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Entanglement across the sliding-pinned transition of ion chains in optical cavities
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Dissipative quantum systems can under appropriate conditions exhibit bi- or multipartite entanglement at the
steady state. The presence and properties of these quantum correlations depend on the relevant model parameters.
Here, we characterize the steady-state entanglement in connection with the spatial structure of a small chain of
three ions dispersively coupled with a pumped optical cavity. Within a semiclassical approximation, we describe
the relation between entanglement, spatial organization, and vibrational modes of the ion chain. Upon increasing
the pumping strength, our system undergoes a transition from a sliding to a pinned configuration, in which ions
are expelled from the maxima of the optical potential. The features of the steady-state entanglement strongly
depend on the kind of pinned configuration reached. We identify scenarios leading to entangled steady states,
analyze the effect of defect formation upon entanglement between different system partitions, and observe the

presence of multipartite quantum correlations.
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I. INTRODUCTION

The exceptional degree of controllability of trapped ions
makes them ideal candidates for quantum simulations of
condensed matter models [1-5]. In particular, the optome-
chanical interaction of ion chains and standing optical fields
makes these systems particularly well-suited for the study of
nanofriction [6—16].

Indeed, the optical field can induce in one-dimensional
chains transitions that are closely related to the Frenkel-
Kontorova (FK) model [17]. In this model, a chain of masses
connected by springs sits on a periodic potential. The com-
petition between the interparticle interaction and the substrate
potential can give rise to a variety of ground-state configu-
rations that depend both on the boundary conditions and on
the ratio between the period of the substrate and the natural
length of the springs. Possible variations of the FK model with
trapped ions involve periodic substrates given by the potential
of a pumped optical cavity [8—10] or optical lattice [15,16], or
with a deformable potential provided by a second, neighbor-
ing ion chain [11-13].

When the substrate potential is generated by the interaction
with an optical cavity, the transition can be driven by in-
creasing the laser pumping strength, as schematized in Fig. 1.
Loosely speaking, the system is said to be in a sliding phase
when the ions can be found at arbitrary locations relative to
the optical field. On the contrary, for strong laser pumping the
ions tend to localize at minima of the optical potential, which
is usually referred to as the pinned phase. Due to the strong
Coulomb repulsion, typical inter-ion distances are in practice
of the order of dozens of lattice sites.

Several studies of friction and sliding-pinned transitions
in trapped-ion platforms have been carried out along these
lines, both theoretically and experimentally, analyzing many
features such as equilibrium configurations, energy barriers,
final temperatures, etc. [6—16,18,19]. Notably, the quantum
correlations present in these setups remain to our knowledge
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largely unexplored. In this work we take a step in this direc-
tion, addressing the question of how the changes in spatial
organization impact the entanglement within the system.

More precisely, we focus on steady-state entanglement
in a one-dimensional chain of three trapped ions coupled
with an optical cavity, across the transition from a slid-
ing to a pinned configuration. Even though the problem
we study is not in the many-body realm, it represents a
minimal implementation of the more complex many-particle
system. We characterize the continuous-variable (CV) en-
tanglement [20,21] between various degrees of freedom and
relate it with the equilibrium structure. The features of mul-
tipartite CV entanglement not only bring to light another
aspect of the system dynamics; they could also be relevant
in connection with the continuous-variable paradigm of quan-
tum computation [22,23]. Entanglement for ultracold neutral
atoms in cavities has been studied in Refs. [24,25]; systems
of trapped ions are very different because of their strong
Coulomb interaction.

An important precedent of this work is the study in
Ref. [26], which estimated the CV entanglement in the transi-
tion from linear to zigzag structures of ions in optical cavities.
This analysis found non-negligible entanglement, although
in parameter regimes for which the underlying semiclassical
approximations could be unreliable [27,28]. Besides, only
bipartite entanglement between cavity and motional modes
was studied. For the small system we consider here, we show
that it is possible to obtain entangled steady states far from the
regime where the semiclassical description is expected to fail.
We also go beyond previous articles [18,19,26] by analyzing
both bi- and multipartite entanglement for different system
partitions.

We observe that the presence of defects in the chain
structure has a direct correlation with the vibrational modes
exhibiting most entanglement with the cavity field fluctua-
tions. Furthermore, we find genuine tripartite entanglement
within the ion chain, as well as four-mode entanglement when
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FIG. 1. Sketch of the sliding-pinned transition with three ions in
a harmonic trap combined with an optical potential. In (a) the optical
potential is weak and equilibrium positions are mostly determined
by the combination of harmonic confinement and electrostatic repul-
sion. (b) When the optical potential becomes dominant, the ions are
pushed toward optical minima.

considering partitions involving the cavity and the local de-
grees of freedom of individual ions.

This work is organized as follows: In Sec. II we describe
the model and the equations governing the dynamics. In
Sec. III we review the semiclassical treatment of the system.
In Sec. IV we identify the different semiclassical equilib-
rium configurations as a function of the system parameters.
Section V contains the main results, characterizing bi- and
multipartite CV entanglement between several system parti-
tions. Finally, in Sec. VI we summarize our results and discuss
possibilities for future work. Additional details are provided in
two Appendixes.

II. ION CHAIN DISPERSIVELY COUPLED
WITH AN OPTICAL CAVITY

The system we consider is similar to the ones studied in
Refs. [8-10,18,19,29-32]. We focus on a small linear chain of
three equal ions, with mass m and charge ¢, inside an optical
cavity with a single relevant mode, of frequency w,, that is
pumped by a laser. The propagation direction of this mode
is assumed to coincide with the longitudinal axis of the ion
chain.

We start by describing the cavity dynamics in absence
of coupling to the ions. The unitary evolution of the cavity
field in the frame rotating with the laser is determined by the
Hamiltonian

Hey = —hAa'a + ifin(a" — a). (1)

The operators a' and a are the creation and annihilation op-
erators of this field, respectively, while A, = w; — w, is the
detuning between the laser frequency and the cavity mode.
Finally, n is the pump strength, proportional to the amplitude
of the laser; with no loss of generality we have assumed
neR.

The imperfect reflectivity of the mirrors forming the cavity
leads to photon loss. This decay of the photon number at a rate
of 2k can be described by the superoperator

Di(p) = 2ic(apa’ — 3{a’a, p}), )

where we consider that no thermal excitations enter the cavity
from the environment.

