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Quantum broadcasting is central to quantum information processing and characterizes the correlations within
quantum states. Nonetheless, traditional quantum broadcasting encounters inherent limitations dictated by the
principles of quantum mechanics. In a previous study, Parzygnat et al. [Phys. Rev. Lett. 132, 110203 (2024)]
introduced a canonical broadcasting quantum map that goes beyond the quantum no-broadcasting theorem
through a virtual process. In this work, we generalize the concept of virtual broadcasting to unilocal broadcasting
by incorporating a reference system and introduce protocols that can be approximated using physical operations
with minimal cost. First, we propose a universal unilocal protocol enabling multiple parties to share the
correlations of a target bipartite state, which is encoded in the expectation value for any observable. Second,
we formalize the simulation cost of a virtual quantum broadcasting protocol into a semidefinite programming
problem. Notably, we propose a specific protocol with optimal simulation cost for the two-broadcasting scenario,
revealing an explicit relationship between simulation cost and the quantum system’s dimension. Moreover, we
establish upper and lower bounds on the simulation cost of the virtual n-broadcasting protocol and demonstrate
the convergence of the lower bound to the upper bound as the quantum system’s dimension increases.
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I. INTRODUCTION

In classical information processing, creating duplicates is
a straightforward task. However, the quantum realm presents
a challenge due to the no-cloning theorem [1,2], rendering
direct copies impossible. Quantum broadcasting [3,4], a con-
cept milder than quantum cloning, offers a distinct perspective
on the classical-quantum interface. Unfortunately, there are
also fundamental restrictions on quantum broadcasting [5].
The no-broadcasting theorem states that it is only possible to
broadcast a set of quantum states if they commute with each
other. In other words, if the quantum states have properties
that can be simultaneously measured without disturbing each
other, it is possible to broadcast them.

These no-go theorems can be further extended to
the setting of local broadcasting for composite quan-
tum systems [6–8]. Given a bipartite quantum state
ρAB shared by Alice and Bob, the local broadcasting
aims to perform local operations �A→A1A2 and �B→B1B2

to produce a state ρ̂A1A2B1B2 := (�A→A1A2 ⊗ �B→B1B2 )ρAB

such that TrA1B1 [̂ρA1A2B1B2 ] = TrA2B2 [̂ρA1A2B1B2 ] = ρAB. Fur-
thermore, unilocal broadcasting is considered when the local
operations are only allowed for one party, e.g., Bob. It is
shown that the unilocal broadcasting can be done if and
only if ρAB is classical on B [6–9]. More generally, a unilo-
cal n-broadcasting performs the local operation �B→B1···Bn

to produce the state ρ̂AB1...Bn := �B→B1···Bn (ρAB) such that
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Tr\AB1 [̂ρAB1...Bn ] = · · · = Tr\ABn [̂ρAB1...Bn ] = ρAB [4], which is
shown in Fig. 1.

Although any physical process cannot achieve quantum
broadcasting due to these no-go theorems, Parzygnat et al.
[10] presented a canonical broadcasting quantum map going
beyond the quantum no-broadcasting theorem via a virtual
process, which focuses on broadcasting measurement statis-
tics of a target state rather than the state itself. They presented
three natural conditions that virtual broadcasting maps should
satisfy and provided several physical interpretations, such as
that the universal quantum cloner is the optimal physical ap-
proximation to their canonical broadcasting map. However,
when considering using physical operators to approximate the
nonphysical process with minimal sampling cost, the opti-
mal protocols for virtual broadcasting and the more general
unilocal broadcasting are unknown. To overcome the above
challenges as well as the limitations of the quantum no-local-
broadcasting theorem, we investigate unilocal virtual quantum
broadcasting, which aims to broadcast the correlation of a
bipartite quantum system encoded in the expectation values
of any possible observables.

Virtual processes concern the classical information dis-
cerned after measurement, referred to as shadow information
[11,12], that we mainly focus on in the majority of quantum
information and quantum computing tasks, rather than the
whole information of a state. Therefore, for a bipartite quan-
tum state ρAB, we concentrate on a specific broadcasting task
that the local operations employed by Bob enable n parties
B1, . . . , Bn to access the same shadow information Tr[OρAB]
with respect to any observable O. It is worth noting that we are
not focusing on distributing the expectation value as classical
bits to different parties. In fact, Alice and Bob are considered
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geographically separated laboratories where a global expecta-
tion value cannot be obtained in the first place. Instead, our
framework works by supplying Alice and Bob with multiple
identical copies of the states, which ensures that each bipartite
party ABj can access the correlation of AB by sharing the same
expectation value.

