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Comparing coherent and incoherent models for quantum homogenization
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Here we investigate the role of quantum interference in the quantum homogenizer, whose convergence proper-
ties model a thermalization process. In the original quantum homogenizer protocol, a system qubit converges to
the state of identical reservoir qubits through partial-swap interactions, that allow interference between reservoir
qubits. We design an alternative, incoherent quantum homogenizer, where each system-reservoir interaction is
moderated by a control qubit using a controlled-swap interaction. We show that our incoherent homogenizer
satisfies the essential conditions for homogenization, being able to transform a qubit from any state to any
other state to arbitrary accuracy, with negligible impact on the reservoir qubits’ states. Our results show that
the convergence properties of homogenization machines that are important for modeling thermalization are
not dependent on coherence between qubits in the homogenization protocol. We then derive bounds on the
resources required to re-use the homogenizers for performing state transformations. This demonstrates that both
homogenizers are universal for any number of homogenizations, for an increased resource cost.

DOI: 10.1103/PhysRevA.110.012464

I. INTRODUCTION

The role of quantum effects in thermodynamics has led
to many fruitful results in recent years, with several new
phenomena arising from underlying quantum dynamics [1].
Furthermore, a major focus for the field of quantum thermo-
dynamics is modeling thermalization processes [2,3]. These
models are often based on collision models with weak cou-
pling [4–6], a very general version of which was proposed in
Ref. [7], using a partial-swap (PSWAP) quantum homogenizer.
There it is shown that a weak PSWAP interaction between
a system qubit and each identical qubit in a large reser-
voir will cause the system qubit to converge to the reservoir
qubits’ state, while leaving the reservoir qubits approximately
unchanged. The homogenizer is universal in that it will trans-
form any state to any other state, and the PSWAP is shown
to be the unique operation that satisfies the homogenization
conditions. Since its proposal, many investigations of thermal-
ization have been based on the quantum homogenizer model
or variations of it [8,9].

In the PSWAP homogenizer, each interaction between the
system qubit and the reservoir qubits is unitary, resulting in
a web of interference between system and reservoir qubits
that have interacted. This raises the question as to how far the
properties of the homogenizer are affected by the coherence of
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the unitary PSWAP, and whether the homogenizer’s properties
result from nontrivial quantum phenomena.

Here we describe an alternative universal quantum ho-
mogenizer, which is an incoherent variation of the PSWAP

homogenizer. An additional control qubit is introduced for
each reservoir qubit in the protocol, and the PSWAP interaction
is replaced by a controlled-swap (CSWAP) interaction, condi-
tioned on the control qubit with a system and reservoir qubit as
targets. The CSWAP gate has been previously investigated in a
variety of contexts, including studies on comparing entangling
power of PSWAP and controlled unitary gates [10], experimen-
tal implementations (see, e.g., Ref. [11]), comparing quantum
states, and detecting entanglement [12].

Mediating the interaction via a control qubit prevents inter-
ference between the system and reservoir qubits. We place an
upper bound on the difference between the system qubit con-
vergence achieved using the CSWAP and PSWAP homogenizers
for arbitrary system and reservoir states, demonstrating that
the difference tends towards zero as the size of the homoge-
nizer increases. Furthermore, we identify a number of cases
where the homogenizations are identical. We reinforce our
conclusions with numerical simulations. Our analysis shows
that the states in the two protocols differ in their paths to
converging to a state, and also have major differences in the
joint entropy of the system and environment qubits, but these
aspects do not affect the homogenization properties.

In addition, we derive results regarding the reusability
of both homogenizers. By calculating lower bounds on the
resources needed to homogenize a general number of sys-
tem qubits, we conclude that there always exists a protocol
for approximately homogenizing n system qubits to within
a given error �, with N reservoir qubits remaining � close
to their initial state. This requires making N larger and the
coupling strength weaker than the equivalent constraints for
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performing only a single homogenization within some error.
Our analysis of the CSWAP is more general than that for the
PSWAP as the lack of coherent terms simplifies the analysis,
leading to tighter bounds for that protocol.

Our results also suggest that recently found results about a
new form of irreversibility and information erasure in quan-
tum homogenization machines (see Refs. [13,14]) are not
dependent on nontrivial quantum coherence in the homog-
enizer, making them more generally applicable than was
previously shown.