When the ions form a linear chain along the x axis, the
Hamiltonian describing the axial motional degrees of freedom

in the absence of the cavity is

N 2 2.2 N 2
P mw=x; q 1
H,, = — —. (3
o ;(2m+ 2 >+j=1kz>;4neo|xj—xk| )

Here, p; is the momentum of ion j along the x axis. The trap
potential is considered in harmonic approximation, with w the
trap frequency, and the particles interact through Coulomb
repulsion. Such a linear ion chain can be obtained when the
trap confinement along the y and z axes is much tighter than
along x. Furthermore, for linear configurations the coupling
between the motion in axial and transverse directions can
usually be neglected [33].

We will model the effect of noise on the ion motion through
a coupling with an environment acting directly upon the nor-
mal modes of the ion chain. This causes damping as well as
heating [34], and is described by

T, :
Lr, = S [N+ D(@bipb] = b]b1. p)

+ Ni(2b! pb; — {bib}, p})] 4)

for the ith vibrational mode, with ladder operators b;, bj, and
i =1, 2, 3. We note that in the presence of interaction with the
cavity, the vibrational modes described by b;, b:f are defined
accordingly, as in Ref. [26]. For simplicity, we consider that
noise on the ions acts uniformly on each vibrational mode,
I'; =T and N; = N. Although this assumption is not physi-
cally realistic, it is convenient for our purposes since motional
noise is not the focus of our work.

We now turn to the dispersive interaction between cavity
and ions. The frequency w, of the cavity is assumed to be
close to resonance with the frequency of a dipole transition
between two atomic levels, but far enough from resonance to
avoid populating the excited states. In this regime, the excited
electronic states can be adiabatically eliminated [35,36], so
that our model describes an effective optomechanical system.
More precisely, labeling A the detuning between laser and
atoms, we assume |Ag| > k, ¥, |Acl, gov/{ata). Here, gj is a
characteristic zero-photon coupling between the cavity mode
and the atomic transitions. Spontaneous emission is not con-
sidered in our description, which is a valid approximation if
|Ag] is large enough [37,38].

One then obtains an effective Hamiltonian describing cav-
ity field and atomic motion [26,39,40]:

Her = —HAege(x)a’a — ifin(a — a') + Hin(x),  (5)

where a vector x (p) with components x; (p;) has been defined
to simplify the notation. The operator Ag(x) is defined as

N
Act(x) = Ac — Z £

N
2, =A—Uo ) f(x;), (6)

J=1

where in the denominator A, has been neglected in compar-
ison with Ag, and U, is defined as Uy = g%/Ao. The spatial
profile of the field in Eq. (6) is chosen to be

&) =g f&x)), fx;)=cos’(kx;) (7

with k£ = 27 /A, in such a way that the optical potential has a
periodicity of A/2. The dispersive coupling in Eq. (5) can be
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interpreted as a shift of the cavity frequency determined by the
atomic positions, or as a globally deformable optical potential
acting on the ions [40].

For definiteness, we consider only the case of a laser with
A > 0 (blue detuning), such that the ions are pushed to
the minima of the field intensity. For strong laser pumping,
the ions’ equilibrium positions are expected to be close to
minima of the optical potential, while for weak pumping the
balance between Coulomb repulsion and trap confinement
predominates. In a semiclassical treatment, the change from
one regime to the other corresponds to a sharp transition when
there is a symmetry breaking in the spatial structure of the
ions. This is obtained by making the trap minimum coincide
with a maximum of optical potential at position x = 0 [18]. In
this way, a very small system can be made to mimic the abrupt
behavior corresponding to the sliding-pinned transition, which
strictly speaking corresponds to an infinite chain.

III. GAUSSIAN SEMICLASSICAL TREATMENT

We now review the semiclassical approximation that will
be used to analyze the steady states of our system. We refer
the reader to Ref. [26] for more details. Under this treatment
the dynamics of the system are described by small quantum
fluctuations around classical equilibrium values. One thus ex-
presses

a=a+ da
x=Xx46x
p=p+dp, 3

where @ = (a), X; = (x;), and p; = (p;), in such a way that
each fluctuation operator has zero mean. The quantities refer-
ring to the ions are grouped in vectors X, p, éx, and ép.

The approach includes a linearized treatment of fluctua-
tions, truncating the Heisenberg-Langevin equations to first
order in these fluctuations. The effect of noise is modeled
through the input-output formalism [41]. We note that the
limitations of this semiclassical treatment have been discussed
at length for the case of a single ion in Ref. [28].

A. Classical equilibrium configurations

Neglecting input noise operators and settinga =x; = p; =0
leads to the following conditions for the classical equilibrium
values:

—_ n —
a=—— ; =0. 9
—ida@® ®
In turn, the classical solutions for the ion positions are deter-
mined minimizing an effective total potential of the form

Viot = Vet (X) + Vion (%), (10)

where Vo, contains the trap and Coulomb potentials, whereas
Vet 1s an effective optical potential [42] defined as

2 —
Acsr(X
Vet (X)) = hn— arctan <—L()> (11
K K
For weak pumping, minimizing the total effective potential
above produces solutions that are similar to those in absence
of optical potential. For sufficiently strong pumping, the ions

are forced to fall close to optical minima. A relevant parameter
in this system is given by the effective cooperativity C:

C = U _ i (12)
K KA\g

This parameter determines the strength of the back action of
the ions on the cavity field, i.e., how much the photon number
can depend on the ion configuration. Equivalently, it quantifies
how far the effective optical potential in Eq. (11) is from the
standard optical potential in which back action is negligible,
corresponding to C < 1.

B. Fluctuations

Once the classical equilibrium values have been found, we
proceed to find the equations of motion for the fluctuation op-
erators linearizing the Heisenberg-Langevin equations about
equilibrium [26]. We introduce a normal-mode decomposition
of the ion motion without taking into account the presence
of cavity field fluctuations. Using the effective potential in
Eq. (11), the ion equation of motion can be written as

. 1
Sxj=—— ZSXiaithov (13)
m &

From this linearized equation of motion one finds the normal
modes of the ion chain with frequencies w,, n = 1, 2, 3, which
satisfy

K8x = mw?bx, (14)

where K is such that K;; = 9;;V;o;. Normal mode operators u;
are defined by u = M~'8x, where M is the orthogonal change
of basis to the eigenbasis of K. It is important to notice that the
normal modes u; depend on the optical potential through V.
After the modes have been identified, noise is added according
to Egs. (2) and (4).

A relevant set of quantities for the study of steady-state
entanglement within our semiclassical approximation is given
by the couplings ¢, of each vibrational mode with the cavity
field fluctuations. These are of the form [26]

h

2mw,

= —

> MV Agr(x). (15)

We note that the couplings ¢, have dimension of frequency
and that by construction, there is no direct coupling between
different vibrational modes.

