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Despite multipartite entanglement being a global property of a quantum state, a number of recent works
have made it clear that it can be quantified using only local measurements. This is appealing because local
measurements are the easiest to implement on current quantum hardware. However, it remains an open question
what protocol one should use in order to minimize the resources required to estimate multipartite entanglement
from local measurements alone. In this work, we construct and compare several estimators of multipartite
entanglement based solely on the data from local measurements. We first construct statistical estimators for
a broad family of entanglement measures using local randomized measurement (LRM) data before providing
a general criterion for the construction of such estimators in terms of projective 2-designs. Importantly, this
allows us to derandomize the multipartite estimation protocol based on LRMs. In particular, we show how local
symmetric, informationally complete positive operator-valued measures enable multipartite entanglement quan-
tification with only a single measurement setting. For all estimators, we provide both the classical postprocessing
cost and rigorous performance guarantees in the form of analytical upper bounds on the number of measurements
needed to estimate the measures to any desired precision.
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I. INTRODUCTION

In the nearly 90 years since the famous Einstein-Podolsky-
Rosen (EPR) paper [1] initiated the study of entanglement,
there has been an enormous effort to understand this phe-
nomenon theoretically [2] and, as quantum technologies have
matured, to probe it experimentally [3–6]. While many ques-
tions in entanglement theory remain only partially resolved,
the experimental violations of Bell’s inequalities [7,8] over
the past several decades [9–12] imply, conclusively, that en-
tanglement can lead to fundamentally nonlocal correlations.
Nonetheless, the entanglement content of an unknown quan-
tum state can be quantified and characterized using local
measurements alone [13–18].

The most informative measurements allowable in quantum
mechanics correspond to positive operator-valued measures
(POVMs) on many identical copies of one’s quantum state
(i.e., on ρ⊗n), so-called many-copy measurements. Because
all single-copy POVMs are a subset of all POVMs, many-copy
measurements must be at least as powerful as single-copy
measurements. The same argument holds when one restricts
further to local measurements on the individual subsystems.
There is a natural trade-off between ease of experimental
implementation and information gained. This intuition can
be made rigorous in a number of ways, including comparing
lower bounds on the sample complexity of various learning
tasks under different measurement restrictions.

For example, consider the canonical learning task of quan-
tum state tomography (QST), where one’s goal is to produce
an estimate ρ̂ of an unknown d-dimensional state ρ, such
that ‖ρ̂ − ρ‖1 < ε with high probability. If restricting to
local measurements, one requires at least �( d3

ε2 ) copies of

the state [19], while with many-copy measurements, �( d2

ε2 )
copies are necessary and sufficient [19,20]. Because d scales
exponentially with the number of quantum systems, this seem-
ingly minor improvement would have significant impact in
practice. While many-copy measurements are necessary for
optimal sample complexity [21], they are nowhere near be-
ing implementable on today’s quantum systems. Even global
single-copy measurements are infeasible for moderate system
sizes. Thus, in this work we focus on local measurements on
each individual qubit of an n-qubit state ρ.

Requiring full knowledge of state, as in QST, is almost
always superfluous. Typically, we are interested in functions
of quantum states that can be estimated directly without
ever estimating the quantum state itself. This realization
has led to a burgeoning field of study regarding the op-
timal estimation of properties of quantum states in which
the estimation procedures have lower sample complexity
and classical postprocessing requirements than full state to-
mography [13,15,17,18,22–27]. Our work contributes to the
ongoing effort to devise practical methods for the experimen-
tal estimation of entanglement using easily implementable
measurements.

In this work, we construct statistical estimators of a broad
family of entanglement measures based only on local POVMs.
While it is known that entangled measurements on many iden-
tical copies of a state are necessary for the optimal property
testing [21] and that there are fundamental trade-offs between
entanglement characterization and detection with and with-
out multicopy measurements [28,29], separations between
resource requirements for the estimation of multipartite en-
tanglement measures remain an interesting area of study with
many open problems. Moreover, as these are the simplest
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measurements to implement in practice, our results are rele-
vant to experiments, both current and near term, that wish to
probe entanglement in quantum systems without the need to
prepare identical copies simultaneously or utilize multicopy
measurements.

Specifically, we generalize Ref. [30], which devised esti-
mators for the generalized concurrence [31] based on local
randomized measurements (LRMs), to a more general family
of multipartite entanglement measures called the concen-
tratable entanglements (CEs) [32]. We provide analytical
performance guarantees on the estimation of this family of
entanglement measures in the form of upper bounds on
the number of measurements needed to estimate the CEs
to ε precision with high probability (i.e., upper bounds on
the sample complexity). Moreover, we provide estimates of
the postprocessing cost of computing our estimators, a cru-
cial consideration in practice. We then provide a distinct
estimation procedure, based on LRM data and using median-
of-means (MoM) estimation, that provides a square-root
enhancement in the sample complexity of this task—making
multipartite entanglement quantification in systems of several
tens of qubits a feasible prospect.

A remaining limitation of LRMs is that they require an ex-
ponential number of measurement settings to be implemented,
which can be experimentally challenging. To address this,
we provide a general theorem that shows that any projective
2-design can be used to construct an estimator for the CEs. In
particular, this theorem implies that local symmetric informa-
tionally complete (SIC) POVMs can be used to estimate all of
the CEs using a single measurement setting, generalizing the
work in Ref. [33] to the study of multipartite entanglement.
While the classical postprocessing of this method is more
costly than the other methods, it is likely preferable to having
to change the experimental measurement setting an exponen-
tial number of times. Thus, we expect these methods to be of
interest to the experimental community.

II. PRELIMINARIES

In this section, we establish our notation and provide some
essential facts from quantum information theory and classical
statistics that are needed to prove our main results. To begin,
let B = {| j〉} denote a basis of a finite-dimensional Hilbert
space H. Then, {| j〉| j′〉 | | j〉, | j′〉 ∈ B} forms a basis for the
composite space H ⊗ H. The SWAP operator F : H ⊗ H →
H ⊗ H, as the name suggests, is the operator that swaps two
tensor components:

F | j〉| j′〉 = | j′〉| j〉, ∀ | j〉, | j′〉 ∈ B. (1)

This operator is diagonal in the Bell basis and has eigenvalues
±1. The +1 and −1 eigenspaces are called the symmet-
ric and antisymmetric subspaces, respectively. Denoting the
symmetric (antisymmetric) subspaces as �+ (�−), we can
express the spectral decomposition of the SWAP operator as
F = �+ − �−. Moreover, these projectors resolve the iden-
tity I ⊗ I = �+ + �−, allowing us to express the subspace
projectors as

�± = I ⊗ I ± F

2
. (2)

The multipartite entanglement measures we consider in this
paper are functions of the subsystem purities, so in the proof
of our main results, we will utilize the following well-known
relationship between the SWAP operator and a state’s purity,
called the SWAP “trick.”

Lemma 1 (The SWAP “trick”). For an n-qubit state ρ, the
following equality holds:

tr[Fρ⊗2] = tr[ρ2]. (3)

This lemma can be proven from the definitions of the
SWAP operator and the trace (see, for example, Appendix A
of Ref. [34]). Around the turn of this century, it was realized
that Lemma 1 suggests a method of purity estimation if one
could prepare two identical copies of the quantum state and
coherently manipulate the systems with high fidelity [35]. The
necessary level of coherent control has only become possible
in the past decade on ion trap and neutral atom systems [4–6]
but remains at the cutting edge. In an effort to avoid the use
of two-copy measurements, Ref. [22] initiated the study of
purity estimation using single-copy measurements, and many
great theoretical and experimental works to this end have been
produced [13,15,33]. While the current work focuses on the
task of estimating multipartite entanglement measures using
only local measurements, we suspect our techniques could be
adapted to the direct estimation of all nonlinear functionals of
the form tr[ρk] for k ∈ Z+.