Furthermore, in Ref. [8] the homogenizer’s properties are
key for defining a family of two-qubit thermalizing machines
(where the reservoir qubits are in thermal states, the final state
of the system qubit is an equilibrium state, and energy is
conserved). Since we demonstrate that the CSWAP obeys the
key constraints of the universal quantum homogenizer, it also
obeys the key requirements for the collision-model mecha-
nism defining the family of two-qubit thermalizing machines.
Hence, the possibility of an incoherent homogenizer model-
ing thermalization machines could lend further insights into
the role of entanglement and coherence in the thermalization
process.

PSWAP quantum homogenizer

The quantum homogenizer was originally proposed as a
model for thermalization [7,8]. It consists of a set of identical
reservoir qubits, which each interact one by one with a system
qubit, via a unitary PSWAP interaction:

U = cosη1 + isinηS. (1)

The PSWAP is a combination of the identity 1 and the SWAP

S, weighted by a coupling strength parameter η. The system
qubit converges to the state of the reservoir qubits as the size
of the reservoir N is increased, meanwhile the reservoir qubits
stay arbitrarily close to their original state as the coupling
strength of the PSWAP is made small. Hence the quantum
homogenizer approximately erases the state of the system
qubit, such that all reservoir qubits and the system qubit are
close to the original state of the reservoir qubits. Specifically,
it implements the following transformation:

U †
N · · ·U †

1 (ρ ⊗ ξ⊗N )U1 · · ·UN ≈ ξ⊗N+1, (2)

where Uk := U ⊗ (⊗ j �=k1 j ) denotes the interaction between
the system qubit, which begins in the state ρ and the kth
reservoir qubit, which begins in the state ξ .

There are two conditions that must be satisfied for ho-
mogenization. For any distance δ, defined according to some
distance measure between quantum states such as trace norm,
the system qubit must become at least δ close to the initial
reservoir qubit state, with all the reservoir qubits also at least δ

close to their initial state. Formally, for some distance measure
D(ρ1, ρ2) and number of reservoir interactions N :

D(ρN , ξ ) � δ, (3)

and

D(ξ j, ξ ) � δ ∀ j, j � N, (4)

for arbitrarily small δ. Here ρ j denotes the state of the sys-
tem qubit after interacting with j reservoir qubits, and the

TABLE I. Initial and final states after CSWAP.

Controlled swap

Initial states ρ0 = 1+�β·�σ
2 , ξ = 1+�α·�σ

2 , ρc = |c〉 〈c|
Final joint state ρCSWAP

s+r = c2(ρ0 ⊗ ξ ) + s2(ξ ⊗ ρ0)

Final system state ρ1 = 1
2 + s2

2 �α · �σ + c2

2
�β · �σ

jth reservoir qubit to interact with the system is denoted
by ξ j .

It was shown in Ref. [7] that the quantum homogenizer
based on the PSWAP satisfies these conditions for any initial
state of the system and reservoir qubits. Furthermore, the
PSWAP is the only unitary operator that satisfies the condi-
tions, meaning it uniquely determines the universal quantum
homogenizer.

II. CSWAP QUANTUM HOMOGENIZER

We now define a universal quantum homogenization pro-
tocol based on the CSWAP instead of the PSWAP, removing the
coherence between the system qubits and reservoir qubits. The
CSWAP operation is a three-qubit gate, where the two-qubit
swap operation is applied to the second and third qubits if
the first (control) qubit is a |1〉, and they are left alone if the
control qubit is a |0〉:

U = 1
2 (|0〉 〈0| ⊗ 1 + |1〉 〈1| ⊗ S). (5)

In our protocol, the control qubit begins in the state |c〉,
a weighted superposition of |0〉 and |1〉, parametrized by a
coupling strength η:

|c〉 = cos η |0〉 + sin η |1〉 . (6)

Consider a system qubit and a reservoir qubit with
initial states ρ0 = (1 + �β · �σ )/2 and ξ = (1 + �α · �σ )/2, re-
spectively. Table I shows the results of letting the two qubits
interact with a control qubit, initially in the state ρc = |c〉 〈c|,
via the CSWAP interaction. The table shows the final joint
state of the system and reservoir qubits, and the final state
of the system qubit. Table II shows the corresponding states
when the two qubits instead interact via a PSWAP interaction.
The key difference between the final joint states in the two
cases is that there are additional terms in the final joint state
and final state of the system qubit when the PSWAP is used
instead of the CSWAP. These additional terms indicate coher-
ence between the qubits, and by comparing the PSWAP and

TABLE II. Initial and final states after PSWAP.

