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Entanglement degradation under local dissipative Landau-Zener noise
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We study entanglement degradation when one share of an entangled pair experiences noise. We consider
the dissipative Landau-Zener model for describing local noise. The dissipative Landau-Zener model provides a
convenient setting for modeling entanglement degradation with applications in quantum network developments
and communications. Here, we study the problem in the fast- and slow-driving regimes. In the slow-driving
regime, our results are analytical, while in the fast-driving regime, we use numerical techniques to obtain the
results. Our study addresses the role of two main properties of the dynamics in entanglement degradation,
namely, spin-coupling direction and adiabaticity of the dynamics. We derive an analytical expression for
entanglement survival time versus bath temperature in the slow-driven regime. In both regimes, when the bath
temperature is zero, we show that transversal spin-coupling has a less destructive effect on entanglement than
longitudinal spin-coupling. We also show that entanglement degradation is weaker in the nonadiabatic regime
compared to the adiabatic regime. Therefore, our results determine the proper choice of parameters for having
less entanglement degradation in the presence of local noise described by the dissipative Landau-Zener model.
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I. INTRODUCTION

The essential role of entanglement in quantum infor-
mation science and technology [1–5] urges analyzing its
generation [6–9], distribution [10,11], and protection against
noise [12–14]. In particular, analyzing entanglement degra-
dation when one share of an entangled pair experiences
noise is essential due to its application in the develop-
ment of quantum networks [15–17], quantum sensing [18],
quantum illumination [19], and quantum communication pro-
tocols [20]. Isolating one share of an entanglement pair
and using the other pair for entanglement distribution or
remote sensing and communication has been demonstrated
experimentally [21–24].

Regarding the vital role of entanglement, its dynamics and
degradation have been studied from different aspects, theoreti-
cally and experimentally [25–39]. In Ref. [32] the role of local
noise in entanglement degradation is studied where noise is
parametrized by local unital channels. A more realistic model
is discussed in Ref. [33] where one share of an entangled
pair is protected against noise and the other interacts with
a thermal bath. The dynamic of this qubit is modeled by
a Markovian master equation and the role of coherent and
incoherent parts of dynamics in entanglement degradation is
discussed. Here we consider a setting as depicted in Fig. 1,
where one share of an entangled pair |�〉SR, namely, reference
qubit R is protected against noise and its local unitary evolu-
tion does not affect the entanglement properties of the pair.
System qubit S interacts with a thermal bath and its coherent
dynamics is generated by the time-dependent Landau-Zener
Hamiltonian [40,41]. The Landau-Zener model is the simplest
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time-dependent model for addressing adiabatic/nonadiabatic
transitions which have significant applications in adiabatic
quantum computation [42,43]. Also, the Landau-Zener model
serves as a successful model for describing the lowest-energy
levels employed in quantum annealing [44].

We consider the noise on the system qubit to be described
by the dissipative Landau-Zener model. In this model, system
qubit with Landau-Zener Hamiltonian interacts with a bosonic
bath. The interaction is described by the coupling of different
spin directions to harmonic oscillators of the bath. To be more
specific, in this model which is also discussed in Refs. [45,46],
by varying the parameter θ (see Fig. 1) we allow the coupling
to change from the σz direction to the σx direction or from
longitudinal to transversal. The intermediate values of this
parameter define different spin-coupling directions.

Here, we discuss the role of the bath temperature in
entanglement survival time. Also, we analyze the role of
the spin-coupling direction in entanglement degradation. The
role of the spin-coupling direction in thermally assisted
quantum annealing and the benefit of having transverse spin-
coupling for the ground-state probability have been discussed
in Ref. [46]. Here, for entanglement degradation under the
dissipative Landau-Zener model, we show that a larger noise
coupling angle is beneficial for preserving entanglement in
the slow-driving regime with zero bath temperature, and
for a transverse coupling, the dynamic is not entanglement
breaking at all. In the fast-driving regime with zero bath
temperature, with transversal noise, entanglement decay is
less than entanglement degradation with longitudinal noise.
We also address the role of adiabaticity of the dynamics in
entanglement degradation. We show that by going from a
fast-driving regime to a slow-driving regime, entanglement
breakdown is more serious.
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FIG. 1. Schematic representation of the two-qubit system, where
the system qubit with the Landau-Zener Hamiltonian interacts with
the environment in a thermal state and the reference qubit does not
experience noise. Parameter θ indicates the spin-coupling direction
in the interaction between the system qubit and the environment.

For our analysis, we work in the weak-coupling regime to
have Markovian dynamics. Deriving the master equation for
the Landau-Zener Hamiltonian (like any other time-dependent
Hamiltonian) requires taking care of further subtleties. We
use the framework introduced in Ref. [45] which is based on
using instantaneous eigenstates of the system’s Hamiltonian.
We derive the time-dependent generator of the dissipative
Landau-Zener model for a bath with a finite temperature.
Considering a bath with a finite temperature allows us to dis-
cuss the role of bath temperature in entanglement degradation
in the slow-driving regime. The derived Markovian master
equation is valid in adiabatic and nonadiabatic regimes for
a particular range of parameters [45]. We derive the range
of validity of the derived master equation and in this range
discuss the role of adiabaticity of the dynamics in entangle-
ment degradation. The other challenging issue is solving the
master equation with a time-dependent generator. The analyt-
ical solution does not exist unless in some particular range of
parameters. Hence, besides providing an analytical solution
in the slow-driving regime, we use numerical techniques to
explore a wider range of parameters and extend our analysis
to the fast-driving regime.