This truncated treatment of the fluctuations can lead, for
certain parameter regimes, to unstable behavior. A detailed
analysis of stability conditions is carried out in Ref. [26].
Following this work, we restrict our choices of cavity detuning
to the range A, < 0 to prevent cavity heating of the motion.

IV. SEMICLASSICAL TREATMENT OF THE TRANSITION
IN THE THREE-ION CHAIN

In the following we will describe the semiclassical solution
for a chain of three ions. Values used in this work (unless
stated otherwise) are « /2w = 0.2 MHz, C = 0.5, Uy = Ck,
while Yb ions are considered and we take A = 369 nm. The
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trap frequency is chosen to be w/2mw ~ 0.5 MHz (see Ap-
pendix B for a discussion of the parameter regime). The noise
on the motional degrees of freedom is chosen to act at a
rate I'; = 107% and with N = 10. In the following, when
considering frequencies we will often divide by « to obtain di-
mensionless quantities. This does not necessarily make « the
most relevant parameter; it is simply one that is usually fixed
in each experimental setup, as opposed to the trap frequency
and the pumping strength, and it sets a reference relaxation
scale. Similarly, for convenience we will use xo = A/4 as a
reference length.

A. Small-scale sliding-pinned transition

When there is no optical potential, the equilibrium posi-
tions of the ions can be analytically determined [43]. The
central ion is located at the trap center and the interparticle
distance is given by

2 1/3
do = (iq—> . (16)

16 wegmm?

In our study, the only variable parameter in this equation will
be assumed to be w, and thus changes in w will be equivalent
to variations in dj.

In the presence of an intracavity field, we obtain the classi-
cal equilibrium positions of the ions through minimization of
the effective potential in Eq. (10). For each equilibrium con-
figuration, we will describe the state of the system through the
localized semiclassical approximation explained in Sec. III.

When the laser pumping intensity is low, the impact of
the optical potential on the equilibrium positions is small,
as shown schematically in Fig. 1(a). In this case, the central
ion is still located at the trap center and the configuration
has reflection symmetry. By analogy to the Frenkel-Kontorova
model, this configuration is called the “sliding phase.” We
note, however, that the name can be misleading since there
is no motional mode with vanishing frequency in this phase,
and even in the original FK model the sliding phase is not
frictionless [17]. More strictly, we will call this parameter
regime the “symmetric phase.”

As the intensity of the laser pump increases, the optical
potential becomes more relevant and the particles tend to
localize at its minima. This situation is shown in Fig. 1(b).
Since the trap center is aligned with a maximum of the opti-
cal potential, optical minima are located at odd multiples of
Xxo = A/4. Thus, in this case, there are two classical solutions
that when considered individually no longer have reflection
symmetry. We refer to these configurations as “pinned” by
the optical potential, or belonging to the “symmetry-broken
phase.”

For large enough C, at intermediate pumping values the
semiclassical treatment can predict bistability, i.e., coexis-
tence of different solutions for the ion positions, each one
associated with a different equilibrium photon number. An
example transition is displayed in Fig. 2, showing the equi-
librium positions as a function of the pumping strength and
exhibiting bistability for intermediate laser amplitudes. We
note that the appearance of classical bistability depends not
only on C but also on other parameters such as the cavity
detuning A, [27]. For definiteness, we assume that in the
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FIG. 2. Classical equilibrium position of each ion (in units of
Xo = A/4) as a function of the pumping strength for C = 0.5, A, =0,
and dy/xo = 49.795 (see main text for the remaining parameters).
For weak pumping, the configuration is symmetric with respect to
the trap center; for strong pumping, the ions tend to localize close
to minima of the optical potential and thus the symmetry is broken.
Both kinds of solutions are found for intermediate laser intensities.
For the parameters of this plot, the interparticle distances are almost
uniform for all pump strengths.

symmetry-broken phase the central ion is always located at
negative values of x.

We remark that within the symmetry-broken phase there
are two mirror-symmetric solutions for the ion positions, both
with equally large mean photon numbers. In the context of
this work, when we refer to bistability we speak of a situation
where both symmetric and symmetry-broken states (with dif-
ferent photon numbers) are stable steady states for the same
parameter values. From previous work [27,28], we know that
the validity of the semiclassical Gaussian approximation of
Sec. III is especially problematic in the classically bistable
regime, so from now on we will only analyze the steady states
outside the bistability region. According to Refs. [27,28],
the coexistence of two mirror-symmetric solutions does not
compromise the validity of the semiclassical approach.

The quantity f = szv: , f(x;) indicates how localized the
ions are within the optical potential wells, approaching zero
as the pumping is increased. In the symmetric phase, f > 1 as
the central ion is located at an optical maximum. In this way,
£ exhibits a jump at the transition from a sliding to a pinned
phase. We plot this quantity in Fig. 3, showing typical phase
diagrams for this system as a function of the cooperativity
C and a representative dimensionless optical potential depth
given by the combination Cn?/«? (while C contains the mag-
nitude of the single-photon dispersive coupling, for A, =0
the mean photon number scales roughly as 7% /k?).

We note that the phase diagram strongly depends on A,
and w. The dependence on A, is due to the impact of this
quantity on the mean photon number, according to Eq. (9).
On the other hand, the value of the trap frequency determines
the equilibrium distances of the ions in the absence of optical
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FIG. 3. Typical phase diagrams, corresponding in this case to
A, =0 and (a) dy/xo = 51.06, (b) do/xo = 49.98 (see main text
for the remaining parameters). For comparison with previous ar-
ticles we refer to “sliding” and “pinned” phases for symmetric
and symmetry-broken regimes, respectively. The classically bistable
regime is shown between solid red lines. The color code in this graph
represents the classical value of f = Z];;l f(x;), quantifying how
far the ions are from being localized at optical minima.

potential, Eq. (16), which leads to two different forms of
spatial organization in the pinned phase, as will be discussed
in the following subsection. This aspect has a strong effect on
the character of the transition: as one can observe in Fig. 3,
the critical cooperativity above which the transition becomes
discontinuous for the parameters in the figure varies from
C =~ 0.24 to C = 0.85, depending on the ratio dy/xo.

B. Equilibrium configurations in the pinned phase: Uniform
and nonuniform chains

We now analyze in more detail the possible solutions for
the symmetry-broken regime, focusing on the ratio between
the “free” interparticle distance dj, Eq. (16), and the potential
periodicity 2xy = A/2. The impact of this ratio on the friction
experienced by the ion chain was studied experimentally in
Refs. [9,10] for chains of up to six ions, in the limit of low
cooperativity.