Technically, we extend the traditional quantum broad-
casting by employing Hermitian-preserving and trace-
preserving (HPTP) maps, which can be physically imple-
mented by quasiprobability decomposition (QPD) [13–16]
and measurement-controlled postprocessing [17]. Such phys-
ical simulation of unphysical maps plays a crucial role in
applications such as entanglement detection [18–21], error
mitigation [14–16,22,23], and two-point correlator [13]. In
specific, we may construct an HPTP map �B→Bn and decom-
pose it into a linear combination of local channels N j for
Bob, i.e., �B→Bn = ∑

j=1 c jN j , where c j are certain real num-
bers. One can estimate the shadow information by sampling
quantum channels N j and postprocessing the measurement
outcomes [22] for an observable O and quantum state ρAB (see
Proposition 2 for a precise statement). Then, it is essential to
understand the power and limitations of such virtual quantum
broadcasting as the following two questions arise:

(1) Is there a universal virtual quantum broadcasting
protocol?

(2) What is the optimal protocol with minimum sampling
cost?

In this paper, we fully address these two questions. In
Sec. II, we demonstrate the existence of a universal unilo-
cal virtual n-broadcasting protocol, for any bipartite quantum
state ρAB and observable O. In Sec. III, we formalize the
simulation cost of a unilocal virtual n-broadcasting into
a semidefinite programming (SDP) [24]. Notably, we pro-
vide an analytical universal unilocal virtual two-broadcasting
protocol to elucidate the optimal simulation cost. In ad-
dition, we investigate the upper and lower bounds on
the simulation cost of the unilocal virtual n-broadcasting
protocol.

II. UNIVERSAL VIRTUAL BROADCASTING PROTOCOL

We consider a finite-dimensional Hilbert space H and de-
note A and B as two parties, each possessing their respective
Hilbert spaces HA and HB. We denote the dimension of HB

as d . Let {| j〉} j=0,...,d−1 be a standard computational basis.
Denote L(HA) as the set of linear operators that map from
HA to itself. A linear operator in L(HA) is called a density
operator if it is positive semidefinite with trace one, and de-
notes D(HA) as the set of all density operators on HA. We
denote FB1B2 := ∑d−1

i, j=0 |i j〉〈 ji| as the swap operator between

subsystems B1 and B2, and denote �BB1 := ∑d−1
i, j=0 |ii〉〈 j j|BB1

as the unnormalized d ⊗ d maximally entangled state. In the
absence of ambiguity, subsystems may be omitted, i.e., �d . A
quantum channel NA→B is a linear map from L(HA) to L(HB)
that is completely positive and trace preserving (CPTP). Its
associated Choi-Jamiołkowski operator is expressed as JN

AB :=∑d−1
i, j=0 |i〉〈 j| ⊗ NA→B(|i〉〈 j|).
Formally, a unilocal virtual n-broadcasting protocol for a

bipartite quantum state ρAB is defined as follows.

Definition 1 (Unilocal virtual n-broadcasting protocol).
For a bipartite state ρAB ∈ D(HA ⊗ HB), an HPTP map
�B→Bn is called a unilocal virtual n-broadcasting protocol for
ρAB if

ρAB = Tr\ABj [�B→Bn (ρAB)], ∀ j = 1, 2, . . . , n, (1)

where the identity map is omitted, Tr\ABj denotes taking par-
tial trace on the subsystems excluding ABj , and Bn is the
abbreviation of the subsystems B1B2 . . . Bn.

We note that if there is a unilocal virtual n-broadcasting
protocol �B→Bn for all quantum states ρAB ∈ D(HA ⊗ HB),
we call it a universal unilocal virtual n-broadcasting proto-
col. Equivalently, a universal unilocal virtual n-broadcasting
protocol �B→B1···Bn can be characterized by its Choi operator
J�

BBn as the following Lemma.
Lemma 1. An HPTP map �B→Bn is a universal unilocal

virtual n-broadcasting protocol if and only if

J�
BBj

= �BBj , j = 1, . . . , n, (2)

where �BBj denotes the unnormalized d ⊗ d maximally en-
tangled state on system BBj , J�

BBj
:= Tr\BBj [J

�
BBn ], and J�

BBn is
the Choi operator of �B→Bn .

