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Cluster states are the essential resource used in the implementation of fusion-based quantum computation
(FBQC). We introduce a method to generate high-fidelity optical cluster states by utilizing the concept of unitary
averaging. This error-averaging technique is entirely passive and can be readily incorporated into the proposed
PsiQuantum FBQC architecture. Using postselection and the redundant encoding of fusion gates, we observe an
enhancement in the average fidelity of the output cluster state. As a generalization, we also show an improvement
in the linear optical Bell-state measurement (BSM) success probability when the BSM is imperfect.
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I. INTRODUCTION

Quantum computing platforms must inevitably deal with
noise. Achieving perfect isolation from the environment or
any implementation imperfections, on a device where one
wishes to initialize and read out data, is likely impossible.
Quantum error correction is a set of methods for which errors
can be managed, provided certain guarantees are made on the
performance of the components of the computer. The cost
of quantum error correction is the increase in computing re-
sources by way of more qubits and more operations, to achieve
the same computation.

Optical quantum computing platforms [1], while sharing
similarities to other platforms through the abstraction of the
qubit, have physically different operations and sources of
error. For example, optical systems naturally have access to
very large system state sizes through the multitude of modes
of propagation available. In fact, a large amount of effort is
needed to restrict the systems into which photons evolve, to
maximize the quantum interference paths between photons.

The overwhelming drawback of optical quantum comput-
ing is the lack of strong nonlinearity (like that of [2]). To
achieve quantum computing gates, the output state of a single
photon needs to be controlled by the state of another photon.
This description of the interaction with photons exactly de-
scribes a strongly nonlinear effect. One solution to this is the
use of off-line resource states coupled with linear evolution
and quantum optical detection [3,4]. The nonlinear parts of
the computation are entirely contained in state preparation and
detection, not in evolution.

There are several possible choices within this paradigm.
One particularly promising choice is that of the cluster state
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based on fusion gates with single-photon detection [5]. A
large entangled state, or the cluster state [6], is built by
“fusing” together smaller entangled states. When this large
entangled state is prepared as a resource, it is consumed by
making local measurements to progress the computation. It
should be noted that the construction and measurement of the
large entangled state can occur simultaneously, rather than
generating a large cluster state up front. This approach allows
for more efficient resource utilization and parallelization of
quantum operations.

In this paper, we consider the combination of optical-
based error detection schemes with the fusion-based quantum
computation (FBQC) platform. Specifically, we combine the
redundant encoding of linear scattering matrices over many
optical modes considered in [7,8].

The redundant encoding scheme is implemented by taking
many copies of a desired linearly interacting network and
constructing an interferometer with an interference path that
filters out the defects present in any particular linear network.
This scheme acts to detect continuous errors within device
components. The effect of this construction is to filter the
errors and to more likely give a higher quality output than
that of using a single interferometer. The redundant encoding
scheme requires more modes but not more photons and does
not need nonlinear evolution either.

The fusion gates of the FBQC platform are a fundamental
component and are very commonly utilized. The standard
design for this fusion gate involves a linear interaction fol-
lowed by photon counting. To accommodate many fusion
gates, many optical modes will be required. However, these
conditions are exactly those for which the redundant encoding
scheme operates. Hence, this method of detecting errors is ide-
ally suited to linear optical devices which may be candidates
for the FBQC platform.

The unitary averaging of the redundant encoding scheme
also has some other practical benefits. It is naturally a passive

2469-9926/2024/110(1)/012457(9) 012457-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1983-3059
https://ror.org/00rqy9422
https://ror.org/046ak2485
https://ror.org/03f0f6041
https://ror.org/05ect4e57
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.012457&domain=pdf&date_stamp=2024-07-24
https://doi.org/10.1103/PhysRevA.110.012457


SINGH, LUND, AND ROHDE PHYSICAL REVIEW A 110, 012457 (2024)

FIG. 1. Representation of the action of a linear interaction on m
input bosonic modes represented by their annihilation operators aj .
U represents the matrix (Ui j ) of Eq. (1).

scheme, removing the need for ancillary photons or circuits,
and does not need to perform a feed-forward operation to
achieve the error filtering effect. These kinds of benefits will
become important in the resource-constrained considerations
of near-term quantum computing architectures, as was re-
cently proposed for FBQC as published by PsiQ [9].

In the analysis we present, we use computational symbolic
manipulations to present our results. Given the extremely
large number of terms in these expressions, a full presentation
of these is not possible. We, therefore, present the methodol-
ogy used to form these manipulations and give results based
on the properties of the filtered output state. This allows us to
quantify the improvement that the error filtering effect has.