The structure of the paper is as follows. In Sec. II after
describing a single-qubit dissipative Landau-Zener model, we
derive the master equation and discuss the proper range of
the parameters for having a valid Markov master equation.
We discuss the evolution of a general two-qubit system under
local dissipative Landau-Zener noise in Sec. III. Then we pro-
ceed to analyze entanglement dynamics in Sec. IV and report
our results in slow- and fast-driving regimes. We discuss the
results and conclude in Sec. V with an outlook for potential
future work.

II. SINGLE-QUBIT DISSIPATATIVE
LANDAU-ZENER MODEL

In this section, we describe the dynamics of a single qubit
with Landau-Zener Hamiltonian that interacts with a thermal

bath. In Sec. II A we use instantaneous eigenstates of the
Hamiltonian and follow the approach of Ref. [45] to derive
the master equation in the weak-coupling limit. To have a
compact representation for Lindblad operators, we need to
work in a rotated basis which we explain in Sec. II B. As
entanglement is invariant under a change of basis, this time-
dependent rotated frame enables us to obtain analytical results
in a slow-driving regime and also have a numerical analysis of
entanglement dynamics in the fast-driving regime.

The Landau-Zener Hamiltonian which describes the coher-
ent dynamics of the system is given by

HS (t ) = h̄(�σx + vtσz ), (1)

where σx =
(

0 1
1 0

)
and σz =

(
1 0
0 −1

)
are Pauli operators

and � and v are positive real parameters of the Hamiltonian.
From here on, we use natural units where the Planck constant
h̄ = 1. The energy levels of system and the corresponding
eigenvectors are given by

ε±(t ) = ±�(t ), |ε±(t )〉 = 1

N±(t )

(
�

±�(t ) − vt

)
, (2)

with N±(t ) = √
2�(t )[�(t ) ∓ vt] and

�(t ) =
√

v2t2 + �2. (3)

To model noise on the system of study, we assume that the
system qubit interacts with a thermal environment described
by the following Hamiltonian:

HE =
∫ ωmax

0
dνb†(ν)b(ν), (4)

where b(ν) and b(ν)† are bosonic operators of the envi-
ronment [b(ν), b†(ν ′)] = δ(ν − ν ′) and ωmax is the cutoff
frequency of the harmonic oscillators in the bath. The total
Hamiltonian of the system and the environment is given by

Htotal(t ) = HS (t ) + HE + λHSE , (5)

where λ > 0 is a constant denoting the strength of the
interaction between the system and the environment and
HSE describes the interaction between the system and the
environment:

HSE = A ⊗ B, (6)

where

A = 1

2
[cos(θ )σz + sin(θ )σx],

B =
∫ ωmax

0
dνg(ν)[b(ν) + b†(ν)]. (7)

Here g(ν) is the coupling function and θ ∈ [0, 2π ) deter-
mines the spin-coupling direction. By varying θ from 0 to
π
2 , the spin-coupling direction changes from longitudinal to
transversal.

A. Master equation in the weak-coupling limit

In this subsection, we derive the master equation describing
the dynamics of the system qubit, with the Landau-Zener
Hamiltonian in Eq. (1), that interacts with a thermal bath, with
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the interaction Hamiltonian given in Eq. (6). For rigorous con-
struction of the Markov quantum master equation we follow
the formalism in Ref. [45] and discuss the range of parameters
that guarantees the validity of the derived Markov master
equation for describing the dynamics even in a nonadiabatic
regime [45].

Following the approach described in Ref. [45] we derive
the following quantum master equation:

ρ̇S (t ) = Lt [ρS (t )],

Lt [•] = −i[HS (t ) + λ2HLS(t ), •] + λ2Dt [•],

Dt [•] =
∑

m

γ (ωm(t ))
{

A(ωm(t )) • A†(ωm(t ))

− 1

2
[A†(ωm(t ))A(ωm(t )), •]

}
, (8)

where • stands for any linear operator acting on C2 (two-
dimensional complex Hilbert space). For deriving Lindblad
operators A(ωm(t )) instantaneous eigenstates of Hamiltonian
HS (t ) are used:

A(ω1(t )) = �ε− (t )A�ε+ (t ),

A(ω2(t )) = �ε+ (t )A�ε− (t ),

A(ω3(t )) = �ε− (t )A�ε− (t ) + �ε+ (t )A�ε+ (t ). (9)

Here �ε± = |ε±(t )〉〈ε±(t )| are respectively projectors to
eigenstates |ε±(t )〉 in Eq. (2) and ωm(t ) denotes transition
frequencies:

ω1(t ) = −ω2(t ) = 2�(t ), ω3(t ) = 0. (10)

Following the description in the Appendix, we have

γ (ωm(t )) = 2πJ (|ωm(t )|)�(ωm(t ))[n̄(|ωm(t )|) + 1]

+ 2πJ (|ωm(t )|)�( − ωm(t ))[n̄(|ωm(t )|)]
+ 2πT δ(ωm(t )), (11)

where m = 1, 2, and 3 addresses different transition frequen-
cies in Eq. (10), �(x) is the step function, and

n̄(ω) = 1

e
ω
T − 1

(12)

is the environment’s mean photon number with frequency
ω when its temperature is T . We recall that in the natural
units the Boltzmann constant κB = 1. In Eq. (11), J (ωm(t )) =
g2(ωm(t )) is the spectral density of the environment which is
assumed to be ohmic:

J (ωm(t )) = ωm(t )e− ωm (t )
ωc , (13)

where ωc is the cutoff frequency. The Lamb-shift Hamilto-
nian in Eq. (8) is the correction to Hamiltonian arising from
the weak-coupling approximation and is given in terms of
Lindblad operators:

HLS(t ) =
3∑

m=1

S (ωm(t ))A†(ωm(t ))A(ωm(t )). (14)

For S (ωm(t )), see the Appendix.
By using the formal definition of Lindblad operators in

Eq. (9), the explicit expressions of Lindblad operators are

given by matrices with time-dependent elements. Such a
representation is not suitable for the aim of analyzing en-
tanglement degradation. In the next subsection, we explain
how to derive a compact explicit form of Lindblad operators
for a qubit with the Landau-Zener Hamiltonian interacting
with a thermal bath according to the interaction Hamiltonian
HSE in Eq. (6).

It is worth mentioning that the Markovian master equa-
tion in Eq. (8) is valid in both adiabatic and nonadiabatic
regimes if the following inequalities are satisfied [45]:

τS (t ) 	 τR(t ),

τS (t ) 	 τA(t ). (15)

Here, τA(t ), τS (t ), and τR(t ) are respectively the temporal
change timescale of HS (t ), the intrinsic beat timescale, and the
relaxation timescale. As defined in Ref. [45], τA(t ) reflects the
temporal change of the system’s Hamiltonian. This timescale
is defined in terms of the temporal change of eigenstates and
eigenvalues of the system’s Hamiltonian as follows:

τA(t ) = min{τAE (t ), τAS (t )}, (16)

with

τ−1
AE (t ) = max

n

∣∣∣∣ 1

εn(t )

d

dt
εn(t )

∣∣∣∣,
τ−1

AS (t ) = max
m 
=n

∣∣∣∣〈m(t )| d

dt
|n(t )〉

∣∣∣∣, (17)

where eigenstates and eigenenergies of HS (t ) are denoted by
εn(t ) and |n(t )〉, respectively. According to this definition for
the Landau-Zener Hamiltonian (1), we have

τA(t ) =
⎧⎨
⎩

2�2(t )
v�

, t � �
v
,

�2(t )
v2t , t > �

v
.

(18)

The other two timescales are defined as follows [45,47–50]:

τ−1
S = min

ωm (t )
=ωn(t )
|ωm(t ) − ωn(t )| = 2�(t ),

τ−1
R (t ) = max

m
γ (ωm) = 2πJ (ω1(t ))[n̄(ω1(t )) + 1]. (19)

In the proceeding sections, when we provide relevant
figures for discussing the role of different parameters in en-
tanglement degradation, we choose parameters such that the
inequalities in Eq. (15) hold.

B. Time-dependent master equation in a rotated basis

In this subsection, we derive the explicit compact form for
the generator of dynamic Lt in Eq. (8) in a rotated basis [51].
This generator is used in the following sections for describing
local Landau-Zener dissipative dynamics.

To derive a compact form for Lindblad operators, we use
instantaneous eigenstates of HS (t ) in Eq. (1). Unitary time-
dependent transformation that diagonalizes HS (t ) is given by

R(t ) = eiφ(t )σy , (20)
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where σy = (0 −i
i 0 ) is the second Pauli matrix and

φ(t ) = 1

2
arctan

(
�

vt

)
. (21)

We denote any operator O in the rotated basis by Õ(t ):

Õ(t ) = R(t )OR†(t ). (22)

Therefore, the system Hamiltonian in the rotated basis is
given by

H̃S (t ) = R(t )HS (t )R†(t ) = �(t )σz, (23)

where �(t ) is defined in Eq. (3). From Eq. (23) it is clear that
H̃S (t ) is diagonal for all time t . The master equation in Eq. (8)
in the rotated basis is given by

˙̃ρ(t ) = L̃t [ρ̃(t )],

L̃t [•] = −i[H̃S (t ) + λ2H̃LS(t ) + φ̇(t )σy, •] + λ2D̃t [•],

D̃t [•] =
∑

m

γ (ωm(t ))(Ã(ωm(t )) • Ã†(ωm(t ))

