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Error-tolerant parity detector of cat-state qubits based on a topological quantum phase transition
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We propose a scheme for realizing parity measurement of cat-state qubits based on a topological quantum
phase transition. The cat-state qubits, formed by the bosonic modes in the Kerr-nonlinear resonators with two-
photon squeezing drives, couple with a superconducting qubit in the center. We demonstrate that the resonator-
qubit couplings with proper strengths can induce a topological quantum phase transition when the cat-state
qubits are initial in the even-parity states. The topological quantum phase transition provides an approach to
distinguish the even-parity states from the odd-parity states by measuring a topological invariant, namely the
Chern number. Due to the robustness of the Chern number, the scheme shows great tolerance for multiple types
of disturbing factors, including the systematic errors of the control fields and the coupling strengths, the inter-
resonator crosstalk, and decoherence. Therefore, the scheme may be useful to construct an error-tolerant parity
detector of cat-state qubits.
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I. INTRODUCTION

Parity measurement plays an important role in quan-
tum information processing [1–6]. It has shown applications
in quantum information tasks, including quantum com-
putation [7–9], entanglement swapping [10–12], quantum
teleportation [13–15], entanglement purification [16–19],
and quantum error correction [20–22]. Motivated by the
abundant applications of parity measurement, much effort
has been devoted to constructing parity detectors in var-
ious physical systems. To date, effective parity detectors
for the physical qubits, including photonic qubits [23,24],
atomic qubits [25,26], spin qubits [27], and superconducting
qubits [28–30], have been reported.

In recent years, logical qubits [31–37], which provide pro-
tection of quantum information from noise and decoherence,
have drawn much attention in fault-tolerant quantum com-
putation. The cat-state qubits are one kind of useful logical
qubits [38–43]. In the basis of the even and odd cat states,
the phase-shift errors are exponentially suppressed [44–46].
Hence, one can only focus on the bit-flip errors in a quan-
tum error correction [47]. Attracted by the advantages of the
cat-state qubits, many schemes have been proposed to realize
quantum computation with cat-state qubits [48–53]. To further
stimulate quantum information processing based on cat-state
qubits, it is necessary to construct parity detectors for cat-state
qubits.

Until now, several schemes [54,55] have been put forward
to measure the parity of the cat-state qubits via selective popu-
lation transfers of an auxiliary qubit. However, the populations
of the target states are usually sensitive to errors of control
parameters and decoherence [56,57]. More specifically, the
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populations of the target states can hardly maintain unity in
the presence of parametric errors and decoherence, which
makes these schemes [54,55] fail if the wrong final states
are reported. To enhance the robustness of the parity mea-
surement, robust criteria should be considered for a parity
measurement instead of the populations. Fortunately, previous
works have shown that some topological invariants, such as
the Chern number, remain unchanged by small perturbations
to the system [58–63]. The jumps in the values of these
topological invariants represent nontrivial quantum topolog-
ical phase transitions [58,62]. These works give us a clue
to achieve error-tolerant parity measurement via topological
quantum phase transition.

In this paper, we propose a scheme to build a parity detector
of cat-state qubits based on topological quantum phase transi-
tion. The cat-state qubits are formed by the bosonic modes in
the Kerr-nonlinear resonators driven by two-photon squeez-
ing drives. We couple the resonators with a superconducting
qubit in the center and demonstrate that the resonator-qubit
couplings can be tuned to induce a topological quantum
phase transition when the cat-state qubits are initial in the
even-parity states. The topological quantum phase transition
allows us to distinguish the even-parity states from the odd-
parity states by measuring a topological invariant, i.e., the
Chern number. Benefiting from the robustness of the Chern
number, the scheme is insensitive to various disturbing fac-
tors, including the systematic errors of the control fields and
the coupling strengths, the inter-resonator crosstalk, and de-
coherence. Therefore, the scheme may provide an effective
approach to construct an error-tolerant parity detector of cat-
state qubits.