For the specific example in Fig. 2 the ions arrange in a
chain with almost uniform interparticle distances. This is true
for all values of the pumping strength; even in the pinned
phase, the difference between the two distances is of only
a few percent of the periodicity of the optical potential. For
simplicity, we call this the “uniform” parameter regime. For
other ratios between the cavity-free interparticle distance d
and the optical periodicity 2xg, the chain can form defects.
In this case, in the symmetry-broken phase the ions localize

(a) Uniform Defect Uniform Defect
S51¢ asossasssazes
S 50
< 19f
g 48
47
1
>0 }
S
§ -2 ﬁ
-3
_4(9)
(=] _5 -
%-51 -
8 =52+
=53¢ ‘
48 49 50 51
dy / Zo
"’ W\/
; \3/\/\0'70\/\/\9/
(d 25¢
¢ 207
~
st
10 - 1 1 1 1
48 49 50 51
do/ Zo

FIG. 4. (a) Equilibrium positions of the three ions (in units of
Xo = A/4) as a function of dy/x¢ in the deeply pinned regime, with
n =400k, A, = 0 (see main text for more parameters). The config-
uration in the deeply pinned phase can have uniform or nonuniform
interparticle distances, as illustrated in (b) and (c), respectively.
(d) shows the critical pumping strengths as a function of dy/xy: the
upper region corresponds to the pinned phase, the lower region is the
symmetric phase, and between the two lines both kinds of solutions
coexist.

in lattice sites in such a way that they are not equidistant. In
Fig. 4(a) we display the position of each ion in the deeply
pinned phase as the trap frequency is varied, showing the
repetitive alternation of uniform and defective regimes.

Two special kinds of cases can be readily analyzed. In
the first of these situations, for n >~ 0 the three ions sit at
maxima of the optical potential. Then, in the pinned phase
the chain is uniformly displaced with respect to its position
in the symmetric phase, as shown in Fig. 4(b). These cases
correspond to the condition

dy =2nxg, ne N a7
and we refer to them as “matching.” In particular, for the
parameter range in Fig. 4, the cases dy/xp = 48 and 50 cor-
respond to w/k =~ 2.70 and 2.54, respectively.
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FIG. 5. Critical pumping strengths as a function of dy/xy: the
upper region corresponds to the pinned phase, the lower region is the
symmetric phase, and between the two lines both kinds of solutions
coexist. The curves are shown for C = (0.5 and different values of
A.. See main text for the remaining parameters.

The second particular situation occurs when the equilib-
rium positions of the ions at the ends of the chain in absence
of optical potential correspond to optical potential minima.
This happens when

dy =xo2n+1), neN. (18)
In this case, increasing the pumping results mostly in a dis-
placement of the central ion, as shown in Fig. 4(c). This ion
moves toward a neighboring potential well, while the ions at
the ends of the chain remain close to their original positions.
This results in a chain with unequal inter-ion distances in
the pinned phase, which we name a “defect.” We refer to
these cases as “maximally mismatched.” For the parameter
regime in Fig. 4 the condition dy/x9 = 49 and 51 results in
w/k >~ 2.62 and 2.46, respectively.

Both cases commented above correspond to very particular
values of dy/xy. In general, we say that a given value of dy/xq
corresponds to the uniform regime when the interparticle
distances become more uniform as 7 is increased within the
pinned phase. Otherwise, we say the chain forms a defect,
or corresponds to the nonuniform regime. We note that the
relative size of the regions (i.e., uniform or defective) changes
as dy/xo is varied. We also observe in Fig. 4(d) that for values
of dy/xg corresponding to the uniform regime, comparatively
smaller values of the pumping strength are necessary to reach
the pinned phase. This is reasonable since the formation of
defects involves overcoming a larger energy barrier due to
Coulomb repulsion.

Finally, one can notice in Fig. 4(d) that for A, =0 and
C = 0.5 the bistable region is only present in the uniform
regime. This agrees with the phase diagrams of Fig. 3. How-
ever, for other values of A, bistability is also absent in the
vicinity of the matching conditions. We exemplify this in
Fig. 5, where we show different transition lines exhibiting
bistable regimes. For larger values of |A.|, classical bistability
is only found close to boundaries of the uniform region.

C. Vibrational modes in presence of the optical potential

In the absence of an optical field, the three normal modes
of the ion chain sorted by increasing frequency are [43]

1
u = ﬁ(éxl + 8xp + 0x3)
1
U = ﬁ(&q — 8x3)
1
Uz = %((SXI - 25)62 + 5)63). (19)

The optical potential causes a deformation of the vibrational
modes, even in the sliding phase. However, for symmetry
reasons, the second motional mode keeps its form as long as
the central ion sits at the center of the trap.

To quantify the change in the motional modes, we con-
sider the overlaps O, (n) = u,(n) - u,(n =0), forn =1, 2, 3,
between each vibrational mode in the presence of optical
potential and the corresponding reference mode vector at zero
pumping. Here, u, are vectors containing the coefficients of
each normal mode coordinate u, in the single ion basis. In
Fig. 6 the color code shows these overlaps as a function of n
and dy/xp, for fixed A, = 0. Other choices of A, shift the
transition region in the n axis, but the behavior of Fig. 6
is similar. We do not observe crossings between vibrational
mode frequencies, which would manifest as abrupt jumps in
Fig. 6. In particular, for uniform pinned chains the overlaps
O, are always close to 1, so that modes remain very similar to
those in the absence of a cavity field. Figure 6(b) also shows,
as expected, that the overlap for the second mode is exactly 1
in the symmetric configuration.

V. STEADY-STATE ENTANGLEMENT

In this section we study the entanglement in our system in
connection with the chain structure and normal modes, taking
into account spatial symmetry and presence of defects in the
pinned phase. With this aim, we consider different values of
the ratio dy/xp, and also of the detuning A.. As discussed
before, in the symmetry-broken regime the system has mirror-
symmetric semiclassical solutions and we focus only on one
of them. Within this regime, assuming the validity of the
semiclassical approximation, the steady state is generally a
statistical mixture of the localized solutions. This is not a
problem for the quantification of entanglement since these
two solutions have support in different regions of the Hilbert
space.

We quantify bipartite entanglement by the logarithmic neg-
ativity Ey [44,45], which has the advantage of being easy
to compute for Gaussian states. For a Gaussian state with
covariance matrix o we have

{—Zklog(zvk) for k:Tp <1/2
Ey =

e~ (20)
0 if v >1/2 Vk,

where {V;} is the set of symplectic eigenvalues of &, the
covariance matrix of the density matrix after partial transposi-
tion with respect to one of the two subsystems [45]. We stress
that Eyy can be computed from o, and the experimental estima-
tion of o does not require full quantum state tomography [46].

012461-6



ENTANGLEMENT ACROSS THE SLIDING-PINNED ...

