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From both intuitive and physical perspectives, it is generally recognized that within a resource theory frame-
work, free operations cannot broadcast a resource state due to their inability to generate resource from free states.
In the stabilizer formalism of fault-tolerant quantum computation, the basic ingredients of the corresponding re-
source theory consist of stabilizer states as free states and stabilizer operations as free operations. The celebrated
Gottesman-Knill theorem shows that quantum advantages over classical computation come from the magic
(nonstabilizer) resource, such as magic states or non-Clifford gates. In this work, we prove that broadcasting
of any magic state via stabilizer operations is impossible, which is reminiscent of the no-broadcasting theorems
for noncommuting states or quantum correlations. We further derive a trade-off relation between the magic
resource consumed in the initial system and that gained in the target system. These results characterize magic
states in the stabilizer formalism from the broadcasting angle, and may have implications for distributed quantum
computation and quantum secret sharing.
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I. INTRODUCTION

In the stabilizer formalism of universal and fault-tolerant
quantum computation, magic resources are necessary for
elevating stabilizer circuits to quantum computers beyond
classical ones [1–5]. Indeed, according to the Gottesman-
Knill theorem, quantum circuits that only consist of stabilizer
states, Clifford gates, and Pauli measurements (i.e., the
so-called stabilizer circuits) can be efficiently simulated
classically [5]. To achieve genuine quantum computation,
additional resources, such as magic states or non-Clifford
operations, are required [4–8]. The concept of magic (non-
stabilizer) resources can be conveniently formulated and
understood within the broad context of resource theory, which
focuses on identifying valuable resources as opposed to free
resources. In recent years, various concrete realizations of the
general resource framework have been widely studied, such as
entanglement [9–12], reference frames [13–15], asymmetry
[16–21], coherence [22–26], contextuality [27,28], Wigner
negativity [29–31], and so on. An operational characteriza-
tion of general convex resource theories both within quantum
mechanics and in general probabilistic theories was estab-
lished in Ref. [32]. All these approaches shed considerable
lights on foundational aspects of quantum structures and
provided powerful tools to explore quantum information
processing.

In the resource theory of stabilizer quantum computation,
stabilizer states and stabilizer (Clifford) operations are consid-
ered free, while magic (nonstabilizer) states and nonstabilizer
(non-Clifford) operations are treated as resources [8]. Intu-
itively, it is expected that magic resources cannot be generated
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by stabilizer operations from stabilizer states, although they
may be generated by nonstabilizer operations from stabilizer
states. In this context, a closely related and subtle issue arises:
If we start from magic states (rather than stabilizer states),
can we generate additional magic resources while keeping the
original magic states intact? Put alternatively, can we clone or
broadcast magic states?

To address the above issue, we first recall that various
no-broadcasting theorems have been extensively investigated
ever since the discovery of no-cloning of quantum states by
Wootters and Zurek [33] and by Dieks [34]. In 1996, Barnum
et al. proved a no-broadcasting theorem for noncommuting
states [35]. In 2008, Piani et al. established a no-broadcasting
theorem for quantum correlations [36]. The connections be-
tween the above two no-broadcasting theorems were revealed
in Refs. [37,38], and a unified picture emerged. Various other
no-broadcasting theorems and no-go results have also been es-
tablished [39–51]. These results, somewhat reminiscent of the
Heisenberg uncertainty principle, shed considerable light on
the quantum world and played an interesting role in studying
quantum information.

From a general viewpoint, it is quite reasonable to expect
that, in a framework of resource theory, operations that are
considered free cannot broadcast resource states, as they lack
the ability to create resources from free states. This belief
is indeed supported by the many no-broadcasting theorems
established in the literature [33–51]. Of course, for different
concrete frameworks of resource theory, the precise mathe-
matical formulations of no-broadcasting are different, and one
needs to investigate no-broadcasting in the special context. In
this work, we establish the no-broadcasting of magic states via
stabilizer operations for the stabilizer formalism of quantum
computation, and thus add a no-broadcasting result to the list
of no-broadcasting theorems.
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The remainder of the work is organized as follows. In
Sec. II, we review the stabilizer formalism of quantum compu-
tation and the corresponding resource theory of magic states
[8]. We prove some preliminary results concerning stabilizer
states, which are of independent interest and will be invoked
to establish our main results. In Sec. III, we derive some
no-broadcasting results for magic states, and reveal a trade-off
relationship for approximate broadcasting of magic states. In
Sec. IV, we conclude with a discussion and summary. In the
Appendixes, we present detailed mathematical proofs of the
main results.

II. PRELIMINARIES

For any natural number d , let Zd = {0, 1, . . . , d − 1} be
the ring of integers modulo d . In this article, we only con-
sider a finite-dimensional quantum system Cd with d a prime
number and a computational basis {| j〉 : j ∈ Zd}.

In a single-qudit system Cd , the discrete Heisenberg-Weyl
group (generalized Pauli group) [52–57]

P = {τ jDk,l : j ∈ Z2d , k, l ∈ Zd}
consists of discrete Heisenberg-Weyl operators (displacement
operators)

Dkl = τ klX kZl , τ = −eiπ/d ,

where

X =
d−1∑
j=0

| j + 1(mod d )〉〈 j|, Z =
d−1∑
d=0

ω j | j〉〈 j|,

ω = ei2π/d .

These operators were first introduced by Schwinger in his
seminal study of unitary operator bases [58], and are basic
ingredients for finite-dimensional quantum mechanics. The
normalizer of P in the full unitary group U (d ) of Cd is the
Clifford group [52]

C = {V ∈ U (d ) : VPV † = P}.
One may also define C/U (1) as the Clifford group.