A. Concentratable entanglement

In this work, we consider the estimation of the family of
multipartite entanglement measures defined in Ref. [32]. This
family includes the pure-state entanglement measures from
Refs. [31,36,37] as special cases and has several properties
that make them interesting (see Ref. [32] for details). That
work shows how to compute the measures using a parallelized
controlled-SWAP circuit, which requires two identical copies
of an n-qubit state and n ancillary qubits. In a follow-up work
[34], the requirements were decreased to two identical copies
of the state of interest using Bell basis measurements. Still,
creating two identical copies of a moderately sized quantum
state and acting coherently on it is at the cutting edge of
quantum information processing [6,38].

Before constructing estimators of the CEs, we must intro-
duce the quantities themselves. To that end, we now define the
CEs and mention some useful facts about them.

Definition 1 (Concentratable entanglement [32]). Let |ψ〉
be a pure quantum state of n qubits, and let [n] = {1, 2, . . . , n}
denote the full set of qubit labels. For any nonempty set of
qubit labels S ∈ P ([n]) \ {∅}, the CE is defined as

C|ψ〉(S) = 1 − 1

2s

∑
α∈P (S)

tr
[
ρ2

α

]
, (4)

where s := |S| denotes the cardinality of S, and the ρ ′
αs are

reduced states of |ψ〉〈ψ | obtained by tracing out subsys-
tems with labels not in α. For the trivial subset, we define
tr[ρ2

∅] := 1.
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Crucial to the present work is the following expression for
the CEs [34]:

C|ψ〉(S) = 1 − tr

[
ρ⊗2

∏
i∈S

�i
+

]
, (5)

where �i
+ := I1 ⊗ · · · ⊗ Ii−1 ⊗ �i

+ ⊗ Ii+1 ⊗ · · · ⊗ In de-
notes the symmetric subspace projector on the ith qubit of the
first and second copy of ρ and identities for all j ∈ S such that
j �= i. Note this convention for the representation of operators
is used throughout.

Importantly, when S = [n], the CE is related to the multi-
partite concurrence defined in Ref. [31], denoted cn(|ψ〉), via
the simple expression

C|ψ〉([n]) = cn(|ψ〉)2

4
, (6)

which is the measure Ref. [30] estimated using local ran-
dom measurements. Our results will hold for that measure as
well as all others obtained by choice of any S ⊆ [n]. While
there are many interesting formulas for the CEs given in
Refs. [32,34], these will suffice to appreciate our main results.
We now turn to some facts from classical statistics that will be
needed to prove our sample complexity upper bounds.

B. Results from classical statistics

In this work, we will work exclusively with bounded ran-
dom variables X1, . . . , XM , such that each Xi ∈ [a, b] and
a, b ∈ R. We will denote the expectation value of a random
variable X by E[X ] and its variance by Var(X ). We denote
the covariance of two (possibly dependent) random variables
X and Y by Cov[X,Y ] = (X − E[X ])(Y − E[Y ]). We denote
estimators of statistical quantities with hats. For example, if
the actual parameter of interest is denoted θ , we will denote
an estimator of the parameter as θ̂ . We say an estimator is un-
biased if E[θ̂] = θ . Many of our estimators will be expressed
using indicator functions, which are defined as

ind[A] =
{

1, condition A is true
0, otherwise. (7)

For example, given a fixed, length-s bitstring z0 ∈ {0, 1}s,
ind[Z = z0] takes the value 1 when the random variable Z
is equal to z0, and takes the value 0 otherwise. Crucially,
the probability of obtaining a particular bitstring, z0, can be
expressed as E[ind[Z = z0]] = P(z0). Note that we will use
uppercase letters to denote random variables, and the corre-
sponding lowercase letter to denote a specific instance of the
random variable.

In practice, finite sample statistics prohibit us from exactly
determining quantities of interest. A natural approach is then
to ask how many measurements are sufficient to guarantee that
our estimate is close to the true value with high probability.
This is a well-studied problem in classical statistics and re-
sults in so-called sample complexity upper bounds. We now
present the two methods that will allow us to provide analyt-
ical performance guarantees on our estimators of multipartite
entanglement.

We start with a well-known result called Hoeffding’s in-
equality, which provides exponential concentration for sums

of independent bounded random variables. We will state it
without proof, as it is a standard result proven in most mathe-
matical statistics textbooks (e.g., Sec. 2.2 of Ref. [39]).

Proposition 1 (Hoeffding’s inequality). Let X1, . . . , XM be
independent random variables such that a � Xi � b and
E[Xi] = μ for all i ∈ [M]. Then, given a precision ε > 0
and a confidence level 1 − δ ∈ (0, 1), choosing M = (b −
a)2ln(2/δ)/(2ε2)� suffices to guarantee that

P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi − μ

∣∣∣∣∣ � ε

)
� δ. (8)

If, however, the random variables in question have a large
allowed range (but small variance), Hoeffding will often be
looser than bounds that utilize the information about this
second moment. In other words, the number of measurements
required to achieve ε precision will be overestimated. To
provide stronger concentration, we will make use of MoM
estimation (e.g., Sec. 2.3 of Ref. [40]).

Proposition 2 (Median-of-means, MoM, estimation).
Suppose that X1, . . . , XM are i.i.d. random variables, with
variance bounded above by σ 2 > 0. Let ε > 0 be the precision
and 1 − δ be the confidence level, and M = NBB be the total
number of samples, where the number of samples per batch is
NB = 8 ln(1/δ)� and the number of batches is B = 4σ 2/ε2�.
Let μ̂b denote the empirical mean of X(b−1)B+1, . . . , XbB, for
b ∈ {1, . . . , NB}. Then, we have

P (|median(μ̂1, . . . , μ̂B) − E[X ]| � ε) � δ. (9)

Both of these results allow us to derive analytical perfor-
mance guarantees in the form of upper bounds on the sample
complexity of an estimator. With these preliminaries in mind,
we turn now to our main results.

III. MAIN RESULTS

We first generalize and provide analytical performance
guarantees for the estimators of multipartite entanglement
via LRMs constructed in Ref. [30]. We then utilize median-
of-means estimation to obtain a (quadratically) better upper
bound on the sample complexity CE estimation using LRM
data. Then, we show that any local POVM that forms a pro-
jective 2-design can be used to construct an estimator for the
CEs. A corollary of this result is the de-randomization of
the LRM protocol which enables multipartite entanglement
quantification using a single measurement setting. All of our
sample complexity upper bounds, as well as estimates of the
worst case, classical postprocessing cost, are summarized in
Table I.

A. CEs via LRMs

As mentioned above, randomized measurements have been
studied in many estimation tasks, but most relevant to our
work is the recent work of Ref. [30] in which the authors
present a method of estimating the multipartite concurrence
[31] using local randomized measurement data. Because one
recovers the generalized concurrence easily from the CEs [see
Eq. (6)], Ref. [30] is easily generalizable to the entire family
of CEs.
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TABLE I. Summary of local strategies for multipartite entanglement quantification. The second column of this table represents asymptotic
upper bounds on the number of measurements needed to estimate the CEs to precision ε, with probability at least 1 − δ. The third gives
asymptotic estimates of the classical time complexity, where we assume that all elementary operations are O(1). Finally, the fourth column
summarizes the number of measurement settings needed for each estimator.