Partial swap

Initial states ρ0 = 1+�β·�σ
2 , ξ = 1+�α·�σ

2

Final joint state ρPSWAP
s+r = c2(ρ0 ⊗ ξ ) + s2(ξ ⊗ ρ0 )

− cs
8 (�β − �α) · (σ ⊗ 1 ∧ 1 ⊗ σ )

− cs
8 (�β ∧ �α) · (σ ⊗ 1 − 1 ⊗ σ )

Final system state ρ1 = 1
2 [1 + c2 �β · �σ + s2 �α · �σ
+ cs

4 (�β × �α) · �σ ]
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FIG. 1. The CSWAP homogenizer. Control qubits are labeled c.
The jth reservoir qubit after interaction with the ith system is in the
state ξ i

j , and the ith system after interaction with the jth reservoir
qubit is in the state ρ i

j .

CSWAP we investigate how far they impact the convergence
and reusability properties of a quantum homogenization pro-
tocol. In both tables and thereafter we adopt the shorthand
c = cos η, s = sin η.

Our incoherent quantum homogenization protocol involves
a system qubit, a reservoir of identical environment qubits,
and a set of control qubits. The system qubit interacts se-
quentially with each environment qubit through a CSWAP gate,
moderated by a new control qubit in the state |c〉 = cos η |0〉 +
sin η |1〉.

The protocol is shown in Fig. 1, for a reservoir of N qubits
homogenizing up to n system qubits. The initial state of the
reservoir qubits is the target final state for the system qubit.
CSWAP operations between the system and reservoir qubit,
moderated by a control qubit, are represented by an arrow. The
homogenization of multiple systems is considered in Sec. V.
First we consider the homogenization of a single system.

III. CONVERGENCE

Here we demonstrate that the CSWAP homogenizer has
the same convergence properties as the PSWAP homogenizer,
meaning that convergence is not affected by the coherence
terms.

A. State fidelity

We show that the two homogenizers achieve the same
convergence using fidelity as a measure of distance, first using
analytic calculations and supported by a Qiskit simulation
[15]. Fidelity is a measure of similarity between states, which
ranges from zero for orthogonal states to one for identical
states. For two pure states, it reduces to the inner product. In
general, the fidelity of two qubits is [16]

F (ρ1, ρ2) = Tr(ρ1ρ2) + 2(detρ1detρ2)1/2. (7)

The aim of a homogenization protocol is to approximate
F (ρN , ξ ) = 1 as closely as possible. For a system starting
with Bloch vector �β and reservoir qubit with Bloch vector �α,
Table I shows that for the CSWAP:

�β1 = c2 �β + s2 �α, (8)

and for the PSWAP

�β1 = c2 �β + s2 �α + cs

4
�β × �α, (9)

where the subscript indicates that the system qubit has inter-
acted with one reservoir qubit.

The fidelity between the system and reservoir state �α for
the incoherent homogenizer, using the CSWAP, is

Finc = 1
2 (1 + c2 �β · �α + s2) + 1

2

√
(1 − |c2 �β + s2 �α|2)(1 − |�α|2), (10)

and for the coherent homogenizer, using the PSWAP, is

Fcoh = 1

2
(1 + c2 �β · �α + s2) + 1

2

√√√√(
1 −

∣∣∣∣c2 �β + s2 �α + cs

4
�β × �α

∣∣∣∣
2
)

(1 − |�α|2).