For an n-qudit system (Cd )⊗n, the n-qudit discrete
Heisenberg-Weyl group is given by

Pn = P ⊗ P ⊗ · · · ⊗ P︸ ︷︷ ︸
n

,

and the n-qudit Clifford group is defined by

Cn = {V ∈ U (dn) : VPnV
† = Pn}.

The stabilizer formalism is based on these discrete
Heisenberg-Weyl operators, which are higher-dimensional
extensions of the familiar Pauli operators σx, σy, σz. The
stabilizer states are introduced in fault-tolerant quantum com-
putation [1], and according to the Gottesman-Knill theorem
[5], quantum circuits initialized from stabilizer states and
involving only Clifford gates and Pauli measurements can be
efficiently simulated by classical computers.

In an n-qudit system (Cd )⊗n, a pure stabilizer state is de-
fined as the common eigenstate (with common eigenvalue 1)
of a maximal abelian subgroup A (c1 /∈ A, c �= 1) of the dis-
crete Heisenberg Weyl group Pn [1,53]. The group A is called

the stabilizer group of the stabilizer state. Thus in the stabilizer
formalism, stabilizer states are conveniently and efficiently
described by stabilizer (abelian) groups, hence the name. Any
pure stabilizer state |A〉 associated with its stabilizer group A
can be written in the projection operator form as [57]

|A〉〈A| = 1

|A|
∑
D∈A

D,

where |A| = dn is the number of elements in A. Mixed
stabilizer states are nontrivial probabilistic mixtures of pure
stabilizer states. Except for stabilizer states, all other states
are called magic states or nonstabilizer states.

More general than the Clifford unitary gates in the Clifford
group Cn, a stabilizer (Clifford) operation on (Cd )⊗n is a map
between quantum states on (Cd )⊗n which can be expressed as
[59,60]

�(ρ) = trE(U (ρ ⊗ τE)U †)

for some stabilizer state τE on an ancillary system (en-
vironment) HE = (Cd )⊗m and some Clifford unitary gate
U ∈ Cn+m (the Clifford group of (Cd )⊗(n+m) = (Cd )⊗n ⊗
(Cd )⊗m). Here ρ is any state on (Cd )⊗n, and trE denotes the
partial trace over the ancillary system HE.

According to the Gottesman-Knill theorem, to achieve
genuine quantum computation, magic resources must be
injected into stabilizer circuits. In the resource theory of stabi-
lizer quantum computation [8], stabilizer states and stabilizer
(Clifford) operations are considered as free states and free
operations, respectively, while magic states and nonstabilizer
(non-Clifford) operations are considered as resource states
and resource operations, respectively. In a resource theory,
states and operations outside the corresponding free sets are
recognized as resourceful. To quantify the amount of the
resource, various resource measures are proposed. Typically,
a well-defined measure M(·) of resource should satisfy the
following two properties.

(1) Faithfulness: M(ρ) � c, where c � 0 is a constant and
the equality holds if and only if ρ is a free state (stabilizer
state).

(2) Monotonicity: For any free operation �, we have
M(�(ρ)) � M(ρ).

For our purpose, we will need three well-defined measures
of magic resource [8,31,61], the robustness of magic resource,
the relative entropy of magic resource, and the regularized
relative entropy of magic resource (reviewed in Sec. III and
the Appendix C).

The following results, apart from their own independent
interest, will be used in the proof of our main results.

Lemma 1. Let A ⊆ P be any maximal abelian subgroup
of the discrete Heisenberg-Weyl group P in a d-dimensional
system Cd such that c1 /∈ A for any c �= 1, then all common
normalized eigenstates of A are stabilizer states and constitute
an orthonormal basis of Cd .

For the proof, see the Appendix A.
From Lemma 1, we obtain the following sufficient condi-

tion for determining whether a state ρ is a stabilizer state or
not. This condition depends on its support {Dk,l : trρDk,l �= 0}
with respect to the discrete Heisenberg-Weyl group.
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Lemma 2. Let ρ be a (pure or mixed) quantum state in a
d-dimensional system Cd , and let A ⊆ P be the subgroup of
P generated by {Dk,l : trρDk,l �= 0}. If A is an abelian group,
then ρ is a stabilizer state.

For the proof, see the Appendix B.
We remark that Lemmas 1 and 2 are actually also true for

all finite dimensional systems, not only for prime-dimensional
ones.

III. NO-BROADCASTING OF MAGIC STATES

Since no-cloning, on the one hand, is much easier to estab-
lish than no-broadcasting, and on the other hand, illustrates
some essential points, we first treat no-cloning, even though
no-broadcasting includes no-cloning as a special instance.

No-cloning reveals a radical difference between classical
and quantum information. In the standard form, it shows that
for a family of distinct nonorthogonal and unknown states
{ρ j : j = 1, 2, . . .} on Ha, there exists no operation � which
copies all the input states in the sense that

�(ρ j ⊗ τ ) = ρ j ⊗ ρ j, j = 1, 2, . . . ,

where τ is any fixed state on Hb = Ha [62]. In particular,
there is no operation which can clone all quantum states [33].
By relaxing the condition to allow correlations, the family
of states {ρ j : j = 1, 2, . . .} is said to be broadcast by an
operation � if

tra�(ρ j ⊗ τ ) = ρ j = trb�(ρ j ⊗ τ ), j = 1, 2, . . . .

The celebrated result of Barnum et al. shows that a family
of quantum states can be broadcast if and only if it is a
commuting family [35].