Estimator name Sample complexity upper bound Classical postprocessing No. of measurement settings

LRM-Mean, K = 2 M1 = O
[(

9
4

)s
ln
(

1
δ

)
ε−2
]

O(K2sM1) O
[(

9
4

)s
ln
(

1
δ

)
ε−2
]

LRM-MoM, K = 2 M2 = O
[(

3
2

)s
ln
(

1
δ

)
ε−2
]

O(K2sM2) O
[(

3
2

)s
ln
(

1
δ

)
ε−2
]

SIC-MoM, K = 2 M3 = O
[
3s ln

(
1
δ

)
ε−2
]

O(K2sM3) 1

SIC-MoM, K = Kopt M4 = O
([(

3
2

)s
ε−2 + √

3sε−1
]

ln
(

1
δ

))
min

{
O(Kopt2sM4), O

(
K2

optsM4

)}
1

As depicted in Fig. 1, the LRM protocol entails preparing
the state of interest, applying U =∏n

i=1 Ui, where each Ui is
taken from some single-qubit matrix distribution (e.g., Haar
distribution or single-qubit Cliffords [41]), to our state, and
then measuring in the computational basis {|z〉}. Note that this
yields a bitstring z, where z := z1 · z2 · · · · zn, with zi ∈ {0, 1},
and where the probability of obtaining z is given as P(z) =
tr[UρU †|z〉〈z |]. Note that if one only cares about a subset
S ⊆ [n] of qubits, then one can restrict the unitary rotation
and subsequent computational basis measurement to the sub-
systems defined by S. Specifically, this corresponds to rotation
by the unitary U =∏i∈S Ui, by which mean Ui ∈ U (2) is a
unitary acting on the ith qubit for i ∈ S, and we implicitly
assume that the action of the unitary is trivial (i.e., 1) on qubits
not in the set S. We then have the following proposition.

Proposition 3 (CEs via LRMs). Let ρ = |ψ〉〈ψ | be an n-
qubit pure state, U =∏i∈S Ui for Ui ∈ U (2) be the tensor
product of single-qubit Haar random unitaries in S ⊆ [n], and
PU (z) be the probability of measuring bitstring z ∈ {0, 1}s.
The CEs can be obtained exactly via

C|ψ〉(S) = 1 − 3sEU [PU (z)2] (10)

for any bitstring z, where EU [·] represents an average over the
Haar measure.

The proof of this theorem relies on the fact that

EU [U ⊗2|z〉〈z |U †⊗2
] = 1

3�+, (11)

FIG. 1. Local randomized measurement. A local randomized
measurement (LRM) is simply a random local unitary on each sub-
system, followed by a computational basis measurement.

which follows from Schur’s lemma and Eq. (5). We include
a detailed proof in Appendix B 1. Crucially, we emphasize
that this holds for any fixed bitstring z ∈ {0, 1}s. Because this
expression is equally valid for all bitstrings, it follows that we
can simply take a uniform average over all bitstrings,

C|ψ〉(S) = 1 −
(

3

2

)s ∑
z∈{0,1}s

EU [PU (z)2], (12)

which is a crucial experimental consideration, because the
probability of obtaining any particular bitstring decays expo-
nentially with the number of qubits being probed. Moreover,
taking such an average enables improved statistical estimators
for two key reasons. First, as we will see below, the uniform
average allows us to reduce the constant factor that appears
in the sample complexity from 3s to ( 3

2 )s. And second, the
uniform average allows us to focus on estimating the sum
of squared probabilities rather than the squared probabilities
themselves. As we will see, this is exponentially more efficient
in terms of classical postprocessing for many cases of interest.

In practice, one cannot compute this average exactly over
the Haar measure but instead samples L unitaries from the
Haar measure (or a unitary design of the appropriate degree
[41]) and approximates the exact average. Moreover, Eq. (10)
depends on the probability, at a fixed unitary, of obtaining
the bitstring z. This, too, cannot be computed exactly but is
estimated by repeating, for each random unitary, the compu-
tational basis measurement K times and taking the sample
average. This yields a total measurement budget of M = LK .
Because of these two sources of finite-sampling error, pro-
viding convergence guarantees for estimators based on LRM
data can be challenging, with many groups resorting to var-
ious approximations, special cases, or numerical simulations
[13–15,30,42]. While these methods are still informative, it
would be preferable to obtain analytical performance guar-
antees. Before showing how to obtain such guarantees, let
us understand the methods used in Ref. [30], where they
construct unbiased estimators of P2

U (z) to then approximate
the actual quantity of interest EU [PU (z)2].

To understand their result, let z ∈ {0, 1}s denote a bitstring
resulting from an LRM as depicted in Fig. 1. Ohnemus et al.
[30] show that

P̂(2)
U (z) = P̂U (z)

(KP̂U (z) − 1)

K − 1
(13)

is an unbiased estimator of the squared probability PU (z)2,
for a fixed unitary U . Here, P̂U (z) = 1

K

∑K
k=1 ind[Zk = z]
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denotes the fraction of the K outcomes equal to z. However,
the classical runtime of estimating each probability is O(K ),
and there are 2s terms in the sum that appear in Eq. (12).
Thus, the classical postprocessing scales exponentially in the
number of subsystems being probed, i.e., O(K2s). Moreover,
proving upper bounds on the sample complexity of the CEs is
difficult if one estimates the squared probabilities. Hoeffding’s
inequality and the union bound give an analytical sample
complexity upper bound, but it is very loose. Alternatively,
one could attempt to compute or bound the variance of this
estimator and use the Chebyshev-Cantelli inequality, as done
in Ref. [30], but this requires control of up to the fourth
moment of a multinomial distribution, which is difficult to
compute for general input states. We address these limitations
with a simple shift in the estimation procedure.

1. LRM-mean estimator

Instead of estimating the probabilities, or even the squared
probabilities, we estimate the expectation value of the sum of
the squared probabilities that appear in Eq. (12).

Theorem 1 (Unbiased CE estimation via LRM data). For
each K � 2,

Ĉ|ψ〉(S) = 1 −
(

3

2

)s 1

L

L∑
l=1

Ŝ(K )
l (14)

is an unbiased estimator of C|ψ〉(S), where

Ŝ(K )
l = 1

K (K − 1)

K∑
k,k′=1
k �=k′

ind[Zl,k = Zl,k′ ]. (15)

Given a precision ε > 0 and a confidence level of 1 − δ ∈
(0, 1), using at most L = O[( 9

4 )s ln(1/δ)/ε2] random uni-
taries, one is guaranteed

Pr[|Ĉ|ψ〉(S) − C|ψ〉(S)| � ε] � δ. (16)

A detailed proof of this theorem and a derivation of the
estimator can be found in Appendix B 1. Note that Zl,k ∈
{0, 1} denotes the bit resulting from a computational basis
measurement on the kth shot of the lth unitary sampled. We
remark that Ŝ(K )

l is mathematically equivalent to summing
Eq. (13) over all bitstrings, but writing it as Ŝ(K )

l allows for
faster classical postprocessing for a constant K . As mentioned
previously, computing each probability and summing would
scale as O(K2s), which would become a bottleneck for mod-
erate system sizes. In contrast, computing Ŝ(K )

l directly can be
done in O(K2s). For constant K , this represents an exponential
improvement in classical postprocessing.