PHYSICAL REVIEW A 110, 012461 (2024)

(@) O (b 0, (© O3
60 1 60 1 60 1
50 50 0.95 50 0.95

0.95
40 0.9 ™ 0.9
<30
09 % 0.85 0.85
20
0.8 0.8
10
0.85
075 0.75
48 49 50 51 48 49 50 51 48 49 50 51
do/xo do/% d()/.%'()

FIG. 6. Overlaps between the three vibrational modes u, (1) and the reference vibrational modes for vanishing cavity field, u,(n = 0). The
bistable regime is shown between black solid lines and the overlaps are not computed within this parameter region. See main text for more

details.

From Ey we calculate the maximum entanglement when
varying n, for each choice of A, and dj:

E(Ac, do) = max Ey(Ac, 1, do), 21
n

where the maximum is found by restricting n to values out-
side the classically bistable regime. In a final subsection, we
address the case of multipartite entanglement, by means of the
witnesses proposed in Refs. [45,47].

The presence of entanglement can strongly depend on the
effective temperatures of the different degrees of freedom. We
remind the reader that in this work we are including direct
noise on the motional modes acting at a low rate, I' = 10 %.
This noise will have a significant effect on the asymptotic state
in the parameter regions in which cavity cooling of the ions
is inefficient. For simplicity, we chose the mean excitation
number of the noise to be the same for all modes, and for
definiteness, we took this number to be N = 10. The choice
of a lower N could lead to entanglement in a larger parameter
region. However, it is not the goal of our work to fully charac-
terize the regimes where entanglement appears, but rather to
study which configurations are more favorable for it.

A. Bipartite entanglement considering modes as subsystems

In the following we consider the partition of the system
into four subsystems corresponding to the cavity fluctuations
and the different vibrational modes. We first analyze bipartite
entanglement between two subsystems by tracing out the rest,
and then consider bipartitions between one subsystem and the
remaining three.

1. Entanglement between cavity and each vibrational mode

We denote by E/; the logarithmic negativity of the reduced
state of only two subsystems i, j (tracing out the remain-
ing modes), where the indices i, j = {0, 1, 2, 3} represent the
cavity mode, and the three vibrational modes are sorted by
increasing frequency, respectively. The superindex m stands
for “mode,” to emphasize the chosen partition, as opposed to
the partition in terms of individual ions that will be consid-
ered afterward. First, we will analyze entanglement between
the cavity and each vibrational mode, quantified by E; with
j=1,2,3.

There are several scenarios where some of the couplings ¢,
of Eq. (15) between the cavity field and specific vibrational
modes are negligible or zero. This results in insignificant
or absent entanglement between those two subsystems. A
prominent case is the symmetric or sliding phase, in which
c¢1 = ¢3 = 0. Thus, for symmetry reasons in the whole sliding
phase the cavity can only become entangled with the second
vibrational mode.

A different situation occurs for the second and third modes
in the pinned phase without defects. In this case, the couplings
¢z, c3 are very small. This is due to a combination of two
facts: firstly, as was seen in Fig. 6, in the uniform regime
the shapes of the normal modes are almost the same as in the
absence of the optical potential, Eq. (19). Secondly, for pinned
chains in the uniform regime, the interparticle distances are
almost exact multiples of the potential periodicity. Therefore,
the contributions to the couplings c;, ¢3 in Eq. (15) will ap-
proximately cancel out.

As an example, in Figs. 7(a)-7(c) we show the negativity
Ex between the cavity and each vibrational mode as a function
of the cavity detuning and the pump strength for a fixed choice
of dy which corresponds to a nonuniform pinned chain. As ex-
pected, the entanglement with the cavity vanishes for the first
and third modes in the whole symmetric region. In contrast,
for the second mode the entanglement can be non-negligible
at both sides of the transition; maxima of negativity with the
second mode can be found essentially anywhere on the phase
diagram. We note that the locations of the peaks of Ey depend
on the particular value of dy/xy.

The Gaussian semiclassical approximation as described in
Sec. III is more reliable away from the critical points and
outside the classically bistable region [27,28]. As in the ex-
ample of Fig. 7, in general one can find significant values
of the negativity well separated from the critical line. This
is in contrast with the case of the linear-zigzag transition,
where large values of Ey were observed within the classically
bistable region and approaching critical points [26].

For comparison, in Figs. 7(d)-7(f) we show the couplings
between cavity field fluctuations and each vibrational mode.
We see that non-negligible couplings are necessary to ob-
tain entanglement, but entanglement maxima do not generally
coincide with maximal couplings. Indeed, the largest entan-
glement between the cavity and the jth vibrational mode is

generally found close to resonances of the form A4 = —a)}?,
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FIG. 7. (a)—(c) Entanglement and (d)—(f) couplings between cavity field fluctuations and each vibrational mode, for different choices of
cavity detuning and pumping strength at fixed dy/xo = 51.44, corresponding to a nonuniform pinned configuration. The dotted white lines in
(d)—(f) indicate the resonance between the effective cavity detuning and each of the motional frequencies. In this case, there is no bistability
and the red line signals the transition. See main text for the remaining parameters.

indicated with white dotted curves in the lower subplots. This
is the reason for the elongated shape of the regions of larger
entanglement in Figs. 7(a)-7(c). Namely, the cavity tends to
become more entangled with a given mode when the effective
cavity detuning coincides with a so-called “red sideband” of
the motion. This is a nontrivial fact, since such resonances
generally provide a mechanism for cavity cooling [19], and
complete cooling of the motional mode to its ground state
would actually be detrimental for entanglement.

In order to better study the relation between entanglement
and chain configuration, in Fig. 8 we show, for each vibra-
tional mode, the value of £ as defined in Eq. (21) as a function
of the cavity detuning and the ratio dy/x¢. In these plots we
observe the same repetitive alternation as in Sec. IV, cor-
responding to the change between uniform and nonuniform
pinned chains.

@) &t (b)

A /K
A /K

dp / Zo

0 0
0.4

-2 -2
0.3

-4 -4

% 0.2 %

-8 0.1 -8

-10 0 -10

48 49 50 51 48 49 50 51

dy / xo

Entanglement between the cavity field and the first vibra-
tional mode &} in Fig. 8(a) shows local maxima in both the
uniform and nonuniform parameter regime. However, uniform
chains lead to larger values of logarithmic negativity. As will
be noted in Sec. V C, this difference in the maximum values
becomes much more drastic for smaller cooperativities.

Entanglement with the second vibrational mode, £, in
Fig. 8(b), exhibits maxima predominantly around the bound-
aries between the uniform and nonuniform regimes. It is
important to note that the Gaussian semiclassical treatment
is not very reliable in these parameter regions where different
configurations compete.