In the framework of quantum resource theories, a natural
belief is that resources cannot be generated by free opera-
tions from free resources. In the consideration of cloning and
broadcasting in resource theories, it is natural to ask whether
resources can be cloned or broadcast via free operations
(rather than general operations as in the traditional approach
to no-cloning). In the resource theory of stabilizer quantum
computation, a stabilizer state can be cloned by a stabilizer
operation simply by the preparation operation (which is a
stabilizer operation) of the stabilizer state. The question is
whether a magic state can be cloned or broadcast by a sta-
bilizer operation. We first treat no-cloning of magic states
since this case is easier to prove than no-broadcasting of magic
states.

Definition 1 (Cloning of magic states). A magic state ρa on
a system Ha is said to be cloned by the stabilizer operation �

on the system Ha ⊗ Hb if there exists a stabilizer state τ b on
Hb = Ha such that

�(ρa ⊗ τ b) = ρa ⊗ ρa.

With the above definition, we obtain the following no-
cloning result for magic states.

Proposition 1. In any prime-dimensional system Cd , a
magic state cannot be cloned by any stabilizer operation.

For the proof, see the Appendix C.
The product structure of the output state ρa ⊗ ρa possesses

no correlations and simplifies considerably the proof of no-
cloning of magic states. If we allow correlations between the

ρaρa

τ bτ b

ΛΛ

Stabilizer

operations

Λ(ρa ⊗ τ b)Λ(ρa ⊗ τ b)

trbΛ(ρa ⊗ τ b)trbΛ(ρa ⊗ τ b)

traΛ(ρa ⊗ τ b)traΛ(ρa ⊗ τ b)

= ρa= ρa

⊗⊗

Magic state

Stabilizer 
state

Magic state

Magic state ?

FIG. 1. Magic states broadcasting process.

two reduced states of the output state, then we come to the
scenario of broadcasting.

Definition 2 (Broadcasting of magic states). A magic state
ρa on a system Ha is said to be broadcast by the stabilizer
operation � on the system Ha ⊗ Hb if there exists a stabilizer
state τ b on Hb = Ha such that

tra�(ρa ⊗ τ b) = ρa = trb�(ρa ⊗ τ b).

If we had a superadditive (supermultiplicative) measure of
magic resource which was in the meantime faithful and mono-
tonic, then we could easily establish no-broadcasting of magic
states. Indeed, if f (·) is such a measure of magic resource and
the magic state ρa can be broadcast (or, in particular, can be
cloned) by the stabilizer operation �, then for any stabilizer
state ρb,

f (ρa) � f (�(ρa ⊗ ρb)) (monotonicity)

� f (trb�(ρa ⊗ ρb))

+ f (tra�(ρa ⊗ ρb)) (superadditivity)

= f (ρa) + f (ρa)

= 2 f (ρa),

which is a contradiction since, by the faithfulness of f (·),
we have f (ρa) > 0 for any magic state ρa. A similar result
can be derived for any well-defined supermultiplicative magic
resource measure. However, to the best of our knowledge,
we do not have such a measure of magic resource at present.
Some counterexamples for the robustness of magic resource,
the relative entropy of magic resource, and furthermore any
magic resource measure based on quantum divergence can be
found in Refs. [8,31,63]. This makes the proofs of no-cloning
and no-broadcasting of magic states rather nontrivial. In fact,
we will actually prove no-broadcasting of the magic resource,
which is a generalization of no-broadcasting of magic states in
a stronger sense. For this purpose, we introduce the following
notion.

Definition 2′ (Generalized broadcasting of magic states).
A magic state ρa on a system Ha is said to be broadcast in a
generalized sense by the stabilizer operation � on the system
Ha ⊗ Hb if there exists a stabilizer state τ b on Hb = Ha such
that

trb�(ρa ⊗ τ b) = ρa,

and moreover the reduced state tra�(ρa ⊗ τ b) on the system
Hb is also a magic state (not necessarily equal to ρa).
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Illustrated in Fig. 1, the above definition focuses on the
broadcasting of the resource instead of the state itself, which
is about whether we are able to broadcast a certain resource
by composite free operations without disturbing the initial
resourceful state. Obviously, if the original broadcasting of
magic states is possible, then the generalized broadcasting of
magic states can be established in the same way. However, the
following proposition shows the broadcasting of magic states
cannot be accomplished.

Proposition 2. In any prime-dimensional quantum system,
a magic state cannot be broadcast in a generalized sense by
any stabilizer operation.

For the proof, see the Appendix D.
The above result demonstrates that if the goal is to maintain

the initial magic state on Ha, then no magic state can be
generated on Hb through stabilizer operations. In other words,
the advantages of quantum computation over classical com-
putation cannot be shared via stabilizer operations without
the consumption of resources in the original quantum system,
i.e., quantum advance cannot be broadcast via stabilizer oper-
ations.

By relaxing the requirement that the original magic state ρa

should be kept intact, we come to approximate broadcasting of
magic states and establish a trade-off relationship between the
magic resource consumed in system Ha and that generated in
system Hb. To make this more precise, we recall an important
measure of magic resource.

The robustness of magic resource (ROM) of a quantum
state ρ on (Cd )⊗n is defined as [31,61]

R(ρ) = min
{x j}

⎧⎨
⎩

∑
j

|x j | : ρ =
∑

j

x j |ψ j〉〈ψ j |, |ψ j〉 ∈ S

⎫⎬
⎭,

where S is the set of all pure stabilizer states on (Cd )⊗n. The
ROM has the following properties:

(1) R(ρ) � 1, the equality holds if and only if ρ is a
stabilizer state;

(2) For any stabilizer operation �, R(�(ρ)) � R(ρ);
(3) R(ρa ⊗ ρb) � R(ρa)R(ρb), i.e., the ROM is submulti-

plicative for product states;
(4) R(

∑
j p jρ j ) � ∑

j p jR(ρ j ) where {p j} is a probabil-
ity distribution and ρ j are quantum states, i.e., the ROM is
convex.