Importantly, the concentration inequality in Theorem 1
holds for all K � 2. Thus, using a given unitary for more
than two shots would increase the total measurement budget
without providing provably better concentration. Moreover,
the computational postprocessing cost increases with K . To
see this, note that the sum Ŝ(K )

l is computed by checking
the number of distinct pairs of trials (k, k′) that output the
same string and thus has time complexity O(K2s). This, too,
indicates that one should choose K = 2. Note that this does
not imply this is the optimal division of the total measure-
ment budget. We will see in the next section that the sample

complexity could be marginally improved by increasing K ,
but with diminishing returns after a certain value. Finally,
although the classical postprocessing is efficient, the sample
complexity upper bound scales as ∼( 9

4 )s, which can become
prohibitive for tens of qubits. As such, we now show how to
quadratically improve this sample complexity using an alter-
native estimation procedure.

2. LRM-MoM estimator

As mentioned in Sec. II B, Hoeffding’s inequality holds for
all independent random variables that are bounded. However,
if the range of values the random variable takes is large rel-
ative to its standard deviation, and one can compute exactly
or obtain a good upper bound on the variance of the random
variable, median-of-means estimation can give tighter concen-
tration. To apply Proposition 2 to our LRM estimator, we have
to compute the variance of Ŝ(K )

l given in Theorem 1. As we
show in Appendix B 1, the variance can be expressed as

Var
[
Ŝ(K )

l

] = 2P2(1 − P2) + 4(K − 2)
(
P3 − P2

2

)
K (K − 1)

+ (K − 2)(K − 3)
(
P2,2 − P2

2

)
K (K − 1)

, (17)

where P2 := EU [
∑

z PU (z)2], P3 := EU [
∑

z PU (z)3], P2,2 :=
EU [(

∑
z PU (z)2)2]. Note, importantly, that this variance is

independent of l and the second additive term dominates in
the large K limit, approaching P2,2 − P2

2 . Thus, increasing
K past some threshold value will not lead to an appreciable
decrease in the variance. Moreover, if one wishes to bound
the variance for arbitrary states, it is necessary to bound the
fourth moment implicit in P2,2. While local Cliffords are a
common choice for implementing LRMs, they only form a
3-design, so one would need to either find a method to bound
P2,2 for (local) Clifford measurements, or perform (local) Haar
random measurements, which can be more experimentally
challenging. We therefore restrict to K = 2, which allows us
to use local Clifford measurements, bound the variance for
arbitrary states, and provably perform better than the estima-
tion procedure given in Theorem 1. In addition, this allows for
faster classical postprocessing, as explained in the previous
section.

Thus, choosing K = 2 (i.e., employing only two measure-
ments per unitary), Eq. (17) reduces to

Var
[
Ŝ(2)

l

] = P2(1 − P2). (18)

Note that Eq. (12) and the definition of P2 above imply that
the CE can be expressed as C|ψ〉(S) = 1 − ( 3

2 )sP2. Then, be-
cause C|ψ〉(S) � 0, we have P2 � ( 2

3 )s, which, coupled with
Eq. (18), implies that Var[Ŝ(2)

l ] � ( 2
3 )s. Noting that we can

write the estimator in Eq. (14) as Ĉ|ψ〉(S) =∑L
i=1 Ĉ

(K )
l /L with

Ĉ (K )
l = 1 − (3/2)sŜ(K )

l , we obtain

Var
[
Ĉ(2)

l

] =
(

9

4

)s

Var
[
Ŝ(2)

l

]
�
(

3

2

)s

. (19)
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This allows us to directly apply Proposition 2, which we
state as our second theorem.

Theorem 2 (CE estimation via MoM and LRMs).
Given the precision of ε > 0 and a confidence level
1 − δ ∈ (0, 1), we randomly sample a total of L = NBB local
unitaries of the form U =∏i∈S Ui, where NB = 8 ln( 1

δ
)�

and B = 4( 3
2 )sε−2�. Measuring K = 2 outcomes per

unitary, we denote the outcomes from the L LRMs as
Z1,1, Z1,2, . . . , ZL,1, ZL,2. Breaking these 2NBB outcomes into
NB batches of size 2B, for each 1 � b � NB, we compute the
empirical mean

C (b)
|ψ〉(S) = 1 −

(
3

2

)s 1

B

bB∑
l=(b−1)B+1

ind[Zl,1 = Zl,2]. (20)

Then, given at most O[( 3
2 )s ln( 1

δ
)ε−2] measurement outcomes,

one is guaranteed to have

Pr
[|median

[
C (1)

|ψ〉(S), . . . , C (NB )
|ψ〉 (S)

]− C|ψ〉(S)| � ε
]
� δ.

(21)

The proof of this theorem can be found in Appendix B 1
and is a direct application of Proposition 2, using the variance
bound in Eq. (19). While the classical postprocessing needed
to compute this estimator is no worse than the estimator in
Theorem 1, it improves on the sample complexity by a factor
of ( 3

2 )s, which effectively doubles the size of the state one
could probe with comparable resources (asymptotically).

Despite this significant improvement in sample com-
plexity and classical postprocessing, LRMs still require an
exponential number of measurement settings, which is time
consuming experimentally. To address this limitation, we now
show how to derandomize these protocols and probe entangle-
ment using a single experimental setting.

B. CEs via projective 2-designs

As mentioned previously, the sample complexity of an
estimation protocol is not the only relevant experimental con-
sideration. While each measurement setting used in LRMs is
easily implementable, guaranteeing ε-close estimation of the
CEs requires an exponential number of measurement settings.
Inspired by Ref. [33], we propose a “derandomization” of the
LRM protocol that requires only a single experimental setting.

Through Eq. (5), estimating the CEs relies on projecting
two copies of each qubit onto the symmetric subspace. LRMs
accomplish this by applying random unitaries to give the
second moment of the Haar distribution in expectation:

∫
Haar

U ⊗2|z〉〈z |U †⊗2
dU = 1

3
�+, (22)

where Eq. (22) follows from Schur’s lemma. However, it is
also possible to find a discrete family of states that in expecta-
tion give the symmetric subspace; this informs the definition
of a projective 2-design [41,43]:

Definition 2 (Projective 2-design). A projective 2-design
is a probability distribution over N quantum states,
{pi, |φi〉}N

i=1, such that

∑
i

pi(|φi〉〈φi|)⊗2 =
∫

Haar
(|ψ〉〈ψ |)⊗2dψ, (23)

where integration in the right-hand expression is with respect
to the Haar measure.

Phrased differently, for {pi, |φi〉}N
i=1 forming a projective

2-design, the expectation yields

Eφ[(|φ〉〈φ |)⊗2] = 1
3�+, (24)

where Eφ[(|φ〉〈φ |)⊗2] :=∑i pi(|φi〉〈φi|)⊗2. Note that the
state in Eφ[(|φ〉〈φ |)⊗2] denotes a random variable while
|φi〉〈φi | is a specific state.

To illustrate the existence of projective 2-designs, recall
that the symmetric subspace is expressible in terms of the
identity and SWAP operators: �+ = (I⊗2 + F )/2. Due to F
being Hermitian and the Paulis with identity forming an
orthonormal basis, the SWAP operator admits the following
decomposition:

F = 1
2 (I⊗2 + X ⊗2 + Y ⊗2 + Z⊗2). (25)

Through some algebraic simplifications, one can show that

1

3
�+ = 1

6
(I⊗2 + F ) = 1

|B|
∑
β∈B

|β〉〈β |⊗2, (26)

where B denotes the set of six eigenvectors for the Pauli opera-
tors. Therefore, the uniform average over B mimics the second
moment of the Haar measure, thus forming a projective 2-
design. To truly “derandomize” CE estimation with projective
2-designs one must simultaneously measure against all of
these states, with appropriate weighting, through a POVM.
We will return to this point later; for now, this gives us enough
intuition to understand the following theorem.