Lemma 1 states that a universal unilocal virtual
n-broadcasting protocol can be described by its Choi op-
erator, which means we can check constraints on Choi
operators instead of constraints involving input and output
states. The proof can be found in the Appendix. One of the
remarkable and valuable findings in this paper is that there
indeed exists a universal virtual n-broadcasting protocol. As
a warm-up example, we present a universal unilocal virtual
two-broadcasting protocol as follows:

�B→B1B2 (ρAB) := ρAB1 ⊗ IB2

d
+ SB1B2

(
ρAB1 ⊗ IB2

d

)
− RB→B1B2 (ρAB),

where SB1B2 (·) denotes the swap operation between the
subsystem B1 and B2, RB→B1B2 (·) denotes the replacement
channel yielding the normalized d ⊗ d maximally entangled
state between subsystem B1 and B2 for any input state. Its Choi
operator can be written as

J
�B→B1B2
BB1B2

:= 1

d
�BB1 ⊗ IB2 + 1

d
�BB2 ⊗ IB1 − 1

d
�B1B2 ⊗ IB.

It is straightforward to check that J
�BB1B2
BB1

= J
�BB1B2
BB2

= �BB1 =
�BB2 . Consequently, �B→B1B2 is a universal unilocal vir-
tual two-broadcasting protocol by Lemma 1. Furthermore,
we extend our investigation to encompass the realm of
n-broadcasting, where we demonstrate the existence of a uni-
versal unilocal virtual n-broadcasting protocol as follows.

Proposition 2. For any bipartite quantum system AB, there
exists a universal unilocal virtual n-broadcasting protocol.

We demonstrate Proposition 2 by explicitly constructing an
HPTP map �′

B→Bn as follows:

�′
B→Bn (ρAB) :=

n∑
j=1

SB1Bj

(
ρAB1 ⊗ IB2...Bn

dn−1

)
− (n − 1)RB→Bn (ρAB), (3)
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FIG. 1. Unilocal (left) and bilocal (right) n-broadcasting for
bipartite state ρAB. The goal is for the map � to minimize the dis-
similarity between the states on ρAB j and ρAB in a certain measure.
Conventionally, � is a CPTP map, i.e., quantum channel. This paper
focuses on the scenario where � is an HPTP map.

where SB1Bj (·) denotes the swap operation between the sub-
systems B1 and Bj , and RB→Bn (·) denotes the replacement

channel yielding �B1B2 ⊗ IB3 ...Bn

dn−3 for any input state. By check-
ing its Choi operator and applying Lemma 1, we know it is a
universal unilocal n-broadcasting protocol.

Such a universal unilocal virtual n-broadcasting protocol
can be implemented via a quasiprobability decomposition
strategy [15,22,23] as shown in Fig. 2. Given an observable
O and M copies of a bipartite state ρAB shared between
Alice and Bob, a unilocal virtual n-broadcasting protocol can
be decomposed as �B→Bn = p1N1 − p2N2, where N1 and N2

are quantum channels [15]. In the mth round of sampling, Bob
samples a quantum channel N (m) ∈ {N1,N2} with probabil-
ity p(m) ∈ {p1/γ , p2/γ } where γ = p1 + p2. Then apply the
channel to ρAB obtaining ρ

(m)
ABn . Repeat this process M times to

obtain M copies of state {ρ (1)
ABn , ρ

(2)
ABn , . . . , ρ

(M )
ABn }. Without loss

of generality, if a global measurement is performed on a com-
putational basis on ABj , i.e., O = ∑

k λk|k〉〈k|, λk ∈ [−1, 1],
we construct

ξ := η

M

M∑
m=1

sgn(p(m) )λ(m) (4)

as an estimator of Tr[OρAB]. Subsequently, each bipartite sys-
tem ABj , where j = 1, 2, . . . , n, acquires the information of

Tr[OρAB] by measuring their subsystems in the eigenbasis of
O and postprocessing [22].

Note that for any bipartite system ABj , there are M copies
of quantum states ρ

(m)
ABj

, m = 1, 2, ..., M, each of which is

labeled by a classical bit sgn(p(m) ) where p(m) = p1 or p2.
Instead of directly transmitting the expectation value, ABj can
further apply any further quantum operations to these samples
and access the same correlation as AB through measurement
statistics. This universal unilocal virtual n-broadcasting proto-
col can apply to any state ρAB and any observable O. However,
it is impossible when one considers using one channel to
deal with this task. Consequently, we may extend the no-go
theorem for local broadcasting by involving HPTP maps in
the broadcasting procedure.