The additional term introduced in the PSWAP fidelity is zero
if |�α| = 1, �β ‖ �α, �α = 0, or �β = 0. Even at its maximum, the
additional term has a significantly smaller contribution to the
fidelity than the other terms. Specifically, in Appendix B we
derive an upper bound on the difference between the fidelities:

δF

Finc
�

√
1 − α2

(√
3 − α2 −

√
3 − α2 − α

2

)
3 + √

1 − α2
√

3 − α2
, (11)

where δF = Finc − Fcoh, with the maximum difference being
a factor of approximately 2%. Furthermore, the difference
in fidelity tends towards zero when additional CSWAP and
PSWAP gates are applied and the size of the reservoir used
for homogenization is increased. This is due to the additional
term in the PSWAP fidelity being scaled by a factor that tends
towards zero as the Bloch vectors of the system and reservoir
qubits converge to become parallel with more interactions
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FIG. 2. Fidelity of the system state and the reservoir state against
the number of system-reservoir interactions for transforming |0〉 to
|+〉 with coupling strength η = π/6. Values simulated in Qiskit [15].

with the reservoir, also discussed in Appendix B. Hence, the
convergence properties of the fidelities, for a large reservoir
size, will be equivalent. Therefore there is a close agreement
between the state fidelity outcomes achieved by the two ho-
mogenization protocols, for arbitrary system and reservoir
states. A Qiskit simulation of both protocols transforming a
system originally in the |0〉 state to the |+〉 state is shown in
Figs. 2 and 3.

The incoherent CSWAP homogenizer therefore achieves the
same accuracy as the coherent PSWAP homogenizer, up to a
small correction which tends to zero in the limit of a large ho-
mogenizer. This demonstrates that the coherence introduced
by the PSWAP is not contributing to the homogenization prop-
erties.

B. Trace distance

Another way of demonstrating an equivalence between
the homogenizers is calculating the minimum number of
system-reservoir interactions required so that the trace dis-
tance between the final system state and original reservoir
state is below some error:

D(ρN , ξ ) � δ, (12)

while also having the distance of every environment state with
the original reservoir state being below that error:

D(ξi, ξ ) � δ ∀ i, i � N. (13)

Here ρN is a system state that has interacted with N reser-
voir qubits, ξ is the original reservoir qubit state, and ξi is
the state of the ith reservoir qubit. Following the method
in Ref. [7] we use the trace distance as a measure of the
distance between two states, corresponding to the distance on
the Bloch sphere between the two states’ Bloch vectors.

Since ξ1 interacts first with the system qubit it will be
furthest from the reservoir state, so as long as this satisfies
Eq. (13) all other reservoir qubits also satisfy Eq. (13). Using
Table I,

ξ1 = 1

2
+ s2

2
�β · �σ + c2

2
�α · �σ . (14)

FIG. 3. System Bloch vector evolution for the coherent and in-
coherent homogenizers with initial state |0〉, reservoir state |+〉, and
coupling strength η = π/6 for six system-reservoir interactions. The
Bloch vector for the coherent homogenizer is shown vertically above
the Bloch vector for the incoherent homogenizer after the same
number of interactions. The Bloch vectors are simulated using Qiskit
[15].

We consider the initial system state and initial reservoir
states having an absolute difference between their Bloch vec-
tors given by

d = |�β − �α|. (15)

This makes our analysis initially more general than the
bound derived in Ref. [7], where the extreme case of a distance
between the states of two (where the initial system and reser-
voir states are orthogonal) is assumed from the beginning.
The relevant trace distance for the CSWAP case is simpler
analytically than the PSWAP: for CSWAP, the cross-terms in
Table I are zero for any d , but for the PSWAP, the cross terms
in Table II are zero for d = 2 (initially orthogonal qubits) but
not in general. Hence, we can use the general distance d to
find tighter bounds on the resources needed for the CSWAP

protocol. Later we specialize to d = 2 to compare with the
PSWAP homogenizer results. In our general CSWAP case, the
trace distance between the first reservoir qubit after it has
interacted with the system with its original state is

D(ξ1, ξ ) = ds2. (16)

So the limit for satisfying Eq. (13) is

s2 = δ

d
. (17)
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The system state after N system-reservoir interactions is

ρN = 1

2
+ c2N

2
�β · �σ + (1 − c2N )

2
�α · �σ , (18)

so that

D(ρN , ξ ) = dc2N . (19)

Using s2 = δ/d we get

D(ρN , ξ ) = d

[
1 − δ

d

]N

. (20)

To satisfy Eq. (12) we require

D(ρN , ξ ) � δ. (21)

Solving for N ,

N � ln δ
d

ln
(
1 − δ

d

) . (22)

This is the minimum number of gates required to achieve
convergence to within δ for a system qubit and all the reservoir
qubits.