We have structured this paper as follows: In Sec. II we
give the theoretical background of the redundant encoding
process and the FBQC platform. Section III contains a de-
tailed description of the ideal fusion gate operation that we
build upon in the later sections. In Sec. IV we present results
on the performance of individual fusion circuits under the
unitary averaging framework. Section V extends the results of
Sec. IV to show the improvement in linear optical Bell-state
measurement (BSM) as a result of averaging. Finally, we also
provide some discussion around our results and present our
conclusions.

II. BACKGROUND

In this section, we provide the theoretical background of
the unitary averaging framework, FBQC, and cluster-state
generation using fusion gates. A more detailed description of
the fusion gate operation is contained in the next section.

A. Unitary averaging

For any general linear interaction of modes UU , the Heisen-
berg evolution of m annihilation operators, as shown in Fig. 1,
is described by

UU aiU†
U =

m∑
j=1

Ui ja j, (1)

where 1 � i � m, and Ui j are entries of a unitary matrix
describing the linear interaction, which is different from UU

but determined by it.
In experimental settings, it might not always be possible

to build the desired unitary U with the required precision.

FIG. 2. Setup to implement an averaged unitary action on m
input modes through the encoding of each original input mode with
N − 1 vacuum modes using N-dimensional DFT operators, N re-
dundant copies of the m-mode unitary labeled Ui where 1 � i � N ,
decoding with DFTs again, and postselection on the vacuum modes.
The DFT operators can be thought of as higher-dimensional beam
splitters that create an equal amplitude superposition of input modes.

The parameters of U might follow any probability distribu-
tion depending on the experimental realization and fabrication
methods. The unitary averaging framework is advantageous
in such situations where access to imperfect but multiple
unitaries is available.

In the encoding process, each input mode is mixed with
N − 1 ancilla vacuum modes by passing them through a dis-
crete Fourier-transform (DFT) gate. The output modes of the
DFT are related to the input and vacuum modes as

a j,r −→ 1√
N

N−1∑
k=0

ωrka j,k, (2)

where 1 � j � m, 0 � r � N − 1, and ω = e−i2π/N is the
primitive N th root of unity. Therefore, in the notation used,
a j,0 are the original input modes and a j,i, such that i ∈
{1, 2, . . . , N − 1}, are the vacuum modes as shown in Fig. 2.

The corresponding output modes of the DFTs are then
passed through the redundant copies of unitary U . The an-
nihilation modes after passing through the N copies, namely
U1,U2, . . . , and UN , evolve as

a j,r −→
m−1∑
l=0

(Ur )l jal,r . (3)

The modes are then decoded in the end by reapplying the
DFT gates, which also follows the evolution described by (2).
The complete evolution, from encoding, redundant unitary
implementation, and decoding, can be written as

a j,r −→ 1

N

m−1∑
l=0

N−1∑
k′,k=0

(Uk′ )l jω
(r+k)k′

al,k . (4)
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After postselection on the cases where no photons are
present in the output of redundant modes (k = 0) the effective
evolution of just the original input modes (r = 0) is given by

a j,0 −→ 1

N

m−1∑
l=0

N−1∑
k′=0

(Uk′ )l jal,0, (5)

which can be rewritten as

a j,0 −→
m−1∑
l=0

(MN )l jal,0 (6)

where MN = 1
N

∑
k Uk .

Concisely, the relation (6) describes the effective evolution
of the original modes. In effect, upon successful postselection
of zero photons in the ancilla modes, the action of Fig. 2 re-
duces to Fig. 1 for large N when the parameters of U1,U2, . . . ,

and UN have their mean value equal to the parameters of the
desired unitary U . Furthermore, we also note that to imple-
ment unitary averaging, the choice of the DFT matrix in the
encoding and decoding steps is arbitrary and it can be replaced
by any balanced network such as the generalized Hadamard
interferometer in dimensions where log2 N is a positive
integer.

B. Fusion-based quantum computation

The idea behind FBQC, first introduced in [5], is to perform
specific measurements in a certain basis but in no particular
order on an entangled state constructed by fusing together
smaller resource states of a fixed size.

PsiQ recently proposed an optical implementation of
FBQC using dual-rail encoded qubits. The resource states
used in the architecture are cluster states such that each qubit
i in the state is stabilized by the operator Xi

∏
j Z j , where j ∈

{nearest neighbors of the qubit i}. The final entangled state
is created by repeatedly applying type-II fusion gates on the
outputs of fused resource states.