II. PHYSICAL MODEL

We consider a physical model containing two Kerr-
nonlinear resonators {Cn|n = 1, 2} driven by two-photon
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FIG. 1. (a) Diagrammatic sketch of the physical model for the
parity detector of cat-state qubits based on topological quantum
phase transition. The cat-state qubit n is formed by the mode in the
resonator Cn (n = 1, 2) coupling with the auxiliary superconducting
qubit q in the center. (b) Level configuration of the auxiliary super-
conducting qubit q driven by a classical field with Rabi frequency
�(t ) and coupled with the resonator Cn with coupling strength gn.

squeezing drives and coupled with an auxiliary supercon-
ducting qubit q, as shown in Fig. 1. The frequencies of
the resonator Cn and its corresponding two-photon squeezing
drive are assumed as ωn and 2ωn. The self-Hamiltonian of
the Kerr-nonlinear resonator Cn in the frame rotating at the
resonator frequency ωn is (setting h̄ = 1) [64–66]

Hn = −Kna†2
n a2

n + εna†2
n + ε∗

na2
n, (1)

with the Kerr nonlinearity Kn of the resonator Cn, the strength
εn of the two-photon squeezing drive applied to the resonator
Cn, and the creation (annihilation) operator a†

n (an) of the
resonator Cn. The resonator Cn couples with the transition
|g〉q ↔ |e〉q of the qubit q with the coupling strength gn. In
addition, the transition |g〉q ↔ |e〉q of the qubit q is driven by
a classical field with Rabi frequency �(t ) and frequency ω.
We consider the frequency matching as ωn = ω, and suppose
that the |g〉q ↔ |e〉q transition frequency of the qubit q is
modulated as ωe(t ) = ω + �(t ). In the frame rotating at the
frequency ω, the interaction Hamiltonian of the qubit q and
the two resonators is

Hq =
[
�(t ) +

∑
n=1,2

gna†
n

]
|g〉q〈e| + H.c. + �(t )|e〉q〈e|. (2)

The total Hamiltonian of the system reads Htot = Hq +∑2
n=1 Hn.
For εn = Knα

2, the even cat state |C+〉n and the odd cat
state |C−〉n, defined by

|C±〉n = 1√
N±

(|α〉n ± | − α〉n), (3)

are the two lowest orthonormal degenerate eigenvectors of
the Hamiltonian Hn. Here, N± = 2[1 ± exp(−2|α|2)] are the
normalized coefficients, and | ± α〉n are the coherence states
of the mode in the resonator Cn with the complex amplitude
±α. For |α| � 1, the cat states are separated from the rest of
the spectrum by an energy gap Egap � 4K|α|2 [66]. When the
energy gap satisfies Egap � gn, the evolution of the resonator
Cn can be restricted in the cat-state subspace spanned by
{|C±〉n}. Thus, a cat-state qubit can be constructed.

In the basis of {|C±〉n}, the annihilation operator an can be
rewritten as

an =
(∑

ι=±
|Cι〉n〈Cι|

)
an

( ∑
ι′=±

|Cι′ 〉n〈Cι′ |
)

= 2α√
N+N−

σx,n − 2iα√
N+N−

e−2|α|2σy,n, (4)

with σx,n = |C+〉n〈C−| + H.c., σy,n = −i|C+〉n〈C−| + H.c.,
and σz,n = |C+〉n〈C+| − |C−〉n〈C−|. When |α| � 1, we obtain
an � ασx,n. Assuming gn = g and Im(gα∗) = 0, the effective
Hamiltonian of the whole system of the cat-state qubits 1 and
2 and the qubit q can be derived as

Heff = Re[�(t )]σx + Im[�(t )]σy + �(t )σz/2

+ 2gα∗(|	+〉1,2〈
+| + H.c.)σx, (5)

with σx = |e〉q〈g| + H.c., σy = −i|e〉q〈g| + H.c., and σz =
|e〉q〈e| − |g〉q〈g|. Here, the term �(t )(|e〉q〈e| + |g〉q〈g|)/2 is
omitted as it is proportional to the identity operator of the
qubit q. In addition, the Bell-state vectors for the cat-state
qubits 1 and 2 are given by

|
±〉1,2 = 1√
2

(|C+〉1|C+〉2 ± |C−〉1|C−〉2),

|	±〉1,2 = 1√
2

(|C+〉1|C−〉2 ± |C−〉1|C+〉2). (6)

Defining

|	̃±〉1,2 = 1√
2

(|
+〉1,2 ± |	+〉1,2), (7)

the effective Hamiltonian in Eq. (5) can be diagonalized as

Heff = Re[�(t )]σx + Im[�(t )]σy + �(t )σz/2

+ 2gα∗(|	̃+〉1,2〈	̃+| − |	̃−〉1,2〈	̃−|)σx. (8)