In Ref. [7] it is shown that for the PSWAP homogenizer the
number of gates required to achieve convergence within δ for
the case of two orthogonal pure states is

Nδ �
ln δ

2

ln
(
1 − δ

2

) . (23)

This is the same as our result for the CSWAP homogenizer,
where for orthogonal pure states

d = |�β − �α| = 2, (24)

so that

N � ln δ
2

ln
(
1 − δ

2

) . (25)

Therefore we have derived an equivalent upper bound on
the number of reservoir qubits needed for a successful ho-
mogenization using the CSWAP homogenizer as for the PSWAP

homogenizer.

IV. DIFFERENCES BETWEEN HOMOGENIZERS

A. Evolution of Bloch vectors

Despite the similarity in fidelities computed for the two
homogenization protocols, Fig. 3 shows that there is a sig-
nificant difference in how the states are evolving on the Bloch
sphere. In the CSWAP case, the Bloch vector remains in the
X -Z plane throughout its evolution. The coherence term in
the PSWAP case changes the path the Bloch vector takes but
not the fidelity of the final state and the initial reservoir state.

B. Joint system-reservoir entropy

There is also a significant difference in joint von Neumann
entropy of the system and reservoir qubits for the PSWAP and
CSWAP homogenizers, which nonetheless does not affect the
homogenization properties. Specifically, the joint von Neu-
mann entropy is S = −Tr(ρs+r ln ρs+r ), where ρs+r is the joint

FIG. 4. von Neumann entropy of the joint system-reservoir state
for the incoherent homogenizer with coupling strengths η = π/8 and
η = 3π/8. N is the number of system-environment interactions, with
initial state |0〉 and reservoir state |1〉. Values simulated in Qiskit [15].

state of the system and reservoir qubits (with the control qubit
traced out for the CSWAP).

With the coherent PSWAP homogenizer, all interactions be-
tween the system and reservoir qubits are unitary, and hence
the overall von Neumann entropy is constant. By contrast,
the incoherent CSWAP homogenizer involves a control qubit
which is traced out to find the joint system and reservoir state.
Therefore, we expect that the system-reservoir von Neumann
entropy in general changes with number of interactions. Since
the entanglement of the system-reservoir qubits with the con-
trol qubit contributes negatively to the von Neumann entropy,
we might intuitively expect that the joint system-reservoir von
Neumann entropy increases with number of interactions.

In numerical simulations, we indeed find that it increases
with interactions, and then reaches a plateau. This happens
sooner for strong coupling than weak coupling, although at a
smaller value of maximum von Neumann entropy. The system
homogenizes quicker in the strong-coupling case (leading to
a plateau in joint system-reservoir von Neumann entropy) but
there is also more negative entropy contributed by the entan-
glement with the control qubit (leading to a smaller maximum
value of von Neumann entropy), shown in Fig. 4.

V. REPEATED HOMOGENIZATION

Now we consider the reusability of both homogenizers,
which was not considered in Ref. [7]. Reusability is of interest
in quantum thermodynamics for assessing whether transfor-
mations can be enabled using catalysts. For instance, analysis
using resource theories has found that catalysts can dras-
tically increase performable state transformations [17–20].
Furthermore, reusability is important for assessing whether
a transformation can be performed reliably, as in the Con-
structor Theory approach to thermodynamics [21–23]. In
Appendix C, we discuss how the similarity we derived ear-
lier between the PSWAP and CSWAP homogenizers shows how
those results can be generalized to a wider class of incoherent
protocols.
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Here we use a different approach to investigating the
reusability of homogenization machines, bounding the num-
ber of reservoir qubits N required and number of times n the
homogenization task can be performed, in order to satisfy the
conditions for homogenization. For a reusable homogenizer,
we require that all homogenizer qubits remain arbitrarily close
to their original states, but we extend the requirement on the
system qubit such that all n system qubits must be homoge-
nized arbitrarily close to the original reservoir qubits’ state.