However, in conjunction with the encoded qubits utilized
in PsiQ’s architecture, we propose the use of encoded fusion
gates as well. Adding ancillary modes with vacuum states
would be feasible in PsiQ’s integrated photonic circuits and
can provide significant improvement in the quality of output
cluster states at a low cost.

C. Cluster-state generation

In this section, we look into the generation of a larger clus-
ter state using fusion gate operations on two cluster states of
smaller lengths. Although both type-I and type-II fusion gates,
shown in Fig. 3, can be used for this purpose, there are a few
issues related to the experimental use of type-I fusion gates in
practice. Their failure, which happens with 50% probability,
breaks the bond between the end qubit and the remaining
cluster, creating issues in scaling. Furthermore, it also requires
the use of photon-number resolving detectors which is not
always viable. Type-II fusion gates offer solutions for both
these issues and hence we consider only them for brevity. The
results upon averaging however are the same for type-I fusion
gates as well.

FIG. 3. The two types of fusion gates are demonstrated here.
Type-I fusion gates consist of a single polarizing beam splitter (PBS),
a π/4 waveplate on one of the PBS output arms, and a photon-
number resolving detector (PNRD). Type-II fusion gates, on the
other hand, require a single PBS, four π/4 waveplates, and two
polarization-resolving single-photon (on-off) detectors.

To demonstrate the working of type-II fusion gates, we
use two Bell pairs in polarization encoding as our starting
resources and apply the gate on the one end qubit of each Bell
pair. In this encoding, |H〉 and |V 〉 represent the horizontally
and vertically polarized photons respectively.

The input product state of Bell states |ψin〉, which are in
turn equivalent to the two-qubit (or length 2) cluster states
|HH〉 + |HV 〉 + |V H〉 − |VV 〉, is given by

|ψin〉 = 1
2 (|HH〉 + |VV 〉)12(|HH〉 + |VV 〉)34. (7)

After evolution through the first layer of waveplates, polariz-
ing beam splitter (PBS), the second layer of waveplates, and
postselection on single-photon measurements on both modes
2 and 3, the output state without any normalization is

|ψout〉 = (| + + + +〉 + | − − − −〉)1234. (8)

Depending on the parity of the two measured photons,
which could either be even (if their polarizations are the same)
or odd (if their polarizations are different), we can get either
of the two following states respectively, each occurring with
25% probability:

|ψeven
out 〉 = (|HH〉 + |VV 〉)14/

√
2, (9)

|ψodd
out 〉 = (|HV 〉 + |V H〉)14/

√
2. (10)

Note that for the creation of |ψeven
out 〉, both HH and VV

measurements contribute equally with 12.5% probability.
Similarly, for the creation of |ψodd

out 〉, both HV and V H mea-
surements contribute equally with 12.5% probability.

Upon generalization, it can be shown that any two linear
cluster states of length n and m can be fused together using
type-II gates to create another linear cluster state of length
(n + m − 2) with 50% probability. In the case of failures,
which happen half the time, the end qubits upon which the fu-
sion was implemented get destroyed, and we are left with two
linear cluster states of lengths n − 1 and m − 1 respectively.
The process of fusion can then be repeated on these smaller
cluster states.

However, creating larger linear cluster states alone does not
suffice to perform universal quantum computation. Therefore,
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FIG. 4. Type-II fusion gate in the dual spatial mode encoding
consisting of four beam splitters and a swapping operation between
the second and fourth modes, represented by the dotted lines. A per-
fect fusion gate has all the beam splitters with a reflectivity of 50%.
Our noise model considers the fusion gate that might have imperfect
beam splitters with reflectivity ηu, ηv , ηx , and ηy respectively which
can follow a uniform probability distribution centered around 50%
reflectivity as shown in Eq. (12).

to address this issue, the same fusion gates can then be used
to create cluster states with a two-dimensional geometry as
shown in [5].

III. GENERAL TYPE-II FUSION GATE

We prefer to work with dual-rail encoded qubits because
of their error-detection property, where both photon loss and
photon contamination can be detected by the total photon
count in the modes [10]. Furthermore, we choose the dual
spatial mode encoding as done in [10] which circumvents the
need for polarization resolving detectors. In this encoding,
the ith single photon is encoded into two modes where its
presence in the top or bottom mode can be defined as the basis
states |Hi〉 and |Vi〉 respectively.