Proposition 3. In a prime-dimensional system Ha, let ρa

be a magic state and � a stabilizer operation on Ha ⊗ Hb with
Hb = Ha, then

R(trb�(ρa ⊗ τ b)) + R(tra�(ρa ⊗ τ b)) � R(ρa) + R(τ b).

Here R(·) is the robustness of magic resource and τ b is a
stabilizer state on Hb. Notice that actually R(τ b) = 1 for any
stabilizer state τ b.

For the proof, see the Appendix E.
Proposition 3 shows that magic resource obtained on Hb

is bounded above by the consumed magic resource on Ha.
Moreover, if we even simply want to preserve the amount of
magic resource on Ha, i.e., R(trb�(ρa ⊗ τ b)) = R(ρa), then
no magic resource can be obtained on Hb through stabilizer
operations.

Considering Proposition 3, a natural question is whether
it would still hold if τ b is also a magic state. This is an im-
portant issue worth further investigations. Our present method
cannot establish this result affirmably since when τ b is also a
magic state, we cannot derive that one of trb�(ρa ⊗ τ b) and
tra�(ρa ⊗ τ b) must be a stabilizer state. Notice that, in a qubit
system, Proposition 3 can be established for any quantum
states ρa and τ b. It shows that free operations cannot amplify
the magic resource, different from the case of asymmetry
[64], although states with either magic or asymmetry resource
cannot be broadcast [47,48].

IV. DISCUSSION

In this work, we established some results concerning no-
broadcasting of magic states in a resource theory of stabilizer
formalism. For this purpose, we provided a criterion for
stabilizer states via groups generated by the supports of char-
acteristic functions of the states, which may be of independent
interests. Furthermore, we derived a trade-off relationship
which sets an upper bound to the amount of magic resource
generated by the process of approximate broadcasting of
magic states.

We focused only on systems with prime dimensions. It is
desirable to consider broadcasting of magic states for the case
of general dimensions. However, for non-prime-dimensional
systems, some difficulties and subtleties arise. On the one
hand, in non-prime-dimensional systems, there is no clearly
defined simple resource framework for magic resource as that
in prime-dimensional systems. On the other hand, in non-
prime dimensions, a maximal abelian subgroup of the discrete
Heisenberg-Weyl group may have two generators, rendering
our current proof invalid. To generalize our no-broadcasting
of magic states to any finite-dimensional systems, further
knowledge about the group structure of stabilizer formalism
and the condition of equality for the monotonicity of magic
resource measures are indispensable.

Finally, we make some remarks on two open issues. First,
if there existed a superadditive bona fide measure of magic
resource, then no-broadcasting would follow immediately and
this issue would be trivial. We conjecture that no such mea-
sures exist, although we have not provided a proof of this
speculation. Second, notice that the correlated catalysis, a
special type of catalysis which allows correlations between
the catalyst and the target state, is defined as follows [65]: A
state τ b on Hb is said to be correlated catalyzed to σ b on Hb if
there exist a free operation � ∈ F and a state ρa on Ha such
that

trb�(ρa ⊗ τ b) = ρa, tra�(ρa ⊗ τ b) = σ b.

Obviously, when τ b is a stabilizer state and σ b is an arbitrary
magic state, this reduces to our scenario of broadcasting of
magic states. Here, a natural question arises: If we remove
the requirement that τ b is a stabilizer state, can τ b be corre-
lated catalyzed to a state σ b containing more magic resource
than τ b (with the magic state ρa as a catalyst)? In other
words, does Proposition 3 still hold when τ b is a magic state?
Some discussions on catalysis of magic states can be found
in Ref. [66], and the catalysis of entanglement manipulation
for mixed states is investigated in Ref. [67]. It is desirable to

012462-4



NO-BROADCASTING OF MAGIC STATES PHYSICAL REVIEW A 110, 012462 (2024)

further investigate similar issues in the context of stabilizer
formalism.

APPENDIX A: PROOF OF LEMMA 1

Since d is a prime number, any maximal abelian subgroup
A ⊆ P of the Heisenberg-Weyl group on Cd is isomorphic to
Zd , and thus can be expressed as

A = {1, D, D2, . . . , Dd−1},
with a generator operator D. Notice that c1 do not belong to
A for c �= 1 by assumption.

Since the unitary operator D has order d , and
1, D, D2, . . . , Dd−1 are linearly independent, the minimal
polynomial of D is then xd − 1. Consequently, D has d
eigenstates |ψ j〉 with eigenvalues ω j and constitute an or-
thonormal base of Cd : D|ψ j〉 = ω j |ψ j〉, j ∈ Zd , ω = ei2π/d .

These eigenstates are common eigenstates of all elements of
A : Dk|ψ j〉 = ω jk|ψ j〉, j, k ∈ Zd . It can be checked that

|ψ j〉〈ψ j | =
d−1∑
k=0

ω− jkDk, j ∈ Zd ,

which imply that |ψ j〉 are stabilizer states.

APPENDIX B: PROOF OF LEMMA 2

Suppose that the subgroup A1 ⊆ P generated by {Dk,l :
trρDk,l �= 0} is an abelian group. We can find a subgroup
A0 of A1 such that c1 /∈ A0 with c �= 1. Then |A0| � d . By
extending A0 to a maximal abelian subgroup A (c1 /∈ A with
c �= 1) and in view of Lemma 1, the common eigenstates
|ψ j〉, j ∈ Zd , of A are stabilizer states and constitute an or-
thonormal basis of Cd . Thus all operators in A are diagonal
under the basis {|ψ j〉 : j ∈ Zd} and therefore ρ is diagonal
under the basis {|ψ j〉 : j ∈ Zd}. This implies that ρ is a prob-
abilistic mixture of the d pure stabilizer states. Consequently,
ρ is also a stabilizer state (possibly mixed).

