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Quantum optical systems are typically affected by two types of noise: photon loss and dephasing. Despite
extensive research on each noise process individually, a comprehensive understanding of their combined effect
is still lacking. A crucial problem lies in determining the values of loss and dephasing for which the resulting
loss-dephasing channel is antidegradable, implying the absence of codes capable of correcting its effect or,
alternatively, capable of enabling quantum communication. A conjecture [Quantum 6, 821 (2022)] suggested
that the bosonic loss-dephasing channel is not antidegradable if the loss is below 50%. In this paper we refute
this conjecture, specifically proving that for any value of the loss, if the dephasing is above a critical value, then
the bosonic loss-dephasing channel is antidegradable. While our result identifies a large parameter region where
quantum communication is not possible, we also prove that if two-way classical communication is available,
then quantum communication—and thus quantum key distribution—is always achievable, even for high values
of loss and dephasing.
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I. INTRODUCTION

Quantum optical platforms are key elements of quan-
tum technologies, contributing significantly to both quantum
communication and quantum computation [1–9]. Since the
potential benefits of quantum technologies are hindered by the
presence of decoherence [10], the investigation of decoher-
ence sources affecting bosonic systems and the development
of bosonic quantum error-correcting codes have been exten-
sively analyzed in recent years [11–22]. The primary noise
processes in bosonic systems that act as dominant sources of
decoherence are photon loss and bosonic dephasing [23–25],
which have been both extensively analyzed [13,26–28]. Loss
affects the system by causing it to dissipate some of its energy,
whereas dephasing works to transform coherent superposi-
tions into probabilistic mixtures. Although loss and dephasing
sources can simultaneously affect bosonic systems [15,29],
such as in superconducting systems [30,31], the existing liter-
ature provides only partial results about their combined effect
[32]. On a technical level, understanding the combined effect
of loss and dephasing is challenging due to the conflicting
behaviors they exhibit: the action of loss takes a simple form
when written in the coherent state basis but is complicated to
analyze in the Fock basis [2], whereas dephasing demonstrates
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the opposite pattern, making the analysis of their combined
effect quite intricate.

Consider an optical link (e.g., an optical fiber or a free-
space link) or a quantum memory affected by both loss and
dephasing, where the link is used for quantum communica-
tion and the memory for quantum computation. A crucial
challenge is to determine the conditions under which there
exist protocols capable of enabling reliable quantum commu-
nication across the optical link or capable of mitigating the
combined noise affecting the quantum memory. This problem
is closely related to the antidegradability condition in quantum
Shannon theory: if a noise channel is antidegradable [33,34],
there are no quantum communication protocols for reliable
information transmission or quantum error-correcting codes
capable of overcoming it. Consequently, it is crucial to un-
derstand whether the combined effect of loss and dephasing
results in an antidegradable channel. This has been a puz-
zling problem, to the point that in [32] it was conjectured
that the combined loss-dephasing noise does not result in an
antidegradable channel if the loss is below 50%.

In this paper we refute the above conjecture; specifically,
we prove that for any value of the photon loss there exists
a critical value of the dephasing above which the resulting
bosonic loss-dephasing channel is antidegradable. Our dis-
covery thus identifies a large region of the loss-dephasing
parameter space where correcting the noise and achieving
reliable quantum communication is impossible. On the more
positive side, however, we also prove that if the sender and
the receiver are assisted by two-way classical communication,
then reliable quantum communication—and thus quantum
key distribution—is always possible, even in scenarios
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characterized by arbitrarily high levels of loss and dephasing.
The analytical results reported here characterize the transmis-
sion of quantum information in the presence of both loss and
dephasing noise.

The structure of the paper is as follows. In Sec. II we
briefly review some preliminary notions necessary for stating
our results. In Sec. III we present our results on the an-
tidegradability of the bosonic loss-dephasing channel, refuting
a conjecture put forth in [32]. In Sec. IV we analyze quantum
communication across the bosonic loss-dephasing channel
assisted by two-way classical communication. In Sec. V we
discuss the degradability of the loss-dephasing channel. In the
Appendixes, we provide detailed derivations and additional
results concerning the bosonic loss-dephasing channel.

II. PRELIMINARIES

The quantum capacity Q(N ) of a quantum channel N
quantifies the efficiency in transmitting qubits reliably across
N [33,34]. The condition Q(N ) = 0 implies that there exist
neither reliable quantum communication protocols across N
nor codes capable of correcting the errors induced by N .
Accordingly, if N is antidegradable its quantum capacity van-
ishes [33]. This underscores the significance of determining
whether a channel is antidegradable, as the noise associated
with such a channel cannot be corrected. By definition, a chan-
nel N is antidegradable if there exists a channel A—called
the antidegrading map—such that A ◦ N c = N , where N c

denotes a complementary channel of N [33]. Conversely, a
channel N is degradable if there exists a channel D such that
D ◦ N = N c. Degradable channels are theoretically impor-
tant because their quantum capacity can be calculated as the
single-letter coherent information of the channel [33–35].

The phenomenon of photon loss is mathematically mod-
eled by the pure-loss channel Eλ [2,4], a single-mode
continuous-variable channel that acts on the input state ρ

by mixing it with an environmental vacuum state in a beam
splitter of transmissivity λ ∈ [0, 1]:

Eλ(ρ) := TrE [Uλ(ρS ⊗ |0〉〈0|E )U †
λ ], (1)

where Uλ := exp[arccos(
√

λ)(â†ê − â ê†)] is the beam splitter
unitary, â and ê are the annihilation operators of the input
system S and of the environment E , and TrE is the partial
trace w.r.t. E . When a single photon is fed into Eλ, it is
transmitted to the output with probability λ, while it is lost
to the environment with probability 1 − λ. More generally,
if n photons are fed into the channel, the output is given by
the binomial probability mixture Eλ(|n〉〈n|) = ∑n

�=0

(n
l

)
(1 −

λ)�λn−�|n − �〉〈n − �|, where |n〉 denotes the Fock state with
n photons [2]. When λ = 1 the pure-loss channel is noiseless,
while when λ = 0 it is completely noisy—it maps any state
into the vacuum. It is known that the pure-loss channel is
antidegradable for λ ∈ [0, 1

2 ] and degradable for λ ∈ [ 1
2 ,1]

[36–39].
The phenomenon of bosonic dephasing is mathematically

described by the bosonic dephasing channel Dγ [28,32,40],
which maps the state ρ = ∑∞

m,n=0 ρmn|m〉〈n|, written in the

Fock basis, to

Dγ (ρ) :=
∞∑

m,n=0

ρmne− γ

2 (m−n)2 |m〉〈n|, (2)

resulting in a reduction in magnitude of the off-diagonal
elements. When γ = 0, the bosonic dephasing channel is
noiseless. In contrast, when γ → ∞, it completely annihilates
all off-diagonal components of the input density matrix, re-
ducing it to an incoherent probabilistic mixture of Fock states.
Moreover, the bosonic dephasing channel is never antidegrad-
able and it is always degradable [40].

Consider an optical system undergoing simultaneous loss
and dephasing over a finite time interval. At each instant, the
system is susceptible to both an infinitesimal pure-loss chan-
nel and an infinitesimal bosonic dephasing channel. Hence,
the overall channel, which describes the simultaneous effect
of loss and dephasing, results in a suitable composition of
numerous concatenations between infinitesimal pure-loss and
bosonic dephasing channels. However, given that (i) the pure-
loss channel and the bosonic dephasing channel commute,
Eλ ◦ Dγ = Dγ ◦ Eλ; (ii) the composition of pure-loss channels
is a pure-loss channel, Eλ1 ◦ Eλ2 = Eλ1λ2 ; and (iii) the compo-
sition of bosonic dephasing channels is a bosonic dephasing
channel, Dγ1 ◦ Dγ2 = Dγ1+γ2 ; it follows that the combined ef-
fect of loss and dephasing can be modeled by the composition

Nλ,γ := Eλ ◦ Dγ , (3)

which we will refer to as the bosonic loss-dephasing channel.

III. ANTIDEGRADABILITY

Prior to this work, the only result on the antidegradability
of the bosonic loss-dephasing channel was that it is an-
tidegradable if the transmissivity is below 1

2 [32]. This result
trivially follows from the antidegradability of the pure-loss
channel for transmissivities below 1

2 , and the fact that the com-
position of an antidegradable channel with another channel
inherits the property of being antidegradable (see Lemma 55
in the Appendixes). Notably, in the regime λ > 1

2 , it was an
open question to understand whether or not the bosonic loss-
dephasing channel Nλ,γ is antidegradable for some values of
the dephasing γ , and in [32] the answer was conjectured to be
negative. However, in the forthcoming Theorem 1, we show
that the latter conjecture is incorrect, specifically, we prove
that for all λ ∈ [0, 1), if γ is sufficiently large, then Nλ,γ

becomes antidegradable.
Theorem 1. The bosonic loss-dephasing channel Nλ,γ is

antidegradable if the transmissivity λ and the dephasing γ

fall within one of the following regions: (i) λ ∈ [0, 1
2 ] and

γ � 0 and (ii) λ ∈ ( 1
2 , 1) and γ such that θ(e−γ /2,

√
λ

1−λ
) �

3
2 , where θ (x, y) := ∑∞

n=0 xn2
yn. A weaker but simpler suf-

ficient condition that implies antidegradability is given by
λ � max( 1

2 , 1
1+9e−γ ).

Here we present a sketch of the proof, with a detailed ver-
sion of the proof provided in Theorem 30 in the Appendixes.

Proof sketch. Any finite dimensional channel N is an-
tidegradable if and only if its Choi state is two-extendible [41],
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meaning that there exists a tripartite state ρAB1B2 such that the
reduced states on AB1 and AB2 both coincide with the Choi
state:

TrB2

[
ρAB1B2

] = CAB1(N ),

TrB1

[
ρAB1B2

] = CAB2(N ), (4)

where the Choi state is defined as CAB(N ) := idA ⊗
NA′→B(�AA′ ), with �AA′ being the maximally entangled
state. Such a characterization extends to infinite dimension
by considering the generalized Choi state C(r)

AB (N ) := idA ⊗
NA′→B(� (r)

AA′ ) [42], obtained by replacing �AA′ by the two-
mode squeezed vacuum state �

(r)
AA′ with squeezing parameter

r > 0 [2]. The crux of our proof is to find a two-extension of
C(r)

AB (Nλ,γ ) in the region identified by condition (ii). We do this
in two steps.

First, after scrutinizing the matrix C(r)
AB (Nλ,γ ) written in the

Fock basis, we construct a tripartite state τAB1B2 such that the
reduced states on AB1 and AB2 have the same diagonal as
C(r)

AB (Nλ,γ ), and the same pattern of vanishing off-diagonal en-
tries. The construction of this tripartite state involves applying
several channels—namely, beam splitter unitaries, squeezing
unitary, partial trace, and a three-mode controlled-add-add
isometry—to a four-mode vacuum state.

The second step consists in transforming τAB1B2 into a two-
extension of C(r)

AB (Nλ,γ ) by tweaking its off-diagonal entries.
This is done by using the toolbox of Hadamard maps [34]. For
any matrix A := (amn)m,n∈N, the associated Hadamard map
H (A) is defined by

H (A)(|m〉〈n|) = amn|m〉〈n| (5)

for all m, n [34]. In practice, H (A) acts on the input density
matrix by multiplying each (m, n) entry by the corresponding
coefficient amn. Importantly, H (A) is a quantum channel if
and only if A is Hermitian, positive semidefinite, and has
all 1’s on the main diagonal [34]. The crucial observation
is that it is always possible to find an infinite matrix Aλ,γ

(possibly not positive semidefinite), which is real, symmetric,
and has all 1’s on the main diagonal, such that the opera-
tor idA ⊗ H

(Aλ,γ )
B1

⊗ H
(Aλ,γ )
B2

(τAB1B2 ) coincides with C(r)
AB (Nλ,γ )

when tracing out either B1 or B2.
This, however, does not mean that we have found a

two-extension of C(r)
AB , because the above operator is not nec-

essarily a state—it may fail to be positive semidefinite. It
is a state, however, whenever H (Aλ,γ ) is a quantum channel,
i.e., when the infinite matrix Aλ,γ is positive semidefinite,
in formula Aλ,γ � 0. Therefore, a sufficient condition on the
antidegradability of Nλ,γ is that Aλ,γ � 0.

The rest of the proof consists in showing that under condi-
tion (ii) one indeed finds Aλ,γ � 0. This is not straightforward
to check, because Aλ,γ is an infinite matrix, and it cannot
be diagonalized analytically nor numerically. To bypass this
last hurdle we employ the theory of diagonally dominant
matrices, and in particular the statement that if a matrix A is
such that ann −∑

m: m �=n |amn| � 0 for all n, then necessarily
A � 0 [[43], Chapter 6]. We demonstrate that if λ and γ

satisfy condition (ii), then Aλ,γ satisfies this condition, which
establishes that Aλ,γ � 0 and hence concludes the proof. For a
more detailed proof, refer to Theorem 30 in the Appendixes.�

FIG. 1. Summary of results on the antidegradability of the
bosonic loss-dephasing channel Nλ,γ . The vertical axis represents the
transmissivity λ, and the horizontal axis corresponds to e−γ , where
γ is the dephasing parameter. In the light gray region Nλ,γ is not
antidegradable, and in the dark gray region it is antidegradable. In
the crossed light gray region, the quantum capacity of Nλ,γ is strictly
positive. The crossed dark gray region is a numerical estimate of
the region where the infinite matrix Aλ,γ is positive semidefinite,
a condition implying that Nλ,γ is antidegradable, as explained in
the proof sketch of Theorem 1. Such an estimate can be obtained
by examining the positive semidefiniteness of the d × d top left
corner of Aλ,γ for large values of d (here we employ d = 30, but
increasing d already beyond d � 20 yields no discernible change
in the plot). The restriction N (6)

λ,γ is antidegradable if and only if
λ and γ fall within the light gray region, and this is the reason
why Nλ,γ is not antidegradable in the light gray region. Below the

curve θ(e−γ /2,

√
λ

1−λ
) = 3

2 , the channel Nλ,γ is antidegradable, as

stated in Theorem 1. Above the curve λ = 1
1+e−γ , the channel is not

antidegradable, as guaranteed by Theorem 2.

Theorem 1 identifies a region of the parameter space
(λ, γ ), with λ identifying the transmissivity and γ the dephas-
ing, where the channel is antidegradable and thus its quantum
capacity vanishes, thereby implying the absence of viable
error correcting codes for quantum data transfer and storage.
This region is illustrated in Fig. 1. Interestingly, Theorem 1
implies that even if λ > 1

2 one can pick γ large enough so that
there exists an antidegrading map achieving the transforma-
tion N c

λ,γ (|n〉〈n|F ) −→ Nλ,γ (|n〉〈n|F ), which can be expressed
as (see Lemma 27 in the Appendixes)

E1−λ(|n〉〈n|F ) ⊗ |√γ n〉〈√γ n|C −→ Eλ(|n〉〈n|F ), (6)

where |n〉F denotes the nth Fock state and |√γ n〉C denotes
a coherent state [2]. In Theorem 32 in the Appendixes, we
provide an explicit construction of such an antidegrading
map. This entails the following remarkable fact: for λ > 1/2
and large enough γ there exists an n-independent strategy to
convert the lossy Fock state E1−λ(|n〉〈n|F ) into the less lossy
Fock state Eλ(|n〉〈n|F ) using the coherent state |√γ n〉C as a
resource. In other words, one can undo part of the loss on |n〉F

if one has a coherent state that contains some information on
n, sufficiently amplified so that that information is accessible
enough. The nontrivial and somewhat surprising nature of
this exact conversion strategy arises from the fact that the
coherent states {|√γ n〉C}n∈N are not orthogonal, meaning that
the strategy that consists in measuring the coherent state,
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guessing n, and repreparing Eλ(|n〉〈n|F ) cannot succeed with
probability 1.

Theorem 1 does not identify the entire antidegradability
region of Nλ,γ , but only a subset of it. One way to improve
this approximation is to determine numerically the region
where the infinite matrix Aλ,γ introduced in the proof sketch
of Theorem 1 is positive semidefinite. In Fig. 1 we depict a
numerical estimate of this region (see the crossed dark gray
part of the plot).