Within the dual spatial mode encoding of qubits, the wave-
plates can be implemented using beam splitters, and the PBS
through swapping operations of certain spatial modes. The
type-II fusion gate in dual-spatial mode encoding has been
shown in Fig. 4.

In the following description of the type-II fusion gate, we
assume perfect SWAP gates but erroneous beam splitters, since
SWAP gates are in general easy to implement in the selected
encoding. Then, the matrix description of the SWAP gate ex-
changing the second and fourth mode can be written as

SWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠,

and the B1 matrix is given by

B1 =

⎛
⎜⎜⎜⎝

√
ηu

√
1 − ηu 0 0

−√
1 − ηu

√
ηu 0 0

0 0
√

ηv
√

1 − ηv

0 0 −√
1 − ηv

√
ηv

⎞
⎟⎟⎟⎠,

representing the first layer of beam splitters of reflectivities
ηu and ηv in the fusion gate. B2 can similarly be written by
replacing ηu and ηv in B1 by ηx and ηy respectively.

A general type-II fusion gate matrix in dual spatial mode
encoding in the (H1,V1, H2,V2) basis, as represented in Fig. 4,

FIG. 5. Probabilities of getting even-parity (a) and odd-parity
(b) photon measurements as a function of the reflectivities of the
beam splitters in the type-II fusion gate shown in Fig. 4 under
the simplification ηu = ηx and ηv = ηy. Note that their sum, i.e.,
Peven + Podd, remains constant at 50% probability.

can then be written as

U (ηu, ηv, ηx, ηy) = B2(ηx, ηy) × SWAP × B1(ηu, ηv ).

When the beam splitters are perfect, i.e., ηu = ηv = ηx =
ηy = 1/2, the application of type-II fusion gates on the two
Bell pairs creates perfect (100% fidelity) Bell pairs |ψeven

out 〉
and |ψodd

out 〉 as described in Eqs. (9) and (10), each with a 25%
probability, i.e., Peven and Podd respectively. Therefore, the
perfect type-II fusion gate creates Bell states with a total prob-
ability, Psucc = 50%, since Psucc = Peven + Podd, corresponding
to single-photon measurements in the output modes (H1,V1)
and (H2,V2).

For arbitrary reflectivities ηu, ηv, ηx, and ηy, Psucc remains
constant at 50%. However, the individual components of Psucc

are a function of these reflectivities, as shown in Fig. 5 for the
special case of ηu = ηx and ηv = ηy. Moreover, the descrip-
tion of the fidelity of the corresponding output states is also a
function of these reflectivities in general.

In Table I, we consider the different measurement out-
comes that contribute to the even- and odd-parity terms. The
relation between their respective probabilities can then be
written as

Peven = PHH + PVV , Podd = PHV + PV H . (11)

012457-4



OPTICAL CLUSTER-STATE GENERATION WITH UNITARY … PHYSICAL REVIEW A 110, 012457 (2024)

TABLE I. All possible two-photon measurement outcomes of the
type-II fusion gate which can be deemed successful. These can be
further categorized into even- or odd-parity photon measurements,
i.e., the two measured photons have the same or opposite polariza-
tions respectively. For each of the successful measurement schemes,
we define the corresponding success probability of creating a larger
cluster state, the actual output states (obtained after implementation
of an imperfect fusion gate), and the normalized fidelity of the actual
output state. Note that for even-parity (odd-parity) measurements, the

target state is the |ψ+〉(|φ+〉) Bell state.

Polariza- Success Output Normalized
Parity tions probability state fidelity

Even HH PHH |ψHH 〉 |〈ψHH |ψ+〉|2/PHH

VV PVV |ψVV 〉 |〈ψVV |ψ+〉|2/PVV

Odd HV PHV |ψHV 〉 |〈ψHV |φ+〉|2/PHV

V H PV H |ψV H 〉 |〈ψV H |φ+〉|2/PV H

We further see that PHH = PVV and PHV = PV H . Therefore
Eq. (11) reduces to Peven = 2PHH = 2PVV and Podd = 2PHV =
2PV H .

IV. FUSION-GATE AVERAGING SETUP

In this section, we focus on analyzing the performance of
individual fusion circuits under the unitary averaging frame-
work. While we do not directly examine the impact on large
cluster-state generation, the improved fidelity of individual fu-
sion operations is expected to positively influence the overall
quality of the larger cluster state in FBQC.