For both the CSWAP and PSWAP, we find that there is a finite
number of homogenizer qubits required such that a given
homogenizer is able to transform a given number of system
qubits from an initial state to a final state, within a specified
error, with all homogenizer qubits also being within a certain
error from their original state. This is a natural extension of
the conditions for homogenization introduced in Ref. [7] to
a setting where the homogenizer needs to also be reused to
transform some finite number of systems.

Note that, for the CSWAP homogenizer, after the first system
qubit has been homogenized the control qubits are reordered,
so that for the next system qubits no reservoir qubit interacts
with the same control. We show in Appendix A that this pre-
vents quantum interference terms developing between control
and reservoir qubits.

The first reservoir qubit deteriorates most rapidly because
this is first to interact with each new system qubit, so when
this state is within the required distance from ξ so are the other
reservoir qubits.

The state of the first reservoir qubit after n interactions with
a fresh system qubit is

�αn
1 = (1 − c2n)�β + c2n �α0

1, (26)

where the superscript indicates the number of system qubits
with which the reservoir qubit has interacted.

As in the previous section, for homogenization we require
D(ξ n

1 , ξ ) � δ. Hence, 1 − c2n � δ/d , such that

c2n � 1 − δ

d
. (27)

This can be rearranged to find the constraint on the number of
qubits that can be homogenized for a given error and coupling
strength:

n � ln
(
1 − δ

d

)
2ln(c)

. (28)

Now we can consider constraining the system qubits such
that every system qubit is within a distance ε from the most-
deteriorated reservoir qubit, namely, the first one, which is
in state ξ

(n−1)
1 before the final homogenization. Therefore in

a worst-case scenario, we could use a homogenizer entirely
composed of qubits in the state of the most deteriorated one,
ξ

(n−1)⊗N
1 , to transform the state of a system qubit. The lower

bound on the number of reservoir qubits needed for the system
qubit to be within a distance ε of the reservoir qubits’ states is
of the same form as the original bound when the homogenizer
was used once, in Eq. (22):

N � ln ε
d ′

ln
(
1 − ε

d ′
) . (29)

Here d ′ = |�β0 − �α(n−1)
1 | is the distance between the first

reservoir qubit after interacting with n − 1 system qubits, and
the original system qubit state on the Bloch sphere. Using
d = |�β0 − �α0

1 |, we find d − d ′ = |�α0
1 − �αn

1 |. Simplifying this
expression leads to the following relation between d and d ′:

d ′ = c2nd. (30)

Now the distance of the worst-case reservoir qubit ξ
(n−1)
1

from the target state is d (1 − c2(n−1)), from Eq. (27). There-
fore the distance ε must satisfy the condition � = ε + d (1 −
c2(n−1)) for all system qubits to be within � of the target state.
Substituting the resulting expression for ε into Eq. (29), along
with the expression for d ′, the bound can be rewritten as

N � Nmin = ln
(
1 − d−�

dc2(n−1)

)
ln d−�

dc2(n−1)

. (31)

Now, if the conditions in Eqs. (31) and (27) are both
satisfied, then N reservoir qubits and n system qubits are a
maximum distance � from the original reservoir qubits’ state.
Since the bound comes from a worst-case approximation,
the minimum N needed for specific transformations will be
smaller than Nmin. We can therefore always homogenize n
qubits, with all system and reservoir qubits within an error
�, for any n and �, by making η sufficiently small and N
sufficiently large. For the single-use homogenizer, reducing
the desired error � requires η to decrease and N to increase.
For our reusable homogenizer, we have the added condition
that imposing n to be greater also requires η to decrease and
N to increase, further constraining the conditions for homog-
enization. Note that setting n = 1 and d = 2 reproduces the
constraints on η and N derived in Ref. [7].

We derived the conditions on N and n for a general initial
distance d between the initial system qubit state and initial ho-
mogenizer qubits’ state. This general expression holds for the
CSWAP homogenizer. By considering the worst-case scenario
where the initial reservoir state and initial system states are
a distance d = 2 apart (orthogonal pure states), then we have
conditions for reusable partial swap homogenization.