III. PARITY MEASUREMENT OF CAT-STATE
QUBITS BASED ON A TOPOLOGICAL

QUANTUM PHASE TRANSITION

A. Introduction of the Berry connection, the Berry curvature,
and the Chern number

Let us first review the Berry connection, the Berry cur-
vature, and the Chern number used in characterizing the
topological quantum phase transition for the parity measure-
ment. We consider a system with the Hamiltonian H , which
has a nondegenerate eigenvector denoted by |ψ〉. During the
adiabatic evolution along the eigenvector |ψ〉 around a closed
path denoted by a vector 
s = [s1, s2, ...] in a parameter space,
apart from the dynamic phase, it has been shown that there
is an additional phase contribution, which is known as the
Berry phase [67]. The Berry phase � can be obtained by the
integral [61,67]

� =
∮

s


A · d
s, (9)
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along the path 
s. Here, 
A = i〈ψ |∇|ψ〉 is called the Berry
connection, the μth component of which is

Aμ = i〈φ| ∂

∂sμ

|φ〉. (10)

From the Stokes theorem, the Berry phase � can also be given
by the surface integral [61,68]

� =
∫∫

Ss


B · d 
S =
∫∫

Ss

BμνdSμν, (11)

over the area Ss enclosed by the path 
s. Here, dSμν = dsμ ∧
dsν is the area form element, and ∧ denotes the wedge
product. In Eq. (11), 
B is called the Berry curvature, whose
component is given by [68]

Bμν = ∂

∂sμ

Aν − ∂

∂sν

Aμ. (12)

The Berry curvature characterizes how the eigenvector is
modified by changing parameters [62]. If the path 
s lies on a
closed manifold S , the integral of the Berry curvature over the
manifold S gives a well-defined topological invariant known
as the (first) Chern number [69]

C = 1

2π

∫∫
S

BμνdSμν, (13)

which is quantized to integer values [62,70].
To date, the Berry phase, the Chern number, and the related

concepts have shown multiple applications in many different
quantum and classical systems. For example, the Chern num-
ber has been exploited in the quantization of the resistance in
the integer quantum Hall effect [58–60,71]. The Berry phase
and the Chern number also appear in anomalous quantum Hall
effect in magnetic metals [72] and the transport in graphene in
a quantum Hall regime [73]. In addition, they also emerge in
photon interference of a circularly polarized light [74], Thou-
less pumps [75,76], bianisotropic material [77], and geometric
quantum computation [78,79]. Moreover, recent studies have
shown that the Berry phase, the Berry connection, the Berry
curvature, and the Chern number are exploited in the obser-
vation of topological quantum phase transitions in various
physical systems [80–85].

B. The parity operator and the expressions of the even-parity
and odd-parity states

We define the parity operator for the cat-state qubits 1 and 2
as P1,2 = σz,1 ⊗ σz,2. The even-parity and the odd-parity states
can be described as

|	e〉 = β1|
+〉1,2 + β2|
−〉1,2,

|	o〉 = β3|	+〉1,2 + β4|	−〉1,2, (14)

with |β1|2 + |β2|2 = |β3|2 + |β4|2 = 1, which are the eigen-
vectors of the parity operator P1,2 with the eigenvalues 1 and
−1, respectively. Introducing a Hadamard gate Hn on the
cat-state qubit n as (in the basis {|C±〉n})

Hn = 1√
2

[
1 1
1 −1

]
, (15)

the even-parity and the odd-parity states are respectively
transformed into

|
e〉 = H1H2|	e〉 = β̃+|	̃+〉1,2 + β̃−|	̃−〉1,2,

|
o〉 = H1H2|	o〉 = β3|
−〉1,2 − β4|	−〉1,2, (16)

with β̃± = (β1 ± β2)/
√

2. The Hadamard gate Hn in Eq. (15)
can be readily realized in a Kerr-nonlinear resonator, which is
shown in the Appendix.

In the following, let us show that the parity of the cat-state
qubits 1 and 2 can be distinguished based on a topological
quantum phase transition by using the effective Hamiltonian
in Eq. (8), after the Hadamard gates H1 and H2. Here, the
control parameters are parametrized as

Re[�(t )] = −r cos θ,

Im[�(t )] = r sin θ cos ϕ, (17)

�(t ) = 2r sin θ sin ϕ.