Experimental realizations of type-II fusion gates may
encounter imperfections within their constituent elements.
Assuming some realistic probability distribution for the pa-
rameters of these constituent elements, perfect realization of
type-II fusion gates is feasible when all parameters are equal
to the mean of their respective distributions. Alternatively, if
deviations occur, an averaging scheme, outlined in Fig. 6(a),
can be employed to converge towards these mean parameter
values.

Within this framework, we explore the effect of the encod-
ing level, i.e., redundant fusion gate instances, on the success
probability and normalized fidelity of the output state. For the
sake of brevity, our analysis focuses solely on the output state
when any one of the four possible measurement outcomes
described in Sec. III is observed. Specifically, we consider
outcomes where both the measured photons are horizontally
polarized, i.e., the HH measurement scheme is realized, and
the same treatment can be generalized to the other three mea-
surement schemes as well. As depicted in Table I, our interest
lies in quantifying the probability (PHH ) of obtaining the
HH measurement outcome and the normalized fidelity (F HH

norm)
between the target and actual output states postselected on
measuring two photons in the HH polarization. As mentioned
in Table I, we define F HH

norm = F HH/PHH .
In the noise model, we assume that the reflectivities of the

beam splitters of the unitaries are independent and identically
distributed random variables. These reflectivities of the beam
splitters belonging to the ith fusion gate Ui in Fig. 6(b) are
represented by ηu

i , η
v
i , η

x
i , and η

y
i respectively. Furthermore,

FIG. 6. Explicit description of averaging over two copies
(N = 2) of type-II fusion gates denoted by U1 and U2 with beam split-
ter reflectivities η

u,v,x,y
1 and η

u,v,x,y
2 respectively (a) and the general

type-II fusion gate averaging over N copies of fusion gates denoted
by Uj having reflectivities ηi

j , where 1 � j � N and i ∈ {u, v, x, y}
(b). After encoding and before the decoding, necessary mode permu-
tations are made to implement the parallel fusion gates, as has been
explicitly shown in (a) using the orange and blue color encoding.
All the first (second) output modes of the encoded beam splitter in
orange (blue) are sent to the first (second) unitary in the parallel
fusion step. This can similarly be extended to higher encoding levels
as in (b) where explicit mode swaps are not shown for brevity.

we note that although the unitary averaging framework works
for all probability distributions owing to the central limit the-
orem, the following results assume a uniform distribution of
the variables of the following form for ease of computation:

ηz
i ∼ V [0.5 − m, 0.5 + m], (12)

∀i ∈ {1, 2, . . . , N}, and z ∈ {u, v, x, y}, where V represents
the continuous uniform distribution and m is some variable
that we sweep over that describes the distance away from
the perfect reflectivity. Therefore, the fusion gates are perfect
when m=0 and show erroneous behavior as m → 0.5.

Although in the present description of the unitary aver-
aging framework we assume perfect encoding and decoding,
it is known that the corresponding errors can be suppressed
to the first order as shown in [11]. In the small noise limit
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FIG. 7. Average trace distance between the perfect fusion gate
when both beam splitters have reflectivity 1/2 and the average of
fusion gates when the BSM reflectivities follow the distribution
mentioned in Eq. (12), as a function of m, i.e., distance away from
the perfect reflectivity. The results are plotted for different encoding
numbers N such that the solid orange line represents N = 1, the
dashed blue line represents N = 2, and the dot-dashed green line
represents N = 3. The trace distance has been averaged only 50
times which causes the spread in the plot. For averages over larger
samples, the average trace distance should converge to different lines
for various encoding levels.

where additive approximations of the averaged unitaries are
valid, they further derive analytical approximations of the
fidelity of the output states as Fnorm = P−1

succ(1 − 2ν + 2ν2),
where, Psucc = 1 − 2ν + 2ν/N + 2ν2 − 2ν2/N is the success
probability of the averaging scheme, ν is the variance of the
additive noise acting on the averaged unitaries, and N is the
encoding level. This result justifies our method of disregarding
encoding and decoding errors in the small noise limit.

Assuming this model, we plot the average trace distance
between the average of multiple fusion unitaries and the per-
fect fusion gate as a function of the noise in the averaged
unitaries in Fig. 7. Note that for any two matrices ρ and
σ , the trace distance is given by (1/2)Tr

√
(ρ − σ )†(ρ − σ ).

As seen in the plot, on average this distance decreases with
the increasing encoding levels, validating the improvement
provided by unitary averaging, i.e., the average of the noisy
unitaries converges to the target unitary as the number of the
noisy unitaries is increased.