So far we have been concerned with inner approximations
of the antidegradability region. To obtain outer approxima-
tions, instead, one can start by observing that the action of
Nλ,γ can only subtract and never add any photons. Mathemat-
ically, if the input state to Nλ,γ is supported on the span of
the first d Fock states, so is the output state. This restriction
defines a qudit-to-qudit channel N (d )

λ,γ , analyzing which can

yield some insights into Nλ,γ itself. First, if N (d )
λ,γ is not an-

tidegradable, then the same is true of Nλ,γ (see Corollary 35 in
the Appendixes); second, as discussed above the antidegrad-
ability of N (d )

λ,γ is equivalent to the two-extendibility of the
corresponding Choi state [41], and for moderate values of d
this latter condition can be efficiently checked numerically via
semidefinite programming [34,44]. In this way, as discussed
in Sec. B 2 of Appendix B, we can numerically determine a
parameter region (see light gray region of Fig. 1) where Nλ,γ

is not antidegradable.
Interestingly, already the qubit restriction N (2)

λ,γ , which co-
incides with the composition between the amplitude damping
channel and the qubit dephasing channel [34], yields the nec-
essary condition λ � 1

1+e−γ on the antidegradability of Nλ,γ ,
as shown in the forthcoming Theorem 2. Based on the analysis
of the qudit restrictions, we conjecture that, if γ is sufficiently
large, the latter condition λ � 1

1+e−γ is not only necessary but
also sufficient.

Theorem 2. If λ > 1
1+e−γ , then Nλ,γ is not antidegradable.

Proof. A qubit channel N is antidegradable if and only if

1
4 Tr[N (12)2] � Tr[C(N )2] − 4

√
det[C(N )], (7)

where C(N ) is the Choi state [41,45,46]. By employing
the condition in (7) together with the expression of the
Choi state of the qubit restriction N (2)

λ,γ provided in (B29)

in the Appendixes, one can show that N (2)
λ,γ is antidegrad-

able if and only if λ � 1
1+e−γ . Hence, we conclude that the

bosonic loss-dephasing channel Nλ,γ is not antidegradable if
λ > 1

1+e−γ . �
We are interested in the antidegradability of the loss-

dephasing channel because it implies that the quantum
capacity vanishes, entailing the impossibility of quantum
communication. We now look at the complementary question:
when is the quantum capacity Q(Nλ,γ ) strictly positive? A
simple sufficient condition can be obtained by optimizing the
coherent information [33,34] of Nλ,γ over input states of the
form ρp := p|0〉〈0| + (1 − p)|1〉〈1|. By doing so we identify a
region of the (λ, γ ) parameter space where Q(Nλ,γ ) > 0 (see
the crossed light gray region in Fig. 1). In this region quan-
tum communication and quantum error correction become
feasible.

IV. TWO-WAY QUANTUM COMMUNICATION

As we have just seen, (unassisted) quantum communi-
cation is not possible when the combined effects of loss
and dephasing are too strong. However, in the forthcom-
ing Theorem 3 we show that if Alice (the sender) and Bob
(the receiver) have access to a two-way classical commu-
nication line, then quantum communication, entanglement
distribution, and quantum-key distribution [47] become again
achievable for any value of loss and dephasing, even when
Alice’s input signals are constrained to have limited energy.

In this two-way communication setting the relevant notion
of capacity is the two-way quantum capacity Q2(N ) [33,34],
defined as the maximum achievable rate of qubits that can be
reliably transmitted across N with the aid of two-way classi-
cal communication. Since in practice Alice has only a limited
amount of energy to produce her input signals, one usually
defines the so-called energy-constrained two-way quantum
capacity [48,49], denoted as Q2(N , Ns). Here Ns denotes the
mean photon number constraint at the input of the channel.

Theorem 3. For all Ns > 0, λ ∈ (0, 1], and γ � 0, the
energy-constrained two-way quantum capacity of the
bosonic loss-dephasing channel is strictly positive, i.e.,
Q2(Nλ,γ , Ns) > 0. In particular, Nλ,γ is not entanglement
breaking. An explicit lower bound is

Q2(Nλ,γ , Ns) � λN

k

[
log2

(
N + k − 1

N

)
− S(ρN,k,γ )

]
(8)

for any N, k ∈ N+ satisfying N
k � Ns. Here S(·) is the von

Neumann entropy, ρN,k,γ is a
(N+k−1

N

)
-dimensional state de-

fined by

ρN,k,γ :=
(

N + k − 1

N

)−1 ∑
p,q∈
(N,k)

e− γ

2 ‖p−q‖2
2 |p〉〈q|, (9)

where 
(N, k) := {p ∈ Nk :
∑k

i=1 pi = N} represents the set
of partitions of a set of N elements into k parts, and the vectors
{|p〉}p∈
(N,k) are orthonormal.

Here we provide a sketch of the proof, and in Theorem 44
in the Appendixes we provide a detailed proof.

Proof sketch. The proof exploits entanglement transmis-
sion protected by a particular error-correction technique, rail
encoding. In a k-mode bosonic system, consider the sub-
space VN,k corresponding to a total photon number N . We
can use this subspace, whose dimension is dN,k := dim VN,k =(N+k−1

N

)
, as an error correction code that protects against the

detrimental action of Nλ,γ . To this end, we prepare a maxi-
mally entangled state of dimension dN,k and send one share of
it through k copies of the channel Nλ,γ , one per mode. Since
under the action of Nλ,γ photons can only be lost and never
added, and each photon has a probability λ of being transmit-
ted, the probability that an N-photon state will retain all of
its photons at the output of the channel is exactly λN . If this
happens to be the case, which—crucially—can be certified by
a total photon number measurement at the output, then the
input state has been subjected to no loss and only dephasing.
The entanglement of the resulting, maximally correlated state
can be distilled via an explicit protocol known as the hashing
protocol [34,50], resulting in log2 dN,k − S(ρN,k,γ ) > 0 sin-
glet (a.k.a. ebit, i.e., unit of entanglement) yield. The strict
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positivity of this yield follows by observing that ρN,k,γ is a
dN,k-dimensional mixed state that is not maximally mixed. �

V. DEGRADABILITY

The bosonic loss-dephasing channel Nλ,γ is never degrad-
able, except in the simple cases when either λ = 1 or γ = 0
and λ � 1/2 [32]. This in turn implies that no single-letter
formula for its quantum capacity is known outside of the
antidegradability region studied here, where the capacity van-
ishes. The failure of degradability has been demonstrated in
[32] through a lengthy proof; we are now in position to pro-
vide an alternative, much simpler argument. The key ideas are
as follows: (i) If the qubit restriction N (2)

λ,γ is not degradable,
then Nλ,γ is not degradable either (see Corollary 35 in the
Appendixes); and (ii) if the rank of the Choi state of a qubit
channel is greater or equal to 3 than such channel is not
degradable [[51], Theorem 4]. The result then follows by
observing that the Choi state of the qubit channel N (2)

λ,γ , as
provided in (B29) in the Appendixes, has a rank exactly equal
to 3. For a detailed proof see Theorem 37 in the Appendixes.

VI. CONCLUSION

In this paper we have provided an analytical investigation
of the quantum communication capabilities of the bosonic
loss-dephasing channel, a much more realistic model of
noise than dephasing and loss treated separately. Refuting a
conjecture put forth in [32], we showed that the bosonic loss-
dephasing channel is antidegradable in a large region of the
loss-dephasing parameter space, entailing that neither quan-
tum communication nor quantum error correcting codes are
possible in this region. On the positive side, we also showed
that if two-way classical communication is suitably exploited,
then quantum communication is always achievable, even in
scenarios characterized by high levels of loss and dephasing,
and even in the presence of stringent energy constraints.

Two fundamental technical innovations are key to our
approach. First, an alternative method to analyze antidegrad-
ability of bosonic channels, based on a two-stage construction
of a symmetric extension of the Choi state. The introduc-
tion of this technique is crucial here also on the conceptual
level, as all other known tools to analyze quantum capaci-
ties (e.g., degradability [34], PPT-ness [52], or teleportation
simulability [53,54]) fail completely for the loss-dephasing
channel [32]. In Appendix C we envision that our technique
could also be applied to other cases, e.g., to analyze the
antidegradability of the composition between the pure-loss
channel and a general bosonic dephasing channel. The second
innovation we introduce is based on the use of rail encoding to
investigate two-way assisted entanglement generation on the
loss-dephasing channel. This technique, which we anticipate
may be used to study general processes where photon loss
is involved, has the additional benefit of yielding an explicit
entanglement generation protocol.

Although the capacities of the dephasing channel and
the pure-loss channel (separately) have been determined
[26,28,38,39,49,53,55,56], the capacities of the channel re-
sulting from their combined action remain unknown. An
intriguing open problem is to calculate or approximate these
capacities.

ACKNOWLEDGMENTS

F.A.M. and V.G. acknowledge financial support by
MUR (Ministero dell’Istruzione, dell’Università e della
Ricerca) through the following projects: PNRR MUR project
PE0000023-NQSTI, PRIN 2017 Taming complexity via
Quantum Strategies: A Hybrid Integrated Photonic approach
(QUSHIP) ID 2017SRN-BRK, and project PRO3 Quantum
Pathfinder. F.S. is supported by a Walter Benjamin Fellowship,
DFG Project No. 524058134. F.A.M. and L.L. thank the Freie
Universität Berlin for hospitality. F.A.M. thanks the Univer-
sity of Amsterdam for hospitality.

APPENDIX A: PRELIMINARIES AND NOTATION

1. Quantum states and channels

In this subsection, we present a summary of the notation
and fundamental properties used in the paper, drawing from
the conventions established in standard quantum information
theory textbooks [33,34,44,57]. Every quantum system is as-
sociated with a separable complex Hilbert space H whose
dimension is denoted by |H|. We use subscripts to denote
the system associated to a Hilbert space and also systems
on which the operators act. The composite quantum systems
A and B exist within the tensor product of their individual
Hilbert spaces HA ⊗ HB, which is also denoted by HAB.

We use 1 to denote the identity operator on H. The operator
norm of a linear operator � : H → H is defined as

‖�‖∞ := sup
|ψ〉∈H: 〈ψ |ψ〉=1

√
〈ψ |�†�|ψ〉. (A1)

An alternative (but equivalent) definition of the operator norm
is as follows:

‖�‖∞ := sup
|v〉,|w〉∈H, 〈v|v〉=〈w|w〉=1

|〈v|�|w〉|. (A2)

An operator is called bounded if its operator norm is bounded,
i.e., ‖�‖∞ < ∞. A bounded operator � is positive semidef-
inite if 〈ψ |�|ψ〉 � 0,∀ |ψ〉 ∈ H , while it is positive definite
if 〈ψ |�|ψ〉 > 0, ∀ |ψ〉 ∈ H . The trace norm of a linear op-
erator � : H → H is defined as ‖�‖1 := Tr

√
�†�. The set

of trace class operators, denoted as T (H), is the set of all
the linear operators on H such that their trace norm is finite,
i.e., ‖�‖1 < ∞. The operator and trace norm satisfy ‖�‖∞ �
‖�‖1. The set of quantum states (density operators), denoted
as P (H), is the set of positive semidefinite trace class opera-
tors on H with unit trace. The fidelity between two quantum
states ρ, σ ∈ P (H) is defined as F (ρ, σ ) := Tr[

√√
ρσ

√
ρ].

A superoperator is a linear map between spaces of linear
operators. The identity superoperator will be denoted as id.
Quantum channels are completely positive trace-preserving
(cptp) superoperators. In this paper we will use two different
representations of a quantum channel that are known as Stine-
spring and Choi-Jamiołkowski representation. A quantum
channel NA′→B can be represented in Stinespring representa-
tion as

NA′→B(·) = TrE [UA′E→BE (· ⊗ |0〉〈0|E )U †
A′E→BE ].

Here E is an environment system, |0〉E is a pure state of the
environment, and UA′E→BE is an isometry that takes as input
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the systems A′ and E and outputs the systems B, E . The
associated complementary channel N c

A′→B is given by

N c
A′→E (·) = TrB[UA′E→BE (· ⊗ |0〉〈0|E )U †

A′E→BE ].

A channel N is called degradable if there exist a quantum
channel J , such that when is used after N , we get back
to the complementary channel N c, i.e., J ◦ N = N c. On
the other hand, a channel is called antidegradable if there
is another quantum channel A, such that using it after the
complementary channel, gives back the original channel, i.e.,
A ◦ N c = N . The channels J and A are usually called the
degrading map and the antidegrading map of N , respectively.

The Choi-Jamiołkowski representation of the channel
NA′→B is the operator C(N ) ∈ T (HA ⊗ HB) that is defined
as

C(N ) := idA ⊗ NA′→B(|�〉〈�|AA′ ), (A3)

where |�〉 = 1√|HA|
∑|HA|−1

i=0 |i〉A ⊗ |i〉A′ is a maximally en-
tangled state of Schmidt rank |HA|, the set of states
{|i〉}i=0,...,|HA|−1 forms a basis for HA, and HA = HA′ . It is a
well-established fact that the superoperator N is a quantum
channel if and only if C(N ) � 0 and TrBC(N ) = 1A/|HA|
[33].

Definition 4. A bipartite state ρAB is symmetric two-
extendible on B if there exists a tripartite state τAB1B2 such that

FB1B2τAB1B2 F †
B1B2

= τAB1B2 ,

TrB1τAB1B2 = ρAB,

where B1 and B2 are two copies of the system B, the operator
FB1B2 := ∑

i, j |i〉〈 j|B1 ⊗ | j〉〈i|B2 denotes the swap unitary, and
{|i〉B1}i and {|i〉B2}i form an orthonormal basis. The state τAB1B2

is called a symmetric two-extension of ρAB on B.
Definition 5. A bipartite state ρAB is called two-extendible

on B if there exists a tripartite state τAB1B2 such that

TrB1τAB1B2 = TrB2τAB1B2 = ρAB, (A4)

where B1 and B2 are two copies of the system B.
Lemma 6 ([58]). A bipartite state ρAB is two-extendible on

B if and only if it is symmetric two-extendible on B.
Proof. First, assume ρAB is symmetric two-extendible on

B. Since FB1B2τAB1B2 F †
B1B2

= τAB1B2 , it holds that TrB2τAB1B2 =
TrB1τAB1B2 . This implies that ρAB is two-extendible on B. Sec-
ond, let ρAB be two-extendible on B. One can easily check
that the state 1/2(τAB1B2 + FB1B2τAB1B2 F †

B1B2
) is a symmetric

two-extension of ρAB. �
It has been demonstrated that a quantum channel is an-

tidegradable if and only if its Choi state is two-extendible
on the output system [41]. This equivalence leads to a simple
necessary and sufficient condition for the antidegradability of
qubit channels:

Lemma 7. [[45], Corollary 4] (see also [41,46]) Any qubit
quantum channel N is antidegradable if and only if it satisfies

Tr

{[
N
(

12

2

)]2
}
� Tr[(C(N ))2] − 4

√
det(C(N )),

where 12 denotes the identity operator on the qubit Hilbert
space.

2. Bosonic systems

In this subsection, we will provide an overview of relevant
definitions and properties concerning quantum information
with continuous variable systems; refer to [2] for detailed ex-
planations. A single-mode of electromagnetic radiation with
definite frequency and polarization is represented by the
Hilbert space L2(R), which comprises all square-integrable
complex-valued functions over R. Let N+ be the set of strictly
positive integers and let N := {0} ∪ N+. For any n ∈ N, the
construction of the Fock state |n〉 (the quantum state with
n photons) involves the application of the bosonic creation
operator â† to the vacuum state |0〉:

|n〉 := 1√
n!

(â†)n|0〉. (A5)

The Fock states {|n〉}n∈N form an orthonormal basis of L2(R).
The bosonic annihilation operator â and creation operator
â† satisfy the well-known canonical commutation relation
[â, â†] = 1.

Let C be the set of complex numbers. For any α ∈ C, let
D(α) := eαâ†−α∗â be the displacement operator. A coherent
state of parameter α, denoted by |α〉, is defined by applying
the displacement operator D(α) to the vacuum state, i.e.,
|α〉 := D(α)|0〉. The overlap between coherent states is given
by

〈α|β〉 = e− 1
2 (|α|2+|β|2−2α∗β ). (A6)

Quantum channels acting on bosonic systems are some-
times called bosonic channels. Similar to finite-dimensional
channels, bosonic channels admit a Choi-Jamiołkowski
representation, usually referred to as generalized Choi-
Jamiołkowski representation [59]. Consider isomorphic
Hilbert spaces HA,HA′ which are possibly infinite dimen-
sional. Let |ψ〉AA′ be a pure state satisfying TrA′[|ψ〉〈ψ |AA′] >

0 (See [[60], Lemma 26]). The generalized Choi state is con-
structed by applying the channel to the subsystem A′ of |ψ〉A′A
(see Lemma 53 in the Appendixes): idA ⊗ NA′→B(|ψ〉〈ψ |AA′ ).
The construction of the generalized Choi state usually utilises
the two-mode squeezed vacuum state with squeezing parame-
ter r > 0, defined as follows [2]:

|ψ (r)〉AA′ := 1

cosh(r)

∞∑
n=0

tanhn(r)|n〉A|n〉A′ . (A7)

The equivalence between antidegradability of a channel and
two-extendibility of its Choi state extends to the infinite-
dimensional channels [42]. We provide a detailed proof of this
equivalence in Lemma 54 in these Appendixes as it helps us
in developing our intuition in inventing an explicit example of
an antidegrading map of the bosonic loss-dephasing channel.