The entanglement between the cavity fluctuations and the
third mode is shown in Fig. 8(c). We find negligible en-
tanglement for values of dy corresponding to the uniform
regime. This is because the coupling c; is exactly zero in the

&n o (o) o3
0
02 3 —
0.15
e 4
{ 0.04
01 <4
0.02
0.05 -8
0 -10 0

48 49 50 51
dy/x

FIG. 8. Maxima over 1 of the entanglement between cavity field and each vibrational mode, as a function of the cavity detuning A, and
the free equilibrium distance dy (in units of « and x, respectively). See Sec. IV for parameters.
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symmetric phase, and it is very small in the pinned phase, as
mentioned above. In the regime of defect formation, the log-
arithmic negativity can be nonzero, but the maximum values
observed are smaller than for the other modes. We note that
entanglement with the third mode shows maxima precisely at
the points that we referred to as “maximally mismatched.”

Summing up, the behavior of the entanglement maximum
is quite different for each of the vibrational modes: entangle-
ment of the cavity with the first mode is favored by matching
conditions, whereas for the third mode the optimal conditions
are maximally mismatched, and the second mode becomes
more entangled in intermediate cases.

2. Entanglement between vibrational modes

So far we have only discussed bipartite entanglement be-
tween the cavity field and each of the vibrational modes.
One could equally consider the entanglement between two
subsystems corresponding to two different motional modes.
However, in our model and under the Gaussian semiclassical
approximation we find no entanglement between vibrational
modes after tracing out the rest of the system.

Furthermore, when considering reduced systems that only
include two vibrational modes, we also find very small values
(of the order of 107#~107%) of the mutual information [48].
This means that there are no significant quantum or classical
correlations between motional modes.

This might be a consequence of the semiclassical Gaus-
sian treatment. To determine if this is the case, it would be
necessary to extend the analysis of this section to a nonlinear
treatment of the Heisenberg-Langevin equations of motion in
Sec. III, or to resort to other kinds of semiclassical approxi-
mations as in Ref. [28]. Such a task is beyond the scope of the
present paper.

3. Bipartitions of the four-mode state

We consider now the logarithmic negativities obtained by
partitioning the complete system, without taking any par-
tial trace. The logarithmic negativity Ey is an entanglement
measure for Gaussian states when partitioned into 1 x N
modes [45], so we studied partitions of our system into 1 x
3 modes.

The results are shown in Appendix A for the four possi-
ble bipartitions of this form. The plots are not surprising in
light of the previous findings: we observe that the logarithmic
negativity corresponding to the partition of the system into
cavity vs ions behaves approximately like the sum of the ones
corresponding to the modes taken individually, as in Fig. 8.
On the other hand, the entanglement between each motional
mode and the rest of the system, including the cavity and
the other two vibrational modes, is very similar to the one
obtained when tracing out those other two modes.

That is, in terms of vibrational modes the structure of the
entanglement in this system is essentially like a star, with the
cavity being a central node that is entangled with possibly
each of the vibrational modes in an almost additive manner. If
the cavity is traced out, there is no entanglement left between
normal modes, but each of the modes can be entangled with
the cavity.

gy

l
&g
0.2 0
4 -2 0.15

0.15

N

> 4 0.1
0.1 g
0.05 3 0.05
0 -10 0

48 49 50 51
dg/l’o

48 49 50 51
do/{[o

FIG. 9. Maxima over 7 of entanglement between (a) consecutive
ions and (b) ions at the ends of the chain. We note that the maximum
values of entanglement between ions 1 and 2 are not exactly the
same as between ions 2 and 3, but the difference is too small to be
perceived with the scale of this figure.

B. Bipartite entanglement considering individual ions

So far we have analyzed system partitions considering the
nonlocal degrees of freedom given by the collective motional
modes. In this section, we analyze the behavior of entangle-
ment when the subsystems are given by the cavity field and the
motion of the individual ions. We then use the notation Eilj,
where the superindex stands for “local.” The subindices i, j
run from O to 3 as before, but now 1,2,3 refer to the individual
ions labeled from left to right.

1. Ion-ion entanglement

We first consider the entanglement between two ions, trac-
ing over the cavity and the motional state of the remaining
ion. In this case, a much more complex pattern appears, as we
show in Fig. 9. Plots (a) and (b) display the maximum entan-
glement when varying over 1, for adjacent ions [Fig. 9(a)] and
for the two end ions [Fig. 9(b)]. Here, we no longer observe
a simple relation between entanglement and chain structure
(i.e., uniform or nonuniform regimes).

Nevertheless, we do find some noticeable patterns: inter-
particle entanglement vanishes for values of cavity detuning
that are close to zero and also in the vicinity of matching
conditions. Finally, for our parameter choices inter-ion entan-
glement is only found in the pinned phase. This is in contrast
with the results in Ref. [49], which focused on inter-ion en-
tanglement in a harmonic trap. However, that work studied
ground-state entanglement, whereas for  — 0 our system is
far from the trap ground state due to the inclusion of mo-
tional noise.

We remark that although inter-ion entanglement can be
found for relatively wide parameter regions, some of the max-
ima in Fig. 9 are found close to the transition line. Leaving out
a region around this line can lead to smaller maximum values,
still of the same order of magnitude.

2. Entanglement between cavity fluctuations and ions

We now move on to consider the entanglement between
cavity fluctuations and individual ions, tracing over the other
two motional degrees of freedom. In the first place, we note
that these logarithmic negativities are numerically verified to
be zero in the symmetric configuration for all the parameters
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FIG. 10. Maxima over 7 of entanglement between cavity fluctuations and individual ions. See Sec. IV for parameters.

explored. Entanglement between cavity and individual ions is
only found to be non-negligible in the pinned phase.

We then consider the maximum & of the logarithmic nega-
tivity over n for each of the bipartitions containing the cavity
and one of the individual ions. The results are displayed in
Fig. 10. First, we notice that none of the ions is entangled
with the cavity for the matching conditions of Eq. (17) or for
A, >~ 0. Figure 10(b) shows entanglement with the central
ion for a broad range of parameters, especially within the
nonuniform regime. Entanglement with the end ions is gen-
erally found to be largest in regions that are neither close to
matching nor close to maximally mismatched.

We note that due to our arbitrary choice of symmetry
breaking there is an asymmetry when comparing Figs. 10(a)
and 10(c), corresponding to the left and right ends of the chain,
respectively. The results indicate that the cavity becomes more
entangled with the end ion that is displaced from its original
position in the same direction as the central ion.