While the quality enhancement of the averaged unitary is
notable, it comes at the expense of success probability. The
overall success probability of an HH measurement scheme in
an averaged fusion gate declines with increasing encoding, as
depicted in Fig. 8. It is important to note that this behavior
is not unique to the HH measurement; it is observed across
all four possible measurement combinations (HH , HV , V H ,
and VV ). Consequently, the total success probability of per-
forming an averaged fusion gate as a function of encoding
follows the same trend as depicted in Fig. 8, but is scaled by a

FIG. 8. PHH or the probability of measuring two photons in the
HH configuration, i.e., in the first and third nonancillary output
mode, as a function of m. Starting from 12.5% when no errors are
present, it shows the decline in the success probability of measuring
two photons in the HH configuration with increasing error m for en-
coding levels N = 1 (solid orange line), 2 (dashed blue line), and 3
(dot-dashed green line).

factor of 4 due to the contributions from all four measurement
possibilities.

As a consequence of the improved fidelity of the out-
put state and the declining success probability for increasing
encoding levels, the normalized fidelity F HH

norm, i.e., the ra-
tio of the fidelity of the output state of an averaged fusion
gate and the probability of generating that output state,
also increases with the number of encoding N as shown in
Fig. 9). To illustrate this tradeoff quantitatively, consider a
realistic error level of m = 0.15, representing a 15% vari-
ation in beam splitter reflectivity. At this error level, we
observe that the normalized fidelity improves from approx-
imately 0.97 for N = 1 to 0.989 for N = 3, a modest 1.9%
increase. Concurrently, the success probability of the HH
measurement reduces from 0.125 for N = 1 to 0.122 for
N = 3, a 2.4% decrease. This improvement in normalized
fidelity, though seemingly small for a single fusion opera-
tion, can substantially enhance the overall cluster-state fidelity
when scaled to multiple fusion steps in a large-scale FBQC
implementation.

V. BELL-STATE MEASUREMENT AVERAGING

The standard probabilistic linear optical BSM device,
along with its boosted versions utilizing ancillary resources,
has been described in [12–14]. It is a specific instance of
the general fusion gate described in Fig. 4 where ηu = 1 and
ηv = 0, and is analyzed here in greater detail because of its
ubiquity as a subroutine in most quantum algorithms. In the
dual spatial rail encoding for the H1V1H2V2 basis, the BSM is
shown in Fig. 10.
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FIG. 9. Improvement in the normalized fidelity F HH
norm for higher

encoding levels N . F HH
norm is defined as the fidelity of the output cluster

state generated upon the postselection of two single photons in HH
polarization, i.e., in the first and third nonancillary output modes in
Fig. 6(b). The results here are plotted for different encoding num-
bers N such that the solid orange line represents N = 1, the dashed
blue line represents N = 2, and the dot-dashed green line represents
N = 3.

The action of this BSM on the four Bell states is as follows:

|ψ+〉 = 1√
2

(|1001〉 + |0110〉) → 1√
2

(−|1100〉 + |0011〉),

(13)

|ψ−〉 = 1√
2

(|1001〉 − |0110〉) → 1√
2

(|1001〉 − |0110〉),

(14)

|φ+〉 = 1√
2

(|1010〉 + |0101〉)

→ 1

2
(−|2000〉 − |0200〉 + |0020〉 + |0002〉),

(15)

FIG. 10. A standard Bell-state measurement device in the
H1V1H2V2 basis. Following the convention used in [10], the verti-
cal bars represent beam splitters between the corresponding optical
modes and not controlled phase gates.

TABLE II. Possible measurement statistics of the different Bell
state inputs for a Bell-state measurement setup where all beam
splitters have reflectivity 50% (represented by � only) and for any
arbitrary beam splitters (represented by both × and �). In the case
of perfect beam splitters, the BSM outcomes for |ψ+〉 and |ψ−〉 are
mutually exclusive and hence both these states can be distinguished
perfectly. Imperfect beam splitters introduce common measurement
statistics for these Bell states, making them indistinguishable.

|ψ+〉 |ψ−〉 |φ+〉 |φ−〉
a2 √ √
b2 √ √
c2 √ √
d2 √ √
ab

√
ac × ×
ad × √
bc × √
bd × ×
cd

√

|φ−〉 = 1√
2

(|1010〉 − |0101〉)

→ 1

2
(−|2000〉 + |0200 + |0020〉 − |0002〉). (16)

Following the mode naming convention used in Fig. 10,
we can easily represent through Table II the possible mea-
surement outcomes of the four Bell states after the BSM
procedure. When the reflectivity of beam splitters in the BSM
is perfect, i.e., ηx = ηy = 1/2, the possible measurement out-
comes are shown by the � symbol. Note that in Table II, only
the measurement terms corresponding to the |ψ+〉 and |ψ−〉
states are mutually exclusive and hence these two states can
always be perfectly discriminated by the BSM.