III. OPTIMAL VIRTUAL BROADCASTING

In this section, we explore the universal unilocal virtual
n-broadcasting protocol, which can be simulated by physical
operations with minimum costs. Treating the unilocal virtual
n-broadcasting protocol as a general HPTP map, its simula-
tion or sampling cost can be characterized via the following
physical implementability, which plays the key role in quan-
tifying the number of rounds required to reach the desired
estimating precision [15].

Definition 2 (Simulation cost of an HPTP map [15]). The
simulation cost (or physical implementability) of an HPTP
map � is defined as

ν(�) := log2 min{p1 + p2| � = p1N1 − p2N2,

p1, p2 � 0,N1,N2 ∈ CPTP}. (5)

By Hoeffding’s inequality, denoting γ = p1 + p2, it re-
quires at least O( γ 2

δ2 ln 2
ε

) samples of ρAB to achieve the
estimation error δ with a probability 1 − ε, for estimating
Tr(OρAB) by estimator ξ in Eq. (4). Based on the above,
we define the optimal simulation cost of a universal unilocal
virtual n-broadcasting protocol as follows.

Definition 3 (Optimal simulation cost). The optimal simu-
lation cost of all universal unilocal virtual n-broadcasting

FIG. 2. Illustration of using a universal virtual n-broadcasting �B→Bn = p1N1 − p2N2 to share shadow information between different
parties. For a given observable O and many copies of a bipartite state ρAB, we sample local quantum channels N1 and N2 with probability
p1/(p1 + p2) and p2/(p1 + p2), respectively. Iterating this procedure m times, we can obtain ρ

(k)
ABn for k = 1, 2, . . . , m. Afterward, each party

ABj , where j = 1, 2, . . . , n, obtains Tr[OρAB] since Tr[OρAB] = Tr[O Tr\AB j [�B→Bn (ρAB)]].
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protocols is defined as

γ ∗
n := min{ν(�B→Bn ) : �B→Bn ∈ Tn}, (6)

where Tn denotes the set of all universal unilocal vir-
tual n-broadcasting protocols. The corresponding proto-
col �∗

B→Bn := argmin{ν(�B→Bn ) : �B→Bn ∈ Tn} is the optimal
universal n-broadcasting protocols.

Combined with the properties that a universal virtual
broadcasting should satisfy as stated in Lemma 1, the optimal
simulation cost can be formalized as follows.

Proposition 3. The optimal simulation cost of all universal
unilocal virtual n-broadcasting protocols can be characterized
as the following SDP:

2γ ∗
n = min p1 + p2

subject to Tr\BBj

[
JN1

BBn − JN2
BBn

] = �BBj , j = 1, . . . , n

TrBn

[
JN1

BBn

] = p1IB,

TrBn

[
JN2

BBn

] = p2IB,

JN1
BBn � 0, JN2

BBn � 0, (7)

with variables JN1
BBn , JN2

BBn , p1, and p2. �BBj is the unnormalized
d ⊗ d maximally entangled state on system BBj .

Proof. Let Tn be the set of all universal unilocal virtual
n-broadcasting protocols, and J�

BBn be the Choi operator of
�B→Bn ∈ Tn. By definition of the simulation cost given in
Definition 2, there exist p1, p2 � 0 and N1,N2 ∈ CPTP such
that

ν(�BBn ) = log2(p1 + p2). (8)

The Choi operator of �BBn satisfies J�
BBn = p1ĴN1

BBn − p2ĴN2
BBn ,

where ĴN1
BBn and ĴN2

BBn denote the Choi operators of N1 and N2,
respectively. We further rewrite JN1

BBn := p1ĴN1
BBn and JN2

BBn :=
p2ĴN2

BBn for simplifying this optimization problem. According
to Lemma 1 and Definition 3, one can obtain the SDP in
Eq. (7), which completes this proof. �

We further present its dual SDP as follows:

max
n∑

j=1

Tr
[
XBBj �BBj

]
subject to Tr[ZB] � 1, Tr[KB] � 1,

ZB ⊗ IBn −
n∑

j=1

SB1Bj

(
XBB1 ⊗ IB2···Bn

)
� 0, (9)

KB ⊗ IBn +
n∑

j=1

SB1Bj

(
XBB1 ⊗ IB2···Bn

)
� 0,

( j = 1, . . . , n),

where XBBj , ZB, and KB are optimization variables, and SB1Bj

denotes the swap operator between system B and Bj . We retain
the derivation in the Appendix.