C. The Chern number in the odd-parity case

When the cat-state qubits 1 and 2 are initial in the odd-
parity state |	o〉, after the Hadamard gates {Hn|n = 1, 2} in
Eq. (15), they evolve to the state |
o〉 in Eq. (16). As the
state |
o〉 is orthogonal to the states |	̃±〉1,2, the last term
of the effective Hamiltonian Heff in Eq. (8) can be omitted.
In this case, the evolution of the qubit q is governed by the
Hamiltonian

Hq,o = −r cos θσx + r sin θ cos ϕσy + r sin θ sin ϕσz. (18)

The eigenvectors of the Hamiltonian Hq,o in the basis
{|e〉q, |g〉q} read

|φ(θ, ϕ)〉 = cos θ
2√

2

[
1

−1

]
+ ie−iϕ sin θ

2√
2

[
1
1

]
,

|φ⊥(θ, ϕ)〉 = cos θ
2√

2

[
1
1

]
+ ieiϕ sin θ

2√
2

[
1

−1

]
, (19)

with the eigenvalues E = r and E⊥ = −r, respectively. As-
sume that the initial value of θ is zero and the initial state of
the qubit q is (|e〉q − |g〉q)/

√
2. The qubit q will evolve along

the path |φ〉 under the adiabatic limit |θ̇ |, |ϕ̇| � |E − E⊥| =
2r [86,87]. According to Eq. (10), the components of the
Berry connection along the path |φ〉 can be calculated by [67]

Aθ = i〈φ| ∂

∂θ
|φ〉 = 0, Aϕ = i〈φ| ∂

∂ϕ
|φ〉 = sin2 θ

2
. (20)

According to Eq. (12), the Berry curvature can be derived
from the Berry connection as

Bθϕ = ∂

∂θ
Aϕ − ∂

∂ϕ
Aθ = sin θ

2
. (21)

According to Eq. (13), by integrating the Berry curvature over
a parametric manifold Sq with θ ∈ [0, π ] and ϕ ∈ [0, 2π ], we
obtain a topological invariant, i.e., the Chern number in the
odd-parity case as

Co = 1

2π

∫∫
Sq

Bθϕdθdϕ = 1

2π

∫ 2π

0
dϕ

∫ π

0

sin θ

2
dθ = 1.

(22)
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This result implies that the parametric manifold Sq is topo-
logical nontrivial when the cat-state qubits 1 and 2 are in the
odd-parity state.

D. The Chern number in the even-parity case

To illustrate the evolution of the qubit q in the even-parity
case, we first consider the case that the cat-state qubits 1 and
2 are in the state |	̃+〉1,2 after the Hadamard gates {Hn|n =
1, 2} in Eq. (15), where |	̃+〉1,2 is a component of the vec-
tor |
e〉 in Eq. (16). According to the effective Hamiltonian
Heff in Eq. (8) and the parametrization in Eq. (17), assuming
rλ = −2gα∗, the evolution of the qubit q is governed by the
Hamiltonian

Hq,e = −r(λ + cos θ )σx + r sin θ cos ϕσy + r sin θ sin ϕσz.

(23)

The eigenvectors of the Hamiltonian Hq,e in Eq. (23) are

|φ̃(θ, ϕ)〉 = |φ (̃θ, ϕ)〉, |φ̃⊥(θ, ϕ)〉 = |φ⊥ (̃θ, ϕ)〉, (24)

with the eigenvalues

Ẽ = r
√

1 + λ2 + 2λ cos θ,
(25)

Ẽ⊥ = −r
√

1 + λ2 + 2λ cos θ,

respectively. Here, the angle θ̃ is a function of θ , which can be
obtained by solving

cos θ̃ = λ + cos θ√
1 + λ2 + 2λ cos θ

,

(26)

sin θ̃ = sin θ√
1 + λ2 + 2λ cos θ

.

Consider that the initial state of the qubit q is (|e〉q −
|g〉q)/

√
2 with θ |t=0 = 0. The qubit q will evolve along

the path |φ̃〉 under the adiabatic limit |θ̇ |, |ϕ̇| � |Ẽ − Ẽ⊥| =
2r

√
1 + λ2 + 2λ cos θ [86,87]. According to Eq. (10), the

components of the Berry connection along the path |φ̃〉 can
be calculated by

Ãθ = i
d θ̃

dθ
〈φ̃| ∂

∂θ̃
|φ̃〉 = 0, Ãϕ = i〈φ̃| ∂

∂ϕ
|φ̃〉 = sin2 θ̃

2
, (27)

and the corresponding Berry curvature is

B̃θϕ = ∂

∂θ
Ãϕ − ∂

∂ϕ
Ãθ = sin θ̃

2

d θ̃

dθ
, (28)

according to Eq. (12). According to Eq. (13), the Chern num-
ber in this case is

Ce = 1

2π

∫∫
Sq

B̃θϕdθdϕ

= 1

2π

∫ 2π

0
dϕ

∫ π

0

sin θ̃

2

d θ̃

dθ
dθ (29)

=
∫ θ̃ (π )

θ̃ (0)

sin θ̃

2
d θ̃ = cos θ̃

2
|̃θ (0)
θ̃ (π )

.