3. Hadamard maps

Let A = (amn)m,n∈N, amn ∈ C, be an infinite matrix of com-
plex numbers. Consider the superoperator H on T (L2(R)),
recognized as the Hadamard map, whose action on rank one
operator |m〉〈n| is defined as follows:

H (|m〉〈n|) = amn|m〉〈n|, ∀ m, n ∈ N.
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FIG. 2. Stinespring representation of the pure-loss channel Eλ.
The pure-loss channel Eλ acts on the input state ρ by mixing it in a
beam splitter of transmissivity λ (represented by the gray box) with
an environmental vacuum state |0〉. Moreover, â and ê are the an-
nihilation operators of the input mode and the environmental mode,
respectively. The complementary channel of the pure-loss channel is
given by Ec

λ (ρ ) = E1−λ[(−1)â† âρ(−1)â† â].

In Sec. E 1 in Appendix E, we provide an overview of relevant
properties of Hadamard maps. In particular, by combining
known results about Hadamard maps and matrix analysis, in
Lemma 51 in the Appendixes, we show that given an infinite
matrix A = (amn)m,n∈N, amn ∈ C, the associated Hadamard
map is a quantum channel if

A is Hermitian.

ann = 1, ∀n ∈ N.

A is diagonally dominant, i.e.,
∞∑

m=0m �=n

|amn| � 1, ∀ n ∈ N.

4. Beam splitter

A beam splitter serves as a linear optical tool employed for
creating quantum entanglement between two modes, referred
to as the system mode (denoted as S) and the environment
mode (denoted as E ). A depiction of a beam splitter is re-
ported in Fig. 2.

Definition 8. Let HS,HE := L2(R). Let â and ê denote the
annihilation operator of HS and HE , respectively. For all λ ∈
[0, 1], the beam splitter unitary of transmissivity λ is given by

U SE
λ := exp[arccos

√
λ(â†ê − â ê†)]. (A8)

Lemma 9. For all λ ∈ [0, 1], it holds that

(
U SE

λ

)†
âU SE

λ =
√

λ â + √
1 − λ ê,

U SE
λ â

(
U SE

λ

)† =
√

λ â − √
1 − λ ê,(

U SE
λ

)†
êU SE

λ = −√
1 − λ â +

√
λ ê,

U SE
λ ê

(
U SE

λ

)† = √
1 − λ â +

√
λ ê. (A9)

Proof. These identities can be readily proved by apply-
ing the Baker-Campbell-Hausdorff formula. For an alternative
proof see [[21], Lemma A.2]. �

Lemma 10. For all λ ∈ [0, 1] and all n ∈ N, it holds that

U SE
λ |n〉S ⊗|0〉E =

n∑
l=0

(−1)l

√(
n

l

)
λ

n−l
2 (1 − λ)

l
2 |n − l〉S ⊗|l〉E ,

(A10)

U SE
λ |0〉S ⊗ |n〉E =

n∑
l=0

√(
n

l

)
(1 − λ)

l
2 λ

n−l
2 |l〉S ⊗ |n − l〉E .

(A11)

Proof. Due to Lemma (9), we have that U SE
λ â(U SE

λ )† =√
λâ − √

1 − λê. Consequently, it holds that

U SE
λ |n〉S ⊗ |0〉E = 1√

n!
U SE

λ (a†)n|0〉S ⊗ |0〉E

= 1√
n!

(
U SE

λ a†
(
U SE

λ

)†)n|0〉S ⊗ |0〉E

= 1√
n!

(√
λa† − √

1 − λb†
)n|0〉S ⊗ |0〉E

= 1√
n!

n∑
l=0

(−1)l

(
n

l

)
λ

n−l
2 (1 − λ)

l
2 (a†)n−l

× |0〉S ⊗ (b†)l |0〉E

=
n∑

l=0

(−1)l

√(
n

l

)
λ

n−l
2 (1 − λ)

l
2 |n − l〉S

⊗ |l〉E . (A12)

Analogously, one can show the validity of (A11) by exploiting
U SE

λ ê (U SE
λ )† = √

1 − λ â + √
λ ê. �

Remark 11. It is easily seen that Eq. (A10) is equivalent to

U SE
λ |n〉S ⊗ |0〉E = (−1)n

n∑
l=0

(−1)l

√(
n

l

)
λ

l
2 (1 − λ)

n−l
2 |l〉S

⊗ |n − l〉E .

5. Pure-loss channel

In optical platforms, the most common source of noise is
photon loss, which is modeled by the pure-loss channel [2].
For any λ ∈ [0, 1], the pure-loss channel Eλ of transmissivity
λ is a single-mode bosonic channel which acts on the input
system by mixing it in a beam splitter of transmissivity λ with
an environmental vacuum state; see Fig. 2. In this model, the
input signal is partially transmitted and partially reflected by
the beam splitter, representing the loss of photons (or energy)
in the channel. When λ = 1, the pure-loss channel is noiseless
(it equals the identity superoperator). Conversely, when λ =
0, the pure-loss channel is completely noisy (specifically, it is
a constant channel that maps any state in |0〉〈0|).

Definition 12. Let HS,HE := L2(R). For all λ ∈ [0, 1], the
pure-loss channel of transmissivity λ is a quantum channel
Eλ : T (HS ) → T (HS ) defined as follows:

Eλ(ρ) := TrE
[
U SE

λ (ρS ⊗ |0〉〈0|E )
(
U SE

λ

)†]
, ∀ ρ ∈ T (HS ),

where |0〉〈0|E denotes the vacuum state of HE and U SE
λ de-

notes the beam splitter unitary defined in (A8).
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Lemma 13. For all λ ∈ [0, 1] and all n, m ∈ N, it holds that

Eλ(|m〉〈n|) =
min(n,m)∑

�=0

√(
m

�

)(
n

�

)
(1 − λ)�λ

n+m
2 −�

× |m − �〉〈n − �|.
Proof. This is a direct consequence of (A10) and of the

definition of pure-loss channel. �
Lemma 14. For all λ ∈ [0, 1], a complementary channel

Ec
λ:T (HS ) → T (HE ) of the pure-loss channel Eλ : T (HS ) →

T (HS ) is given by

Ec
λ(ρ) := TrS

[
U SE

λ (ρS ⊗ |0〉〈0|E )
(
U SE

λ

)†] = E1−λ ◦ R(ρ),

∀ ρ ∈ T (HS ), (A13)

where R(·) := V · V † with V := (−1)â†â.
Proof. By linearity, it suffices to show the identity in (A13)

for rank-one Fock operators of the form |m〉〈n| for any n, m ∈
N,

TrS
[
U SE

λ (|m〉〈n|S ⊗ |0〉〈0|E )
(
U SE

λ

)†] = E1−λ ◦ R(|m〉〈n|).
(A14)

This follows directly from (A10). �
Proposition 15. [38,39] The pure-loss channel Eλ is

degradable if and only if λ ∈ [ 1
2 , 1], and it is antidegradable

if and only if λ ∈ [0, 1
2 ].

Lemma 16. [[21], Lemma A.7] For all λ1, λ2 ∈ [0, 1] it
holds that Eλ1 ◦ Eλ2 = Eλ1λ2 .

6. Bosonic dephasing channel

Another main source of noise in optical platforms is
bosonic dephasing, which serves as a prominent example of
a non-Gaussian channel [28,40].

Definition 17. Let HS := L2(R) and let â be the corre-
sponding annihilation operator. For all γ � 0, the bosonic
dephasing channel Dγ : T (HS ) → T (HS ) is a quantum chan-
nel defined as follows:

Dγ (ρ) := 1√
2πγ

∫ ∞

−∞
dφ e− φ2

2γ eiφâ†â ρ e−iφâ†â,

∀ ρ ∈ T (HS ).

In other words, Dγ is a convex combination of phase space
rotations ρ �−→ eiφâ†â ρ e−iφâ†â, where the random variable φ

follows a centered Gaussian distribution with a variance of γ .
Lemma 18. For all γ � 0 and all n, m ∈ N, it holds that

Dγ (|m〉〈n|) = e− 1
2 γ (n−m)2 |m〉〈n|.

Proof. This result follows from the Fourier transform of
the Gaussian function:

1√
2πγ

∫ ∞

−∞
dφ e− φ2

2γ eiφk = e− 1
2 γ k2

, ∀ k ∈ R. (A15)

�
When γ = 0, the bosonic dephasing channel is noise-

less. In contrast, when γ → ∞ it annihilates all off-diagonal
components of the input density matrix, reducing it to an in-
coherent probabilistic mixture of Fock states. We now present
a Stinespring dilation of the bosonic dephasing channel.

Lemma 19. Let HS = HE := L2(R) and let â and ê be
annihilation operators on HS and HE , respectively. For all
γ > 0, the bosonic dephasing channel Dγ : T (HS ) → T (HS )
can be expressed in Stinespring representation as

Dγ (ρ) = TrE
[
V SE

γ (ρS ⊗ |0〉〈0|E )
(
V SE

γ

)†]
, ∀ ρ ∈ T (HS ),

(A16)
where V SE

γ denotes the conditional displacement unitary de-
fined by

V SE
γ := exp[

√
γ â†â ⊗ (ê† − ê)] =

∞∑
n=0

|n〉〈n|S ⊗ D(
√

γ n).

(A17)
Proof. For any n, m ∈ N it holds that

TrE
[
V SE

γ (|m〉〈n|S ⊗ |0〉〈0|E )
(
V SE

γ

)†]
(i)= TrE [|m〉〈n|S ⊗ |√γ n〉〈√γ m|E ]

(ii)= e− γ

2 (n−m)2 |m〉〈n|
(iii)= Dγ (|m〉〈n|). (A18)

Here in (i) we used that V SE
γ |n〉S ⊗ |0〉E = |n〉S ⊗ |√γ n〉E ,

where |√γ n〉E denotes the coherent state with parameter√
γ n. In (ii) we exploited the formula for the overlap between

coherent states provided in (A6), and in (iii) we used Lemma
18. The proof is completed by linearity. �

Remark 20. A different approach to dilating the bosonic
dephasing channel, as outlined in the existing literature
[40,61,62], is as follows:

Ṽ SE
γ = exp[−i

√
γ â†â (ê† + ê)].

This unitary transformation is achieved by rotating the en-
vironmental mode of the unitary operator V SE

γ in (A17) by
π
2 , that is, Ṽ SE

γ = ei π
2 ê† êV SE

γ e−i π
2 ê† ê. These dilations yield the

same dephasing channel, as all dilations are equivalent up to
unitary transformations.

Proposition 21 ([32]). The bosonic dephasing channel Dγ

is degradable for all γ � 0.
Proposition 22 ([32]). The bosonic dephasing channel Dγ

is never antidegradable.
Lemma 23. For all γ1, γ2 � 0, the composition of bosonic

dephasing channels is given by Dγ1 ◦ Dγ2 = Dγ1+γ2 .
Proof. This can be shown by leveraging Lemma 18. �

7. Bosonic loss-dephasing channel

Consider an optical system undergoing simultaneous loss
and dephasing over a finite time interval. At each instant, the
system is susceptible to both an infinitesimal pure-loss chan-
nel and an infinitesimal bosonic dephasing channel. Hence,
the overall channel describing the simultaneous effect of loss
and dephasing results in a suitable composition of numerous
concatenations between infinitesimal pure-loss and bosonic
dephasing channels. However, given that

The pure-loss channel and the bosonic dephasing channel
commute, i.e., Eλ ◦ Dγ = Dγ ◦ Eλ, as implied by Lemma 13
and Lemma 18

The composition of pure-loss channels is a pure-loss chan-
nel, Eλ1 ◦ Eλ2 = Eλ1λ2 (Lemma 16) and
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The composition of bosonic dephasing channels is a
bosonic dephasing channel, Dγ1 ◦ Dγ2 = Dγ1+γ2 (Lemma 23)

it follows that the combined effect of loss and dephasing
can be modeled by the composition between pure-loss channel
and bosonic dephasing channel,

Nλ,γ := Eλ ◦ Dγ , (A19)

dubbed the bosonic loss-dephasing channel.
Definition 24. For all γ � 0 and λ ∈ [0, 1], the bosonic

loss-dephasing channel Nλ,γ is a quantum channel defined
by the composition between pure-loss channel and bosonic
dephasing channel: Nλ,γ := Dγ ◦ Eλ.

Lemma 25. For all λ ∈ [0, 1] and γ � 0, it holds that
Nλ,γ := Dγ ◦ Eλ = Eλ ◦ Dγ . Moreover, for all n, m ∈ N it
holds that

Nλ,γ (|m〉〈n|) = e− 1
2 γ (n−m)2Eλ(|m〉〈n|)

= e− 1
2 γ (n−m)2

min(n,m)∑
�=0

√(
n

�

)(
m

�

)
(1 − λ)�

× λ
n+m

2 −�|m − �〉〈n − �|.
Proof. It follows from Lemma 13 and Lemma 18. �
Lemma 26. Let HS,HE1 ,HE2 := L2(R). For all λ ∈ [0, 1]

and all γ � 0, the bosonic loss-dephasing channel Nλ,γ :
T (HS ) → T (HS ) admits the following Stinespring represen-
tation:

Nλ,γ (ρ) = TrE1E2

[
U SE1

λ V SE2
γ (ρS ⊗ |0〉〈0|E1 ⊗ |0〉〈0|E2 )

× (
U SE1

λ V SE2
γ

)†]
,

∀ ρ ∈ T (HS ),

The associated complementary channel N c
λ,γ : T (HS ) →

T (HE1 ⊗ HE2 ) is defined as follows:

N c
λ,γ (ρ) := TrS

[
U SE1

λ V SE2
γ (ρS ⊗ |0〉〈0|E1 ⊗ |0〉〈0|E2 )

× (
U SE1

λ V SE2
γ

)†]
,

∀ ρ ∈ T (HS ).

In particular,

N c
λ,γ (|m〉〈n|) = (−1)m−nE1−λ(|m〉〈n|E1 ) ⊗ |√γ m〉〈√γ n|E2 ,

∀ m, n ∈ N, (A20)

where |√γ n〉E2 denotes the coherent state with parameter√
γ n.
Proof. The Eq. (A20) is derived by first applying (A13)

and subsequently utilizing the dilation of the bosonic dephas-
ing channel. Finally, the nonenvironment mode of the bosonic
dephasing channel is traced out. �

Lemma 27. Consider the Hilbert spaces HS , HE1 , and
HE2 , all isomorphic to L2(R). Let λ ∈ [0, 1] and γ � 0. The
bosonic loss-dephasing channel Nλ,γ : T (HS ) → T (HS ) ex-
hibits antidegradability if and only if there exists a quantum
channel Aλ,γ : T (HEout ) → T (HS ) satisfying the following
condition:

Aλ,γ ◦ N c
λ,γ (|m〉〈n|) = Nλ,γ (|m〉〈n|), ∀ m, n ∈ N, (A21)

where N c
λ,γ : T (HS ) → T (HEout ) denotes the complementary

channel reported in (A20), and HEout ⊂ HE1 ⊗ HE2 is defined
in (B18). Moreover, the condition in (A21) is equivalent to

Aλ,γ (E1−λ(|m〉〈n|) ⊗ |√γ m〉〈√γ n|) = (−1)m−ne− γ

2 (m−n)2

× Eλ(|m〉〈n|),
∀ m, n ∈ N, (A22)

where |√γ n〉 denotes the coherent state with parameter
√

γ n.
Proof. Nλ,γ is antidegradable if and only if there exists a

quantum channel Aλ,γ : T (HEout ) → T (HS ) such that

Aλ,γ ◦ N c
λ,γ (ρ) = Nλ,γ (ρ), ∀ ρ ∈ T (HS ). (A23)

By linearity, it suffices to show the condition in (A21), i.e.,
which corresponds to the condition in (A23) restricted to rank-
one Fock operators of the form ρ = |m〉〈n| with m, n ∈ N.
Moreover, by exploiting Lemma 25 and (A20), the condition
in (A21) is equivalent to (A22). �

Lemma 28. For all γ1, γ2 � 0 and all λ1, λ2 it holds that
Nλ1,γ1 ◦ Nλ2,γ2 = Nλ1λ2, γ1+γ2 .