− 1

2
{Ã†(ωm(t ))Ã(ωm(t )), •}, (24)

where Lindblad operators in the rotated basis are given by

Ã(ω1(t )) = �̃ε−Ã(t )�̃ε+ ,

Ã(ω2(t )) = �̃ε+Ã(t )�̃ε− ,

Ã(ω3(t )) = �̃ε−Ã(t )�̃ε− + �̃ε+Ã(t )�̃ε+ . (25)

Projector operators �̃ε± in the rotated basis have a sim-
ple form: �̃ε− = |0〉〈0| and �̃ε+ = |1〉〈1|. In this basis,
each Lindblad operator is derived as a multiplication of a
time-dependent function with a time-independent operator:
σ± = σx±iσy

2 and σz:

Ã(ω1(t )) = 1
2 sin[θ − 2φ(t )]σ−, (26)

Ã(ω2(t )) = 1
2 sin[θ − 2φ(t )]σ+, (27)

Ã(ω3(t )) = 1
2 cos[θ − 2φ(t )]σz. (28)

We find the Lamb-shift Hamiltonian in Eq. (14) in the rotated
basis by using the explicit forms of Lindblad operators in
Eqs. (26)–(28):

H̃LS(t ) = 1
2 sin2[θ − 2φ(t )][S (ω1(t )) − S (ω2(t ))](id +σz )

+ 1
4 cos2[θ − 2φ(t )] id . (29)

The use of the explicit form of the system Hamiltonian in
Eq. (23), the Lindblad operators in Eqs. (26)–(28), and the
Lamb-shift term in Eq. (29) yields the explicit form of the
dynamics generator in the rotated basis:

L̃t [•] = − i[k(t )σz − φ̇(t )σy, •]

+ f (t )
(
σ− • σ+ − 1

2 {σ+σ−, •})
+ g(t )

(
σ+ • σ− − 1

2 {σ−σ+, •})
+ l (t )(σz • σz − •), (30)

where k(t ), f (t ), g(t ), and l (t ) are given by

k(t ) = �(t ) + λ2

2
sin2[θ − 2φ(t )][S (ω1(t )) − S (ω2(t ))],

(31)

f (t ) = λ2

4
sin2[θ − 2φ(t )]γ (ω1(t )), (32)

g(t ) = λ2

4
sin2[θ − 2φ(t )]γ (ω2(t )), (33)

l (t ) = λ2

4
cos2[θ − 2φ(t )]γ (ω3(t )). (34)

In the next section, we use this explicit form of the dy-
namics generator in Eq. (30) for deriving the local Markovian
master equation in a bipartite system.

III. LOCAL DISSIPATIVE LANDAU-ZENER MODEL

In this section, we describe the local dissipative Landau-
Zener model. We derive the master equation governing the
dynamics of a bipartite system where the system qubit expe-
riences noise and the reference qubit remains invariant. We
derive a set of coupled first-order differential equations for
coefficients of a general bipartite input state. For a specific
range of parameters, we solve this set of coupled first-order
differential equations analytically for a one-parameter initial
pure state. By varying this parameter, the initial state’s entan-
glement interpolates between 0 and 1.

We consider a pair of entangled qubits. As depicted in
Fig. 1 in the setting under study, the reference qubit is pro-
tected against noise; therefore, the dissipative dynamics of
the system qubit is the only source of noise that affects the
entanglement between reference and system qubits. We de-
note the system-reference bipartite density matrix at time t
with ρSR(t ). Following the discussion of Sec. II, when the
system undergoes a dissipative Landau-Zener dynamics with
system-environment interaction as described in Eq. (6) and
the reference qubit does not evolve, the dynamics of the pair
is generated by Lt ⊗ id with Lt defined in Eq. (8). Following
the arguments in Sec. II B, to derive the explicit forms of
Lindblad operators as in Eqs. (26)–(28), it is required to rotate
the basis by the time-dependant unitary operator R(t ) given in
Eq. (20). Because we aim to analyze entanglement dynamics
of a bipartite system described by the density matrix ρSR(t )
and entanglement is invariant under local unitary operations,
we work in the rotated basis and analyze the entanglement
dynamics of

ρ̃SR(t ) = [R(t ) ⊗ id]ρSR(t )[R†(t ) ⊗ id]. (35)

Therefore, in what follows, we focus on solving the following
master equation in the rotated basis:

˙̃ρSR(t ) = (L̃t ⊗ id)ρ̃SR(t ), (36)

where L̃t is given in Eq. (30). To solve Eq. (36) for the density
matrix ρ̃SR(t ), we take it into account that any bipartite density
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matrix of ρ̃SR(t ) can be written as