The above SDPs allow us to explore the optimal uni-
versal virtual broadcasting protocols that can achieve the

optimal simulation cost. Specifically, we give the analytical
optimal simulation cost for a universal unilocal virtual two-
broadcasting and obtain the optimal universal protocol.

Theorem 4 (Optimal simulation cost of virtual two-
broadcasting). The optimal simulation cost of all universal
unilocal virtual two-broadcasting protocols which broadcast
system B to B1B2 is given by

γ ∗
2 = log2

(
3 − 4

d + 1

)
, (10)

where d denotes the dimension of Hilbert spaces HB, HB1 ,
and HB2 .

Proof. First, we are going to prove 2γ ∗
2 � 3d−1

d+1 using the
primal SDP in Eq. (7). Denoting M = �BB1 ⊗ IB2 and N =
IB ⊗ FB1B2 , we shall show that {p1, p2, JN1 , JN2} is a feasible
solution, where p1 = 2d

d+1 , p2 = d−1
d+1 , and

JN1 := M + NMN + MN + NM

2(d + 1)
,

JN2 := 1

d2 − 2

(
I − d (M + NMN ) − (MN + NM )

d2 − 1

)
,

(11)

respectively. It is straightforward to check that the equality
constraints in Eq. (7) hold. For the inequality constraints, we
find that (JN1 )2 = JN1 and (JN2 )2 = 1

d2−2 JN2 . Thus, 1 and
1

d2−2 are unique non-negative eigenvalues of JN1 and JN2 ,
respectively, which means JN1 � 0 and JN2 � 0. Therefore,
{p1JN1 , p2JN2} is a feasible solution with the cost of 3d−1

d+1 ,
which implies 2γ ∗

2 � 3d−1
d+1 .

Second, we use dual SDP in Eq. (9) to show that 2γ ∗
2 �

3d−1
d+1 . We show that {XBB1 ,YBB2 , ZB, KB} is a feasible solution,

where

ZB = KB = 1

d
I and XBB1 = YBB2 = 2

d (d + 1)
�d − 1

2d
I.

(12)

Still, we can check that {XBB1 ,YBB2 , ZB, KB} satisfies the con-
straints SDP in Eq. (9). Specifically, we have I − M+NMN

d+1 � 0
since M+NMN

d+1 is a Hermitian matrix with a maximal eigen-
value of one [25]. Therefore, {XBB1 ,YBB2 , ZB, KB} is a feasible
solution. Finally, we further check the objective function,

Tr
[
XBB1�BB1

] + Tr
[
YBB2�BB2

] = 3 − 4

d + 1
, (13)

which yields 2γ ∗
2 � 3d−1

d+1 . Combining the primal part and the
dual part, we conclude that

γ ∗
2 = log2

(
3 − 4

d + 1

)
, (14)

which completes this proof. �
Proposition 5 (Optimal universal two-broadcasting pro-

tocol). The optimal universal two-broadcasting protocol is
given by �∗

B→B1B2
= p1N1 − p2N2, where p1 = 2d

d+1 , p2 =

012458-4
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d−1
d+1 , and

N1(ρAB) := d

d + 1
P (ρAB) + 1

d + 1
Q(ρAB),

N2(ρAB) := d2

d2 − 2
I (ρAB) − 2d2

(d2 − 2)(d2 − 1)
P (ρAB)

+ 2

(d2 − 2)(d2 − 1)
Q(ρAB), (15)

where d denotes the dimension of Hilbert spaces HB, HB1 ,
and HB2 , Q(ρAB) := 1

2 [FB1B2 (ρAB1 ⊗ IB2 ) + (ρAB1 ⊗ IB2 )FB1B2 ],
P (ρAB) := 1

2d [ρAB1 ⊗ IB2 + SB1B2 (ρAB1 ⊗ IB2 )], SB1B2 (·) is the
swap operation between B1 and B2 corresponding to the swap
operator FB1B2 := ∑d−1

i, j=1 |i j〉〈 ji|, and I (·) denotes the replace-

ment channel yielding 1
d2 IB1B2 .

