lett. 114, 233602 (2015).

[14] X.-M. Zhang, Z.-W. Cui, X. Wang, and M.-H. Yung, Automatic
spin-chain learning to explore the quantum speed limit, Phys.
Rev. A 97, 052333 (2018).

[15] N. Margolus and L. B. Levitin, The maximum speed of dynam-
ical evolution, Physica D 120, 188 (1998).

[16] G. Ness, A. Alberti, and Y. Sagi, Quantum speed limit for states
with a bounded energy spectrum, Phys. Rev. Lett. 129, 140403
(2022).

012466-11

https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1007/978-3-642-74626-0_8
https://doi.org/10.1103/PhysRevLett.120.070402
https://doi.org/10.1103/PhysRevLett.120.070401
https://doi.org/10.1103/PhysRevA.102.042606
https://doi.org/10.1103/PhysRevA.106.L040401
https://doi.org/10.1103/PhysRevA.95.042314
https://doi.org/10.1103/PhysRevLett.103.240501
https://doi.org/10.1103/PhysRevLett.88.237901
https://doi.org/10.1038/s41598-023-39082-w
https://doi.org/10.1103/PhysRevX.6.021031
https://doi.org/10.1103/PhysRevLett.118.140403
https://doi.org/10.1103/PhysRevLett.114.233602
https://doi.org/10.1103/PhysRevA.97.052333
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1103/PhysRevLett.129.140403


M. SUMAN, S. ARAVINDA, AND RANJAN MODAK PHYSICAL REVIEW A 110, 012466 (2024)

[17] L. B. Levitin and T. Toffoli, Fundamental limit on the rate of
quantum dynamics: The unified bound is tight, Phys. Rev. Lett.
103, 160502 (2009).

[18] M. E. Fisher, The Nature of Critical Points, Lectures in Theo-
retical Physics Vol. VII (University of Colorado Press, Boulder,
1965).

[19] G. Mussardo, Statistical Field Theory: An Introduction to Ex-
actly Solved Models in Statistical Physics (Oxford University
Press, New York, 2010).

[20] M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical quantum
phase transitions in the transverse-field Ising model, Phys. Rev.
Lett. 110, 135704 (2013).

[21] C. Karrasch and D. Schuricht, Dynamical phase transitions after
quenches in nonintegrable models, Phys. Rev. B 87, 195104
(2013).

[22] J. M. Hickey, S. Genway, and J. P. Garrahan, Dynamical phase
transitions, time-integrated observables, and geometry of states,
Phys. Rev. B 89, 054301 (2014).

[23] E. Canovi, P. Werner, and M. Eckstein, First-order dynamical
phase transitions, Phys. Rev. Lett. 113, 265702 (2014).

[24] F. Andraschko and J. Sirker, Dynamical quantum phase transi-
tions and the Loschmidt echo: A transfer matrix approach, Phys.
Rev. B 89, 125120 (2014).

[25] M. Heyl, Quenching a quantum critical state by the order pa-
rameter: Dynamical quantum phase transitions and quantum
speed limits, Phys. Rev. B 95, 060504(R) (2017).

[26] M. Heyl, Dynamical quantum phase transitions: A review, Rep.
Prog. Phys. 81, 054001 (2018).

[27] Y. Zeng, B. Zhou, and S. Chen, Dynamical singularity of the
rate function for quench dynamics in finite-size quantum sys-
tems, Phys. Rev. B 107, 134302 (2023).

[28] B. Zhou, Y. Zeng, and S. Chen, Exact zeros of the Loschmidt
echo and quantum speed limit time for the dynamical quan-
tum phase transition in finite-size systems, Phys. Rev. B 104,
094311 (2021).

[29] S. Vajna and B. Dóra, Topological classification of dynamical
phase transitions, Phys. Rev. B 91, 155127 (2015).