If |λ| < 1, we derive θ̃ (0) = 0 and θ̃ (π ) = π from Eq. (26),
and the Chern number remains 1, while for λ > 1 (λ <

−1), we have θ̃ (0) = θ̃ (π ) = 0 [̃θ (0) = θ̃ (π ) = π ], yielding
Ce = 0. This implies that a topological phase transition is
induced by the resonator-qubit couplings when |λ| > 1.

According to the effective Hamiltonian Heff in Eq. (8), by
replacing the parameter as rλ = 2gα∗, the results above can
also be applied to the case that the cat-state qubits 1 and 2 are
in the state |	̃−〉1,2 after the Hadamard gates {Hn|n = 1, 2} in
Eq. (15), where |	̃−〉1,2 is also a component of the vector |
e〉
in Eq. (16). Because the vector |
e〉 is a linear superposition
of the vectors {|	̃±〉1,2}, the above results can be extended to
the whole even-parity case.

E. Measurement of the Berry curvature and the Chern number
through a generalized force

We define a generalized force fϕ = −∂ϕH̄q, where H̄q

denotes the Hamiltonian of the qubit q with H̄q = Hq,o in
Eq. (18) [H̄q = Hq,e in Eq. (23)] in the odd-parity (even-
parity) case. According to the results reported in Refs. [61,62],
when the parameter ϕ is time independent, the Berry curvature
can be experimentally measured through the relation

〈 fϕ〉 = 〈φ̄| fϕ|φ̄〉 − vθ B̄θϕ + O
(
v2

θ

)
, (30)

with the eigenvector |φ̄〉 of the Hamiltonian H̄q used as the
evolution path, the variation speed vθ = θ̇ of the parameter
θ in an adiabatic evolution, and the Berry curvature B̄θϕ re-
lated to the path |φ̄〉. In the present scheme, we have fϕ =
r sin θ (sin ϕσy − cos ϕσz ) for both the odd- and even-parity
cases. In addition, the result 〈φ̄| fϕ|φ̄〉 = 0 can be obtained by
substituting |φ̄〉 = |φ〉 or |φ̄〉 = |φ̃〉. Using Eq. (30), the Berry
curvature can be estimated by

B̄θϕ � − 1

vθ

〈 fϕ〉 = − 1

vθ

{
�(t )

2
〈σy〉 − Im[�(t )]〈σz〉

}
. (31)

According to Eqs. (21) and (28), the Berry curvature B̄θϕ

is independent of the parameter ϕ. Hence, one can measure
the Berry curvature by selecting an arbitrary ϕ. For example,
when ϕ = 0 is considered, we have

B̄θϕ � − 1

vθ

〈 fϕ〉|ϕ=0 = 1

vθ

Im[�(t )]〈σz〉. (32)

Using the cylindrical symmetry of B̄θϕ , the Chern number can
be obtained from the integral [62]

C =
∫ π

0
B̄θϕdθ. (33)

To calculate the integral in Eq. (33), we can measure the av-
erage value 〈σz〉 with different values of θ along the evolution
path |φ̄(θ, 0)〉 via state tomography [62] of the qubit q.

IV. NUMERICAL SIMULATIONS

To verify the scheme can be used to distinguish the parity
of the cat-state qubits, we perform the numerical simulation
with a set of available parameters r = 2π × 1.5 MHz, vθ =
2π × 0.25 MHz, Kn = 2π × 12.5 MHz, and α = 2 [88]. As
the examples, the even-parity and the odd-parity states of the
cat-state qubits being measured are selected as |	e〉 = |	+〉1,2

and |	o〉 = |
+〉1,2, respectively. We first consider the case
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FIG. 2. (a) The measured Chern number vs λ̄ = −2gα/r. (b) The
evaluation criterion function F vs error coefficient εk (k = 1, 2, 3, 4)
with λ̄ = 1.5. (c) The evaluation criterion function F vs γ /|g| and
γφ/|g| with λ̄ = 1.5. (d) The evaluation criterion function F vs κ1/|g|
and κ2/|g| with λ̄ = 1.5. The parameters are r = 2π × 1.5 MHz,
vθ = 2π × 0.25 MHz, Kn = 2π × 12.5 MHz, and α = 2.

that the Hadamard gates {Hn|n = 1, 2} in Eq. (15) are per-
fect. In this case, the even-parity and the odd-parity states of
the cat-state qubits are transformed into |
e〉 = |	+〉1,2 and
|
o〉 = |	−〉1,2, respectively.