APPENDIX C: PROOF OF PROPOSITION 1

First, we recall that the relative entropy of magic resource
of a quantum state ρ on (Cd )⊗n is defined as [8]

RS (ρ) = min
σ∈Stab

S(ρ|σ ),

where Stab is the set of all (pure or mixed) stabilizer states on
(Cd )⊗n and S(ρ|σ ) = tr(ρ ln ρ) − tr(ρ ln σ ) is the relative en-
tropy between quantum states. The relative entropy of magic
resource has the following properties:

(1) RS (ρ) � 0, the equality holds if and only if ρ is a
stabilizer state;

(2) For any stabilizer operation �, RS (�(ρ)) � RS (ρ).
The regularized relative entropy of magic resource of a

quantum state ρ on (Cd )⊗n is defined as [8]

R∞
S (ρ) = lim

m→∞
1

m
RS (ρ⊗m),

and has similar properties as the relative entropy of magic
resource.

Now suppose that the magic state ρa on Ha can be cloned
by the stabilizer operation �. By iteratively applying �,

we can generate k (an arbitrary finite number) copies of ρa,
denoted as (ρa)⊗k . Since ρa is a magic state, we have

0 < R∞
S (ρa) = lim

m→∞
1

m
RS ((ρa)⊗m),

which implies that

lim
m→∞ RS ((ρa)⊗m) = ∞.

Thus, for sufficiently large t ,

RS ((ρa)⊗t ) > RS (ρa).

However, since (ρa)⊗t can be produced from ρa by stabilizer
operations, from the monotonicity of the relative entropy of
magic resource, we have

RS ((ρa)⊗t ) � RS (ρa),

which implies that the magic state ρa cannot be cloned.

APPENDIX D: PROOF OF PROPOSITION 2

Without loss of generality, we may ignore the phases of
operators. Suppose that the magic state ρa on Ha = Cd can
be broadcast by a stabilizer operation �, then there exists a
stabilizer state τ b on Hb = Ha such that

trb�(ρa ⊗ τ b) = ρa,

and moreover tra�(ρa ⊗ τ b) is a magic state on Hb, where

�(ρa ⊗ τ b) = trEU (ρa ⊗ τ b ⊗ τE)U † (D1)

for some stabilizer state τE on an ancillary system (Cd )⊗n and
U ∈ Cn+2 is a Clifford unitary operator on (Cd )⊗(n+2).

We first establish the desired result when τ b and τE are pure
states on Cd and (Cd )⊗n, respectively. Since τ b and τE are
stabilizer states, they are stabilized by some maximal abelian
subgroups Ab ⊂ P1 = P and AE ⊂ Pn, respectively. For any
m-qudit quantum state ρ, let

Sm(ρ) =
⎧⎨
⎩

m⊗
j=1

Dkj ,l j : tr

⎛
⎝ρ

m⊗
j=1

Dkj ,l j

⎞
⎠ �= 0, k j, l j ∈ Zd

⎫⎬
⎭

be the support of ρ. We consider groups generated by supports
of the input state and the output state.

On the input side, ignoring the global phase, supports of
stabilizer states τ b and τE coincide with Ab and AE, respec-
tively. Since ρa is a magic state, the group generated by the
support of ρa is 〈S1(ρa)〉 = P . Thus, we obtain that

〈Sn+2(ρa ⊗ τ b ⊗ τE)〉 = 〈S1(ρa) ⊗ S1(τ b) ⊗ Sn(τE)〉
= P ⊗ Ab ⊗ AE.

On the output side, according to the assumption, both
trb�(ρa ⊗ τ b) and tra�(ρa ⊗ τ b) are magic states on Cd ,
which imply that

〈S1(trb�(ρa ⊗ τ b))〉 = 〈S1(tra�(ρa ⊗ τ b))〉 = P .

Thus, we obtain that

〈S2(�(ρa ⊗ τ b))〉 = P2.
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However, from Eq. (D1) we know that S2(�(ρa ⊗ τ b)) ⊗ 1⊗n

is a subset of Sn+2(U (ρa ⊗ τ b ⊗ τE)U †) and thus

〈S2(�(ρa ⊗ τ b))〉 ⊗ 1⊗n = P2 ⊗ 1⊗n

⊆ 〈Sn+2(U (ρa ⊗ τ b ⊗ τE)U †)〉. (D2)

Notice that the Clifford operator U ∈ Cn+2 induces an au-
tomorphism of the group Pn+2 by conjugation, and thus we
have (up to global phase)

〈Sn+2(U (ρa ⊗ τ b ⊗ τE)U †)〉 ∼= 〈Sn+2(ρa ⊗ τ b ⊗ τE)〉
= P ⊗ Ab ⊗ AE. (D3)

Now combining Eqs. (D2) and (D3), we obtain that

P2 ⊗ 1⊗n ⊆ 〈Sn+2(U (ρa ⊗ τ b ⊗ τE)U †)〉 ∼= P ⊗ Ab ⊗ AE,

which contradicts to the fact that Ab and AE are commutative
proper subsets of P and Pn, respectively.

From the discussion above, for pure stabilizer states τ b and
τE, if tra�(ρa ⊗ τ b) becomes a magic state via a stabilizer op-
eration �, then 〈S1(tra�(ρa ⊗ τ b))〉 = P and 〈S1(trb�(ρa ⊗
τ b))〉 should remain an abelian group. From Lemma 2, we
conclude that trb�(ρa ⊗ τ b) is a stabilizer state.