Proof. This can be shown by exploiting Lemma 16 and
Lemma 23. �

8. Preliminaries on capacities of quantum channels

Quantum channels can be suitably exploited in order to
transfer information from their input port to a possibly distant
output port, a crucial task in quantum information theory
[44,57]. In particular, quantum Shannon theory [33,34] pri-
marily helps us understand the fundamental limits of quantum
communication using a quantum channel N . These limits
are called capacities and tell us the ultimate amount of in-
formation we can send through the channel when we use it
many times [33,34]. Different capacities are defined based on
the type of information that is being sent down the channel.
For example, classical and quantum capacities of a quantum
channel correspond to its ultimate capability of transmission
of classical and quantum information, respectively. A channel
can also be used to generate secret bits and the relevant capac-
ity in this context is the so-called secret-key capacity. Each
of the above-mentioned capacities might be endowed with
other resources such as initial shared entanglement between
the sender and the receiver or (possibly interactive) classical
communication over a noiseless but public channel. This latter
scenario gives rise to the notion of two-way capacities.

Specifically, the quantum capacity Q(N ) of a quantum
channel N is the maximum rate at which qubits can be re-
liably transmitted through N [34]. We can further assume
that both the sender, Alice, and the receiver, Bob, have free
access to a public, noiseless two-way classical channel. In
this two-way communication setting, the relevant notion of
capacities are the two-way quantum capacity Q2(N ) and the
secret-key capacity K (N ) [33,34], defined as the maximum
achievable rate of qubits and secret-key bits, respectively, that
can be reliably transmitted across N with the aid of two-
way classical communication. Since an ebit (i.e., a maximally
entangled state of Schmidt rank 2) can always be used to
generate one bit of secret key [47], a trivial bound relates these
capacities: Q2(N ) � K (N ).
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In practical scenarios, it is important to consider that the in-
put state prepared by Alice can not have unlimited energy and
it adheres to specific energy constraints. In bosonic systems,
it is common to limit the average photon number of any input
state ρ as Tr[â†âρ] � Ns, where Ns > 0 is a given energy con-
straint. For any Ns > 0, the energy-constrained (EC) two-way
capacities for transmitting qubits and secret-key bits, denoted
as Q2(N , Ns) and K (N , Ns) respectively, are defined similarly
to the unconstrained capacities with the difference that now
the optimization is performed over those strategies that exploit
input states that adhere to the specified energy constraint. As
in the unconstrained scenario, the relation between EC two-
way capacities continue to hold, i.e., Q2(N , Ns) � K (N , Ns).
Moreover, the unconstrained capacities are upper bounds for
the corresponding energy constrained capacities and they be-
come equal in the limit Ns → ∞.

Two-way capacities of a quantum channel are closely
related to another important information-processing task,
namely, entanglement distillation over a quantum channel.
Suppose Alice generates n copies of a state ρA′A and sends
the A′ subsystems to Bob using the channel N for n times.
Now, Alice and Bob share n copies of the state ρ ′

AB := idA ⊗
NA′→B(ρAA′ ). The task of an entanglement distillation protocol
concerns identifying the largest number m of ebits that can
be extracted using n copies of ρ ′

AB via LOCC (Local Opera-
tions and Classical Communication) operations. The rate of
an entanglement distillation protocol is defined by the ratio
m/n. The distillable entanglement Ed (ρ ′

AB) of ρ ′
AB is defined

as the maximum rate over all the possible entanglement dis-
tillation protocols [63] [[34], Chapter 8]. Note that without
extra classical communication, entanglement distillation is not
possible [64]. The following lemma establishes a link between
the two-way quantum capacity, secret-key capacity, and distil-
lable entanglement.

Lemma 29. Let HA,HA′ ,HB := L2(R). Let N : HA′ →
HB be a quantum channel. Let Ns > 0 be the energy constaint,
and let ρA′A ∈ P (HA ⊗ HA′ ) be a two-mode state satisfying
the energy constraint Tr[(â†â ⊗ idA)ρA′A] � Ns, where â de-
notes the annihilation operator on HA′ . Then it holds that

K (N , Ns) � Q2(N , Ns) � Ed (idA ⊗ N (ρAA′ )), (A24)

where K (N , Ns) denotes the energy-constrained secret-key
capacity of N , Q2(N , Ns) denotes the energy-constrained
two-way quantum capacity of N , and Ed(idA ⊗ N (ρAA′ )) de-
notes the distillable entanglement of the state idA ⊗ N (ρAA′ ).

The proof idea of the above lemma is the following. Sup-
pose that Alice produces n copies of a state ρAA′ such that the
energy constraint is satisfied. Then she can use the channel
n times to send all subsystems A′ to Bob. Then Alice and
Bob share n copies of idA ⊗ N (ρAA′ ), which can now be used
to generate ≈ n Ed(idA ⊗ N (ρAA′ )) ebits by means of a suit-
able entanglement distillation protocol. The ebit rate of this
protocol is thus Ed(idA ⊗ N (ρAA′ )), which provides a lower
bound on Q2(N , Ns) thanks to quantum teleportation [65].
In addition, it holds that K (N , Ns) � Q2(N , Ns) because an
ebit can generate a secret-key bit [47]. Consequently, (A24)
holds.

APPENDIX B: ANTIDEGRADABILITY AND
DEGRADABILITY OF BOSONIC LOSS-DEPHASING

CHANNEL

This section is split into two parts based on the observation
that if the input state to the bosonic loss-dephasing channel is
chosen from a finite-dimensional subspace, the bosonic loss-
dephasing channel effectively becomes a finite-dimensional
channel, a fact we show in Lemma 36. This property allows
us to apply established insights about the finite-dimensional
channels to the bosonic loss-dephasing channel. In Sec. B 1
we present our study of the bosonic loss-dephasing channel
when the input resides in the entire infinite-dimensional space,
while Sec. B 2 is dedicated to the findings resulting from
analysis of finite-dimensional restrictions of the bosonic loss-
dephasing channel.

1. Sufficient condition on antidegradability

It is known that the bosonic dephasing channel Dγ is
degradable across all dephasing parameter range γ � 0 and
also it is never antidegradable [40]. The pure-loss channel
Eλ displays the peculiar characteristic of being antidegrad-
able for transmissivity values within the range λ ∈ [0, 1

2 ] and
degradable for λ ∈ [ 1

2 , 1] [38,39]. It turns out that when an
antidegradable channel is concatenated with another channel,
the resulting channel inherits the property of being antidegrad-
able (see Lemma 55). This implies the following: if λ ∈ [0, 1

2 ]
and γ � 0, then the bosonic loss-dephasing channel Nλ,γ is
antidegradable [32]. The authors of [32] left as an open ques-
tion to understand whether or not the bosonic loss-dephasing
channel Nλ,γ is antidegradable in the region λ ∈ ( 1

2 , 1]. In
particular, they conjecture that Nλ,γ is not antidegradable for
all transmissivity values λ ∈ ( 1

2 , 1] and for all γ � 0. In the
following theorem, we refute this conjecture by explicitly
finding values of λ ∈ ( 1

2 , 1] and γ � 0 where the channel is
antidegradable. Our approach also yields an explicit expres-
sion for an antidegrading map of the bosonic loss-dephasing
channel.

Theorem 30. Each of the following is a sufficient condi-
tion for the bosonic loss-dephasing channel Nλ,γ to exhibit
antidegradability:

(1) λ ∈ [0, 1
2 ] and γ � 0.

(2) λ ∈ ( 1
2 , 1) and θ (e−γ /2,

√
λ

1−λ
) � 3

2 , where θ is de-

fined as θ (x, y) := ∑∞
n=0 xn2

yn, ∀ x, y ∈ [0, 1).
In particular, Nλ,γ is antidegradable if λ � max( 1

2 , 1
1+9e−γ ).

Proof. The proof of the sufficient condition (i) follows di-
rectly from the observation that the composition of a pure-loss
channel with transmissivity λ ∈ [0, 1

2 ] with any other channel
inherits the antidegradability from the pure-loss channel (see
Lemma 55).

The proof of the sufficient condition (ii) is more involved,
and it is the main technical contribution of our work. We rely
on the equivalence between antidegradability of a quantum
channel and the two-extendibility of its Choi state [41,42].
To provide a comprehensive and intuitive understanding of
this idea and to aid in the construction of an antidegrading
map of the bosonic loss-dephasing channel, we present this
equivalence in Lemma 54 in the Appendixes.
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Assume λ ∈ ( 1
2 , 1) and θ(e−γ /2,

√
λ

1−λ
) � 3

2 . Let

HA,HB,HB1 ,HB2 = L2(R) and suppose that the bosonic
loss-dephasing channel Nλ,γ is a quantum channel from the
system A′ to B. We want to show that the generalized Choi
state of Nλ,γ is two-extendible on B. In other words, we want

to show that there exists a tripartite state ρAB1B2 such that

TrB2

[
ρAB1B2

] = τAB1 ,

TrB1

[
ρAB1B2

] = τAB2 , (B1)

where τAB := idA ⊗ Nλ,γ (|ψ (r)〉〈ψ (r)|AA′ ) is the generalized Choi state of Nλ,γ , and |ψ (r)〉AA′ is the two-mode squeezed
vacuum state with squeezing parameter r > 0 defined in (A7). By Lemma (25), the generalized Choi state of the bosonic
loss-dephasing channel can be expressed as follows:

τAB = 1

cosh2(r)

∞∑
m,n=0

min(m,n)∑
�=0

(tanh(r))m+ne− γ

2 (m−n)2√B�(m, 1 − λ)B�(n, 1 − λ)|m〉〈n|A ⊗ |m − �〉〈n − �|B, (B2)

where B�(n, λ) := (n
�

)
λ�(1 − λ)n−�. We observe that τAB is a linear combination of |m〉〈n| ⊗ | j1〉〈 j2|, where m, n, j1, j2 ∈ N,

j1 � n1, j2 � n, and m − n = j1 − j2. This insight leads to the following educated guess about the structure of a potential
two-extension:

ρ̃AB1B2 =
∞∑

m,n=0

m∑
�1=0

n∑
�2=0

min(m−�1,n−�2 )∑
k=0

c(m, n, �1, �2, k)|m〉〈n|A ⊗ |m − �1〉〈n − �2|B1 ⊗ |�1 + k〉〈�2 + k|B2 , (B3)

where {c(m, n, �1, �2, k)}m,n,�1,�2,k are some suitable coeffi-
cients. The soundness of this guess is confirmed by the fact
that both TrB2 [ρ̃AB1B2 ] and TrB1 [ρ̃AB1B2 ] are linear combina-
tions of |m〉〈n| ⊗ | j1〉〈 j2| with m, n, j1, j2 ∈ N, j1 � m, j2 �
n, and m − n = j1 − j2, similar to the generalized Choi state
τAB in (B2).

At this point, one could try to define the coefficients
{c(m, n, �1, �2, k)}m,n,�1,�2,k so as to satisfy the required con-
ditions of the extendibility. However, the resulting tripartite
operator may not qualify as a quantum state. In order to
ensure that we obtain a quantum state, our approach consists
in producing the operator ρ̃AB1B2 via a physical process that
consists in applying a sequence of quantum channels to a
quantum state.

We begin by constructing a quantum state that has the
same operator structure as the operator ρ̃AB1B2 in (B3). This

means that at this initial stage, we only aim to build a tripartite
state consisting of a linear combination of operators |m〉〈n|A ⊗
|m − �1〉〈n − �2|B1 ⊗ |�1 + k〉〈�2 + k|B2 with the summation
limits identical to those in (B3). This ensures that the coef-
ficients equal to zero coincide in the two operators.

We now illustrate on each step of this construction. For
a fixed n ∈ N, consider the state |n〉A ⊗ |n〉B1 . We introduce
two auxiliary single-mode systems B2 and C initially in vac-
uum states: |n〉A ⊗ |n〉B1 ⊗ |0〉B2 ⊗ |0〉C . We next send the
systems B2 and B1 through the ports of a beam splitter, re-
sulting in a superposition of |n〉A ⊗ |n − �〉B1 ⊗ |�〉B2 ⊗ |0〉C

for � = 0, 1, . . . , n, as implied by Lemma (10). We repeat
this for systems B1 and C, thus obtaining a superposition of
|n〉A ⊗ |n − � − k〉B1 ⊗ |�〉B2 ⊗ |k〉C , with k = 0, 1, . . . , n − �

and � = 0, 1, . . . , n. Consider now the isometry W CB1B2 de-
fined by

W CB1B2 |n〉B1 ⊗ |m〉B2 ⊗ |k〉C = |n + k〉B1 ⊗ |m + k〉B2 ⊗ |k〉C, ∀ n, m, k ∈ N, (B4)

dubbed controlled-add-add isometry (mode C is the control mode). By applying this isometry to the superposition we created
by using beam splitters, we obtain a superposition of |n〉A ⊗ |n − �〉B1 ⊗ |� + k〉B2 ⊗ |k〉C with k = 0, 1, . . . , n − � and � =
0, 1, . . . , n. Finally, by tracing out system C, we obtain the same operator structure of the operator ρ̃AB1B2 in (B3). Having
focused on the operator structure, we have not considered the transmissivities of the two beam splitters so far. We will see that
these transmissivities can be chosen carefully such that the diagonal elements of the operator at hand becomes equal to those of
the Choi state.

We now apply the outlined construction to the two-mode squeezed vacuum state with two vacuum states appended to it, i.e.,
|ψ (r)〉AB1 ⊗ |0〉B2 ⊗ |0〉C . For reasons that will become clear in a moment, we choose the two beam splitter transmissivities to
be λ (for the beam splitter acting on B2B1) and 1−λ

λ
(for the one acting on CB1). By doing so we obtain the state

|φ〉AB1B2C := W C,B1B2UCB1
1−λ
λ

U B2B1
λ |ψ (r)〉AB1 ⊗ |0〉B2 ⊗ |0〉C

= 1

cosh(r)

∞∑
n=0

n∑
�=0

n−�∑
k=0

tanhn(r)

√
B�(n, 1 − λ)Bk

(
n − �,

2λ − 1

λ

)
|n〉A ⊗ |n − �〉B1 ⊗ |� + k〉B2 ⊗ |k〉C,

(B5)

where we used (A7) and Lemma 10. Note that the transmissivities of the beam splitters UCB1
1−λ
λ

and U B2B1
λ are chosen such that the

diagonal elements of TrB2C[|φ〉〈φ|AB1B2C] and TrB1C[|φ〉〈φ|AB1B2C] both coincide with those of the Choi state τAB in (B2). To verify
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this, let us calculate the state TrC[|φ〉〈φ|AB1B2C]:

TrC
[|φ〉〈φ|AB1B2C

] = 1

cosh2(r)

∞∑
m,n=0

m∑
�1=0

n∑
�2=0

min(m−�1,n−�2 )∑
k=0

(tanh(r))m+n
√
B�1 (m, 1 − λ)B�2 (n, 1 − λ)

×
⎡
⎣
√
Bk

(
m − �1,

2λ − 1

λ

)
Bk

(
n − �2,

2λ − 1

λ

)⎤⎦|m〉〈n|A ⊗ |m − �1〉〈n − �2|B1 ⊗ |�1 + k〉〈�2 + k|B2 .