C. Variations with cooperativity

Previous work [26] has observed, for cooperativities of the
order of 1, that larger values of C lead to larger entanglement.
Here, we study the behavior of our system for a smaller
cooperativity of C = 0.1 and comment on two observations
that go beyond that simple rule.

Firstly, while this smaller cooperativity typically leads to
lower entanglement, the qualitative behavior of bipartite en-
tanglement remains unchanged, except for the case of the
entanglement of the cavity with the lowest-frequency mode.
As was mentioned above, for this case we observe that for
lower cooperativities the achievable values of entanglement
are much smaller in the nonuniform structure than in the
uniform regime.

Secondly, entanglement between neighboring ions remains
essentially unaffected by this change in cooperativity. This
suggests that entanglement across these bipartitions mostly
depends on the chain structure and not on the presence of
back-action. Indeed, it is known that at low temperatures dif-
ferent ions can be entangled due to Coulomb interaction [49].

D. Multipartite entanglement
1. Tripartite entanglement

In this section, we analyze the presence of tripartite entan-
glement after tracing over one of the subsystems. There are

simple forms of quantifying multipartite entanglement in CV
systems whenever the states are either pure [20] or bisym-
metric [50] (states invariant under exchange of two modes).
The state of our system is bisymmetric with respect to some
partitions in some parameter regimes. In particular, in the
sliding phase the system is invariant under the exchange of
the ions at the sides. However, this is not the general case.

We then restrict only to detect the presence of tripartite
entanglement without quantifying it, through the use of the
criteria detailed in Refs. [45,47]. This method does not rely
on solving an optimization problem, in contrast to other meth-
ods for detecting multipartite entanglement [51]. Following
this criterion, Gaussian states are categorized according to
the number of bipartitions that make them separable. If no
bipartition makes them separable, then the state has genuine
tripartite entanglement [47].

We show this classification in Fig. 11 for the reduced state
of the ions, tracing over the cavity, using different colors for
the different cases: separable, two-ion biseparable, one-ion
biseparable, and tripartite entangled. Each of the subplots
corresponds to a different choice of dj.

We see that for the parameters we chose the state is always
three-separable (separable with respect to all bipartitions) in
the symmetric phase. We stress once more that this is a conse-
quence of our choice of noise, and that entanglement between
different ions can be observed for lower temperatures [49].
Within the pinned phase there is a significant region where the
state shows genuine tripartite entanglement. The area of this
region grows as the system approaches the maximally mis-
matched condition (18), and vanishes completely whenever
the matching condition of Eq. (17) is satisfied.

We also observe, in Figs. 11(c) and 11(d), that the re-
gion of tripartite entanglement is “cut” by oblique narrow
regions of two-ion and one-ion separability. These coincide
with curves where the couplings to certain vibrational modes
vanish or become extremely small, leading to higher effective
temperatures.

By tracing out other subsystems we can consider other
forms of tripartite entanglement. There are a few general
points to remark. Firstly, upon tracing over any mode or ion,
there is no tripartite entanglement whenever the system is
close to the maximally matched condition. Secondly, there
is generally no genuine tripartite entanglement in the sliding
phase, with just one exception: when tracing out the central
ion, there is tripartite entanglement in both the sliding and
pinned phases. Finally, we observe that there is no tripartite
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FIG. 11. Classification of the reduced state of the motional de-
grees of freedom of the individual ions in terms of their presence
of genuine multipartite entanglement. The bistable regime is shown
between solid red lines. Values of dy/xo are (a) 49.99, (b) 48.99,
(c) 49.86, and (d) 48.28. See Sec. IV for the remaining parameters.

entanglement when considering the reduced state of the three
vibrational modes.

2. Four-partite entanglement

Having verified the presence of genuine tripartite en-
tanglement within several regimes, we use the multipartite
entanglement criteria for CV systems detailed in Ref. [52]
to verify whether there is four-partite entanglement. In four-
mode states, this criterion consists of evaluating the following
inequalities:

L ([AG) — %)) + ([A(B1 + P2 + g3P3 + gapa)]?) > 2

IL ([AG — £3)1) + ([A(g11 + P2 + P3 + gapa)]?) =2

L ([AG) — £3)17) + ([A(P1 + 822 + P3 + gapa)’) =2

IV. ([AG&s — 20)1) + (A1 p1 + 822 + P3 + Pa)P) =2

V. ([AG, — £0)1) 4 ([A1D1 + P2 + g3ps + pa)) =2

VL ([AG) — 201 + ([A(p1 + 8202 + g3p3 + p)IP) > 2.
(22)

where the g; are arbitrary real constants, and A(§) represents
the variance of an observable §. The violation of each inequal-
ity in (22) implies different entanglement structures for the
state, as explained in Ref. [52].

We first consider local degrees of freedom, and evaluate the
inequalities above for several choices of g; which for simplic-
ity satisfy g; = g Vi. For matching conditions, all inequalities
are satisfied, and no conclusion can be drawn about the in-

(@ 0
-2
e -4
3
< 5
-8
-10
100 200 300
n/k
Ej
®) o
2 0.2
e 0.1
<i¢ -6 0.1
8 0.0
-10 0
100 200 300
n/k

FIG. 12. (a) Classification of the state of the complete system
for the motional degrees of freedom of the individual ions, showing
in blue the region where inequalities II and IV in Eq. (22) are
simultaneously violated, for g; = 0.1. (b) Entanglement between the
cavity and the ion chain, to complement the information from the
inequalities (22). Parameter values corresponding to the blue region
in (a) and nonzero entanglement in (b) are four-partite entangled. The
bistable regime is shown between solid red lines, and dy/xo = 48.28.
See Sec. IV for the remaining parameters.

separability of the state. Sufficiently far from the matching
points, inequalities II and IV can be violated in small regions
contained within the regimes where tripartite entanglement is
present in Fig. 11, in the pinned phase and in both uniform
and nonuniform cases.

In Fig. 12(a) we show in blue the region where inequalities
IT and IV are simultaneously violated for the choice g = 0.1.
This value leads to comparatively large regions where mul-
timode entanglement is detectable with this criterion. The
simultaneous violation of inequalities II and IV implies that
the state either has four-partite entanglement or can be written
as [52]

p = Z a;Pj ions ® Pi cav, (23)

exhibiting tripartite entanglement in the reduced state of the
ions. At the maximally mismatched point we observe that
inequality V is violated as well, but as explained in Ref. [52],
this does not provide any additional information.