VI. CONCLUSION

We propose a model for a universal quantum homogenizer
that does not have coherence between the system and reser-
voir qubits, based on a CSWAP operation instead of PSWAP.
We computed an upper-bound on the difference between the
reduced states of the system and reservoir qubits of the CSWAP

homogenizer compared with the PSWAP, showing that it tends
to zero in the limit of a large reservoir, and simulated an exam-
ple where the homogenization protocols are equivalent. Then
we derived a bound on the resources needed for an arbitrarily
good CSWAP homogenization, showing that it satisfies the re-
quired convergence conditions for homogenization. Our result
is more general than that previously derived for the PSWAP,
showing the dependence of resources required on the distance
between the initial system and reservoir qubit states. We also
contrasted the CSWAP and PSWAP homogenizers in terms of the
von Neumann entropy of the joint system-reservoir qubits.

Then we analyzed how far the coherent and incoherent
homogenizers can be re-used to perform state transformations,
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deriving constraints on the resources needed to repeatedly per-
form imperfect homogenizations. Our analysis also suggests
that recent demonstrations of a new kind of irreversibility
based on homogenization machines can be generalized to
incoherent models for thermalization and information erasure.

Future work could investigate connections between the
general bounds on repeated homogenizations found here with
approaches to modeling catalysts in quantum resource theo-
ries. Another interesting avenue is to investigate in more detail
how entanglement builds up in the two homogenizers, build-
ing on recently proposed approaches to describe quantum
correlations in collision models (see, e.g., Ref. [24]). Entan-
glement may be distributed differently in the coherent and
incoherent homogenizers, despite the negligible differences in
the ultimate convergence properties.
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APPENDIX A: CONTROLLED SWAP DERIVATIONS

Here we derive the reduced states of the system qubit and
reservoir qubit after interacting via a CSWAP operation.

Let the starting states of a control qubit, system qubit and
reservoir qubit be ρ i

c, ρ i
s, and ρ i

r , respectively, with Bloch
vectors �c, �s, and �r. We have the initial states

ρ i
c = 1 + �c · �σ

2
, (A1)

ρ i
s = 1 + �s · �σ

2
, (A2)

ρ i
r = 1 + �r · �σ

2
. (A3)

Then let the controlled swap operator be U from Eq. (5),
and act on these states:

U {ρc ⊗ ρs ⊗ ρr}U †. (A4)

We then obtain final states of ρ
f
c , ρ

f
s , and ρ

f
r , where cx, cy,

and cz are the x, y and z components of the Bloch vector �c:

ρ f
c = 1

2
+ (1 + �r · �s)

cxσx

4
+ (1 + �r · �s)

cyσy

4
+ czσz

2
, (A5)

ρ f
s = 1

2
+ (1 − cz )

4
�e · �σ + (1 + cz )

4
�s · �σ , (A6)

ρ f
r = 1

2
+ (1 + cz )

4
�r · �σ + (1 − cz )

4
�s · �σ . (A7)

Since the final states of system and reservoir depend only
on cz we can let cz = 2cos2η − 1 so that the controlled swap
is parametrized by the coupling strength η [7].

Then we see the system and reservoir final states can be
written simply as

ρ f
s = 1

2
+ sin2 η

2
�r · �σ + cos2 η

2
�s · �σ , (A8)

ρ f
r = 1

2
+ cos2 η

2
�r · �σ + sin2 η

2
�s · �σ . (A9)

Also, because the final states of the system and reservoir
only depend on cz, which remains unchanged after a CSWAP

as shown in Eq. (A5), the control can be reused as long as it is
with a different reservoir and system qubit each time, avoiding
interference terms between the control and its target qubits.
Note that this relies on the number of reservoir qubits being
greater than the number of system qubits being homogenized
for there to be different control qubits used in each interaction,
which is consistent with a large reservoir being the typical
regime in which homogenization is used to transform system
states.

The final states after one CSWAP interaction are summarized
in Tables I and II.