ρ̃SR(t ) = 1

4

(
id ⊗ id +�s(t ) · σ ⊗ id + id ⊗�r(t ) · σ

+
3∑

i, j=1

χi j (t )σi ⊗ σ j

)
, (37)

where the scalar product is defined as �r · σ = ∑3
i=1 riσi. Here

the three elements of vectors �r(t ) and �s(t ) are given by

si(t ) = Tr[(σi ⊗ id)ρ̃SR(t )],

ri(t ) = Tr[(id ⊗σi )ρ̃SR(t )],

χi j = Tr[(σi ⊗ σ j )ρ̃SR], (38)

where σi’s are Pauli operators. Furthermore, by using L̃t in
Eq. (30) we have

L̃t [id] = −2a−(t )σz,

L̃t [σx] = 2k(t )σy − b(t )σx + 2φ̇(t )σz,

L̃t [σy] = −2k(t )σx − b(t )σy,

L̃t [σz] = −2φ̇(t )σx − 2a+(t )σz, (39)

with

a±(t ) = 1
2 [ f (t ) ± g(t )],

b(t ) = a+(t ) + 2l (t ). (40)

Hence, by comparing the left- and right-hand sides of Eq. (36)
for ρ̃SR(t ) as in Eq. (37) and considering the action of L̃t

on identity and Pauli operators in Eq. (39), we find a set of
coupled first-order differential equations for �s(t ), �r(t ), and
χ (t ). For vector �r(t ) it results that

∀t > tint, �r(t ) = �r(tint ), (41)

where tint denotes the initial time of the dynamics. Fur-
thermore, for �s(t ) and χi j (t ) the following differential
equations hold:

d

dt
�s(t ) = Q(t ) �s(t ) + �q(t ),

d

dt
�χ j (t ) = Q(t ) �χ j (t ), j = 1, 2, 3, (42)

where

�χ j (t ) =
⎛
⎝χ1 j (t )

χ2 j (t )
χ3 j (t )

⎞
⎠, �q(t ) =

⎛
⎝ 0

0
−2a−(t )

⎞
⎠, (43)

and

Q(t ) =
⎛
⎝−b(t ) −2k(t ) −2φ̇(t )

2k(t ) −b(t ) 0
2φ̇(t ) 0 −2a+(t )

⎞
⎠. (44)

The differential equations in Eq. (42) have time-dependent
coefficients. Therefore solving Eq. (42) analytically and ex-
pressing the solution in a compact form is not possible. Hence,
we analytically solve Eq. (42) in a particular range of parame-
ters where v → 0 and � is finite for t 	 �

v
. For the rest of the

range of parameters, we solve the master equation in Eq. (36)
numerically.

For analytical solution, first, we discuss the limit of ele-
ments of matrix Q(t ) in Eq. (44) in the limit of v → 0 and
t 	 �

v
with finite �. From Eq. (3) we conclude that, for

t 	 �
v

, �(t ) approaches �. On the other hand, from Eq. (21)
it is easy to see that

φ̇(t ) = − �v

2�2(t )
. (45)

Therefore, for v → 0 and t 	 �
v

, φ̇(t ) approaches zero. Also
it is clear from Eq. (21) that in this regime φ(t ) ≈ π

4 . There-
fore, from Eqs. (31)–(34) we conclude that k(t ), f (t ), g(t ),
and l (t ) in this regime are respectively given by

k = � + λ2

2
cos2(θ )[S (2�) − S (−2�)],

f = λ2

4
cos2(θ )γ (2�),

g = λ2

4
cos2(θ )γ (−2�),

l = λ2

4
sin2(θ )γ (0). (46)

Therefore, in this regime for coefficients a±(t ) and b(t ) in
Eq. (40) we have

a± = λ2

4
cos2(θ )[γ (2�) ± γ (−2�)],

b = a+ + 2l. (47)

Hence, in this regime Q(t ) in Eq. (44) is time independent.
Furthermore, as φ̇(t ) ≈ 0, matrix Q(t ) is block-diagonal in
this regime. Therefore, it is possible to solve the coupled
differential equations in Eq. (42) analytically and the solution
of differential equations in Eq. (42) in the regime of v → 0
and finite � for t 	 �

v
is summarized as follows:

�s(t ) = 1√
2

⎛
⎜⎜⎝

e−b(t−tint )(A+
0 e2ik(t−tint ) + A−

0 e−2ik(t−tint ) )

ie−b(t−tint )(A+
0 e2ik(t−tint ) − A−

0 e−2ik(t−tint ) )
√

2
(
B0e−2a+(t−tint ) + a−

a+

)
⎞
⎟⎟⎠,

(48)

and

�χ j (t ) = 1√
2

⎛
⎜⎜⎝

e−b(t−tint )(A+
j e2ik(t−tint ) + A−

j e−2ik(t−tint ) )

ie−b(t−tint )(A+
j e2ik(t−tint ) − A−

j e−2ik(t−tint ) )
√

2Bje−2a+(t−tint )

⎞
⎟⎟⎠,

(49)

where A±
j and Bj , with j = 0, 1, 2, 3, are constant coefficients

which are determined by the initial state:

A±
0 = 1√

2
[s1(tint ) ∓ is2(tint )], B0 =

(
s3(tint ) − a−

a+

)
,

A±
j = 1√

2
[χ1 j (tint ) ∓ iχ2 j (tint )], Bj = χ j3(tint ). (50)

The analytical solutions for a regime of v → 0 and t 	 �
v

as
given in Eqs. (48) and (49) are used in the next section for
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analytical analysis of entanglement degradation under local
dissipative Landau-Zener evolution.