A. Variations of the Chern numbers with the coupling strength

Based on Eqs. (32) and (33), the measured Chern number
versus λ̄ = −2gα/r is plotted in Fig. 2(a). As shown by the
figure, the Chern number Co remains near 1 in the odd-parity
case, in accordance with the theoretical analysis. In the even-
parity case, the Chern number is near 1 when λ̄ < 1 and tends
to 0 shapely when λ̄ > 1. The result indicates that it is possible
to distinguish the even-parity states from the odd-parity states
when λ̄ > 1. However, when λ̄ is very close to 1, the measured
Chern number is between 0 and 1, because the adiabatic con-
dition vθ � r(1 + λ̄2 + 2λ̄ cos θ )1/2 can hardly be satisfied
during the whole evolution. Especially for λ̄ = 1 and θ = π ,
we have r(1 + λ̄2 + 2λ̄ cos θ )1/2 = 0, i.e., it is a degenerate
point for the eigenvectors |φ̃〉 and |φ̃⊥〉 in Eq. (24). Therefore,
for a better discrimination between the different parities in
an experiment, the value of λ̄ should not be too close to the
critical point λ̄ = 1. For example, when λ̄ = 1.5, the Chern
numbers in the odd- and even-parity cases are Co = 0.9877
and Ce = 0.0356, respectively. The odd-parity states and the
even-parity states can be well distinguished. Even when λ̄ =
1.25, where the Chern numbers are Co = 0.9912 and Ce =
0.1501, the two parities can be still well distinguished. If
we consider that the measurement results with C > 0.5 and
C < 0.5 respectively correspond to the odd- and even-parity
cases, the scheme can still succeed when λ̄ = 0.9566. The
above results demonstrate that the scheme has great tolerance
for the deviation of the resonator-qubit coupling strengths.

In practice, to estimate the performance of the scheme
in the presence of other disturbing factors, we can de-
fine an evaluation criterion function as F = min{Co − 0.5,

0.5 − Ce}. F > 0 means that the scheme is successful, while
F < 0 declares that the scheme fails.

B. Influence of the systematic errors
and the inter-resonator crosstalk

We first consider the following four disturbing factors:
(i) the systematic error of the real part Re[�(t )] → (1 +
ε1)Re[�(t )] of the Rabi frequency with the error coeffi-
cient ε1, (ii) the systematic error of the imaginary part
Im[�(t )] → (1 + ε2)Im[�(t )] of the Rabi frequency with the
error coefficient ε2, (iii) the systematic error of the coupling
strength g1 → (1 + ε3)g1 with the error coefficient ε3, and
(iv) the inter-resonator crosstalk with the Hamiltonian Hct =
ε4g(a†

1a2 + a1a†
2) and error coefficient ε4. Here, as the Chern

number is measured along the path with ϕ = 0,�(t ) = 0 is
obtained in this case. Thus, the systematic error of the detun-
ing �(t ) is not considered. In addition, we have shown that the
scheme has great tolerance for the deviation of the coupling
strengths in the case of g1 = g2 in Fig. 2(a). Without loss of
generality, we here only consider the systematic error of the
coupling strength g1, because the two coupling strengths are
symmetric.