Theorem 3 (CEs viaprojective2-designs). Let {pi, |φi〉}N
i=1

be a single-qubit projective 2-design with N elements. Further,
let |�q〉〈�q | =∏i∈q |φi〉〈φi | denote the projector onto out-
put string q ∈ {1, 2, . . . , N}s, which occurs with probability
P(q) = tr[ρ|�q〉〈�q |] when measuring the qubits in the set
S, given the state ρ. Then, the CEs can be written as

C|ψ〉(S) = 1 − 3sE�[tr[ρ|�〉〈� |]2], (27)

where E�[·] denotes an expectation over the 2-design.
The proof of Theorem 3 is a direct application of Eq. (24)

and Eq. (5), keeping in mind that each of the states in the
tensor product |�〉〈� | =∏i |φ〉〈φ | are independent identi-
cally distributed random variables. These details are provided
in Appendix B 2.

While this theorem holds for all projective 2-designs, we
restrict our attention to symmetric informationally complete
POVMs (SIC-POVMs), due to their minimal nature among
projective designs. This is to say they saturate the lower bound
on the number of elements, N , needed to form a projective

012454-6



LOCAL MEASUREMENT STRATEGIES FOR MULTIPARTITE … PHYSICAL REVIEW A 110, 012454 (2024)

FIG. 2. Local SIC-POVM implementation. (a) Circuit diagram
showing local SIC-POVM implementation by encoding an n-qubit
state in an n-qudit state. This has been implemented recently in
both superconducting transmon [47] and ion trap quantum systems
[33]. (b) Instead of encoding qubit states in qudit states, one could
utilize ancillary qubits to implement the SIC-POVM. This may be
preferable in neutral atom systems as in Ref. [6]. (c) Bloch sphere
representation of a single-qubit SIC-POVM.

t-design in a d-dimensional space [43]:

N �
(

d + t/2� − 1

t/2�
)(

d + �t/2� − 1

�t/2�
)

, (28)

which becomes N � 4 for 2-designs in the two-dimensional
qubit case. A SIC’s minimality has an important advan-
tage for experimental implementation. Because the size of
ancillary space required for implementation is proportional
to the number of design elements [44] through Neumark’s
(Naimark’s) theorem (see Appendix Sec. A 1), SICs are the
cheapest to implement experimentally. We refer the reader
to Refs. [43,45,46] for more about SICs generally, and to
Ref. [43] for a detailed overview of SICs and projective
2-designs as we use them. For qubits, and as depicted in
Fig. 2(c), the simplest SIC has the following four elements:

|φ1〉 = |0〉,

|φ2〉 = 1√
3
|0〉 +

√
2

3
|1〉,

|φ3〉 = 1√
3
|0〉 +

√
2

3
ei2π/3|1〉,

|φ4〉 = 1√
3
|0〉 +

√
2

3
ei4π/3|1〉,

(29)

which obey the following relation:

1

4

4∑
i=1

(|φi〉〈φi |)⊗2 = 1

3
�+. (30)

By defining |φ̃i〉 = 1√
2
|φi〉, we can turn these SIC elements

into a well-defined POVM satisfying

4∑
i=1

| φ̃i〉〈φ̃i | = I. (31)

With this notation in place, we can state a corollary to The-
orem 3 that yields a very simple expression for the CEs via
local SICs.

Corollary 1 (CEs via local SICs). Let {| φ̃i〉〈φ̃i |}4
i=1 be a

single-qubit SIC-POVM and |�̃q〉〈�̃q | =∏i∈q | φ̃i〉〈φ̃i | de-
note the projector onto output string q ∈ {1, 2, 3, 4}s which
occurs with probability

P(q) = tr[ρ|�̃q〉〈�̃q |]. (32)

Then the CEs can be written as

C|ψ〉(S) = 1 − 3s
∑

q

P(q)2. (33)

Because we do not have to average over unitaries as in
LRMs, the finite-sampling error incurred when estimating
Eq. (33) will only be due to approximating the probability
of obtaining a particular bitstring. This important distinction
between SICs and LRMs means we just need to estimate
the sum of the squared probabilities obtained from local SIC
measurements. While this theorem implies one can quan-
tify multipartite entanglement with a single experimental
measurement setting, this simplicity comes at the cost of
implementing a generalized POVM.

As shown schematically in Fig. 2, this can be achieved
by employing one additional ancilla qubit for each system
qubit [44] or, as has been demonstrated experimentally in
Refs. [33,47], by encoding qubit states into four-dimensional
qudits (ququarts). Experimentally, Corollary 3 amounts to
transforming each state-ancilla qubit pair or ququart by the
unitary U †

SIC, where

USIC =

⎛⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
6

1√
6

1√
6

0 1√
3

ei2π/3√
3

ei4π/3√
3

0 1√
3

e−i2π/3√
3

e−i4π/3√
3

1√
2

−1√
6

−1√
6

−1√
6

⎞⎟⎟⎟⎟⎟⎟⎠, (34)

and then performing a computational basis measurement. The
construction of USIC follows from Neumark’s theorem, which
we prove carefully in Appendix A 1 for the reader’s conve-
nience. The intuition is to convert the SIC elements into a
four-dimensional orthonormal basis by appending to each |φ̃i〉
a respective |φ̃⊥

i 〉 such that 〈φ̃i | φ̃⊥
i 〉 = 0.

An estimator based on SIC POVMs follows naturally from
Theorem 1 and Eq. (5). Because we saw that MoM gives
tighter sample complexity upper bounds, we focus only on
MoM estimation for SICs.

Theorem 4 (CE estimation via SIC data and MoM). Given
a precision ε > 0 and confidence level 1 − δ ∈ (0, 1), we
perform a total of M = 2NBB SIC measurements, where
NB = 8 ln(1/δ)� and B = 4(3s/ε2)�. Let Q1, . . . , QM

denote the outcomes obtained from these measurements.
Break these M outcomes into NB batches of size 2B, and for
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each 1 � b � NB, compute the empirical mean

C (b)
|ψ〉(S) = 1 − 3s 1

B

bB∑
i=(b−1)B+1

ind[Q2i−1 = Q2i]. (35)

Then, we have the guarantee that

Pr[|median[C (1)
|ψ〉(S), . . . , C (NB )

|ψ〉 (S)] − C|ψ〉(S)| � ε] � δ,

(36)

giving an upper bound of O[3s ln( 1
δ
)ε−2] on the sample com-

plexity of estimating C|ψ〉(S) using SIC measurements.
The proof of this theorem can be found in Appendix B 1.

Note that we have restricted our attention to the K = 2 case
in the main text. Evidently, this sample complexity is sub-
stantially worse than the LRMs. We can improve upon this
by optimizing the number of samples used to construct a
single estimate of the CE using SIC measurements (i.e., by
optimizing K). As we show in Appendix B 2, the optimal
value of K is given as

Kopt =
⌈

1

2

[
16

ε2

(
3

2

)s

+ 1

]

+ 1

2

√[
16

ε2

(
3

2

)s

− 1

]2

+ 32

ε2
3s

⌉
, (37)

which corresponds to the value of K that minimizes the
bound on the variance of the estimator for CE determined
by SIC measurements. As shown in Appendix B 2, setting
K = Kopt and appropriately modifying Theorem 4, it follows
that O([( 3

2 )sε−2 + √
3sε−1] ln( 1

δ
)) total measurements are suf-

ficient to guarantee that

Pr
[|median

[
C (1)

|ψ〉(s), . . . , C (NB )
|ψ〉 (s)

]− C|ψ〉(s)| � ε
]
� δ.