IV. ENTANGLEMENT DECAY

In this section, we analyze entanglement degradation in
a bipartite qubit system when one share of an entangled
pair undergoes dissipative Landau-Zener evolution. After a
general review of the measure of the entanglement we use,
we analyze slow- and fast-driving regimes separately. Start-
ing with a maximally entangled state, in the slow-driving
regime we provide an analytical expression for entanglement
in time. We discuss the dependence of entanglement survival
time on bath temperature and also spin-coupling direction to
the environment when the bath temperature is zero. In the
fast-driving regime when the bath temperature is zero we
discuss entanglement behavior in time for different ranges of
parameters. Furthermore, we address the role of adiabaticity
in entanglement degradation.

To analyze entanglement between system and reference
qubits we use negativity as a measure of entanglement. Like
all entanglement measures, negativity is invariant under local
unitary operations. Therefore, by taking into account Eq. (35),
we have

N (ρ̃SR(t )) = N (ρSR(t )). (51)

Hence, to address entanglement between system and reference
qubits, we focus on entanglement in state ρ̃SR(t ). By defini-
tion, negativity of the bipartite qubit density matrix ρ̃SR(t ) is
given by [52]

N (ρ̃SR(t )) := 1

2

4∑
i=1

[|μi(t )| − μi(t )], (52)

where μi(t )’s are eigenvalues of ρ̃
�R
SR (t ), which is the partial

transposed of ρ̃SR(t ) with respect to the reference qubit R.
For maximally entangled states, like the Bell state, negativ-
ity reaches its maximum value 1

2 , and for separable states,
it is zero.

We consider a general pure bipartite state in its Schmidt
decomposition [53] for the initial state:

|φ〉 = cos η|00〉 + sin η|11〉. (53)

By varying η ∈ [0, π
2 ], the initial state |φ〉 in Eq. (53) inter-

polates between a separable and a maximally entangled state.
For this initial state, we have

r3(tint ) = s3(tint ) = cos(2η),

χ11(tint ) = −χ22(tint ) = sin(2η),

χ33(tint ) = 1, (54)

and the rest of ri(tint ), si(tint ), and χi j (tint ) are zero. Hence,
according to Eq. (41) for arbitrary time t > tint, we have

�r(t ) =
⎛
⎝ 0

0
cos(2η)

⎞
⎠. (55)

For the rest of the coefficients, we work in two different
regimes in the following two subsections. For the regime of
v → 0 and vt 	 � we use the analytical results in Sec. III,

and for other ranges of parameters we solve the master equa-
tion using the QUTIP library [54,55].

A. Slow-driving regime

In this subsection, we work in the regime of v → 0 and
vt 	 �. We derive the explicit expression for entanglement
when the initial state is maximally entangled. We discuss
entanglement survival time, and for zero temperature bath,
we discuss the behavior of entanglement in terms of the spin-
coupling direction to the environment.

For the initial state in Eq. (53), by using Eq. (48) for the
slow-driving regime, we have

�s(t ) =
⎛
⎝ 0

0[
cos(2η) − a−

a+

]
e−2a+(t−tint ) + a−

a+

⎞
⎠. (56)

Also, regarding Eq. (49) for the initial state in Eq. (53),
the nonvanishing elements of matrix χ (t ) have the following
simple form:

χ11(t ) = −χ22(t ) = e−b(t−tint ) cos 2k(t − tint ) sin 2η,

χ12(t ) = χ21(t ) = −e−b(t−tint ) sin 2k(t − tint ) sin 2η,

χ33(t ) = e−2a+(t−tint ) sin 2η. (57)

From �r(t ) and �s(t ) in Eqs. (55) and (56) and χ (t ) in Eq. (57),
we derive the density matrix ρ̃SR(t ) which has the X form.
Hence, its partial transpose ρ̃

�R
SR (t ) has the X form and is

given by

ρ̃
�R
SR (t ) = 1

4

[
id ⊗ id +s3(t )σz ⊗ id +r3(t ) id ⊗σz

+
3∑

i, j=1

(−1) j+1χi j (t )σi ⊗ σ j

]
. (58)

This block-diagonal structure enables us to derive the eigen-
values of ρ̃

�B
SR (t ) analytically:

μ1,2(t ) = 1
4

{
1 − χ33(t )

±
√

4
[
χ2

11(t ) + χ2
12(t )

] + [s3(t ) − r3(t )]2
}
,

μ3,4(t ) = 1
4 [1 + χ33(t ) ± |s3(t ) + r3(t )|], (59)

with r3(t ), s3(t ), and χi j (t ) given in Eqs. (55)–(57). To see
when the dynamics become entanglement breaking [56], it is
sufficient to consider a maximally entangled state as the initial
state and investigate at what time the entanglement between
two qubits vanishes [56]. Hence, in Eq. (53) and subsequent
equations, we set η = π