[30] U. Bhattacharya and A. Dutta, Emergent topology and dy-
namical quantum phase transitions in two-dimensional closed
quantum systems, Phys. Rev. B 96, 014302 (2017).

[31] R. Jafari, A. Akbari, U. Mishra, and H. Johannesson, Floquet
dynamical quantum phase transitions under synchronized peri-
odic driving, Phys. Rev. B 105, 094311 (2022).

[32] S. Zamani, R. Jafari, and A. Langari, Out-of-time-order corre-
lations and Floquet dynamical quantum phase transition, Phys.
Rev. B 105, 094304 (2022).

[33] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos,
Direct observation of dynamical quantum phase transitions in
an interacting many-body system, Phys. Rev. Lett. 119, 080501
(2017).

[34] S. Smale, P. He, B. A. Olsen, K. G. Jackson, H. Sharum, S.
Trotzky, J. Marino, A. M. Rey, and J. H. Thywissen, Obser-
vation of a transition between dynamical phases in a quantum
degenerate Fermi gas, Sci. Adv. 5, eaax1568 (2019).

[35] C. Yang, Y. Wang, P. Wang, X. Gao, and S. Chen, Dynamical
signature of localization-delocalization transition in a one-
dimensional incommensurate lattice, Phys. Rev. B 95, 184201
(2017).

[36] R. Modak and D. Rakshit, Many-body dynamical phase tran-
sition in a quasiperiodic potential, Phys. Rev. B 103, 224310
(2021).

[37] M. Faridfar, A. A. Fouladi, and J. Vahedi, Dynamical quantum
phase transitions in stark quantum spin chains, Physica A 619,
128732 (2023).

[38] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, in Proceedings, VIII
International Colloquium on Group-Theoretical Methods in
Physics (1980), Vol. 3.

[39] D. Emin and C. F. Hart, Existence of Wannier-Stark localiza-
tion, Phys. Rev. B 36, 7353 (1987).

[40] G. H. Wannier, Dynamics of band electrons in electric and
magnetic fields, Rev. Mod. Phys. 34, 645 (1962).

[41] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement,
Rev. Mod. Phys. 91, 021001 (2019).

[42] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Direct observation of Anderson localization of matter waves in
a controlled disorder, Nature (London) 453, 891 (2008).

[43] F. Jendrzejewski, A. Bernard, K. Mueller, P. Cheinet, V. Josse,
M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P.
Bouyer, Three-dimensional localization of ultracold atoms in
an optical disordered potential, Nat. Phys. 8, 398 (2012).

[44] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. DeMarco,
Three-dimensional Anderson localization of ultracold matter,
Science 334, 66 (2011).

[45] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, Exper-
imental probes of Stark many-body localization, Phys. Rev. B
102, 054206 (2020).

[46] E. E. Mendez, F. Agulló-Rueda, and J. M. Hong, Stark localiza-
tion in GaAs-GaAlAs superlattices under an electric field, Phys.
Rev. Lett. 60, 2426 (1988).

[47] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Ander-
son localization of a non-interacting Bose–Einstein condensate,
Nature (London) 453, 895 (2008).

[48] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasirandom optical lattice, Science 349, 842 (2015).

[49] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Many-body
localization in a quasiperiodic system, Phys. Rev. B 87, 134202
(2013).

[50] L. D. Faddeev, in Fifty Years of Mathematical Physics, edited
by M. Ge and A. J. Niemi (World Scientific, Singapore, 2016),
Vol. 2, pp. 370–439.

[51] R. Bhatia and C. Davis, A better bound on the variance, Amer.
Math. Monthly 107, 353 (2000).

[52] R. Modak, S. Mukerjee, and S. Ramaswamy, Universal power
law in crossover from integrability to quantum chaos, Phys.
Rev. B 90, 075152 (2014).

[53] R. Modak and S. Mukerjee, Finite size scaling in crossover
among different random matrix ensembles in microscopic lat-
tice models, New J. Phys. 16, 093016 (2014).