Proof. We further denote M := �BB1 ⊗ IB2 and N := IB ⊗
FB1B2 for short. Based on the proof of Theorem 4, one can
find that there exists a virtual two-broadcasting protocol
�∗

B→B1B2
= p1N1 − p2N2 with the optimal simulation cost,

where p1 = 2d
d+1 , p2 = d−1

d+1 , and N1 and N2 are quantum
channels with Choi operators JN1 := M+NMN+MN+NM

2(d+1) and

JN2 := 1
d2−2 (I − d (M+NMN )−(MN+NM )

d2−1 ), respectively. Accord-
ing to the statement of Definition 3, we can refer to �∗

B→B1B2

as the optimal universal two-broadcasting protocol, which
completes this proof. �

Theorem 4 proposes the optimal universal virtual two-
broadcasting protocol, taking into account the sampling cost
required to broadcast the correlation inherent in the classical
information Tr[OρAB] with a desired estimating precision.
Note that what we obtained here is the minimum cost protocol
among all possible universal unilocal virtual two-broadcasting
protocols. We first find the HPTP protocol for the desired
simulation cost and then utilize the dual SDP in Eq. (7) to
establish the optimality of this protocol. Moreover, Theorem
4 reveals an intriguing relationship between the sampling cost
and the system’s dimension. As the dimension of the quan-
tum system grows, the simulation cost for universal virtual
two-broadcasting converges to a constant value of log3, which
means that even in high-dimensional quantum systems, the
simulation cost is still within a controllable range.

We further extend our investigation to the context of unilo-
cal virtual n-broadcasting, to analyze the change in simulation
cost in relation to the number of parties involved, i.e., from
system B to B1, . . . , Bn. In particular, we derive an upper
bound and a lower bound for the simulation cost of universal
virtual n-broadcasting.

Theorem 6 (Upper and lower bounds). The optimal simu-
lation cost of all universal unilocal virtual n-broadcasting
protocols which broadcast system B to B1 . . . Bn satisfies

log2

(
2nd

n + d − 1
− 1

)
� γ ∗

n � log2(2n − 1), (16)

where d denotes the dimension of Hilbert spaces HB and HBj

for j = 1, . . . , n.
Proof. We first show the upper bound on the minimum

simulation cost. According to Proposition 2, one can find that
the simulation cost of the universal protocol �′

B→Bn can be
an upper bound of γ ∗

n , i.e., γ ∗
n � ν(�′

B→Bn ). Then, rewrite the

FIG. 3. Simulation cost of universal unilocal virtual
n-broadcasting. Here, the dimensions of the Hilbert spaces HB

and HB j ( j = 1, . . . , n) are all equal to two. The x axis corresponds
to the number of parties on Bob’s side involved in the broadcasting.
The y axis corresponds to the simulation cost of the protocol.

universal virtual n-broadcasting protocol �′
B→Bn into the linear

combination of two quantum channels M1 and M2 as

�′
B→Bn = nM1 − (n − 1)M2, (17)

where the Choi operators of M1 and M2 can be writ-
ten as JM1 := 1

ndn−1

∑n
j=1 SB1Bj (�BB1 ⊗ IB2...Bn ) and JM2 :=

1
dn−1 �B1B2 ⊗ IBB3...Bn , respectively. Then, by definition, we
have ν(�′

B→Bn ) � log2(2n − 1), which directly gives γ ∗
n �

log2(2n − 1).
Second, we are going to derive the lower bound by show-

ing that {XBB1 , . . . , XBBn , ZB, KB} is a feasible solution of the
dual SDP in Eq. (7), where ZB = KB = IB

d , and XBB1 = · · · =
XBBn = 2

d (n+d−1)�d − 1
nd I . It is straightforward to check that

{XBB1 , . . . , XBBn , ZB, KB} satisfies the constrains of SDP in
Eq. (7). We further check the objective function

n∑
j=1

Tr[XBBj �BBj ] = 2nd

n + d − 1
− 1. (18)

According to the fact that the optimal solution of dual SDP in
Eq. (7) is a lower bound of the optimal solution of primal SDP
in Eq. (7), we have the following inequality:

log2

(
2nd

n + d − 1
− 1

)
� γ ∗

n , (19)

which completes the proof. �
Remarkably, in Fig. 3, one can find that the lower

bound matches the optimal simulation cost γ ∗
n in numeri-

cal experiments. Furthermore, according to Theorem 6, it is
straightforward to find that the lower bound converges to
the upper bound as the dimension of the quantum system
grows. These mean the upper bound is significantly valu-
able at a high system level. The simulation cost will not
exhibit exponential growth with the dimension of the system,
which suggests our capability to effectively tackle the unilocal
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virtual n-broadcasting task, even for a bipartite system with
a high dimension. In summary, Theorems 4 and 6 reveal
that engaging in virtual n-broadcasting not only enables the
acquisition of correlation of a bipartite quantum system en-
coded in the expectation values but also grants control over
the associated costs. These remind us that it is feasible to
employ nonphysical operations to overcome the limitations of
quantum mechanics at an acceptable cost.