(38)

With this optimization, we have shown that using a single
experimental measurement setting, one can obtain an upper
bound on the sample complexity that is similar to the bound
obtained for LRMs, which requires an exponential num-
ber of different measurement settings. However, as noted in
Table I, the classical postprocessing in this optimized case is
more costly. Moreover, the local measurement itself is more
difficult to implement than in the case of the simple projective
measurements used in LRM protocols.

Nonetheless, we hope that our results will be useful
to experimentalists that would like to quantify multipartite
entanglement without the need to prepare and coherently ma-
nipulate multiple identical copies of a quantum state. While
this capability is becoming possible on neutral atom platforms
[6,38], it remains very challenging on other architectures.

Our motivation in this work was to improve upon protocols
in the literature and find the most resource efficient method
for multipartite entanglement quantification using only local
measurements. While we have accomplished this, we also
aimed to provide tools that experimentalists can use in cur-
rent and near-term experiments where states are not perfectly
pure. While there are a number of ways one could quantify
mixed-state entanglement, we sketch one technique to which
the methods above could be directly applied.

C. Mixed states

Our motivation in this work was to optimize and compare
various methods of quantifying pure-state multipartite entan-
glement using only local POVMs. As such, we focused on
pure states with ideal unitary evolution and perfect measure-
ments. While this question is of theoretical interest, to be
useful in practice, one must be able to handle mixed states.
While we save the full treatment of mixed states for a future
work (more on this below), we mention here one potential way
forward that would utilize our results here.

A standard method of extending pure-state entanglement
measures to mixed-state ones is via a convex roof extension
[48,49]. This was done for the CEs in Ref. [34], but we sketch
the argument here to illustrate the main points. The convex
roof extension can be expressed as

Cρ (S) = inf
∑

i

piC|ψi〉(S), (39)

where the infimum is over the set of decompositions of the
form ρ =∑i pi|ψi〉〈ψi|, with pi � 0 for all i and

∑
i pi = 1.

Because this optimization is generally difficult, one often con-
siders a lower bound on Eq. (39). We will show how one could
construct such lower bounds for the CEs and compute them
from local measurement data alone, allowing one to bound
the mixed-state entanglement within the above framework
developed for estimating pure-state entanglement.

First we note that the bipartite concurrence [50,51] of a
pure quantum state |ψ〉AB can be expressed as

c2(|ψ〉AB) =
√

2
(
1 − tr

[
ρ2

A

])
. (40)

We can use this to express the CE in terms of the bipartite
concurrences by defining cα := √

2(1 − tr[ρα2 ]), leading to

C|ψ〉(S) = 1

2s+1

∑
α

c2
α (|ψ〉). (41)

Then, one could use the observable lower bound on the bipar-
tite concurrence introduced in Ref. [52] to construct a lower
bound on the CEs. For example, when the S = [n] and the CE
is simply related to the multipartite concurrence of Ref. [31],
one obtains a lower bound of the form

C�
ρ ([n]) = 1

2n
+
(

1 − 1

2n

)
tr[ρ2] − 1

2n

∑
α∈P ([n])

tr
[
ρ2

α

]
. (42)

Throughout this work, we have shown how to estimate the
last term using various local measurement strategies. The mid-
dle term depends only on the quantum state’s purity, tr[ρ2].
There exists a number of theoretical [15,22] and experimental
[4,5,14,42,53] works showing how to estimate the purity of
quantum states using local random measurements, and local
SICs were implemented experimentally in Ref. [33] to esti-
mate purity. In fact, the purity of a quantum state is a quantity
of great practical interest in its own right, and we suspect our
results will be of interest to those researchers interested in
proving rigorous performance guarantees on its estimation.

Coupled with these results from the literature, one could
use the framework and techniques described above to probe
mixed-state entanglement in this manner. We further note that,
for high-purity states that are becoming increasingly common
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in today’s state-of-the-art experiments, this bound is very
close to the pure-state theoretical value. This can be seen
by noting that C|ψ〉([n]) − C�

ρ ([n]) = (1 − 2−n)(1 − tr[ρ2]),
which is very close to zero for nearly pure states.

Such a procedure described above would generalize the
method used in Ref. [30] for the multipartite concurrence
[52,54] but is just one possible extension of our methods
to mixed-state entanglement. There have been a number
of interesting works in recent years that use local random
measurement strategies to probe mixed-state entanglement
[17,18,55], and exploring the connections between our pro-
posed method and theirs is an interesting direction we will
save for future work.

IV. FUTURE DIRECTIONS AND CONCLUSIONS

Before concluding, we would like to mention some di-
rections for future investigations and place our work in the
broader context of the literature. As mentioned above, a timely
follow-up to our work would be the careful analysis applying
our methods to mixed states and, ideally, an implementation
on real hardware.

In addition to matters of direct practical interest, our work
also connects to interesting open theoretical questions re-
garding the ultimate limits on the learnability of quantum
entanglement with local measurements. While we provide
several upper bounds on the sample complexity of the esti-
mation of multipartite entanglement with local measurements,
the best of which scales as ( 3

2 )s, it remains an open question
as to what the optimal scaling is. Finding matching lower and
upper bounds on the sample complexity of this task would
be an exciting result both for experimentalists wishing to
probe entanglement in the laboratory and to the quantum
learning theory community that aims to quantify the ultimate
limits of the learnability of quantum properties. In particular,
such bounds would allow one to establish ultimate separa-
tions between local, single-copy, and multicopy measurement
strategies. While such separations have been established for
QST (see Table 1 in Ref. [56]) and other learning tasks, the
authors are unaware of any such separation in the case of
multipartite entanglement estimation.

However, partial results in that direction do exist. Given the
ability to create, store, and coherently manipulate two copies
of state at once (as in Refs. [6,38]), one could use Bell basis
measurements on each qubit of the two copies of ρ to estimate
the CEs [34]. Given access to these two-copy measurements,
Ref. [34] showed that at most O(ln( 1

δ
)ε−2) measurements are

needed to estimate the CEs to ε precision with probability
1 − δ. Thus, for constant ε, δ, two-copy measurements al-
low for multipartite entanglement quantification using at most
O(1) measurements, while our best local strategy scales as
O[( 3

2 )s]. Proving an exponential lower bound on multipar-
tite entanglement estimation with local measurements would
imply an exponential separation between local and two-copy
measurements, which would be very interesting to theorists
and experimentalists alike.

To conclude, in this work we have generalized Ref. [30],
which studies the estimation of multipartite concurrence using
LRMs, to the CEs and then significantly simplified the error
analysis and provided analytical upper bounds on the sample

complexity of this task, as summarized in Table I. While
each measurement in an LRM protocol is easy to implement,
the number of measurement settings required scales exponen-
tially with the number of qubits. To address this experimental
shortcoming of LRMs, we provided a derandomization of the
entanglement estimation procedure, allowing experimentalists
to estimate many multipartite entanglement measures of inter-
est using a single experimental setting.