We can complement the information extracted from these
inequalities with the value of the negativity between the cavity
and the rest of the system, as in Sec. V A 3. This is displayed
in Fig. 12(b). We observe nonvanishing negativity £} in re-
gions where inequalities II and IV are not satisfied. When this
happens, we can exclude the possibility of a state of the form
of Eq. (23), thus concluding that the state must be four-partite
entangled.
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FIG. 13. Classification of the state in terms of the presence
of genuine four-partite entanglement, indicated in blue, with sub-
systems taken as cavity and individual ions. The possibility of
four-partite entanglement in the pink region is not discarded. The di-
agrams result from the combination of Eq. (22) evaluated at g; = 0.1
and the entanglement between cavity and ion chain. The bistable
regime (or transition point for the mismatched cases) is shown
between solid red lines. Values of dy/xo are (a) 49.99, (b) 48.99,
(c) 49.86, and (d) 48.28. See Sec. IV for the remaining parameters.

We extend this argument in Fig. 13 for different ratios of
do/xo (the same values as in Fig. 11). We show in blue the
regimes where both inequalities II and IV are violated while
there is nonvanishing entanglement between the cavity and
the rest of the system at the same time. This shows that,
considering subsystems given by the cavity and the motion
of the individual ions, four-partite entanglement can be found
in the pinned phase whenever the system is far enough from
the matching condition. We also note that the regions with
four-partite entanglement are contained within those where
the ion chain exhibits tripartite entanglement (see Fig. 11).

In terms of the normal mode coordinates, we could not
find any pairs of inequalities in (22) that are simultaneously
violated for any of our 16 choices of g; between —1 and 1.
This set of criteria is therefore inconclusive about the presence
of four-mode entanglement.

VI. CONCLUSIONS

We studied entanglement across a structural transition in a
one-dimensional chain of three ions dispersively coupled to
an optical potential. We identified the equilibrium chain con-
figurations as sliding or symmetric and pinned or symmetry
broken. In the latter case we further observed the presence of
regimes leading to uniform and nonuniform chains.

We used a semiclassical approximation of localized Gaus-
sian states, which is expected to be valid outside the region

where symmetric and symmetry-broken solutions coexist, and
far enough from the transition points. In contrast with the case
of the linear-zigzag transition studied in Ref. [26], we found
that it is possible to obtain non-negligible entanglement well
outside those problematic parameter ranges.

Our results show strong correlations between the equi-
librium chain structure and the entanglement across system
bipartitions. Indeed, different chain configurations tend to lead
to different kinds of entanglement. For example, we observe
larger amounts of entanglement between the cavity field and
the lowest motional mode for pinned uniform chains, but
larger entanglement between the cavity and the central ion for
pinned nonuniform chains.

We also analyzed the presence of tripartite entanglement
within all reduced three-subsystem states, as well as four-
partite entanglement. We concluded that the formation of
defects in the structure leads to larger parameter regimes of
multipartite entanglement. On the contrary, when the equilib-
rium distances between ions in the absence of optical potential
match the distance between optical wells, the criterion used
fails to detect multipartite entanglement.

Finally, we noticed that entanglement is favored by the
presence of “red-sideband resonances” between the cavity
detuning and the motional frequencies. Indeed, the vicinity to
these resonances enhances cavity cooling of the vibrations,
and therefore the formation of asymptotic states with low
entropy. Nontrivially, these resonances lead to higher entan-
glement not only when the chain subsystems are chosen to be
the individual ions but also when they correspond to collective
modes.

Because of the formalism applied, in this work we focused
on entanglement outside the parameter regions with semi-
classical bistability. It is important to stress that we could
find four-partite entanglement far from any transition points.
However, previous work [26,27] suggests that the buildup of
entanglement could be favored by the coexistence of different
classical configurations. More sophisticated numerical tech-
niques are necessary to explore this possibility.
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APPENDIX A: BIPARTITIONS
OF THE FOUR-MODE STATE

We now consider the logarithmic negativities obtained by
partitioning the complete system, i.e., without taking any par-
tial trace, into 1 x 3 modes. That is, here we quantify the
entanglement between subsystem A and the remaining three
modes, and we denote it by E7", with j = {0, 1, 2, 3} repre-
senting the subsystem that is traced out. In analogy with the
notation already used, we denote its maximum over 1 by 5}“.

The results are shown in Fig. 14 for the four possible
bipartitions of this form. In Fig. 4(a), which corresponds to the
partition cavity—collection of motional modes, we observe that
the entanglement &' behaves approximately like the combina-
tion of the negativities of the two-mode bipartitions including
the cavity field (see Fig. 8). On the other hand, the negativities
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FIG. 14. Maxima over n of entanglement between any single
mode and the rest of the system.

5}” with j = {1, 2, 3} shown in Figs. 14(b)-14(d) give quanti-
tatively similar results to the same negativities individually.

APPENDIX B: PARAMETER REGIME AND VALIDITY
OF THE TREATMENT APPLIED

In this Appendix we discuss the validity of the localized
semiclassical approximation used. In general, the ions need
not be localized around only one classical equilibrium, and
the configuration in which they have maximal probability to
be found may not coincide with the global minimum of the
effective potential in Eq. (10), see Ref. [28]. Furthermore,
even if this is the case, the kinetic energy corresponding to
the vibrational modes could cause diffusion toward adjacent
local minima. In order to determine a parameter regime in
which this has low probability, we estimate the energy cost
of shifting the equilibrium configuration to adjacent minima.

FIG. 15. The configuration corresponding to the global mini-
mum of the effective potential is shown in blue, in the pinned phase
with uniform displacement. The energy cost of uniformly moving the
chain to the configuration shown with dashed lines as schematized in
this figure is considered. The dotted vertical line shows the center
of the harmonic trap. The trap potential is not illustrated in this
schematic representation.

This estimation is based on the semiclassical effective
potential, Eq. (10). We note that this potential is generally
only a means to find all possible semiclassical equilibrium
configurations and is not a true energy. However, in the limit
of small cooperativities it does correspond to the standard
optical potential. Furthermore, in Ref. [28] it was confirmed
that when the difference in effective potential between com-
peting configurations is large enough, then the most likely
configuration tends to coincide with the global minimum.

We want our choice of parameters to be such that the
energy cost of uniformly displacing the chain in the pinned
phase over a period of the optical potential (1/2) is larger
than the vibrational energy. That is, we consider the energy
difference between the two configurations shown in Fig. 15
and compare it with the energy in the vibrational modes.
When the former is larger, we assume that we can neglect
the possibility of statistical superpositions involving several
optical wells for each of the ions.

This criterion means that our treatment is not valid for low
trap frequencies. That is, our values of dy/xy around 50 are
chosen to avoid diffusion between different local minima of
the potential [53] while keeping the frequency w in a real-
istic range. We note, however, that if one applies the same
treatment for smaller values of w, leading to larger values of
do/xo, the results do not change drastically but they become
less reliable.
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