Notably, the structure of the state TrC[|φ〉〈φ|AB1B2C] mirrors that of (B3) with specific coefficients c(m, n, �1, �2, k). Moreover, it
holds that

TrB2C
[|φ〉〈φ|AB1B2C

] = 1

cosh2(r)

∞∑
m,n=0

min(m,n)∑
�=0

(tanh(r))m+n
√
B�(m, 1 − λ)B�(n, 1 − λ)

⎡
⎣min(m−�,n−�)∑

k=0

√
Bk

(
m − �,

2λ − 1

λ

)
Bk

(
n − �,

2λ − 1

λ

)⎤⎦|m〉〈n|A ⊗ |m − �〉〈n − �|B1 (B6)

and that

TrB1C
[|φ〉〈φ|AB1B2C

] = TrB2C
[|φ〉〈φ|AB1B2C

]
. (B7)

In order to prove (B7), observe that

TrB1C
[|φ〉〈φ|AB1B2C

] = 1

cosh2(r)

∞∑
m,n=0

m∑
�1=max(m−n,0)

m−�1∑
k=0

[tanh(r)]m+n
√
B�1 (m, 1 − λ)Bn−m+�1 (n, 1 − λ)

Bk

(
m − �1,

2λ − 1

λ

)
|m〉〈n|A ⊗ |�1 + k〉〈n − m + �1 + k|B2

= 1

cosh2(r)

∞∑
m,n=0

m∑
�1=max(m−n,0)

m−�1∑
�=0

[tanh(r)]m+n
√
B�1 (m, 1 − λ)Bn−m+�1 (n, 1 − λ)

Bm−�1−�

(
m − �1,

2λ − 1

λ

)
|m〉〈n|A ⊗ |m − �〉〈n − �|B2

= 1

cosh2(r)

∞∑
m,n=0

min(m,n)∑
�=0

[tanh(r)]m+n
m−�∑

�1=max(m−n,0)

√
B�1 (m, 1 − λ)Bn−m+�1 (n, 1 − λ)

Bm−�1−�

(
m − �1,

2λ − 1

λ

)
|m〉〈n|A ⊗ |m − �〉〈n − �|

= 1

cosh2(r)

∞∑
m,n=0

min(m,n)∑
�=0

[tanh(r)]m+n
min(n−�,m−�)∑

k=0

√
Bm−�−k (m, 1 − λ)Bn−�−k (n, 1 − λ)

Bk

(
k + �,

2λ − 1

λ

)
|m〉〈n|A ⊗ |m − �〉〈n − �|

(i)= 1

cosh2(r)

∞∑
m,n=0

min(m,n)∑
�=0

[tanh(r)]m+n
√
B�(m, 1 − λ)B�(n, 1 − λ)

⎡
⎣min(m−�,n−�)∑

k=0

√
Bk

(
m − �,

2λ − 1

λ

)
Bk

(
n − �,

2λ − 1

λ

)⎤⎦|m〉〈n|A ⊗ |m − �〉〈n − �|B2

(ii)= TrB2C[|φ〉〈φ|AB1B2C]. (B8)
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Here in (i) we used the identity

√
Bm−�−k (m, 1 − λ)Bn−�−k (n, 1 − λ)Bk

(
k + �,

2λ − 1

λ

)
=
√
B�(m, 1 − λ)B�(n, 1 − λ)

×
√
Bk

(
m − �,

2λ − 1

λ

)
Bk

(
n − �,

2λ − 1

λ

)
, (B9)

which can be easily proved by substituting the definition B�(n, λ) := (n
�

)
λ�(1 − λ)n−� and by leveraging the binomial identity(

n

l + k

)(
l + k

k

)
=
(

n

l

)(
n − l

k

)
. (B10)

Moreover, in (ii) we exploited (B6).
Note that the off-diagonal terms of the state in (B6) are not equal to those of the Choi state τAB in (B2). Specifically, the points

of difference with the Choi state τAB are the presence of the term inside the square brackets and the absence of the dephasing
exponent. To address these additional terms, let us use the toolbox of Hadamard maps. Let H be the Hadamard map, introduced
in Sec. A 3, associated with the infinite matrix A := (amn)m,n∈N defined as follows:

amn := e− γ

2 (n−m)2

∑min(n,m)
j=0

√
B j
(
n, 2λ−1

λ

)
B j
(
m, 2λ−1

λ

) , ∀ n, m ∈ N. (B11)

By construction, we have that

idA ⊗ HB1

(
TrB2C

[|φ〉〈φ|AB1B2C
]) = 1

cosh2(r)

∞∑
m,n=0

min(m,n)∑
�=0

[tanh(r)]m+n
√
B�(m, 1 − λ)B�(n, 1 − λ)

⎡
⎣min(m−�,n−�)∑

k=0

√
Bk

(
m − �,

2λ − 1

λ

)
Bk

(
n − �,

2λ − 1

λ

)⎤⎦am−�, n−� |m〉〈n|A

⊗ |m − �〉〈n − �|B1

= 1

cosh2(r)

∞∑
m,n=0

min(m,n)∑
�=0

[tanh(r)]m+ne− γ

2 (n−m)2 √B�(m, 1 − λ)B�(n, 1 − λ)|m〉〈n|A

⊗ |m − �〉〈n − �|B1

= τAB1 . (B12)

This means that the operator

ρAB1B2 := idA ⊗ HB1 ⊗ HB2 (TrC[|φ〉〈φ|AB1B2C]) (B13)

satisfies the extendibility conditions in (B1). All that remains to prove is that ρAB1B2 is in fact a quantum state. We will do this by
showing that the superoperator H is a quantum channel. In Sec. A 3 we establish that a Hadamard map is a quantum channel if
its defining infinite matrix is Hermitian, has diagonal elements equal to one, and is diagonally dominant. The first two properties
are trivially satisfied by the infinite matrix A defined in (B11). We only need to demonstrate that for the parameter region λ > 1

2

and θ(e−γ /2,

√
λ

1−λ
) � 3

2 , the infinite matrix A is diagonally dominant. We recall that, by definition, A is diagonally dominant if

it holds that
∑∞

m=0
m �=n

|amn| � 1, ∀ n ∈ N. Note that for any n, m ∈ N we have that

|anm| = e− γ

2 (n−m)2

∑min(n,m)
j=0

√(n
j

)(m
j

)(
1−λ
λ

)n+m−2 j( 2λ−1
λ

)2 j
� e− γ

2 (n−m)2

∑min(n,m)
j=0

√(min(n,m)
j

)2( 1−λ
λ

)n+m−2 j( 2λ−1
λ

)2 j

= e− γ

2 (n−m)2

(
λ

1 − λ

) |n−m|
2

. (B14)
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Consequently, if λ and γ are such that λ > 1
2 and θ(e−γ /2,

√
λ

1−λ
) � 3

2 , for any n ∈ N we have that

∞∑
m=0
m �=n

|amn| �
∞∑

m=0
m �=n

e− γ

2 (m−n)2

(
λ

1 − λ

) |m−n|
2

=
∞∑

k=1

e− γ

2 k2

(
λ

1 − λ

) k
2

+
n∑

k=1

e− γ

2 k2

(
λ

1 − λ

) k
2

� 2
∞∑

k=1

e− γ

2 k2

(
λ

1 − λ

) k
2

= 2 θ

(
e−γ /2,

√
λ

1 − λ

)
− 2 � 1. (B15)

Therefore, the infinite matrix A is diagonally dominant if λ > 1
2 and θ(e−γ /2,

√
λ

1−λ
) � 3

2 . This establishes that HB1 and HB2 are

valid quantum channels in this parameter range, implying that ρAB1B2 is a valid two-extension of the Choi state of Nλ,γ , and in
turn entailing that Nλ,γ is antidegradable. Finally, note that if λ > 1

2 the condition

θ

(
e−γ /2,

√
λ

1 − λ

)
� 3

2
(B16)

is implied by λ � 1
1+9e−γ . Indeed,

θ

(
e−γ /2,

√
λ

1 − λ

)
:=

n∑
k=0

e− γ

2 k2

(√
λ

1 − λ

)k

�
∞∑

k=0

(
e−γ λ

1 − λ

)k/2

= 1

1 −
√

e−γ λ
1−λ

� 3

2
,

where the last inequality follows from e−γ λ
1−λ

� 1
9 , which is

implied by λ � 1
1+9e−γ . �

a. Expanding the antidegradability region numerically

Note that Theorem 30 does not identify the entire an-
tidegradability region of the bosonic loss-dephasing channel
Nλ,γ . In fact, from the above argument it becomes clear that a
way to obtain a better inner approximation of this region is to
check for which values of the parameters the infinite matrix A
defined by (B11) is positive semidefinite. This is established
in the following theorem.

Theorem 31. Let �2(N) be the space of square-summable
complex-valued sequences (defined by (E1) below). For any
λ ∈ ( 1

2 , 1) and γ > 0, let A = (amn)m,n∈N be the infinite ma-
trix whose components are defined by (B11). If A � 0 is
positive semidefinite as an operator on �2(N), then the bosonic
loss-dephasing channel Nλ,γ is antidegradable.

Proof. In the proof of Theorem 30 we have seen that
the bosonic loss-dephasing channel is antidegradable if the
Hadamard map associated with the infinite matrix A [given
in (B11)] is a quantum channel. Since the diagonal elements
of A are equal to one, from Lemma 50 we deduce that the
Hadamard map associated to A is a quantum channel if and
only if A is positive semidefinite. This concludes the proof. �

In Theorem 30, we showed that the above-
mentioned infinite matrix A is positive semidefinite if
θ(e−γ /2,

√
λ/(1 − λ)) � 3

2 , where θ (x, y) := ∑∞
n=0 xn2

yn.
This identifies just a portion of the full region of parameters
of λ and γ where the infinite matrix A is positive semidefinite.

To analyze the positive semidefiniteness of the infinite
matrix A further, let A(d ) denote its d × d top left corner.
Note that it is well known that an infinite matrix is positive
semidefinite if and only if its d × d top left corner is positive
semidefinite for all d ∈ N. For modest values of d , we can
numerically determine the parameter region where A(d ) is

positive semidefinite. To achieve this, we plot in Fig. 3 the
quantity

ηd (γ ) := max
(
λ ∈ (

1
2 , 1

]
: A(d ) is positive semidefinite

)
,

(B17)

FIG. 3. Numerical estimation of the antidegradability of the loss-
dephasing channel. The horizontal axis shows the quantity e−γ ,
varying from 0 to 1 as dephasing parameter γ decreases from ∞ to 0,
while the vertical axis corresponds to the transmissivity λ. Theorem
30 establishes that below the region defined by the curve corre-
sponding to the condition θ [e−γ /2,

√
λ/(1 − λ)] = 3/2, the bosonic

loss-dephasing channel is antidegradable. Moreover, Theorem 38
establishes that above the region defined by the curve corresponding
to λ = 1

1+e−γ , the bosonic loss-dephasing channel is not antidegrad-
able. The other curves depict the quantity ηd (γ ), which is defined
in (B17) as the maximum value of the transmissivity where A(d ) is
positive semidefinite, for various values of d . Our numerical analysis
seems to indicate that in the region below the curve corresponding
to λ � η30(γ ), the bosonic loss-dephasing channel is antidegradable.
Here we employ d = 30, as increasing d beyond d � 20 yields no
discernible change in the plot.
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with respect to e−γ for various values of d . This quantity is
relevant because A(d ) is positive semidefinite if and only if
λ � ηd (γ ). Moreover, the quantity ηd (γ ) monotonically de-
creases in d and converges to some η̄(γ ) as d → ∞. Notably,
the condition λ � η̄(γ ) is necessary and sufficient for positive
semidefiniteness of the infinite matrix A, and also a sufficient
condition for the antidegradability of the the bosonic loss-
dephasing channel Nλ,γ . Our numerical investigation seems
to suggest that when d is approximately 20, the quantity ηd (γ )
has already reached its limiting value η̄(γ ), which can be
approximated, for instance, by considering, the curve η30(γ ).

b. Antidegrading maps

Theorem 30 discovers parameter regions of transmissiv-
ity λ and dephasing γ in which the bosonic loss-dephasing

channel Nλ,γ is antidegradable. Although the proof of this
theorem ensures the existence of antidegrading maps for Nλ,γ

within these parameter regions, it does not offer explicit con-
structions of such antidegrading maps. In the forthcoming
Theorem 32, we present such explicit constructions. Note that,
due to Lemma 26, the output operators of the complemen-
tary channel N c

λ,γ reside within the space T (HEout ), where
HEout is the following subspace of the two-mode Hilbert space
HE1 ⊗ HE2 = L2(R) ⊗ L2(R):

HEout := Span{|�〉E1 ⊗ |√γ n〉E2 : � � n with �, n ∈ N},
(B18)

where |n〉 represents the nth Fock state, and |√γ n〉 denotes
the coherent state with a parameter of

√
γ n. These states

correspond to the environmental modes of the pure-loss and
dephasing channels, respectively (we shall maintain this nota-
tion throughout).

Theorem 32. Anti-degrading maps corresponding to each parameter region in Theorem 30 can be defined as follows. In the
region (i), i.e., λ ∈ [0, 1

2 ] and γ � 0, an antidegrading map is given by

Aλ,γ = (
E λ

1−λ
◦ RE1

)⊗ TrE2 , (B19)

where RE1 (·) := (−1)ê†
1 ê1 · (−1)ê†

1 ê1 , with ê1 as the annihilation operator of the output mode of the pure-loss channel E1.

In the region (ii), i.e., λ ∈ ( 1
2 , 1) and γ such that θ(e−γ /2,

√
λ

1−λ
) � 3

2 , an antidegrading map Aλ,γ : T (HEout ) → T (HB), with

HEout given by (B18), is defined as follows. For all �1, �2, n1, n2 ∈ N with �1 � n1 and �2 � n2, it holds that

Aλ,γ

(|�1〉〈�2| ⊗ |√γ n1〉〈√γ n2|
)

:=
min(n1−�1,n2−�2 )∑

k=0

c(�1,�2,n1,n2 )
k |k + �1〉〈k + �2|, (B20)

where for all k ∈ {0, 1, . . . , min(n1 − �1, n2 − �2)} the coefficients c(�1,�2,n1,n2 )
k are defined as

c(�1,�2,n1,n2 )
k := (−1)�1−�2

√
Bk

(
n1 − �1,

2λ − 1

λ

)
Bk

(
n2 − �2,

2λ − 1

λ

)
an1−�1n2−�2 ak+�1k+�2 , (B21)

where Bl(n, λ) := (n
l

)
λl (1 − λ)n−l , and amn is defined in (B11).

Proof of Theorem 32. Let us suppose that λ and γ fall within the parameter region (i). A complementary channel of the
pure-loss channel Eλ is given by Ec

λ = E1−λ ◦ R. Consequently, Lemma 16 implies that (E λ
1−λ

◦ R) ◦ Ec
λ = Eλ, i.e., the channel

E λ
1−λ

◦ R is an antidegrading map of the pure-loss channel. The general construction detailed in the proof of Lemma 55 for the
antidegrading map of the composition between an antidegradable channel and another channel demonstrates that the map given
in (B19) is an antidegrading map of Nλ,γ .

Let us now suppose that λ and γ fall within the parameter region (ii). To come up with the antidegrading map defined in (B20),
we drew intuition from the proof of Lemma 54, which demonstrates the equivalence between two-extendibility of the Choi state
and the existence of an antidegrading map, while also considering the two-extension of the Choi state of Nλ,γ explicitly found
in (B13). In order to show that the map Aλ,γ in (B20) is an antidegrading map of Nλ,γ , we need to show that it is a quantum
channel satisfying Aλ,γ ◦ N c

λ,γ = Nλ,γ . We begin by proving that Aλ,γ is trace preserving. By linearity, it suffices to show that
for any �1, �2, n1, n2 ∈ N with �1 � n1 and �2 � n2 it holds that

Tr
[
Aλ,γ

(|�1〉〈�2|E1 ⊗ |√γ n1〉〈√γ n2|E2

)] = Tr
[|�1〉〈�2|E1 ⊗ |√γ n1〉〈√γ n2|E2

]
. (B22)

Indeed, we obtain

Tr
[
Aλ,γ

(|�1〉〈�2|E1 ⊗ |√γ m〉〈√γ n|E2

)] = δ�1,�2

min(m−�1,n−�1 )∑
k=0

c(�1,�1,m,n)
k

= δ�1,�2

min(m−�1,n−�1 )∑
k=0

√
Bk

(
m − �1,

2λ − 1

λ

)
Bk

(
n − �1,

2λ − 1

λ

)
am−�1,n−�1 ak+�1,k+�1
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= δ�1,�2 e− γ

2 (m−n)2

= Tr
[|�1〉〈�2|E1 ⊗ |√γ n1〉〈√γ n2|E2

]
,

where δ�1,�2 denotes the Kronecker delta and where we have exploited the formula for the overlap between coherent states
provided in (A6). Now, let us show that Aλ,γ is completely positive. To achieve this, we need to find a pure state � on Hanc ⊗
HEout , where Hanc in an auxiliary reference, such that Tranc[|�〉〈�|] > 0 and (idanc ⊗ Aλ,γ )(|�〉〈�|) � 0 [59,66]. Let Hanc :=
HA ⊗ HB1 = L2(R) ⊗ L2(R) and let us construct the pure state |�〉AB1E1E2 ∈ Hanc ⊗ HEout as follows:

|�〉AB1E1E2 := U B1E1
λ V B1E2

γ |ψ (r)〉AB1 |0〉E1 |0〉E2

= 1

cosh(r)

∞∑
n=0

n∑
�=0

(−1)� tanhn(r)
√
Bl (n, 1 − λ)|n〉A|n − �〉B1 |�〉E1 |

√
γ n〉E2 , (B23)

where U B1E1
λ is the beam splitter unitary, V B1E2

γ is the conditional displacement unitary, and |ψ (r)〉AB1 is the two-mode squeezed
vacuum state with squeezing r > 0. Let us now show that TrAB1 [|�〉〈�|AB1E1E2 ] is positive definite on HEout . Let |φ〉E1E2 ∈ HEout .
Since there exists �̄, n̄ ∈ N with l̄ � n̄ such that 〈φ|E1E2 |�̄〉E1 ⊗ |√γ n̄〉E2 �= 0, (B23) implies that

〈φ|E1E2 TrAB1 [|�〉〈�|AB1E1E2 ]|φ〉E1E2 = 1

cosh2(r)

∞∑
n=0

n∑
l=0

tanh2n(r)B�(n, 1 − λ)
∣∣〈φ|E1E2 |�〉E1 ⊗ |√γ n〉E2

∣∣2

� 1

cosh2(r)
tanh2n̄(r)Bl̄ (n̄, 1 − λ)

∣∣〈φ|E1E2 |�̄〉E1 ⊗ |√γ n̄〉E2

∣∣2
> 0.