4 for the initial maximally entangled
state. By examining eigenvalues of ρ̃

�B
SR (t ) in Eq. (59) we see

that, for η = π
4 , the only eigenvalue that might get negative

values is μ2(t ). Hence, for a maximally entangled initial state
and in the limit of v → 0 and t 	 �

v
, negativity is given by

N (ρSR(t )) = |μ2(t )|. (60)

When one share of an entangled pair experiences noise, the
maximum entanglement survival time τent is defined as the
smallest evolution time after which the dynamics become
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FIG. 2. Entanglement survival time [Eq. (61)] with dimension 1
E

(E stands for energy) versus temperature T , with dimension E , in the
slow-driving regime for θ = 0, λ = 0.1, � = 10, and ωc = �

3 .

entanglement breaking [33]. Here in the regime of v → 0 and
t 	 �

v
, we can find τent by equating Eq. (60) to zero for θ = 0:

τent = − ln (ξ )

2b
, (61)

where b is defined in Eq. (47) and

ξ = 3 − �2 − 2
√

2 − �2

1 − �2
, � = 1

2n̄(2�) + 1
. (62)

Figure 2 shows τent in Eq. (61) for θ = 0 versus tempera-
ture T in the slow-driving regime when � = 10, ωc = �/3,
and λ = 0.1. This choice of parameters assures that the in-
equalities in Eq. (15) are satisfied. As expected, temperature
has a destructive effect on τent. What is reflected in Eq. (61)
and Fig. 2 is for θ = 0. For further investigation on the role of
noise-coupling direction in entanglement behavior, we focus
on the zero temperature environment. By using Eq. (60) in the
regime of v → 0 and t 	 �

v
at T = 0, we have

N (ρSR(t )) = 1
2 e−(t−tint )λ2πJ (2�)cos2(θ ). (63)

It exhibits the exponential decay of entanglement in time
and also provides an explicit relation between entanglement
and spin-coupling direction to the bath at T = 0. In Fig. 3
we see entanglement between two qubits versus θ at T = 0,
for tint = −100, t = 100, � = 10, ωc = �/3, and λ = 0.1 as
given in Eq. (63). As entanglement is nonincreasing in time
under local noise, from Fig. 3 we conclude that, at any instant
of the evolution, for larger values of θ , the noisy environment
performs less destructively and at θ = π

2 the initial entangle-
ment is preserved. This is expected as in the regime of vt 	 �

and v → 0, the system Hamiltonian in the rotated basis H̃S (t )
is proportional to σz [see Eq. (23)]. On the other hand, by
using Eqs. (30) and (46) in this regime we have

L̃t [•] = −ik[σz, •] + λ2

4
cos θ2

(
σ− • σ+ − 1

2
{σ+σ−, •}

)
.

(64)

This is a representation of an amplitude damping channel
when coupling to the bath is proportional to |λ cos(θ )|. The

FIG. 3. Entanglement (in ebits) versus parameter θ (in degrees)
for T = 0, � = 10, t0 = −100, and t = 100 as given in Eq. (63).

larger the value of θ is, the weaker the role of decoherence is,
and the coherent terms play the dominant role in the generator
of the dynamics. At θ = π

2 , there is no dissipation term in the
generator and the coherent part leads to a unitary evolution
which does not change entanglement.

B. Fast-driving regime

In this subsection, we analyze the behavior of entangle-
ment in the fast-driving regime. We address its decay in time
for different values of � and also discuss how it behaves
in terms of the ratio �2

v
, which characterizes adiabatic and

nonadiabatic regimes in the absence of interaction with any
environment.

To investigate the role of parameters affecting entangle-
ment in the fast-driving regime, one should solve the differ-
ential equations with time-dependent coefficients in Eq. (42).

Unlike the limit of v → 0 and vt 	 �, analytic results
cannot be obtained in the fast-driving regime. Hence, we use
the QUTIP library [54,55] to solve the master equation and an-
alyze entanglement behavior numerically. The outcome of our
code is in agreement with our analytical result in the range of
v → 0 and vt 	 �. In Fig. 4, the behavior of negativity ver-
sus time is shown for the initial state |φ〉 = 1√

2
(|00〉 + |11〉),

FIG. 4. Negativity (in ebits) versus time (in 1
E ) for the initial state

|φ〉 = 1√
2
(|00〉 + |11〉), λ = 0.1, T = 0, ωc = �

3 , θ = 0, and v = 1.
From top to bottom, � = 0.1 and 100.
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FIG. 5. Negativity (in ebits) versus �2

v
(dimensionless parame-

ter) for θ = 0 (blue curve) and θ = π

2 (dashed red curve) at t = 40
when the initial state is maximally entangled, t0 = −40, T = 0,
ωc = �

3 , λ = 0.1, and v = 1.