IV. CONCLUDING REMARKS

In this work, we have proposed a framework known as
unilocal virtual quantum broadcasting, employing HPTP
maps. We have demonstrated the existence of a universal
unilocal virtual n-broadcasting protocol capable of distribut-
ing information from any bipartite quantum state to multiple
parties via local operations. Furthermore, we have formalized
the simulation cost of this broadcasting protocol as a semidef-
inite programming problem. Notably, we have provided an
analytical universal unilocal virtual two-broadcasting protocol
to clarify the optimal simulation cost. By accurately character-
izing simulation cost, we found that virtual two-broadcasting
remains applicable in high-dimensional quantum systems, as
the corresponding simulation cost converges to a constant log3
with increasing dimensions. Furthermore, we have provided
upper and lower bounds on the simulation cost of the virtual
n-broadcasting protocol and demonstrated that the lower
bound converges to the upper bound log2(2n − 1) that is
independent of the system dimension. The findings above
demonstrate the practical potential of our virtual broadcast-
ing protocol, as the simulation costs are always controllable.
It is worth noting that Parzygnat et al. [10] have explored
broadcasting tasks via a virtual process. They focused on
the conditions that virtual quantum broadcasting maps should
fulfill and provided physical interpretations for their canon-
ical quantum broadcasting map from multiple perspectives.
Our work generalizes the virtual broadcasting [10] to virtual
unilocal broadcasting by allowing a reference system and
shows that unilocal virtual broadcasting maps can efficiently
accomplish the broadcasting task through simulated physical
operations with minimal cost. It is noteworthy that if system
A is trivial, the canonical virtual broadcasting map presented
in Ref. [10] is also a feasible two-broadcasting protocol but
not the one with the minimum simulation cost. Specifically,
one can check that the simulation cost of the canonical virtual
broadcasting map is log2 d .

Our results open new avenues for understanding and har-
nessing the unique properties of quantum mechanics. This
demonstrates the possibility of overcoming the limitations
of quantum mechanics using controllable nonphysical op-
erations. The exploration of virtual broadcasting not only
broadens our comprehension of quantum information distri-
bution [26–28] but also provides a valuable tool for advancing
quantum communication and computing technologies [29].
Future work will focus on the implementation of quantum
circuits of our proposed virtual broadcasting protocol and its
further practical applications in the areas of quantum commu-
nication and computing.

Note added. Recently, we became aware of the arXiv
preprint of a closely related work [10] that independently

proposed the idea of virtual broadcasting. The main distinc-
tion is discussed in the above concluding remarks.
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APPENDIX: OPTIMAL UNILOCAL VIRTUAL
QUANTUM BROADCASTING

1. The proof of Lemma 1 and Proposition 2

Lemma 1. An HPTP map �B→Bn is a universal unilocal
virtual n-broadcasting protocol if and only if

J�
BBj

= �BBj , j = 1, . . . , n, (A1)

where �BBj denotes the unnormalized d ⊗ d maximally en-
tangled state on system BBj , J�

BBj
:= Tr\BBj [J

�
BBn ], and J�

BBn is
the Choi operator of �B→Bn .

Proof. Considering the “if” part, for ∀ j ∈ {1, . . . , n},
Tr\BBj [J

�
BBn ] = �BBj implies that

TrB
[
ρ

TB
AB Tr\BBj

[
J�

BBn

]] = ρAB, (A2)

for all states ρAB ∈ D(HA ⊗ HB). For the “only if” part, we
assume �B→Bn is a universal unilocal virtual n-broadcasting
protocol. Then, for any input state ρAB ∈ D(HA ⊗ HB), we
have