[54] P. Sierant and J. Zakrzewski, Level statistics across the
many-body localization transition, Phys. Rev. B 99, 104205
(2019).

012466-12

https://doi.org/10.1103/PhysRevLett.103.160502
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevB.89.054301
https://doi.org/10.1103/PhysRevLett.113.265702
https://doi.org/10.1103/PhysRevB.89.125120
https://doi.org/10.1103/PhysRevB.95.060504
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1103/PhysRevB.107.134302
https://doi.org/10.1103/PhysRevB.104.094311
https://doi.org/10.1103/PhysRevB.91.155127
https://doi.org/10.1103/PhysRevB.96.014302
https://doi.org/10.1103/PhysRevB.105.094311
https://doi.org/10.1103/PhysRevB.105.094304
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1126/sciadv.aax1568
https://doi.org/10.1103/PhysRevB.95.184201
https://doi.org/10.1103/PhysRevB.103.224310
https://doi.org/10.1016/j.physa.2023.128732
https://doi.org/10.1103/PhysRevB.36.7353
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nphys2256
https://doi.org/10.1126/science.1209019
https://doi.org/10.1103/PhysRevB.102.054206
https://doi.org/10.1103/PhysRevLett.60.2426
https://doi.org/10.1038/nature07071
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevB.87.134202
https://doi.org/10.1080/00029890.2000.12005203
https://doi.org/10.1103/PhysRevB.90.075152
https://doi.org/10.1088/1367-2630/16/9/093016
https://doi.org/10.1103/PhysRevB.99.104205


PROBING QUANTUM PHASE TRANSITIONS VIA QUANTUM … PHYSICAL REVIEW A 110, 012466 (2024)

[55] A. Vikram and V. Galitski, Exact universal bounds on quantum
dynamics and fast scrambling, Phys. Rev. Lett. 132, 040402
(2024).

[56] A. Vikram, L. Shou, and V. Galitski, Proof of a univer-
sal speed limit on fast scrambling in quantum systems,
arXiv:2404.15403.

[57] F. Haake, Quantum Signatures of Chaos (Springer, 1991).
[58] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Semi-

classical foundation of universality in quantum chaos, Phys.
Rev. Lett. 93, 014103 (2004).

[59] A. Vikram and V. Galitski, Dynamical quantum ergodicity from
energy level statistics, Phys. Rev. Res. 5, 033126 (2023).

[60] P. Chatterjee and R. Modak, One-dimensional Lévy
quasicrystal, J. Phys.: Condens. Matter 35, 505602
(2023).

[61] R. Modak, S. Mukerjee, E. A. Yuzbashyan, and B. S.
Shastry, Integrals of motion for one-dimensional
Anderson localized systems, New J. Phys. 18, 033010
(2016).

[62] R. Modak, S. Ghosh, and S. Mukerjee, Criterion for the
occurrence of many-body localization in the presence of
a single-particle mobility edge, Phys. Rev. B 97, 104204
(2018).

[63] R. Modak and S. Aravinda, Observational-entropic study
of Anderson localization, Phys. Rev. A 106, 062217
(2022).

[64] S. Roy, S. Chattopadhyay, T. Mishra, and S. Basu, Critical anal-
ysis of the reentrant localization transition in a one-dimensional
dimerized quasiperiodic lattice, Phys. Rev. B 105, 214203
(2022).

012466-13

https://doi.org/10.1103/PhysRevLett.132.040402
https://arxiv.org/abs/2404.15403
https://doi.org/10.1103/PhysRevLett.93.014103
https://doi.org/10.1103/PhysRevResearch.5.033126
https://doi.org/10.1088/1361-648X/acf9d4
https://doi.org/10.1088/1367-2630/18/3/033010
https://doi.org/10.1103/PhysRevB.97.104204
https://doi.org/10.1103/PhysRevA.106.062217
https://doi.org/10.1103/PhysRevB.105.214203