We next show that idAB1 ⊗ Aλ,γ (|�〉〈�|) is positive semidefinite. Let B2 denote the output system of Aλ,γ . Note that

idAB1 ⊗ Aλ,γ (|�〉〈�|AB1E1E2 )
(i)= 1

cosh2(r)

∞∑
m,n=0

m∑
�1=0

n∑
�2=0

(−1)�1+�2 [tanh(r)]m+n
√
B�1 (m, 1 − λ)B�2 (n, 1 − λ)

|m〉〈n|A ⊗ |m − �1〉〈n − �2|B1 ⊗ Aλ,γ

(|�1〉〈�2|E1 ⊗ |√γ m〉〈√γ n|E2

)
(ii)= 1

cosh2(r)

∞∑
m,n=0

m∑
�1=0

n∑
�2=0

min(m−�1,n−�2 )∑
k=0

[tanh(r)]m+n

×
√
B�1 (m, 1 − λ)B�2 (n, 1 − λ)Bk

(
m − �1,

2λ − 1

λ

)
Bk

(
n − �2,

2λ − 1

λ

)

am−�1,n−�2 ak+�1,k+�2 |n1〉〈n|A ⊗ |m − �1〉〈n − �2|B1 ⊗ |k + �1〉〈k + �2|B2

(iii)= ρAB1B2 . (B24)

Here in (i) we used the definition of |�〉AB1E1E2 given in (B23); in (ii) we utilized the definition of the map Aλ,γ from (B20);
and in (iii) we recognized the tripartite operator ρAB1B2 defined in (B13), which is a quantum state provided that λ and γ satisfy

θ(e−γ /2,

√
λ

1−λ
) � 3

2 . Therefore, in such a parameter region, idAB1 ⊗ Aλ,γ (|�〉〈�|AB1E1E2 ) is positive semidefinite, and thus Aλ,γ

is a quantum channel. Let us now verify that Aλ,γ ◦ N c
λ,γ = Nλ,γ . To show this, note that

idA ⊗ (
Aλ,γ ◦ N c

λ,γ

)
(|ψ (r)〉〈ψ (r)|AB1 )

(iv)= TrB1

[
idAB1 ⊗ Aλ,γ (|�〉〈�|AB1E1E2 )

] (v)= TrB1 [ρAB1B2 ]

(vi)= idA ⊗ Nλ,γ [|ψ (r)〉〈ψ (r)|AB2 ], (B25)

Here in (iv) we employed (B23); in (v) we exploited (B24); and in (vi) we used that ρAB1B2 is a two-extension of idA ⊗
Nλ,γ (|ψ (r)〉〈ψ (r)|), as established in the proof of Theorem 30. Finally, since the two-mode squeezed vacuum state |ψ (r)〉AB

satisfies TrB[|ψ (r)〉〈ψ (r)|AB] > 0, we conclude Aλ,γ ◦ N c
λ,γ = Nλ,γ . �

2. Analysis of the bosonic loss-dephasing channel via its
finite-dimensional restrictions

Definition 33. Let d ∈ N and let Hd :=
Span({|n〉}n=0,...,d−1) be the subspace spanned by the
first d Fock states. The qudit restriction of the bosonic

loss-dephasing channel N (d )
λ,γ is a quantum channel defined by

N (d )
λ,γ (�) := Nλ,γ (�), ∀� ∈ T (Hd ) (B26)

Lemma 34. Let HA,HB := L2(R). Let N : T (HA) →
T (HB) be a quantum channel and let N (d ) be its qudit
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restriction, defined by

N (d )(�) := N (�), ∀� ∈ T (Hd ). (B27)

If N is (anti-)degradable, then its qudit restriction N (d ) is
(anti-)degradable.

Proof. Let N (·) = TrE [VA→BE (·)V †
A→BE ] be a Stinespring

representation of N , and let N c(·) = TrB[VA→BE (·)V †
A→BE ] be

the associated complementary channel. Note that the isometry
VA→BE provides a Stinespring representation also for the qudit
restriction N (d ). Hence, the qudit restriction of the comple-
mentary channel N c is a complementary channel of the qudit
restriction N (d ), i.e.,

(N (d ) )c(�) = N c(�), ∀� ∈ T (Hd ). (B28)

Moreover, note that any degrading or antidegrading map of
N is effective for all input states, including those restricted to
Hd . Consequently, an (anti-)degrading map of N is also an
(anti-)degrading map of its qudit restriction N (d ). �

Corollary 35. If the qudit restriction N (d )
λ,γ is not (anti-)

degradable, then the bosonic loss-dephasing channel Nλ,γ is
also not (anti-)degradable.

The following lemma shows that qudit restriction N (d )
λ,γ

is a qudit-to-qudit channel, mapping the space spanned by
{|n〉}n=0,...,d−1 into itself.

Lemma 36. If the input state to the bosonic loss-dephasing
channel is confined into the finite-dimensional subspace
spanned by {|n〉}n=0,...,d−1, the resulting output state will sim-
ilarly be confined to this subspace.

Proof. Examining Lemma 25 reveals that the operator
|m〉〈n|, when acted on by the bosonic loss-dephasing chan-
nel, is transformed into linear combinations of operators
{|�〉〈k|}��m,k�n. This means that if the input state to the bosonic
loss-dephasing channel is restricted to the d-dimensional sub-
space {|n〉}n=0,...,d−1, the output of the channel will reside
within the same subspace. �

The qubit restriction N (2)
λ,γ of the bosonic loss-dephasing

channel coincides with the composition between the am-
plitude damping channel and the qubit dephasing channel
[33,34], which we dub amplitude-phase damping channel.
Theorems 37 and 38 utilize the amplitude-phase damping
channel N (2)

λ,γ to find that the bosonic loss-dephasing channel
Nλ,γ is never degradable and, additionally, it is not antidegrad-
able for λ > 1

1+e−γ , respectively.

a. The bosonic loss-dephasing channel is never degradable

The bosonic loss-dephasing channel Nλ,γ is never degrad-
able, except when it coincides with either the bosonic
dephasing channel (γ > 0 and λ = 1) or the degradable pure-
loss channel (γ = 0 and λ � 1

2 ), thereby complicating the
derivation of its quantum capacity [32]. This result has been
previously demonstrated in [32] through a pages-long proof;
however, here we provide a significantly simpler proof of this
result.

Theorem 37. Let λ ∈ [0, 1] and γ � 0. The bosonic loss-
dephasing channel Nλ,γ is degradable if and only if one of the
following conditions is satisfied:

γ = 0 and λ ∈ [
1
2 , 1

]
γ � 0 and λ = 1

Proof. Due to Corollary 35, a necessary condition for Nλ,γ

to be degradable is the degradability of the amplitude-phase
damping channel N (2)

λ,γ . We now apply [[51], Theorem 4],
which establishes a necessary condition on the degradability
of any qubit channel. Specifically, the rank of the Choi state of
a degradable qubit channel is necessarily less or equal to 2. By
using the notation used in (A3), the matrix associated with the
Choi state of the amplitude-phase damping channel C(N (2)

λ,γ )
in the computational basis {|00〉, |01〉, |10〉, |11〉} is given by

1

2

⎛
⎜⎜⎜⎜⎝

1 0 0
√

e−γ λ

0 0 0 0

0 0 1 − λ 0√
e−γ λ 0 0 λ

⎞
⎟⎟⎟⎟⎠. (B29)

One can easily see that its rank is equal to 3 for γ > 0 and λ ∈
(0, 1). In addition, for λ = 1 the bosonic loss-dephasing chan-
nel coincides with the bosonic dephasing channel, N1,γ =
Dγ , which is degradable for any value of γ � 0 [40]. Finally,
for γ = 0 the bosonic loss-dephasing channel coincides with
the pure-loss channel, Nλ,0 = Eλ, which is degradable if and
only if λ ∈ [ 1

2 , 1] [38,39]. �

b. Necessary condition on antidegradability via qubit restriction

The next theorem establishes the parameter range where
the bosonic loss-dephasing channel is not antidegradable. We
provide three different proofs for this theorem.

Theorem 38. Let γ � 0. If λ > 1
1+e−γ , then the bosonic

loss-dephasing channel Nλ,γ is not antidegradable.
Proof 1. Assume that Nλ,γ is antidegradable; then substi-

tuting m = 0 and n = 1 in (A22) yields

Aλ,γ

(
E1−λ(|0〉〈1|) ⊗ |0〉〈√γ |) = −e− 1

2 γ Eλ(|0〉〈1|). (B30)

By exploiting Eλ(|0〉〈1|) = √
λ|0〉〈1|, we have

Aλ,γ

(|0〉〈1| ⊗ |0〉〈√γ |) = −
√

e−γ λ

1 − λ
|0〉〈1|.

Using Lemma 52 in the Appendixes, we find
√

e−γ λ
1−λ

� 1, or

λ � 1
1+e−γ . �

Proof 2. Assume that Nλ,γ is antidegradable. As a conse-
quence of (A22) and of the data-processing inequality for the
fidelity [57], we find

F ( Eλ(|0〉〈0|), Eλ(|1〉〈1|))
� F (E1−λ(|0〉〈0|) ⊗ |0〉〈0|, E1−λ(|1〉〈1|) ⊗ |√γ 〉〈√γ |).

(B31)

Furthermore, we obtain
√

1 − λ = F
(|0〉〈0|, λ|1〉〈1| + (1 − λ)|0〉〈0|)

(i)= F
(
Eλ(|0〉〈0|), Eλ(|1〉〈1|))

(ii)
� F

(|0〉〈0|, |√γ 〉〈√γ |)F
(
E1−λ(|0〉〈0|), E1−λ(|1〉〈1|))

(iii)
� F

(|0〉〈0|, |√γ 〉〈√γ |)F
(|0〉〈0|, λ|0〉〈0|

+ (1 − λ)|1〉〈1|) (iv)=
√

e−γ λ. (B32)
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FIG. 4. Each curve indicates necessary and sufficient conditions
where the qudit restriction N (d )

λ,γ of the bosonic loss-dephasing chan-
nel Nλ,γ is antidegradable. In the region above the curve λ5(γ ), the
bosonic loss-dephasing channel is never antidegradable.

Here (i) follows from Lemma 13, (ii) follows from (B31) and
from the fact that the fidelity is multiplicative under tensor
product [57], (iii) uses Lemma 13 again, and in (iv) we ex-
ploited that |〈0|√γ 〉| = √

e−γ . This yields
√

1 − λ �
√

e−γ λ,
or λ � 1

1+e−γ . �
Proof 3. By exploiting Lemma 7 and the Choi matrix of

the qubit channel N (2)
λ,γ reported in (B29), one can easily obtain

that N (2)
λ,γ is antidegradable if and only if λ � 1

1+e−γ . Conse-
quently, thanks to Corollary 35, the bosonic loss-dephasing
channel Nλ,γ is not antidegradable for λ > 1

1+e−γ . �

c. Necessary condition on antidegradability via qudit restrictions

Let us introduce the following quantity for any d ∈ N and
γ � 0:

λd (γ ) := max
(
λ ∈ [0, 1] : N (d )

λ,γ is antidegradable
)
. (B33)

This quantity is relevant since it allows us to find parame-
ter region where the bosonic loss-dephasing channel is not
antidegradable. Specifically, for λ > λd (γ ) the bosonic loss-
dephasing channel Nλ,γ is not antidegradable, as established
by Corollary 35. Due to the Proof 3 of Theorem 38, it fol-
lows that for d = 2 we have that λ2(γ ) = 1

1+e−γ , thereby
establishing that Nλ,γ is not antidegradable for λ > 1

1+e−γ .
Through an examination of larger values of d , we aim to
identify an extended parameter region where the channel is
not antidegradable (see Fig. 4). We begin by proving some
useful properties of the quantity λd (γ ).

Lemma 39. For any γ � 0 and d ∈ N, d � 2, the follow-
ing facts hold:

Fact 1: The qudit restriction of the bosonic loss-dephasing
channel N (d )

λ,γ is antidegradable if and only if λ � λd (γ )

Fact 2: The quantity λd (γ ) is monotonically increasing
in γ

Fact 3: For d = 2, it precisely holds that λ2(γ ) = 1
1+e−γ

Fact 4: The quantity λd (γ ) is monotonically nonincreasing
in d

Fact 5: It holds that 1
2 � λd (γ ) � 1

1+e−γ

Fact 6: When d = 3 and e−γ �
√

2 − 1 (or γ � 0.881), it
exactly holds that λ3(γ ) = 1

1+e−γ

Proof. Fact 1. It suffices to show that for any γ � 0 and
λ, λ′ ∈ [0, 1] with λ′ < λ, if N (d )

λ,γ is antidegradable, then so is

N (d )
λ′,γ . To show this, we exploit the composition rule

Eλ1 ◦ Nλ2,γ = Nλ1λ2,γ , ∀ λ1, λ2 ∈ [0, 1], (B34)

as established by Lemma 28, implying that the channel N (d )
λ′,γ

can be written as the composition between N (d )
λ,γ and another

channel. Consequently, Lemma 55 concludes the proof.
Fact 2. Analogously to Fact 1, it suffices to show that for

any λ ∈ [0, 1] and for any γ ′ � γ � 0, if N (d )
λ,γ is antidegrad-

able, then so is N (d )
λ,γ ′ . This follows from the composition rule

Dγ1 ◦ Nλ,γ2 = Nλ,γ1+γ2 , ∀ γ1, γ2 � 0, (B35)

as proved in Lemma 28. Furthermore, Lemma 55 concludes
the proof.

Fact 3. This has already been proved in the Proof 3 of
Theorem 38.

Fact 4. This follows from the observation that for all d ′ �
d , if N (d ′ )

λ,γ is antidegradable, then so is N (d )
λ,γ .

Fact 5. The upper bound λd (γ ) � 1
1+e−γ follows from

Fact 3 and Fact 4. Moreover, since the pure-loss channel Eλ

is antidegradable if and only if λ � 1
2 , Fact 4 implies that

λd (0) � 1
2 [more specifically, one can also show that λd (0) =

1
2 ]. Consequently, Fact 2 concludes the proof.