ρAB = Tr\ABj

[
ρ

TB
ABJ�

BBn

] = TrB
[
ρ

TB
AB Tr\BBj

[
J�

BBn

]]
, (A3)

which means Tr\BBj [J
�
BBn ] is a Choi operator of the identity

operator from B to Bj , i.e., Tr\BBj [J
�
BBn ] = �BBj . Thus, we

complete the proof. �
Proposition 2. For any bipartite quantum system AB, there

exists a universal unilocal virtual n-broadcasting protocol.
Proof. The universal unilocal virtual n-broadcasting proto-

col �′
B→Bn can be written as

�′
B→Bn (ρAB) :=

n∑
j=1

SB1Bj

(
ρAB1 ⊗ IB2···Bn

dn−1

)
− (n − 1)RB→Bn (ρAB), (A4)

where SB1Bj (·) denotes the swap operation between the sub-
systems B1 and Bj , and RB→Bn (·) denotes the replacement

channel yielding �B1B2 ⊗ IB3 ...Bn

dn−3 for any input state.
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Then, the Choi operator of �′
B→Bn is

J�′
BBn := 1

dn−1
SB1Bj

(
n∑

j=1

�BB1 ⊗ IB2...Bn

)

− n − 1

dn−1
�B1B2 ⊗ IBB3...Bn , (A5)

Then, it is straightforward to check that

Tr\BBj

[
J�′

BBn

] = �BBj , j = 1, . . . , n (A6)

Hence, we conclude that the HPTP map with Choi op-
erator J�′

BBn achieves n-broadcasting for all states ρAB by
Lemma 1. �

2. SDP for unilocal virtual broadcasting protocol

Proposition 3. The optimal simulation cost of all universal
unilocal virtual n-broadcasting protocols can be characterized
as the following SDP:

2γ ∗
n = min p1 + p2

subject to Tr\BBj

[
JN1

BBn − JN2
BBn

] = �BBj , j = 1, . . . , n

TrBn

[
JN1

BBn

] = p1IB,

TrBn

[
JN2

BBn

] = p2IB,

JN1
BBn � 0, JN2

BBn � 0, (A7)

with variables JN1
BBn , JN2

BBn , p1, and p2. �BBj is the unnormalized
d ⊗ d maximally entangled state on system BBj .

Now, we derive its dual SDP for the case of two-
broadcasting. Based on the primal SDP, the Lagrange function
can be written as

L(XBB1 ,YBB2 , ZB, KB, JN1 , JN2 , p1, p2) (A8)

:= p1 + p2 + 〈XBB1 , �BB1 − TrB2 [JN1 − JN2 ]〉
+〈YBB2 , �BB2 − TrB1 [JN1 − JN2 ]〉

+〈ZB, p1IB − TrB1B2 [JN1 ]〉
+〈KB, p2IB − TrB1B2 [JN2 ]〉 (A9)

= Tr[XBB1�BB1 ] + Tr[YBB2�BB2 ]

+p1(Tr[ZB] + 1) + p2(Tr[KB] + 1)

+〈−ZB ⊗ IB1B2 , JN1〉 + 〈−KB ⊗ IB1B2 , JN2〉
+〈−XBB1 ⊗ IB2 , JN1 − JN2〉
+〈−YBB2 ⊗ IB1 , JN1 − JN2〉, (A10)

where XBB1 , YBB2 , ZB, and KB are Lagrange multipliers. Then,
the Lagrange dual function can be written as

G(XBB1 ,YBB2 , ZB, KB)

:= inf
JN1�0,JN2�0,p1,p2

L(p1, p2, XBB1 ,YBB2 ,

× ZB, KB, JN1 , JN2 ). (A11)

Since JN1 � 0 and JN2 � 0, it holds that Tr[ZB] � −1,
Tr[KB] � −1,

−ZB ⊗ IB1B2 − (XBB1 ⊗ IB2 + YBB2 ⊗ IB1 ) � 0,

−KB ⊗ IB1B2 + (XBB1 ⊗ IB2 + YBB2 ⊗ IBB1 ) � 0,

otherwise, the inner norm is unbounded. Redefine ZB as −ZB

and KB as −KB. Then, we obtain the following dual SDP:

max Tr[XBB1�BB1 ] + Tr[YBB2�BB2 ]

subject to Tr[ZB] � 1,

Tr[KB] � 1,

ZB ⊗ IB1B2 − XBB1 ⊗ IB2 − YBB2 ⊗ IB1 � 0,

KB ⊗ IB1B2 + XBB1 ⊗ IB2 + YBB2 ⊗ IB1 � 0.

(A12)

It is worth noting that the strong duality is held by Slater’s
condition. Similarly, it is straightforward to generalize it to
the case of n-broadcasting shown in Eq. (9).
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