v = 1, θ = 0, ωc = �
3 , and T = 0. From top to bottom, � =

0.1 and 100. As it is seen in this figure, for smaller values of �,
entanglement degradation is slower and after a shorter time it
achieves its steady value. In other words, when �2

v
	 1, which

indicates a nonadiabatic regime, entanglement remains less
intact by the environment compared to the adiabatic regime.
The same behavior is seen for θ = π

2 . To better illustrate
the effect of adiabaticity of the dynamics on entanglement
degradation, in Fig. 5 we present the behavior of entanglement
versus the ratio �2

v
for θ = 0 (blue solid curve) and θ = π

2
(red dashed curve) at t = 40. Like previous cases, the initial
state is maximally entangled. As it is seen in this figure, the
larger the value of �2

v
is, the stronger the entanglement decay

is. Therefore, the nonadiabatic regime is more favorable for
preserving entanglement.

V. CONCLUSION

We have studied entanglement degradation when one share
of an entangled pair undergoes a dissipative Landau-Zener
evolution. Regarding the role of the Landau-Zener model
in adiabatic quantum computation [42,43] and its success
in describing quantum annealing [44,46], the dissipative
Landau-Zener model serves as a realistic model for model-
ing local noise and analyzing entanglement degradation. This
study has many applications in different areas such as com-
munication and quantum network developments [15–17].

The important problem of entanglement degradation in the
presence of local dissipative Landau-Zener noise is a chal-
lenging problem because derivation and solving of the master
equation require considering many subtleties [45] After care-
ful derivation of the master equation using the approach in
Ref. [45], to overcome the complications for solving cou-
pled differential equations with time-dependent coefficients,
first we concentrate on the slow-driving regime with v → 0
and vt 	 �. In this regime, when noise is longitudinal we
drive an analytical expression for entanglement survival time
which confirms the destructive role of bath temperature on
entanglement. Also, we present an analytic expression for

entanglement when the bath temperature is zero. Our analytic
results in the slow-driving regime show the important role of
spin-coupling direction in the environment in entanglement
preservation. In Ref. [46], the role of spin-coupling direction
in the ground-state probability is discussed and the beneficial
effect of the bath temperature on the ground-state probability
is seen only for transversal noise (θ = π

2 ). Here, we have
another aspect of the importance of the spin-coupling direc-
tion. In the slow-driving regime with a zero temperature bath,
by increasing θ the destructive effect of the environment on
entanglement decreases, and for transversal coupling, entan-
glement is preserved. The role of spin-coupling direction is
also evident in the fast-driving regime where we solve the
master equation numerically. Figure 5 shows that for all values
of �2

v
entanglement between two qubits is larger for transver-

sal noise compared to longitudinal noise.
Another important question is about the role of adiabaticity

of the dynamics in entanglement degradation. Despite the
primary naive expectation, our results indicate that, in the
nonadiabatic regime, entanglement degradation is less com-
pared to that in the adiabatic evolution. In other words, when
the minimum gap has a fixed value �, for larger values of v

the entanglement degradation is smaller.
While the case of a two-level system has its own impor-

tance and impact, a promising direction to follow would be
to extend this study to systems with higher dimensions. In
systems with higher dimensions, in addition to the adiabatic
property of the dynamics and, the role of spin-coupling di-
rection, one can study different classes of time-dependent
Landau-Zener-type Hamiltonians [57]. This would give us
more knowledge about the factors affecting entanglement
degradation. Another direction for future exploration is the
study of entanglement degradation when both qubits expe-
rience local independent identical dissipative Landau-Zener
noise. A concrete example of such an event is when each
qubit of an entangled pair is sent to distant network nodes.
Although the initial qualitative impression is that local noise
in both qubits is more destructive, precise analysis is essential
to investigate the role of spin coupling and adiabaticity of the
dynamics, which involves solving a more complicated set of
differential equations.
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APPENDIX: KOSSAKOWSKI COEFFICIENTS

In this Appendix we explain how to compute the coeffi-
cients γ (ωm(t )) in Eq. (11) and S (ωm(t )) in Eq. (14). These
coefficients are given in terms of �(ωm(t )):

�(ωm(t )) =
∫ ∞

0
dτ

∫ a

−a
dνei(ωm (t )−ν)τ Tr

(
B(ν)Bρ th

E

)
, (A1)
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where a is determined such that all transition frequencies
belong to the interval (−a, a) and

B(ν) :=
∫ ωmax

0
dμ|μ〉〈μ|B|μ + ν〉〈μ + ν|, (A2)

with |μ〉 representing the eigenstate of b†(μ)b(μ) with eigen-
value μ. The coefficient γ (ωm(t )) is the real part of �(ωm(t )).

With straightforward calculations [45], we have

γ (ωm(t )) = 2π Tr
[
B(ωm(t ))Bρ th

E

]
. (A3)

By using the definition in Eq. (A2) and the definition of the
thermal state in Eq. (A2), the more explicit form of γ (ωm(t ))
in Eq. (11) is derived. The coefficients S (ωm(t )) in Eq. (14)
are given by the imaginary part of �(ωm(t )) in Eq. (A1) [45].
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