Finally, the purity of a quantum state is a quantity of great
practical interest in its own right. Many works exploring the
estimation of functions of the form tr[ρk] for integer k fall
short of the rigorous performance guarantees we provide here.
We suspect our methods of statistical estimation could be
adapted to those settings as well. In general, we hope our work
will enable multipartite entanglement quantification in the in-
creasingly large quantum systems being built, and coherently
controlled, in experimental laboratories today.
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APPENDIX A: PRELIMINARIES

1. Neumark’s (Naimark’s) theorem

Neumark’s theorem is a procedure for realizing POVMs as
a projective measurement on a larger Hilbert space. Because
it is the key theoretical component that allows SICs to be
implemented in practice, we provide a proof here. Our proof
is based directly upon the one given in Preskill’s 1997 lecture
notes [57]. Note that we focus on the case of POVMs with four
elements due to our interest in single-qubit SICs; however, the
result can be generalized for POVMs with N elements.

Theorem 5 (Neumark’s, or Naimark’s, theorem for single-
qubit SICs). Suppose our two-dimensional Hilbert space
of interest HA is actually a subspace of a larger Hilbert
space with a direct sum structure H = HA ⊕ H⊥

A , where H⊥
A

is another two-dimensional Hilbert space. Then, a single-
qubit SIC-POVM has elements {Fi}3

i=0 = { 1
2 |φi〉〈φi |}3

i=0 =
{| φ̃i〉〈φ̃i |}3

i=0 ⊂ HA that only have support on HA, i.e.,
Fi|φ⊥〉 = 0 = 〈φ⊥|Fi, for any |φ⊥〉 ∈ H⊥

A and for any i. We
can then realize the SIC-POVM as a projective measurement
{|ui〉〈ui |} on H, where {|u0〉, . . . , |u3〉} is an orthonormal
basis, with |ui〉 defined as

|ui〉 = |φ̃i〉 ⊕ |φ̃⊥
i 〉, (A1)

where |φ̃⊥
i 〉 is a vector of magnitude 1/2 that is orthogonal to

|φ̃i〉 for each i given in Eq. (B3).
Proof. We have the following requirements to realize the

single-qubit SIC-POVM as a projective POVM on the larger
space H:

(1) {|u0〉, . . . , |u3〉} forms an orthonormal basis for H, and
(2) For any state ρ on the space HA, we have

tr[(ρ ⊕ 0A⊥ )|ui〉〈ui |] = tr[ρ| φ̃i〉〈φ̃i |] (A2)

for all i ∈ {0, . . . , 3}, where 0A⊥ denotes the zero matrix on
H⊥

A .
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The second requirement above ensures that the POVM on
the larger space reproduces the statistics of the single-qubit
SIC POVM. This condition implies that each |ui〉 is of the
form |ui〉 = |ψ̃i〉 ⊕ |wi〉 for some vector |wi〉 ∈ H⊥

A . Then,
orthonormality of the {|ui〉} basis gives the constraint that
〈w j |wi〉 = −〈φ̃ j |φ̃i〉 for all i, j. It can be verified through
explicit calculation that choosing |wi〉 = |φ̃⊥

i 〉 to be a vector
perpendicular to |φ̃i〉 for each i given in the equation below
satisfies the above requirements:

|φ̃⊥
0 〉 = 1√

2
|1〉,

|φ̃⊥
1 〉 = 1√

3
|0〉 − 1√

6
|1〉,

|φ̃⊥
2 〉 = e−i2π/3

√
3

|0〉 − 1√
6
|1〉,

|φ̃⊥
3 〉 = e−i4π/3

√
3

|0〉 − 1√
6
|1〉. (A3)

�
Neumark’s theorem involves a direct sum structure, but it

can be exchanged for a tensor product structure with some
caveats [44]. For the case of single-qubit SIC-POVM, how-
ever, this is not a problem as both HA and H⊥

A are two
dimensional. Specifically, we can obtain a tensor product
structure by considering an ancillary qubit B and writing

|ui〉 = |φ̃i〉A|0〉B + |φ̃⊥
i 〉A|1〉B. (A4)

This once again gives the same measurement statistics as the
POVM,

tr[ρ| φ̃i〉〈φ̃i |] = tr[(ρ ⊗ |0〉〈0 |)|ui〉〈ui |]. (A5)

To physically implement a SIC-POVM, we can construct a
unitary to act on our state such that a computational basis
measurement afterward will give us the outcomes for a SIC.
Let USIC = [|u1〉|u2〉|u3〉|u4〉]; then

tr[ρ|φ̃i〉〈φ̃i|] = tr[U †
SIC(ρ ⊗ |0〉〈0|)USIC|q〉〈q|], (A6)

where q ∈ {0, 1, 2, 3}. An explicit matrix for USIC is given in
Eq. (34).

APPENDIX B: PROOFS OF MAIN RESULTS

1. LRMs

Proof Let S ⊆ [n] denote the system that we are interested
in. We define U as follows:

U =
∏
i∈S

Ui, (B1)

where Ui ∈ U (2). We can then compute the Haar average
quantity E[PU (z)2] as

E[PU (z)2] = EU [tr[ρU |z〉〈z |U †]2],

= EU [tr[ρU |z〉〈z |U †]tr[ρU |z〉〈z |U †]],

= EU [tr[ρU |z〉〈z |U † ⊗ ρU |z〉〈z |U †]],

= EU [tr[ρ⊗2(U |z〉〈z |U †)⊗2]],

= tr[ρ⊗2EU [(U |z〉〈z |U †)⊗2]],

= tr

[
ρ⊗2

∏
i∈s

EUi

[
U ⊗2

i |zi〉〈zi |⊗2U †⊗2

i

]]
,

E[PU (z)2] =
(

1

3

)|s|
tr

[
ρ⊗2

∏
i∈s

�i
+

]
,

(B2)

where the last line follows from

EU [U ⊗2|z〉〈z |U †⊗2
] = 1

tr[�+]
�+tr[�+|z〉〈z |⊗2]

+ 1

tr[�−]
�−tr[�−|z〉〈z |⊗2],

= 2

d (d + 1)
�+tr

[
I + F

2
|z〉〈z |⊗2

]
,

= 2

d (d + 1)
�+. (B3)

Where we notice that since |z〉〈z | is a product state, under the
SWAP operation (F ) it remains the same and is thus annihilated
by the antisymmetric projector. Using the relation that �+ =
I+F

2 , d = 2, and Lemma 1, i.e., the SWAP trick, we can rewrite
to the following:

E[PU (z)2] =
(

1

3

)|s|
tr

[
ρ⊗2

∏
i∈s

�i
+

]
, (B4)

=
(

1

6

)|s|
tr

[∏
i∈S

(Fi + Ii )ρ
⊗2

]
, (B5)

=
(

1

6

)|s| ∑
α∈P (s)

tr
[
ρ2

α

]
, (B6)

⇒ C|ψ〉(S) = 1 − 3|s|E[PU (z)2]. (B7)

�
Proof of Theorem 1. Let Zl,k denote the kth outcome ob-

served after rotating a given subset S of qubits by Ul and
measuring in the computational basis of those qubits. For
a fixed z ∈ {0, 1}s bitstring, let P̂l (z) = 1

K

∑K
k=1 ind[Zl,k = z]

denote the fraction of K outcomes equal to z. Observe that
P̂l (z) is an unbiased estimator of EU [PU (z)], which is the
probability of observing the bitstring z, averaged over uni-
taries. Note that here we take the expectation value over the
outcome probabilities as well as the unitaries. Then, following
Ohnemus et al. [30],

P̂(2)
l (z) = P̂l (z)

[KP̂l (z) − 1]

K − 1
(B8)
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is an unbiased estimator of the squared probability av-
eraged over unitaries, EU [PU (z)2]. Consequently, Ŝ(K )

l =∑
z∈{0,1}s P̂(2)

l (z) is an unbiased estimator of the sum of

squared probabilities averaged over unitaries. To see that Ŝ(K )
l

coincides with Eq. (15), we substitute the expression for P̂l (z)
in terms of indicator function to obtain

Ŝ(K )
l = 1

K (K − 1)

K∑
k,k′=1
k �=k′

∑
z

ind[Zl,k = z]ind[Zl,k′ = z].