The evaluation criterion function F versus error coefficient
εk (k = 1, 2, 3, 4) is shown in Fig. 2(b) with λ̄ = 1.5. Accord-
ing to the red-solid curve, we find that F remains positive
in the range ε1 ∈ [−0.72, 0.56]. This means the scheme can
still succeed even when the systematic error of the real part
Re[�(t )] of the Rabi frequency reaches 50% of the original
value. The blue-dashed curve in Fig. 2(b) shows that F is
always positive in the range ε2 ∈ [−0.8, 0.8]. Consequently,
the scheme can still succeed even when the systematic error
of the imaginary part Im[�(t )] of the Rabi frequency reaches
80% of the original value. From the green-dotted curve in
Fig. 2(b), one can see that F remains positive in the range ε3 ∈
[−0.72, 0.8]. The result indicates that the scheme can tolerate
the systematic error of the coupling strength g1 even when it
reaches 70% of the original value. As shown by the magenta
dash-dotted curve in Fig. 2(b), F is almost unchanged when
ε4 varies from −0.8 to 0.8. The minimal value of F for the
range ε4 ∈ [−0.8, 0.8] is 0.4644, very close to the ideal value
F = 0.5. This proves that the scheme is highly insensitive to
the inter-resonator crosstalk. Recalling the result an � ασx,n,
we derive Hct � ε4g|α|2σx,1σx,2. According to Eq. (16), |
e〉
and |
o〉 are the eigenvectors of Hct with the eigenvalues 1 and
−1, respectively. Thus, the parity of the cat-state qubits can
still be well preserved in the presence of the inter-resonator
crosstalk. To sum up, the results of Fig. 2(b) demonstrate the
scheme possesses perfect error tolerance for the systematic
errors of different control parameters and the inter-resonator
crosstalk.

C. Influence of the decoherence in the parity measurement

We also examine the performance of the scheme in the
presence of decoherence. The main decoherence factors here
are the energy relaxation of the level |e〉q of the qubit q with
relaxation rate γ , the dephasing of the level |e〉q of the qubit q
with the dephasing rate γφ , and the decay of the resonator Cn

with the decay rate κn. The system under the influence of the
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decoherence is governed by the master equation [89,90]

ρ̇ = −i[Htot, ρ] + γ

2
L[|g〉q〈e|]ρ

+ γφ

2
L[|e〉q〈e|]ρ +

2∑
n=1

κn

2
L[an]ρ, (34)

with the density operator ρ of the system and the Lind-
blad superoperator L[X ]ρ = 2XρX † − X †Xρ − ρX †X (X =
|g〉q〈e|, |e〉q〈e|, an). The evaluation criterion function F ver-
sus γ /g and γφ/g (κ1/g and κ2/g) is plotted in Fig. 2(c)
[Fig. 2(d)]. As shown in Fig. 2(c), the scheme is insensitive
to the energy relaxation and the dephasing of the qubit q.
When γφ � 0.152|g|, the scheme can always succeed with
γ /|g| ∈ [0, 0.5]. When γ = 0, the scheme can still succeed
when γφ = 0.418|g|. For γ = γφ = 0.25|g|, we have F =
0.0114 > 0. The above results indicate that the protocol can
still work when the energy relaxation rate and the dephasing
rate of the qubit q are comparable with the coupling strength.
According to Fig. 2(d), when κn varies from 0 to 0.5|g|, F is
almost unchanged. Thus, the scheme is almost unaffected by
the resonator decay when the Hadamard gates {Hn|n = 1, 2}
are assumed to be perfect. This is due to the results an �
ασx,n and 〈
e|an|
o〉 � 0. Hence, the parity information is
almost unaffected by the resonator decay during the parity
measurement.

D. Influence of the imperfect Hadamard gates

In the above discussions, we considered that the Hadamard
gates {Hn|n = 1, 2} in Eq. (15) are perfect. Let us now
investigate the influence of the imperfect Hadamard gates
{Hn} in the presence of the disturbing factors. Here, the
strength of the linear drive used in the Hadamard gate is set
as ςn = 2π × 5 MHz, satisfying the condition |ςnα| � Egap

with α = 2. For r = 2π × 1.5 MHz, vθ = 2π × 0.25 MHz,
Kn = 2π × 12.5 MHz, and λ̄ = 1.5, the total operation time
for the Hadamard gate Hn is τH = 32.5 ns, and we have Co =
0.9876,Ce = 0.0360, and F = 0.4640. When the systematic
error of the linear drive is considered, the strength becomes
ςn → (1 + ε̄1)ςn with error coefficient ε̄1. In addition, the
systematic error of the frequency shift δn can be described
by δn → (1 + ε̄2)δn with error coefficient ε̄2. The evaluation
criterion function F versus error coefficient ε̄k′ (k′ = 1, 2) is
shown in Fig. 3(a). From the figure, we find that F remains
positive for ε̄1 ∈ [−0.49, 0.49]. The result indicates that the
scheme can still succeed even when the systematic error of
the linear drive ςn approaches about 50% of the original
value. Accordingly, the scheme is insensitive to the systematic
errors of the linear drive ςn. For the systematic error of the
frequency shift δn, we have F > 0 with ε̄2 ∈ [−0.214, 0.217].
This means that the scheme can tolerate the systematic error
of the frequency shift δn even when it is about 20% of the
original value. The above result demonstrates that the scheme
is also insensitive to the systematic errors of the frequency
shift δn.