Now consider the general case that

ρa ⊗ τ b ⊗ τE = ρa ⊗
⎛
⎝∑

j,k

p jk

∣∣ψb
j

〉〈
ψb

j

∣∣ ⊗ ∣∣ψE
k

〉〈
ψE

k

∣∣
⎞
⎠,

where p jk satisfy p jk � 0,
∑

jk p jk = 1, both |ψb
j 〉 ∈ Cd and

|ψE
k 〉 ∈ (Cd )⊗n are pure stabilizer states. From the linearity of

�, we have

trb�(ρa ⊗ τ b) =
∑

j,k

p jk trbEU
(
ρabE

jk

)
U † =

∑
j,k

p jkρ
a
jk,

tra�(ρa ⊗ τ b) =
∑

j,k

p jk traEU
(
ρabE

jk

)
U † =

∑
j,k

p jkρ
b
jk,

where

ρabE
jk = ρa ⊗ ∣∣ψb

j

〉〈
ψb

j

∣∣ ⊗ ∣∣ψE
k

〉〈
ψE

k

∣∣,
ρa

jk = trbEU
(
ρabE

jk

)
U †,

ρb
jk = traEU

(
ρabE

jk

)
U †.

According to the assumption, there exist indices j0, k0 ∈ N
such that ρb

j0k0
is a magic state since otherwise, tra�(ρa ⊗

τ b) would be a stabilizer state. By the discussion about no-
broadcasting theorem for the case of τ b and τE being pure

states, we know if ρb
j0k0

is a magic state, then ρa
j0k0

must be a
stabilizer state. Considering the channels

� jk (ρa) = trbEU
(
ρa ⊗ ∣∣ψb

j

〉〈
ψb

j

∣∣ ⊗ ∣∣ψE
k

〉〈
ψE

k

∣∣)U † = ρa
jk,

which are stabilizer operations for all j, k = 1, 2, . . . . From
the monotonicity of the ROM, we have

R
(
ρa

jk

) = R(� jk (ρa)) � R(ρa).

In addition, in view of the convexity of the ROM, we have

R(trb�(ρa ⊗ τ b)) �
∑

jk

p jkR
(
ρa

jk

)
�

∑
jk

p jkR(ρa) = R(ρa).

Since trb�(ρa ⊗ τ b) = ρa, i.e., R(trb�(ρa ⊗ τ b)) = R(ρa),
which implies that the above two inequalities are saturated,
we have

R
(
ρa

jk

) = R(ρa) > 1, ∀ j, k = 1, 2, . . . ,

which contradict to the fact that there exist indices j0, k0 ∈ N
such that ρa

j0k0
is a stabilizer state and R(ρa

j0k0
) = 1. Con-

sequently, the magic state ρa cannot be broadcast by the
stabilizer operation � (in the generalized sense).

APPENDIX E: PROOF OF PROPOSITION 3

Following the notation in the proof of Proposition 2, for
each pair ( j, k), from the monotonicity of the ROM, we have

R
(
ρa

jk

) = R
(
trbEU

(
ρabE

jk

)
U †

)
� R

(
ρabE

jk

)
� R(ρa),

R(ρb
jk ) = R

(
traEU

(
ρabE

jk

)
U †

)
� R

(
ρabE

jk

)
� R(ρa).

It follows from the previous proof of Proposition 2 that at
least one of ρa

jk and ρb
jk must be a stabilizer state, and thus

R
(
ρa

jk

) + R
(
ρb

jk

) = max
{
R
(
ρa

jk

)
, R

(
ρb

jk

)} + 1

� R(ρa) + 1.

Consequently,

R(trb�(ρa ⊗ τ b)) + R(tra�(ρa ⊗ τ b))

�
∑

j,k

p jk
(
R
(
ρa

jk

) + R
(
ρb

jk

))

� R(ρa) + 1,

where the first inequality comes from the convexity of the
ROM.

[1] D. Gottesman, Stabilizer codes and quantum error correction,
Ph.D. thesis, California Institute of Technology, 1997.

[2] D. Gottesman, The Heisenberg representation of quan-
tum computers, in Group22: Proceedings of the XXII
International Colloquium on Group Theoretical Methods
in Physics, edited by S. P. Corney, R. Delbourgo, and
P. D. Jarvis (International Press, Cambridge, MA, 1999),
pp. 32–43.

[3] E. Knill, Quantum computing with realistically noisy devices,
Nature (London) 434, 39 (2005).

[4] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, England, 2010).

012462-6

https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PhysRevA.71.022316


NO-BROADCASTING OF MAGIC STATES PHYSICAL REVIEW A 110, 012462 (2024)

[6] M. Howard and J. Vala, Qudit versions of the qubit π/8 gate,
Phys. Rev. A 86, 022316 (2012).

[7] E. T. Campbell, H. Anwar, and D. E. Browne, Magic-state
distillation in all prime dimensions using quantum Reed-Muller
codes, Phys. Rev. X 2, 041021 (2012).

[8] V. Veitch, S. H. Mousavian, D. Gottesman, and J. Emerson,
The resource theory of stabilizer computation, New J. Phys. 16,
013009 (2014).

[9] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Mixed-state entanglement and quantum error correc-
tion, Phys. Rev. A 54, 3824 (1996).

[10] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[11] E. Chitambar, D. Leung, L. Mancinska, M. Ozols, and A.
Winter, Everything you always wanted to know about LOCC
(but were afraid to ask), Commun. Math. Phys. 328, 303
(2014).