For any ηx = ηy 
= 1/2, extra measurement combinations
are possible and have been represented by the × symbol. The
measurement outcomes of even the |ψ+〉 and |ψ−〉 states do
not remain mutually exclusive anymore. Note that the mea-
surement outcomes of the |ψ−〉 Bell state remain unchanged
even when both the beam splitters have the same but arbitrary
reflectivity.

Since the BSM outputs of |φ+〉 and |φ−〉 have the same
support regardless of the beam splitter reflectivities, we only
investigate the effect of BSM averaging on the discrimination
of |ψ+〉 and |ψ−〉. Moreover, as the BSM outputs of the |ψ−〉
state remain unaffected by the reflectivities, we can further
choose to only examine |ψ+〉 under BSM averaging. Using
Eq. (13), we compute the normalized fidelity of its corre-
sponding output state |ψ+

out (η)〉 as follows:

Fnorm = F

Psucc
=

∣∣〈ψ+
out (η)

∣∣ |0011〉−|1100〉√
2

|2
|〈ψ+

out (η)|ψ+
out (η)〉|2 , (17)

where F is the non-normalized fidelity of the output state and
Psucc is the success probability of generating that state. The
general expression for F as a function of the reflectivities ηx

i
and η

y
i of the ith BSM network and the number of redundant
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encoding N is straightforward and can be written as

F =
[(

N∑
i=1

√
ηx

i

)(
N∑

i=1

√
1 − η

y
i

)

+
(

N∑
i=1

√
1 − ηx

i

)(
N∑

i=1

√
η

y
i

)]2

. (18)

In general, the analytical form of Psucc is dependent on the
encoding level as expected. For N=1, the success probability
stays constant at Psucc=1, similar to the trend in Fig. 8. For
N > 1, Psucc � 1 since it also includes the probability of post-
selection on zero photons in the ancilla modes. As η → ηmean,
we can observe that a smaller number of photons go to the
ancilla modes and hence Psucc → 1.

The general expressions for Psucc as a function of the
number of redundant encoding N become complicated. For
reference, Psucc expressions for up to N = 5 have been in-
cluded in the Appendix. Explicitly for N=2, we can write

Psucc = 1
4

(
1 + √

1 − ηx
1

√
1 − ηx

2 + √
ηx

1

√
ηx

2

)
× (

1 +
√

1 − η
y
1

√
1 − η

y
2 +

√
η

y
1

√
η

y
2

)
. (19)

As a result of the increasing fidelity and decreasing suc-
cess probability, the normalized fidelity of the outcome of
|ψ+〉 under BSM averaging shows an improvement with an
increasing number of encoding levels as previously seen in
Fig. 9. This implies that whenever the BSM is successful upon
postselection in the averaging framework, the output state is
closer to the expected state as compared to the output of a
nonaveraged BSM. Therefore, this averaging scheme helps
in a better distinction between |ψ+〉 and |ψ−〉, leading to an
improved Bell measurement.

VI. DISCUSSIONS

We have demonstrated that the combination of redundant
error encoding with the construction of fusion gates used

in fusion-based quantum computing can improve the output
state fidelity when the operation of the components within
devices is not determined to infinite precision. We have given
quantitative values for fidelity improvement if the reflectivities
are chosen from a uniform distribution over a fixed range,
but the same analysis holds true for arbitrary distributions as
well due to the law of large numbers. Since our computa-
tions are based on the symbolic manipulation of expressions,
this method limits the amount of redundant encoding we can
analyze. Nevertheless, we have shown that with up to three
levels of perfect encoding and decoding, a slight but always
beneficial improvement in the fidelity of the fusion and Bell
state measurement operations is possible.

In general, the complete analysis of the fusion gate av-
eraging for practical considerations would also involve the
modeling of errors in the encoding and decoding steps. This
extended treatment is considered in [11] under the small noise
limit, leading to an additive approximation. They demonstrate
that the encoding and decoding errors are suppressed up to
the first order when performing arbitrary single-qubit and
two-qubit unitary averaging, and hence can be appropriately
neglected. Consequently, this outcome validates our approach
of averaging solely over the errors in the type-II fusion gates,
while reasonably disregarding the encoding and decoding
errors.