Fact 6. This proof relies on the equivalence between an-
tidegradability of a channel and two-extendibility of its Choi
state, as established in Lemma 54. Let λ and γ be such
that λ = 1

1+e−γ and e−γ �
√

2 − 1, implying that λ � 1√
2
. By

using Lemma 25, we obtain the Choi state of N (3)
λ,γ as follows:

idA ⊗ Nλ,γ (|�3〉〈�3|) = 1

3

2∑
m=0

2∑
n=0

min(m,n)∑
�=0

e− γ

2 (m−n)2

√(
m

�

)(
n

�

)
λ

m+n
2 −�(1 − λ)l |m〉〈n|A ⊗ |m − �〉〈n − �|B,

where �3 is the maximally entangled state of Schmidt rank 3. We define a two-extension ρ̃AB1B2 of the Choi state by the following
conditions. First, ρ̃AB1B2 satisfies the following B1 ↔ B2 symmetry for all i1, i2, i3, j1, j2, j3 ∈ {0, 1, 2}:

〈 j1|A〈 j2|B1〈 j3|B2 ρ̃AB1B2 |i1〉A|i2〉B1 |i3〉B2 = 〈 j1|A〈 j3|B1〈 j2|B2 ρ̃AB1B2 |i1〉A|i2〉B1 |i3〉B2 ,

〈 j1|A〈 j2|B1〈 j3|B2 ρ̃AB1B2 |i1〉A|i2〉B1 |i3〉B2 = 〈 j1|A〈 j2|B1〈 j3|B2 ρ̃AB1B2 |i1〉A|i3〉B1 |i2〉B2 . (B36)
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Furthermore, if i1 < max(i2, i3) or j1 < max( j2, j3), or if i1 > i2 + i3 or j1 > j2 + j3, then
〈 j1|A〈 j2|B1〈 j3|B2 ρ̃AB1B2 |i1〉A|i2〉B1 |i3〉B2 = 0. We can thus define ρ̃AB1B2 by writing only the matrix elements with respect
the set {|i1〉A|i2〉B1 |i3〉B2} with 2 � i1 � i2 � i3 � 0 such that i2 + i3 � i1. Hence, in order to fully define ρ̃AB1B2 , it suffices
to write the matrix elements of ρ̃AB1B2 with respect to the set { |0〉A|0〉B1 |0〉B2 , |1〉A|0〉B1 |0〉B2 , |1〉A|1〉B1 |1〉B2 , |2〉A|1〉B1 |1〉B2 ,
|2〉A|2〉B1 |0〉B2 , |2〉A|2〉B1 |1〉B2 , |2〉A|2〉B1 |2〉B2 }. This gives rise to the following 7 × 7 matrix:

0A0B1 0B2 1A1B1 0B2 1A1B1 1B2 2A1B1 1B2 2A2B1 0B2 2A2B1 1B2 2A2B1 2B2

0A0B1 0B2 1
√

1 − λ 0
√

2(1 − λ) (1−λ)2

λ
0 0

1A1B1 0B2

√
1 − λ 1 − λ 0

√
2(1 − λ)3

√
(1−λ)5

λ2 0 0

1A1B1 1B2 0 0 2λ − 1 0 0 2λ−1
λ

√
1 − λ 0

2A1B1 1B2

√
2(1 − λ)

√
2(1 − λ)3 0 2(1 − λ)2

√
2 (1−λ)3

λ
0 0

2A2B1 0B2

(1−λ)2

λ

√
(1−λ)5

λ2 0
√

2 (1−λ)3

λ
(1 − λ)2 0 0

2A2B1 1B2 0 0 2λ−1
λ

√
1 − λ 0 0 2(1 − λ)(2λ − 1) 0

2A2B1 2B2 0 0 0 0 0 0 (2λ − 1)2

One can show by direct calculation that this matrix is positive
semidefinite if and only λ � 1√

2
. Note that the matrix is posi-

tive semidefinite if and only if ρ̃AB1B2 is positive semidefinite.
The latter follows from the following two simple facts: (i)
A n × n symmetric matrix with a duplicate column is posi-
tive semidefinite if and only if the (n − 1) × (n − 1) matrix
obtained by deleting one of the two equal column and the
corresponding row is positive semidefinite, and (ii) A n × n
symmetric matrix with a zero column is positive semidefi-
nite if and only if the (n − 1) × (n − 1) matrix obtained by
deleting such a column and the corresponding row is positive
semidefinite. One can also verify TrB1 ρ̃AB1B2 = TrB2 ρ̃AB1B2 ,
and they are equal to the Choi state of the qutrit restriction
with λ = 1

1+e−γ . We therefore conclude that the curve λ =
1

1+e−γ provides a necessary and sufficient condition for the

antidegradability of the qutrit channel N (3)
λ,γ when λ � 1√

2
, or

equivalently when e−γ �
√

2 − 1. �
To numerically compute the quantity λd (γ ) given in (B33),

we utilize the equivalence between antidegradability of a
channel and two-extendibility of its Choi state [41]. Specif-
ically, for small values of d , we can determine necessary
and sufficient conditions for the antidegradability of N (d )

λ,γ by
numerically solving the following semidefinite program:

min
ρAB1B2

1

s.t. ρAB1B2 � 0,

Tr[ρAB1B2 ] = 1,

TrB2 [ρAB1B2 ] = idA ⊗ N (d )
λ,γ (|�d〉〈�d |AA′ ),

TrB1 [ρAB1B2 ] = idA ⊗ N (d )
λ,γ (|�d〉〈�d |AA′ ), (B37)

where |�d〉 is the maximally entangled state of schmidt rank
d . The channel N (d )

λ,γ is antidegradable if and only if the

semidefinite program admits a feasible solution. We compute
the quantity λd (γ ) defined in (B33) by numerically solving
the semidefinite program. The results are plotted with respect
to e−γ for various values of d in Fig. 4, showcasing the de-
pendence of λd (γ ) on γ for small values of d . Our numerical
analysis reveals that when γ is sufficiently large, i.e., e−γ �
0.41 or γ � 0.89, the value of λd (γ ) consistently equals 1

1+e−γ

for all examined values of d . In particular, this seems to
suggest that within this range of the dephasing parameter,
Nλ,γ is antidegradable if and only if λ � 1

1+e−γ . Based on this
numerical exploration, we propose the following conjecture.

Conjecture 40. If γ is sufficiently large (γ � 0.89), then
the bosonic loss-dephasing channel Nλ,γ is antidegradable if
and only if λ � 1

1+e−γ .
Notably, from Fig. 4 we observe that if λ and γ satisfy

λ = 1
1+e−γ with e−γ � 0.41 (or γ � 0.89), then Nλ,γ is not

antidegradable.

APPENDIX C: GENERALIZATION OF OUR METHODS TO
GENERAL BOSONIC DEPHASING CHANNELS

In Theorem 30 we introduced a method to analyze an-
tidegradability of the bosonic loss-dephasing channel. In this
section, we show that this method can be applied also to
analyze the antidegradability of the composition between a
general bosonic dephasing channel and the pure-loss channel
channel.

Given a probability distribution p(·) over R, the associated
general bosonic dephasing channel is given by

D(p)(X ) :=
∫ ∞

−∞
dφ p(φ) eiφâ†â X e−iφâ†â. (C1)

If p(φ) is the Gaussian distribution p(φ) := 1√
2πγ

e− φ2

2γ , the

general bosonic dephasing channel D(p) exactly coincides
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with the bosonic dephasing channel Dγ analyzed in this work.
The action of D(p) on operators of the form |n〉〈m| is given by

D(p)(|n〉〈m|) = p̃(n − m)|n〉〈m|, (C2)

where p̃ is the Fourier transform of the probability distribution
p,

p̃(k) :=
∫ ∞

−∞
dφ p(φ) eikφ. (C3)

Let N (p)
λ be the composition between such a general bosonic

dephasing channel D(p) and the pure-loss channel,

N (p)
λ := D(p) ◦ Eλ = Eλ ◦ D(p). (C4)

We can apply the exact same method that we have introduced
in the proof of Thereom 30 in order to analyze the antidegrad-
ability of N (p)

λ . The key observation is that in the proof of
Theorem 30 we did not use the explicit expression of the
channel D(p) before stating (B13). This simple observation
allows us to generalise our results to arbitrary bosonic dephas-
ing channels, as stated in the following theorem.

Theorem 41 (Sufficient condition on the antidegradabil-
ity of the composition between a general bosonic dephasing
channel and pure-loss channel). Let λ ∈ [0, 1) and let p(·) be
a probability distribution over R. Let A = (amn)m,n∈N be the
infinite matrix whose components are defined by

amn := φ̃(n − m)∑min(n,m)
j=0

√
B j
(
n, 2λ−1

λ

)
B j
(
m, 2λ−1

λ

) , ∀ n, m ∈ N.

(C5)

The channel N (p)
λ is antidegradable as long as either λ ∈ [0, 1

2 ]
or the infinite matrix A is positive semidefinite.

APPENDIX D: COHERENCE PRESERVATION OF THE
BOSONIC LOSS-DEPHASING CHANNEL

In this section we use the notation introduced in Sec. A 8.
Theorem 42. Let γ � 0 and λ ∈ (0, 1]. For any energy

constraint Ns > 0, the energy-constrained two-way quantum
and secret-key capacities of the bosonic loss-dephasing chan-
nel are strictly positive, K (Nλ,γ , Ns) � Q2(Nλ,γ , Ns) > 0.

Proof. We begin by assuming Ns ∈ (0, 1) and defining the
two-mode state

|�Ns〉AA′ :=
√

1 − Ns|00〉AA′ + √
Ns|11〉AA′ , (D1)

where the mean photon number of A′ system is equal to Ns.
By exploiting Lemma 25, one can observe that the state

ρAB := idA ⊗ Nλ,γ (|�Ns〉〈�Ns |AA′ ) (D2)

is effectively a two-qubit state and its matrix with respect to
the computational basis {|00〉, |01〉, |10〉, |11〉} is given by

ρAB =

⎛
⎜⎜⎝

1 − Ns 0 0
√

(1 − Ns)Nse−γ λ

0 0 0 0
0 0 (1 − λ)Ns 0√

(1 − Ns)Nse−γ λ 0 0 λNs

⎞
⎟⎟⎠.

If we perform partial transpose with respect to the system B, we find the matrix

(ρAB)ᵀB =

⎛
⎜⎜⎝

1 − Ns 0 0 0
0 0

√
(1 − Ns)Nse−γ λ 0

0
√

(1 − Ns)Nse−γ λ (1 − λ)Ns 0
0 0 0 λNs

⎞
⎟⎟⎠,

whose eigenvalues are not all positive, i.e., the state ρAB is
not PPT [67]. By exploiting the fact that any two-qubit state
is distillable if and only if it is not PPT [67], it follows that
Ed (idA ⊗ Nλ,γ (|�Ns〉〈�Ns |AA′ )) > 0 , where Ed is the distill-
able entanglement. On the other hand, from Lemma 29 we
have that

K (Nλ,γ , Ns) � Q2(Nλ,γ , Ns)

� Ed
(
idA ⊗ Nλ,γ (|�Ns〉〈�Ns |AA′ )

)
. (D3)

This concludes the proof for Ns ∈ (0, 1). Since the energy-
constrained capacities are monotonically nondecreasing in the
energy constraint Ns, the proof follows for any Ns > 0. �

Since the state idA ⊗ Nλ,γ (|�Ns〉〈�Ns |AA′ ) in (D2) is always
entangled, it follows that the bosonic loss-dephasing channel

Nλ,γ is never entanglement breaking [33]. We state this for-
mally in the following theorem.

Theorem 43. For all γ � 0 and all λ ∈ (0, 1], the bosonic
loss-dephasing channel Nλ,γ is not entanglement breaking.

In the following subsection we will find an explicit strictly
positive lower bound on the two-way capacities of the bosonic
loss-dephasing channel.

1. Multirail multiphoton encoding

Let 
(N, k) be the set of partitions of N objects into k
(possibly empty) parts. It is well known that |
(N, k)| =(N+k−1

k−1

) = (N+k−1
N

)
. Clearly, we can think of each p ∈ 
(N, k)

as a vector in Nk
+, also denoted by p, with the constraint

that
∑k

�=1 p� = N . For each p ∈ 
(N, k), define the associate
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k-mode Fock state as

|ψp〉 := |p1〉 . . . |pk〉. (D4)

Note that for p, q ∈ 
(N, k), we have that 〈ψp|ψq〉 = δp,q. Let
us call

PN,k :=
∑

p∈
(N,k)

ψp (D5)

the projector onto the k-mode subspace of total photon num-
ber N . Note that the bosonic dephasing channel satisfies that

D⊗k
γ (|ψp〉〈ψq|) = e− γ

2

∑
�(p�−q� )2 |ψp〉〈ψq| = e− γ

2 ‖p−q‖2 |ψp〉〈ψq|
= (KN,k,γ )pq|ψp〉〈ψq|, (D6)

where KN,k,γ is the
(N+k−1

N

)× (N+k−1
N

)
matrix with entries

(KN,k,γ )pq := e− γ

2 ‖p−q‖2
. (D7)

For any
(N+k−1

N

)
-dimensional state σ , let us denote as σ the

following isometrically equivalent state:

σ :=
∑

p,q∈
(N,k)

σpq|ψp〉〈ψq|. (D8)

The state σ , which is termed as the rail encoding of σ , is sup-
ported on the subspace of k modes with total photon number
equal to N . Now, let ρ be a

(N+k−1
N

)
-dimensional state and let

us calculate the output of D⊗k
γ when the input is ρ:

D⊗k
γ (ρ ) =

∑
p,q∈
(N,k)

ρpq(KN,k,γ )pq|ψp〉〈ψq|

= KN,k,γ ◦ ρ = �N,k,γ (ρ), (D9)

where the operation ◦ denotes the element-wise product be-
tween matrices and where we have introduced the following
Hadamard channel:

�N,k,γ (X ) := KN,k,γ ◦ X. (D10)

Since D⊗k
γ is a (completely) positive map, this in particu-

lar shows that KN,k,γ � 0. (This latter statement can also be
proved directly with techniques similar to that in the proof
of [[68], Lemma 15].) In practice, the k-fold application of
the bosonic dephasing channel on the k-mode N-photon code
space behaves as a new Hadamard channel �N,k,γ with asso-
ciated matrix KN,k,γ .

a. Lower bound on the two-way capacity of the bosonic
loss-dephasing channel

Since under the action of Nλ,γ photons can only be lost
and never added, and each photon has a probability λ of being
transmitted, the probability that an N-photon state will retain
N photons at the output of the channel is exactly λN . If that
happens, then the state in the code space is effectively left
untouched by the loss and only dephased under the action of
the Hadamard channel �N,k,γ .

More formally, from the Kraus representation

Eλ(X ) =
∞∑

n=0

1

n!
(1 − λ)nλ

a†a
2 anX (a†)nλ

a†a
2 (D11)

it is easy to deduce the handy identity

E⊗k
λ (ρ ) = λNρ + (1 − λN )δN,k,λ, (D12)

valid for all
(N+k−1

N

)
-dimensional states ρ, with the notation

of (D8). Here, δN,k,λ is a suitable k-mode state supported on
the subspace of total photon number at most N − 1, and thus
ρδN,k,λ = δN,k,λρ = 0. In turn, the above identity implies that

N⊗k
λ,γ (ρ) = λN KN,k,γ ◦ ρ + (1 − λN )δ′

N,k,λ,γ

= λN �N,k,γ (ρ) + (1 − λN )δ′
N,k,λ,γ , (D13)

where once again δ′
N,k,λ,γ is a suitable k-mode state supported

on the subspace of total photon number at most N − 1.
Therefore, we can use the channel N⊗k

λ,γ to simulate �N,k,γ

probabilistically, with probability λN . The simulation works
as follows:

(i) The input state ρ is encoded in the k-mode N-photon
subspace according to the mapping ρ �→ ρ.

(ii) The k-mode state ρ is sent across N⊗k
λ,γ , via k uses of

the bosonic loss-dephasing channel.
(iii) The total photon number is measured at the output.

If N photons are found then the simulation is successful,
otherwise the protocol is aborted.

A wealth of operational resource inequalities can be de-
duced from the above considerations. Here we limit ourselves
to the observation that the two-way quantum capacity must
satisfy

Q2(Nλ,γ )
(i)
� λN

k
Q2(�N,k,γ ). (D14)

Consequently, it holds that

Q2(Nλ,γ )

� λN

k
Q2(�N,k,γ )

(i)
� λN

k
Icoh[id ⊗ �N,k,γ (|�〉〈�|)]

(iii)= λN

k

{
log2

(
N + k − 1

N

)
− S

[(
N + k − 1

N

)−1

KN,k,γ

]}
.