[12] P. Contreras-Tejada, C. Palazuelos, and J. I. de Vicente, Re-
source theory of entanglement with a unique multipartite
maximally entangled state, Phys. Rev. Lett. 122, 120503 (2019).

[13] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Reference
frames, superselection rules, and quantum information, Rev.
Mod. Phys. 79, 555 (2007).

[14] G. Gour and R. W. Spekkens, The resource theory of quantum
reference frames: Manipulations and monotones, New J. Phys.
10, 033023 (2008).

[15] T. Martinelli and D. O. Soares-Pinto, Quantifying quantum ref-
erence frames in composed systems: Local, global, and mutual
asymmetries, Phys. Rev. A 99, 042124 (2019).

[16] M. Ahmadi, The resource theory of asymmetry and some of its
applications, Ph.D. thesis, Imperial College London, 2012.

[17] M. Ahmadi, D. Jennings, and T. Rudolph, The Wigner-Araki-
Yanase theorem and the quantum resource theory of asymmetry,
New J. Phys. 15, 013057 (2013).

[18] I. Marvian and R. W. Spekkens, Modes of asymmetry: The ap-
plication of harmonic analysis to symmetric quantum dynamics
and quantum reference frames, Phys. Rev. A 90, 062110 (2014).

[19] R. Takagi, Skew informations from an operational view via
resource theory of asymmetry, Sci. Rep. 9, 14562 (2019).

[20] N. Li, S. Luo, and Y. Sun, From asymmetry to correlations,
Europhys. Lett. 130, 30004 (2020).

[21] D. Kudo and H. Tajima, Fisher information matrix as a resource
measure in the resource theory of asymmetry with general
connected-Lie-group symmetry, Phys. Rev. A 107, 062418
(2023).

[22] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying co-
herence, Phys. Rev. Lett. 113, 140401 (2014).

[23] A. Winter and D. Yang, Operational resource theory of coher-
ence, Phys. Rev. Lett. 116, 120404 (2016).

[24] K. B. Dana, M. G. Diaz, M. Mejatty, and A. Winter, Resource
theory of coherence: Beyond states, Phys. Rev. A 95, 062327
(2017).

[25] A. Streltsov, G. Adesso, and M. B. Plenio, Quantum coherence
as a resource, Rev. Mod. Phys. 89, 041003 (2017).

[26] S. Luo and Y. Sun, Coherence and complementarity in state-
channel interaction, Phys. Rev. A 98, 012113 (2018).

[27] A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, R.
Horodecki, P. Joshi, W. Klobus, and A. Wójcik, Quantifying
contextuality, Phys. Rev. Lett. 112, 120401 (2014).

[28] B. Amaral, Resource theory of contextuality, Phil. Trans. R.
Soc. A 377, 20190010 (2019).

[29] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, Negative quasi-
probability as a resource for quantum computation, New J.
Phys. 14, 113011 (2012).

[30] J. R. Seddon, B. Regula, H. Pashayan, Y. Ouyang, and E. T.
Campbell, Quantifying quantum speedups: Improved classical
simulation from tighter magic monotones, PRX Quantum 2,
010345 (2021).

[31] M. Howard and E. Campbell, Application of a resource theory
for magic states to fault-tolerant quantum computing, Phys.
Rev. Lett. 118, 090501 (2017).

[32] R. Takagi and B. Regula, General resource theories in
quantum mechanics and beyond: operational characteriza-
tion via discrimination tasks, Phys. Rev. X 9, 031053
(2019).

[33] W. K. Wootters and W. H. Zurek, A single quantum cannot be
cloned, Nature (London) 299, 802 (1982).

[34] D. Dieks, Communication by EPR devices, Phys. Lett. A 92,
271 (1982).

[35] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B.
Schumacher, Noncommuting mixed states cannot be broadcast,
Phys. Rev. Lett. 76, 2818 (1996).

[36] M. Piani, P. Horodecki, and R. Horodecki, No-local-
broadcasting theorem for multipartite quantum correlations,
Phys. Rev. Lett. 100, 090502 (2008).

[37] S. Luo, On quantum no-broadcasting, Lett. Math. Phys. 92, 143
(2010).

[38] S. Luo and W. Sun, Decomposition of bipartite states with
applications to quantum no-broadcasting theorems, Phys. Rev.
A 82, 012338 (2010).

[39] M. A. Nielsen and I. L. Chuang, Programmable quantum gate
arrays, Phys. Rev. Lett. 79, 321 (1997).

[40] G. Lindblad, A general no-cloning theorem, Lett. Math. Phys.
47, 189 (1999).

[41] R. Jozsa, A stronger no-cloning theorem, arXiv:quant-
ph/0204153.

[42] H. Barnum, J. Barrett, M. Leifer, and A. Wilce, Generalized
no-broadcasting theorem, Phys. Rev. Lett. 99, 240501 (2007).

[43] S. Luo, From quantum no-cloning to wave-packet collapse,
Phys. Lett. A 374, 1350 (2010).

[44] B. Coecke, T. Fritz, and R. W. Spekkens, A mathematical theory
of resources, Inf. Comput. 250, 59 (2016).

[45] J. Niset, J. Fiurášek, and N. J. Cerf, No-go theorem for Gaussian
quantum error correction, Phys. Rev. Lett. 102, 120501 (2009).

[46] P. Simidzija, R. H. Jonsson, and E. Martín-Martínez, General
no-go theorem for entanglement extraction, Phys. Rev. D 97,
125002 (2018).

[47] I. Marvian and R. W. Spekkens, No-broadcasting theorem for
quantum asymmetry and coherence and a trade-off relation
for approximate broadcasting, Phys. Rev. Lett. 123, 020404
(2019).