APPENDIX B: BOUNDING FIDELITY DIFFERENCE

Here we bound the difference between the magnitudes of
the system qubit’s fidelity with the target state in the PSWAP

and CSWAP homogenizers, hence the accuracy of the homog-
enization. We show that the ratio of the magnitudes of the
additional term in the PSWAP fidelity to the CSWAP fidelity is
much less than one. The ratio is

δF

Finc
= Finc − Fcoh

Finc
, (B1)

where

Finc = 1
2 (1 + c2 �β · �α + s2)

+ 1
2

√
(1 − |c2 �β + s2 �α|2)(1 − |�α|2), (B2)

and

Fcoh = 1

2
(1 + c2 �β · �α + s2)

+ 1

2

√√√√(
1 −

∣∣∣∣c2 �β + s2 �α + cs

4
�β × �α

∣∣∣∣
2
)

(1 − |�α|2),

repeating Eqs. (10) and (??) here for clarity.
To bound the maximum value of this ratio, we consider

the case where �α is perpendicular to �β, such that �α = αẑ, �β =
β x̂, and �β × �α = αβ ŷ, maximizing the difference between the
two fidelities.

Then the upper bound on δF/Finc is

√
1 − α2

(√
1 − c4β2+s4α2 −

√
1 − c4β2+s4α2− c2s2αβ

2

)
1+s2+√

1 − α2
√

1−c4β2+s4α2
.

(B3)

From the form of the extra term in the coherent fidelity, the
difference will be maximized for β = 1 and c = s = 1/

√
2.

Then we can further simplify the bound, solely in terms of α:

δF

Finc
�

√
1 − α2

(√
3 − α2 −

√
3 − α2 − α

2

)
3 + √

1 − α2
√

3 − α2
. (B4)

The maximum of the right-hand side (RHS) as α varies
between 0 and 1 is ≈0.0208 at α ≈ 0.805. Hence, at a maxi-
mum, Fcoh has an approximately 2% deviation from Finc.

Now let us consider the effect that subsequent interactions
of the homogenization protocols have on this difference in
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fidelity. For our worst-case upper-bound we initialized �α and
�β to be perpendicular. From the convergence properties of the
PSWAP, for subsequent interactions with reservoir qubits, the
Bloch vectors of the system and reservoir states will no longer
be perpendicular and will tend towards the same direction.
The deviation between the coherent and incoherent fidelities
will be scaled down by a factor of sinθ due to the contribution
from the cross product of the vectors �α and �β, where θ is the
angle between the system and reservoir qubit Bloch vectors.
This scaling factor will tend towards zero, the more reser-
voir interactions are included in the homogenization protocol.
This means that the convergence properties of the PSWAP and
CSWAP fidelities in this limit are equivalent.

In summary, there is a ≈2% upper bound on the fidelity
deviation of the coherent homogenizer from the incoherent
homogenizer for a finite number of system interactions with
the reservoir, and in the limit of a large reservoir, the differ-
ence between the fidelities tends towards zero.

APPENDIX C: COMPARISON WITH OTHER
REUSABILITY RESULTS

A pertinent question is whether the convergence and ir-
reversibility properties of the quantum homogenizer found
in Refs. [13,14] are dependent on the web of interference
between system and reservoir qubits that arises due to the co-
herent partial swap interactions. Those works demonstrate an
asymmetry in reusing homogenization machines to transform
qubits from mixed to pure states and the opposite process. If

the coherence is important, this would suggest that the homog-
enizer’s properties are a nontrivial quantum effect, whereas if
the properties are independent of the coherence, this suggests
the homogenizer’s properties can be generalized to a wider
class of incoherent protocols, which are closer to classical
implementations of thermalization and information erasure.
The similarity we derived between the PSWAP and CSWAP

homogenizers supports the latter case.
The results in Refs. [13,14] were derived using a quan-

tity called the relative deterioration, which is a function of
fidelities between qubits and their target states. We showed
in Sec. III A that the difference between the PSWAP and CSWAP

fidelities of system states with the target state is small and
tends to zero in the limit of a large reservoir. Since relative
deterioration is quantified using fidelities, the equivalence of
the convergence properties of the homogenizers suggests that
the additional repeatability cost of coherently erasing infor-
mation also applies for the incoherent model. Hence our work
expands the range of applicability of the repeatability cost of
erasure to a wider class of models. By contrast with protocols
in recent studies of coherence as a resource for quantum
information processing tasks [25], it is not a resource for the
homogenization and information erasure protocols presented
here.

We also note that the bounds we derived on η and N in
this paper assumed a worst-case homogenization. Hence, we
cannot directly use such bounds to compare the resource costs
of more specific tasks, such as transforming pure states to
mixed states and the opposite process.
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