E. Influence of the resonator decay to the whole operation

Finally, we study the influence of the resonator decay to the
whole operation including the Hadamard gates {Hn|n = 1, 2}

FIG. 3. (a) The evaluation criterion function F vs error coeffi-
cient ε̄k′ (k′ = 1, 2). (b) The evaluation criterion function F vs κ1/|g|
and κ2/|g| when the Hadamard gates {Hn|n = 1, 2} are included.
The parameters are r = 2π × 1.5 MHz, vθ = 2π × 0.25 MHz,
λ̄ = 1.5, Kn = 2π × 12.5 MHz, and α = 2.

in Eq. (15). The evaluation criterion function F versus κ1/|g|
and κ2/|g| is plotted in Fig. 3(b). As shown by Fig. 3(b),
at the same point of (κ1/|g|, κ2/|g|), the evaluation criterion
function F is reduced compared with the results given in
Fig. 2(d). This is because the resonator Cn first evolves out
from the cat-state subspace and then evolves back into the
cat-state subspace during the operation U2 in the Hadamard
gate Hn. When the state of the resonator Cn is not in the cat-
state subspace, the parity information is unprotected and may
lose due to the resonator decay. Nevertheless, F still remains
positive for κ1 � 0.5|g| and κ2 � 0.5|g| when the Hadamard
gates {Hn|n = 1, 2} are considered. The minimal value of
F in the considered ranges of the resonator decay rates is
F = 0.2420. Consequently, the scheme can still succeed when
the resonator decay in the Hadamard gates {Hn|n = 1, 2} is
taken into account, even with the resonator decay rates κ1 and
κ2 comparable with the resonator-qubit coupling strength g.

V. CONCLUSION

We have proposed a scheme to construct a parity detector
of cat-state qubits based on a topological quantum phase tran-
sition. The cat-state qubits are formed by the bosonic modes
in the Kerr-nonlinear resonators driven by the two-photon
squeezing drives. The resonators couple with a supercon-
ducting qubit in the center. Tuning resonator-qubit coupling
strengths, one can realize a topological quantum phase tran-
sition when the cat-state qubits are initial in the even-parity
states. This phenomenon can be applied to distinguish the
even-parity states from the odd-parity states by measuring the
Chern number. Because of the robustness of the Chern num-
ber, the scheme is insensitive to different kinds of disturbing
factors, including the systematic errors of the control fields
and the coupling strengths, the inter-resonator crosstalk, and
decoherence. Therefore, the scheme may provide useful per-
spectives for the error-tolerant parity measurement of cat-state
qubits.
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APPENDIX: REALIZATION OF THE HADAMARD GATE
OF THE CAT-STATE QUBIT

Let us show the realization of the Hadamard gate Hn in
Eq. (15) of the cat-state qubit n in the Kerr-nonlinear res-
onator Cn. To realize the Hadamard gate Hn, we apply a
linear drive to the resonator Cn as Hl,n = ς∗

n an + ςna†
n with the

strength ςn. When |ςnα| � Egap is satisfied, we have Hl,n �
2Re[ςnα

∗]σx,n. For the operation time t = π/8Re[ςnα
∗], it

leads to a transformation in the cat-state subspace Sc,n =
span{|C±〉n} as

U1 = 1√
2

[
1 −i
−i 1

]
. (A1)

Then, we turn off the two-photon squeezing drive εn and the
linear drive ςn, and tune the frequency of the resonator Cn

from ωn to ωn − δn. In the frame rotating at the frequency ωn,
the Hamiltonian of the resonator Cn reads

H ′
n = −Kna†

nan − δna†
nan. (A2)

Under the condition δn = Kn and the operation time t =
π/2Kn, one can realize a transformation in the cat-state sub-
space Sc,n as

U2 =
[

1 0
0 i

]
. (A3)

Finally, we tune the frequency of the resonator back to ωn and
repeat the operation U1; the total operation for the system in
the cat-state subspace Sc,n can be described as

Utot = U1U2U1 = e−i π
4√

2

[
1 1
1 −1

]
, (A4)

which is equivalent to the Hadamard gate Hn in Eq. (15) for
the cat-state qubit n up to a global phase −π/4.
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