[48] M. Lostaglio and M. P. Müller, Coherence and asymmetry can-
not be broadcast, Phys. Rev. Lett. 123, 020403 (2019).

[49] C.-Y. Ju, A. Miranowicz, G.-Y. Chen, and F. Nori, Non-
Hermitian Hamiltonians and no-go theorems in quantum
information, Phys. Rev. A 100, 062118 (2019).

[50] K. Fang and Z. W. Liu, No-go theorems for quantum resource
purification, Phys. Rev. Lett. 125, 060405 (2020).

012462-7

https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevX.2.041021
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1103/PhysRevLett.122.120503
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1088/1367-2630/10/3/033023
https://doi.org/10.1103/PhysRevA.99.042124
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1103/PhysRevA.90.062110
https://doi.org/10.1038/s41598-019-50279-w
https://doi.org/10.1209/0295-5075/130/30004
https://doi.org/10.1103/PhysRevA.107.062418
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevA.95.062327
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/PhysRevA.98.012113
https://doi.org/10.1103/PhysRevLett.112.120401
https://doi.org/10.1098/rsta.2019.0010
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1103/PRXQuantum.2.010345
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevX.9.031053
https://doi.org/10.1038/299802a0
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1103/PhysRevLett.76.2818
https://doi.org/10.1103/PhysRevLett.100.090502
https://doi.org/10.1007/s11005-010-0389-1
https://doi.org/10.1103/PhysRevA.82.012338
https://doi.org/10.1103/PhysRevLett.79.321
https://doi.org/10.1023/A:1007581027660
https://arxiv.org/abs/quant-ph/0204153
https://doi.org/10.1103/PhysRevLett.99.240501
https://doi.org/10.1016/j.physleta.2010.01.036
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevD.97.125002
https://doi.org/10.1103/PhysRevLett.123.020404
https://doi.org/10.1103/PhysRevLett.123.020403
https://doi.org/10.1103/PhysRevA.100.062118
https://doi.org/10.1103/PhysRevLett.125.060405


ZHANG, FENG, AND LUO PHYSICAL REVIEW A 110, 012462 (2024)

[51] Y. Yang, R. Renner, and G. Chiribella, Optimal universal pro-
gramming of unitary gates, Phys. Rev. Lett. 125, 210501 (2020).

[52] D. M. Appleby, Symmetric informationally complete-positive
operator valued measures and the extended Clifford group,
J. Math. Phys. 46, 052107 (2005).

[53] D. Gross, Hudson’s theorem for finite-dimensional quantum
systems, J. Math. Phys. 47, 122107 (2006).

[54] H. Zhu, SIC POVMs and Clifford groups in prime dimensions,
J. Phys. A 43, 305305 (2010).

[55] N. Dangniam, Y.-G. Han, and H. Zhu, Optimal verification of
stabilizer states, Phys. Rev. Res. 2, 043323 (2020).

[56] H. Dai, S. Fu, and S. Luo, Detecting magic states via character-
istic functions, Int. J. Theor. Phys. 61, 35 (2022).

[57] L. Feng and S. Luo, From stabilizer states to SIC-POVM fidu-
cial states, Theor. Math. Phys. 213, 1747 (2022).

[58] J. Schwinger, Unitary operator bases, Proc. Natl. Acad. Sci.
USA 46, 570 (1960).

[59] M. Ahmadi, H. B. Dang, G. Gour, and B. C. Sanders, Quan-
tification and manipulation of magic states, Phys. Rev. A 97,
062332 (2018).

[60] X. Wang, M. M. Wilde, and Y. Su, Quantifying the magic of
quantum channels, New J. Phys. 21, 103002 (2019).

[61] M. Heinrich and D. Gross, Robustness of magic and symmetries
of the stabiliser polytope, Quantum 3, 132 (2019).

[62] V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Quantum cloning,
Rev. Mod. Phys. 77, 1225 (2005).

[63] R. Rubboli, R. Takagi and M. Tomamichel, Mixed-state addi-
tivity properties of magic monotones based on quantum relative
entropies for single-qubit states and beyond, arXiv:2307.08258.

[64] F. Ding, X. Hu, and H. Fan, Amplifying asymmetry
with correlating catalysts, Phys. Rev. A 103, 022403
(2021).

[65] P. Lipka-Bartosik, H. Wilming, and N. H. Y. Ng, Catalysis
in quantum information theory, Rev. Mod. Phys. 96, 025005
(2024).

[66] E. T. Campbell, Catalysis and activation of magic states
in fault-tolerant architectures, Phys. Rev. A 83, 032317
(2011).

[67] J. Eisert and M. Wilkens, Catalysis of entanglement manipula-
tion for mixed states, Phys. Rev. Lett. 85, 437 (2000).

012462-8

https://doi.org/10.1103/PhysRevLett.125.210501
https://doi.org/10.1063/1.1896384
https://doi.org/10.1063/1.2393152
https://doi.org/10.1088/1751-8113/43/30/305305
https://doi.org/10.1103/PhysRevResearch.2.043323
https://doi.org/10.1007/s10773-022-05027-8
https://doi.org/10.1134/S004057792212008X
https://doi.org/10.1073/pnas.46.4.570
https://doi.org/10.1103/PhysRevA.97.062332
https://doi.org/10.1088/1367-2630/ab451d
https://doi.org/10.22331/q-2019-04-08-132
https://doi.org/10.1103/RevModPhys.77.1225
https://arxiv.org/abs/2307.08258
https://doi.org/10.1103/PhysRevA.103.022403
https://doi.org/10.1103/RevModPhys.96.025005
https://doi.org/10.1103/PhysRevA.83.032317
https://doi.org/10.1103/PhysRevLett.85.437