In future works, it would be interesting to formalize the
behavior of our averaging protocol under more general noise
models like photon loss and mode distinguishability, enabling
us to analyze the average scheme experimentally as well.
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APPENDIX: BSM SUCCESS PROBABILITIES FOR HIGHER ENCODINGS

For N = 3,

Psucc = 1
81

[
3 + 2

(√
1 − ηx

1

√
1 − ηx

2 + √
1 − ηx

1

√
1 − ηx

3 + √
1 − ηx

2

√
1 − ηx

3

+√
ηx

1

√
ηx

2 + √
ηx

1

√
ηx

3 + √
ηx

2

√
ηx

3

)][
3 + 2

(√
1 − η

y
1

√
1 − η

y
2

+
√

1 − η
y
1

√
1 − η

y
3 +

√
1 − η

y
2

√
1 − η

y
3 +

√
η

y
1

√
η

y
2 +

√
η

y
1

√
η

y
3 +

√
η

y
2

√
η

y
3

)]
. (A1)

For N = 4,

Psucc = 1
64

[
2 + √

1 − ηx
1

√
1 − ηx

2 + √
1 − ηx

1

√
1 − ηx

3 + √
1 − ηx

1

√
1 − ηx

4 + √
1 − ηx

2

√
1 − ηx

3 + √
1 − ηx

2

√
1 − ηx

4

+√
1 − ηx

3

√
1 − ηx

4 + √
ηx

1

√
ηx

2 + √
ηx

1

√
ηx

3 + √
ηx

1

√
ηx

4 + √
ηx

2

√
ηx

3 + √
ηx

2

√
ηx

4 + √
ηx

3

√
ηx

4

]
× [

2 +
√

1 − η
y
1

√
1 − η

y
2 +

√
1 − η

y
1

√
1 − η

y
3 +

√
1 − η

y
1

√
1 − η

y
4 +

√
1 − η

y
2

√
1 − η

y
3 +

√
1 − η

y
2

√
1 − η

y
4

+
√

1 − η
y
3

√
1 − η

y
4 +

√
η

y
1

√
η

y
2 +

√
η

y
1

√
η

y
3 +

√
η

y
1

√
η

y
4 +

√
η

y
2

√
η

y
3 +

√
η

y
2

√
η

y
4 +

√
η

y
3

√
η

y
4

]
. (A2)
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For N = 5,

Psucc = 1
625

[
5 + 2

(√
1 − ηx

1

√
1 − ηx

2 + √
1 − ηx

1

√
1 − ηx

3 + √
1 − ηx

1

√
1 − ηx

4 + √
1 − ηx

1

√
1 − ηx

5

+√
1 − ηx

2

√
1 − ηx

3 + √
1 − ηx

2

√
1 − ηx

4 + √
1 − ηx

2

√
1 − ηx

5 + √
1 − ηx

3

√
1 − ηx

4 + √
1 − ηx

3

√
1 − ηx

5

+√
1 − ηx

4

√
1 − ηx

5 + √
ηx

1

√
ηx

2 + √
ηx

1

√
ηx

3 + √
ηx

1

√
ηx

4 + √
ηx

1

√
ηx

5 + √
ηx

2

√
ηx

3 + √
ηx

2

√
ηx

4

+√
ηx

2

√
ηx

5 + √
ηx

3

√
ηx

4 + √
ηx

4

√
ηx

5 + √
ηx

4

√
ηx

5

)][
5 + 2

(√
1 − η

y
1

√
1 − η

y
2 +

√
1 − η

y
1

√
1 − η

y
3

+
√

1 − η
y
1

√
1 − η

y
4 +

√
1 − η

y
1

√
1 − η

y
5 +

√
1 − η

y
2

√
1 − η

y
3 +

√
1 − η

y
2

√
1 − η

y
4 +

√
1 − η

y
2

√
1 − η

y
5

+
√

1 − η
y
3

√
1 − η

y
4 +

√
1 − η

y
3

√
1 − η

y
5 +

√
1 − η

y
4

√
1 − η

y
5 +

√
η

y
1

√
η

y
2 +

√
η

y
1

√
η

y
3 +

√
η

y
1

√
η

y
4

+
√

η
y
1

√
η

y
5 +

√
η

y
2

√
η

y
3 +

√
η

y
2

√
η

y
4 +

√
η

y
2

√
η

y
5 +

√
η

y
3

√
η

y
4 +

√
η

y
3

√
η

y
5 +

√
η

y
4

√
η

y
5

)]
. (A3)
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