(D15)

Here in (ii) we used the fact that the two-way quantum capac-
ity of a channel can be lower bounded in terms of the coherent
information [33,34], and we introduced the two-qudit maxi-
mally entangled state |�〉 of dimension d = (N+k−1

N

)
. In (iii)

we used the definition of coherent information Icoh(ρAB) :=
S(ρB) − S(ρAB), with S(·) being the von Neumann entropy,
and the fact that

id ⊗ �N,k,γ (|�〉〈�|)

= 1(N+k−1
N

) ∑
p,q∈
(N,k)

|p〉〈q| ⊗ �N,k,γ (|p〉〈q|)

= 1(N+k−1
N

) ∑
p,q∈
(N,k)

(KN,k,γ )pq|p〉〈q| ⊗ |p〉〈q|, (D16)

which implies that the spectrum of id ⊗ �N,k,γ (|�〉〈�|) co-

incides with the spectrum of the matrix
(N+k−1

N

)−1
KN,k,γ .
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Consequently, we have that

Q2(Nλ,γ ) � max
N,k∈N+

λN

k

{
log2

(
N + k − 1

N

)

−S

[(
N + k − 1

N

)−1

KN,k,γ

]}
. (D17)

One can obtain a lower bound on the energy-constrained
two-way quantum capacity Q2(Nλ,γ , Ns) by restricting the
optimization to the values of N and k such that N

k � Ns.
Indeed, note that the rail-encoded state ρ̄ satisfies the energy
constraint as its mean photon number per mode is N

k . In
formula, we have that

Q2(Nλ,γ , Ns) � max
N,k∈N+: N

k �Ns

λN

k

{
log2

(
N + k − 1

N

)

−S

[(
N + k − 1

N

)−1

KN,k,γ

]}
. (D18)

Note that log2

(N+k−1
N

)− S(
(N+k−1

N

)−1
KN,k,γ ) is always pos-

itive because
(N+k−1

N

)−1
KN,k,γ is a

(N+k−1
N

)
-dimensional,

nonmaximally mixed, state, and thus its von Neumann entropy
is strictly smaller than by log2

(N+k−1
N

)
. Consequently, we have

the following theorem.
Theorem 44. Let γ � 0 and λ ∈ (0, 1]. For any energy

constraint Ns > 0, the energy-constrained two-way quantum
and secret-key capacities of the bosonic loss-dephasing chan-
nel are lower bounded by

K (Nλ,γ , Ns) � Q2(Nλ,γ , Ns)

� max
N,k∈N+

N
k �Ns

λN

k

[
log2

(
N + k − 1

N

)
− S(ρN,k,γ )

]
> 0.

(D19)

Here S(·) is the von Neumann entropy, ρN,k,γ is a
(N+k−1

N

)
-

dimensional state defined by

ρN,k,γ :=
(

N + k − 1

N

)−1 ∑
p,q∈
(N,k)

e− γ

2 ‖p−q‖2
2 |p〉〈q|,

(D20)
where 
(N, k) := {p ∈ Nk :

∑k
i=1 pi = N} represents the set

of partitions of a set of N elements into k parts, and the vectors
{|p〉}p∈
(N,k) are orthonormal. In particular,

K (Nλ,γ , Ns) � Q2(Nλ,γ , Ns) > max
N,k∈N+

λN

k

×
[

log2

(
N + k − 1

N

)
− St (ρN,k,γ )

]
> 0.

(D21)

APPENDIX E: TECHNICAL LEMMAS

1. Hadamard maps

Given an infinite matrix A = (amn)m,n∈N, amn ∈ C, we can
introduce a superoperator H , recognized as the Hadamard
map, whose action is defined as H (|m〉〈n|) = an,m|m〉〈n| for all

n, m ∈ N. We are interested in establishing requirements for
an infinite matrix A to ensure that the associated Hadamard
map H is a quantum channel. We begin with some pre-
liminaries. Let �2(N) be the space of square-summable
complex-valued sequences defined as

�2(N) :=
⎧⎨
⎩x := {xn}n∈N, xn ∈ C : ‖x‖ :=

√√√√ ∞∑
n=0

|xn|2 < ∞
⎫⎬
⎭.

(E1)
An infinite matrix A := (amn)m,n∈N, amn ∈ C defines a linear
operator on �2(N). The operator norm of A is defined as
follows:

‖A‖∞ := sup
x∈�2(N)
‖x‖=1

‖Ax‖ = sup
{xn}n∈N,xn∈C∑∞

n=0 |xn|2=1

√√√√ ∞∑
m=0

∣∣∣∣∣
∞∑

n=0

amnxn

∣∣∣∣∣
2

.

A is said to be bounded if ‖A‖∞ < ∞. The following lemma,
referred to as Schur test, gives a sufficent condition for an
infinite matrix to be bounded (e.g., [[69], p. 24, Problem 45]).

Lemma 45. Let A := (amn)m,n∈N, amn ∈ C, be an infinite
matrix. Suppose that there exist {pn}n∈N, pn ∈ R>0 and
{qm}m∈N, qm ∈ R>0, and β > 0, and γ > 0 such that

∞∑
m=0

|amn|pm � βqn and
∞∑

n=0

|amn|qn � γ pm, ∀ m, n ∈ N.

Then the matrix A satisfies ‖A‖∞ � βγ . In particular, A is
bounded.

By choosing pn = qn = 1 and γ = β =
supn∈N

∑∞
m=0 |amn|, we obtain the following corollary.

Corollary 46. Let A = (amn)m,n∈N, amn ∈ C, be an infinite
Hermitian matrix. If supn∈N

∑∞
m=0 |amn| is finite, then A is

bounded.
Lemma 47. Let A = (amn)m,n∈N, amn ∈ C, be a bounded

Hermitian infinite matrix. Then A is positive semidefinite as
an operator on �2(N) if and only if A(d ) := (amn)m,n=0,1,...,d−1

is positive semidefinite for all d ∈ N, where A(d ) is the d × d
top left corner of A.

Proof. Assume that A(d ) is positive semidefinite for all d ∈
N. Let us pick an arbitrary x ∈ �2(N). It is known that for any
ε > 0, there exists d ∈ N and y(d ) := (y(d )

n )n∈N, y(d )
n ∈ C, with

y(d )
n = 0 for all n > d , such that ‖x − y(d )‖ < ε . Note that

x†Ax = (x − y(d ) )†A x + (y(d ) )†A (x − y(d ) ) + (y(d ) )†Ay(d )

(i)
� −‖x − y(d )‖ ‖A‖∞ (‖x‖ + ‖y(d )‖) + (y(d ) )†A(d ) y(d )

(ii)
� −ε ‖A‖∞ (2‖x‖ + ε),

where in (i) we applied Cauchy-Schwarz inequality twice and
the definition of infinity norm as follows:

|(x − y(d ) )†A x| � ‖x − y(d )‖‖A x‖�‖x − y(d )‖‖A‖∞‖x‖,
|(y(d ) )†A (x − y(d ) )| � ‖y(d )‖‖A (x − y(d ) )‖

� ‖y(d )‖‖A‖∞‖x − y(d )‖,
and in (ii) we exploited triangular inequality to derive

‖y(d )‖ � ‖y(d ) − x‖ + ‖x‖ � ε + ‖x‖, (E2)
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together with the fact that A(d ) is positive semidefinite. Hence,
since ε > 0 is arbitrary, we conclude that x†Ax � 0, meaning
that A is positive semidefinite as an operator on �2(N). �

A square matrix is said to be diagonally dominant if∑
m �=n

|amn| � |ann|, ∀n.

In words, a square matrix is said to be diagonally dominant if
for every row of the matrix, the absolute value of the diagonal
entry in a row is larger than or equal to the sum of the
absolute values of all the other (nondiagonal) entries in that
row. Note that for Hermitian matrices one can exchange row
with column in this definition. We proceed to state a sufficient
condition for a matrix A to be positive semidefinite as an
operator on �2(N). While the following sufficient condition
is usually stated for finite matrices, it can be generalized to
infinite matrices as per Lemma 47.

Lemma 48. [[43], Chapter 6] For any d ∈ N, let A =
(amn)m,n=0,1,...,d−1, amn ∈ C, be a d × d Hermitian matrix with
ann ∈ R�0 for all n ∈ {0, . . . , d − 1}. A is positive semidefi-
nite if it is diagonally dominant.

Lemma 49. Let A = (amn)m,n∈N, amn ∈ C be an infinite
Hermitian matrix with ann ∈ R�0,∀n ∈ N. Assume that
supn∈N ann is finite and that A is diagonally dominant. Then A
is bounded and positive semidefinite when seen as an operator
on �2(N).

Proof. Since

sup
n∈N

∞∑
m=0

|amn| � 2 sup
n∈N

an,n < ∞,

Corollary 46 implies that A is bounded. The fact that A is
positive semidefinite as an operator on �2(N) follows from
Lemma 48 together with Lemma 47. �

We now present a lemma from the literature that establishes
necessary and sufficient conditions for an infinite matrix A
to ensure that the associated Hadamard map H is a quantum
channel. We then use it to derive an explicit sufficient condi-
tion for an infinite matrix A to give rise to a CPTP Hadamard
map.

Lemma 50. [[28], Lemma S4] Let A := (amn)m,n∈N, amn ∈
C be a bounded infinite matrix. The following requirements
establish the necessary and sufficient conditions for the asso-
ciated Hadamard map H to qualify as a quantum channel:

(1) ann = 1, ∀n ∈ N
(2) A is positive semidefinite as on operator on �2(N).
As a consequence of Lemma 50 and Lemma 49, we obtain

the following lemma.
Lemma 51. Let A := (amn)m,n∈N be an infinite Hermitian

matrix that is diagonally dominant with an,n = 1 for all n ∈ N.
In this case, its associated Hadamard map H is a quantum
channel.

2. Miscellaneous lemmas

Lemma 52. Let HA and HB be two Hilbert spaces and let
N : T (HA) → T (HB) be a quantum channel. For all normal-

ized states |ψ1〉, |ψ2〉 ∈ HA and |φ1〉, |φ2〉 ∈ HB it holds that

|〈φ1|N (|ψ1〉〈ψ2|)|φ2〉| � 1. (E3)

Proof. It holds that

|〈φ1|N (|ψ1〉〈ψ2|)|φ2〉|
(i)
� ‖N (|ψ1〉〈ψ2|)‖∞

(ii)
� ‖N (|ψ1〉〈ψ2|)‖1

(iii)
� ‖|ψ1〉〈ψ2|‖1 = 1. (E4)

Here in (i) we exploited one of the definition of the operator
norm in (A2). In (ii) we exploited that the trace norm is always
an upper bound on the operator norm. Finally, in (iii) we
leveraged the monotonicity of the trace norm under quantum
channels [57]. �

Lemma 53 ([59]). Let HA,HA′ be isomorphic Hilbert
spaces, possibly infinite dimensional. Let |ψ〉A′A be a pure
state that satisfies TrA′[|ψ〉〈ψ |AA′] > 0. The generalized Choi-
Jamiołkowski matrix defines an isomorphism between the set
of quantum channels from HA′ to HB and the set of bipar-
tite states σAB ∈ P (HAB) such that TrBσAB = TrA′[|ψ〉〈ψ |AA′].
Specifically, for any quantum channel NA′→B : T (HA′ ) →
T (HB), it holds that

NA′→B(|ei〉〈e j |)

= 1√
λiλ j

TrA[(|e j〉〈ei|A ⊗ 1B) σAB], ∀ i, j ∈ N, (E5)

where (|ei〉)i∈N and (λi)i∈N form a spectral decomposition
of TrA′[|ψ〉〈ψ |AA′], i.e., TrA′[|ψ〉〈ψ |AA′] = ∑

i λi|ei〉〈ei|A , and
where the state σAB := idA ⊗ NA′→B(|ψ〉〈ψ |AA′ ) is called the
generalized Choi state of N . Equation (E5) is enough to spec-
ify the channel NA′→B completely, as the linear span of the
operators (|ei〉〈e j |)i, j∈N (i.e., the set of finite-rank operators) is
dense in T (HA′ ).

Lemma 54 ([41]). Let HA,HA′ ,HB be isomorphic Hilbert
spaces, possibly infinite dimensional. Let NA′→B : T (HA′ ) →
T (HB) be a quantum channel. Let |ψ〉A′A ∈ HA ⊗ HA′ be a
pure state such that the reduced state TrA′[|ψ〉〈ψ |AA′] is posi-
tive definite. Then NA′→B is antidegradable if and only if the
state idA ⊗ NA′→B(|ψ〉〈ψ |AA′ ) is two-extendible on B, mean-
ing that there exists a state ρAB1B2 ∈ P (HA ⊗ HB1 ⊗ HB2 )
such that

TrB2 [ρAB1B2 ] = idA ⊗ NA′→B1 (|ψ〉〈ψ |AA′ ),

TrB1 [ρAB1B2 ] = idA ⊗ NA′→B2 (|ψ〉〈ψ |AA′ ),
(E6)

where HB1 and HB2 are Hilbert spaces that are isomorphic to
HB.

Proof. Let UA′E→BE be a Stinespring dilation of the chan-
nel NA′→B. Further assume that NA′→B is antidegradable. By
definition, there exists a quantum channel AE→B such that
AE→B ◦ N c

A′→B = NA′→B. Let us consider the tripartite state
ρAB1B2 , with B1, B2 being copies of B, defined as

ρAB1B2 = idA ⊗ idB1 ⊗ AE→B2

(
UA′E→B1E (|ψ〉〈ψ |AA′ ⊗ |0〉〈0|E )U †

A′E→B1E

)
. (E7)
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It holds that

TrB2 [ρAB1B2 ] = TrB2

[
idA ⊗ idB1 ⊗ AE→B2

(
UA′E→B1E (|ψ〉〈ψ |AA′ ⊗ |0〉〈0|E )U †

A′E→B1E

)]
= idA ⊗ TrE

[
UA′E→B1E

(|ψ〉〈ψ |AA′ ⊗ |0〉〈0|E
)
U †

A′E→B1E

]
= idA ⊗ NA′→B1 (|ψ〉〈ψ |AA′ ),

and

TrB1 [ρAB1B2 ] = TrB1

[
idA ⊗ idB1 ⊗ AE→B2

(
UA′E→B1E

(|ψ〉〈ψ |AA′ ⊗ |0〉〈0|E
)

U †
A′E→B1E

)]
= idA ⊗ AE→B2

(
TrB1

[
UA′E→B1E

(|ψ〉〈ψ |AA′ ⊗ |0〉〈0|E
)
U †

A′E→B1E

])
= idA ⊗ AE→B2 ◦ N c

A′→B2
(|ψ〉〈ψ |AA′ )

= idA ⊗ NA′→B2 (|ψ〉〈ψ |AA′ ).

Now let us establish the converse. Assume that there exists ρAB1B2 which satisfies (E6). Let |�〉AB1B2P ∈ HA ⊗ HB1 ⊗ HB2 ⊗ HP

be a purification of ρAB1B2 , with HP being the purifying Hilbert space. Note that both |�〉AB1B2P and UA′E→B1E (|ψ〉AA′ ⊗ |0〉E ) are
purifications of idA ⊗ NA′→B1 (|ψ〉〈ψ |AA′ ), with HB2 ⊗ HP and HE being their purifying Hilbert spaces, respectively. It follows
that [57] there exists an isometry VE→B2P : HE → HB2 ⊗ HP such that VE→B2P UA′E→B1E (|ψ〉AA′ ⊗ |0〉E ) = |�〉AB1B2P. Hence,
the quantum channel AE→B2 : T (HE ) → T (HB2 ), defined by AE→B2 (·) = TrP[VE→B2P(·)V †

E→B2P], satisfies that

idA ⊗ AE→B2 ◦ N c
A′→B2

(|ψ〉〈ψ |AA′ ) = idA ⊗ AE→B2

(
TrB1

[
UA′E→B1E (|ψ〉〈ψ |AA′ ⊗ |0〉〈0|E )U †

A′E→B1E

])
= TrB1P[|�〉〈�|AB1B2P]

= TrB1 [ρAB1B2 ]

= idA ⊗ NA′→B2 (|ψ〉〈ψ |AA′ ).

Consequently, since the pure state |ψ〉A′A satisfies
TrA′[|ψ〉〈ψ |AA′] > 0, Lemma 53 implies that AE→B2 ◦
N c

A′→B2
= NA′→B2 , meaning that NA′→B2 is antidegradable. �

Lemma 55. Let N ,M : T (HS ) → T (HS ) be quantum
channels. If either M or N is antidegradable, then the com-
position M ◦ N is antidegradable. Specifically, let E1 and E2

be the Stinespring environments of N and M, respectively.
If N is antidegradable with antidegrading map AE1→S , then
(M ◦ AE1→S ) ⊗ TrE2 is an antidegrading map of M ◦ N .
Analogously, if M is antidegradable with antidegrading map
AE2→S , then TrE1 ⊗ AE2→S is an antidegrading map of M ◦
N .

Proof. Let V S→SE1 and W S→SE2 be Stinespring isometries
associated with N and M, respectively. By considering the

complementary channel of M ◦ N ,

(M ◦ N )c(ρ) =TrS[W S→SE2V S→SE1 ρ(V S→SE1 )†(W S→SE2 )†],

∀ ρ ∈ T (HS ),

one can easily check that if N is antidegradable with antide-
grading map AE1→S , then[

(M ◦ AE1→S ) ⊗ TrE2

] ◦ (M ◦ N )c = M ◦ N . (E8)

Analogously, one can easily verify that if M is antidegradable
with antidegrading map AE2→S , then[

TrE1 ⊗ AE2→S
] ◦ (M ◦ N )c = M ◦ N . (E9)
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