(B9)

Observe that
∑

z ind[Zl,k = z]ind[Zl,k′ = z] is 1 when Zl,k =
Zl,k′ and 0 otherwise. Thus, we can write

∑
z ind[Zl,k =

z]ind[Zl,k′ = z] = ind[Zl,k = Zl,k′ ], and subsequently, we
obtain

Ŝ(K )
l = 1

K (K − 1)

K∑
k,k′=1
k �=k′

ind[Zl,k = Zl,k′ ]. (B10)

As a result, Ĉ (K )
l (S) = 1 − (3/2)sŜ(K )

l is an unbiased estimator
of CE for each l , and Ĉ|ψ〉(S) defined in Eq. (14) is just
the empirical average of Ĉ (K )

l (S) over L randomly sampled
unitaries. Then, since Ŝ(K )

l is bounded between 0 and 1, using
Hoeffding’s inequality (Proposition 1), one obtains a sample
complexity of O[( 9

4 )s ln( 1
δ
)ε−2] for estimating the CE. �

Proof of Theorem 2. From the proof of Theorem 1, we
know that the quantity Ĉ (2)

l = 1 − (3/2)sŜ(2)
l is an unbiased

estimator of C|ψ〉(S). From Eq. (19), we know that variance of
Ĉ (2)

l is bounded above by (3/2)s. Then applying Proposition 2
yields the advertised sample complexity of O[( 3

2 )s ln( 1
δ
)ε−2].

The only remaining component of the proof is calculating the
variance of Ĉ (K )

l , which is done in Lemma 2. �
Lemma 2. The variance of the estimator Ŝ(K )

l defined in
Eq. (15) is given by

Var
[
Ŝ(K )

l

] = 2P2(1 − P2) + 4(K − 2)
(
P3 − P2

2

)
K (K − 1)

+ (K − 2)(K − 3)
(
P2,2 − P2

2

)
K (K − 1)

. (B11)

Proof. For any l ∈ [L], we define Xk,k′ = ind[Zl,k = Zl,k′ ]
to be the Bernoulli random variable with mean P2 =
EU [
∑

z P(z)2]. Then, we can write

Var
[
Ŝ(K )

l

] = 1

K2(K − 1)2

K∑
k,k′=1
k �=k′

K∑
j, j′=1
j �= j′

Cov[Xk,k′ , Xj, j′ ], (B12)

which we evaluate using combinatorial arguments. To facili-
tate counting, we compare the indices (k, k′) and ( j, j′) under
the requirement that k �= k′ and j �= j′ based on this constraint
in the sum above. Observe that Xk,k′ = Xk′,k , and thus, we need
to account for indices (k, k′) and (k′, k) denoting the same ran-
dom variable. To proceed, we break the indices appearing in
the sum into three cases and evaluate each of them separately.

Case 1: (k, k′) = ( j, j′) and its permutation (k, k′) =
( j′, j). There are 2K (K − 1) such terms including the permu-

tation. This results in Xk,k′ = Xj, j′ , and thus, Cov(Xk,k′Xj, j′ ) =
Var(Xk,k′ ) = P2(1 − P2).

Case 2: k = j & k′ �= j′ and its three permutations (k =
j′ & k′ �= j, k′ = j & k �= j′, k′ = j′ & k �= j). There are
a total of 4K (K − 1)(K − 2) such terms including permu-
tations. For k = j & k′ �= j′, we have Xk,k′Xj, j′ = ind[Zk =
Zk′ = Z j′ ], which takes the value 1 when exactly three inde-
pendent outcome strings are equal and 0 otherwise. Subse-
quently, Cov(Xk,k′ , Xj, j′ ) = E[Xk,k′Xj, j′ ] − E[Xk,k′ ]E[Xj, j′ ] =
P3 − P2

2 , where P3 = EU [
∑

z PU (z)3]. The permutations of
(k, k′), ( j, j′) noted above give the same value for the
covariance.

Case 3: The last case corresponds to the situation where
none of the indices are equal. There are K (K − 1)(K −
2)(K − 3) such terms. In this case, the random variables Xk,k′

and Xj, j′ are independent with respect to the outcome prob-
abilities, and subsequently, Cov(Xk,k′ , Xj, j′ ) = E[Xk,k′Xj, j′ ] −
E[Xk,k′ ]E[Xj, j′ ] = EU [(

∑
z PU (z)2)2] − P2

2 . For convenience,
we denote P2,2 = EU [(

∑
z PU (z)2)2].

Using the values calculated in the above cases in Eq. (B12),
one can infer that the variance of Ŝ(K )

l is given by Eq. (B11).
Importantly, Var[Ŝ(K )

l ] is independent of l . �
In Theorem 2 we restrict our attention to K = 2. Below, we

briefly mention how one can obtain bounds on the variance
for any K � 2. First, we bound the variance from above by
dropping terms corresponding to −P2

2 to obtain

Var
[
Ŝ(K )

l

]
� 2P2 + 4(K − 2)P3

K (K − 1)
+ (K − 2)(K − 3)P2,2

K (K − 1)
.

As noted in Sec. III A 2, we have the bound P2 � (2/3)s using
the expression for CE given in Eq. (12). To bound P3, we
integrate PU (z)3 over the Haar measure, which amounts to
computing the third moment:

EU [PU (z)3] = tr

[
ρ⊗3

∏
i∈S

EUi

[
U †⊗3

i |z〉〈z |⊗3U ⊗3
i

]]
,

= 1

4s
tr

[
ρ⊗3

∏
i∈S

�i
sym,3

]
,

� 1

4s
, (B13)

where �i
sym,3 denotes the projector onto the symmetric sub-

space defined by the symmetric group S3 for the ith index
[41]. Thus, we obtain P3 =∑z EU [PU (z)3] � 1/2s. Finally,
for bounding P2,2, we need to compute the fourth moment. As
mentioned previously, since Cliffords only form a 3-design,
the value of P2,2 will differ for local Cliffords and local
Haar random unitaries. We leave this computation for future
work and instead give a simple bound on P2,2 here. Since∑

z PU (z)2 � 1 for any unitary U , we obtain P2,2 � P2. This
bound can likely be tightened by directly computing P2,2 as
noted above. In any case, since the variance does not go to
zero and instead approaches P2,2 − P2

2 for large K , sampling
and measuring many unitaries is unavoidable for estimating
CE to a small enough precision. Moreover, a larger value of K
leads to a larger computational cost. For this reason, we focus
on K = 2 in this study.
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2. SICs

Proof of Theorem 3. Let S ⊆ [n] denote the system of
interest. Let {pi, |φi〉}N

i=1 be a projective 2-design with asso-
ciated probability distribution φ such that Eφ[(|φ〉〈φ |)⊗2] =
1
3�+. Finally, denote the joint probability distribution of
the local projective 2-designs as � and have |�〉〈� | =∏

S |φ〉〈φ | denote the tensor product of local random variable
states. Then the expectation of the squared projection of ρ

onto |�〉〈� | with respect to its probability distribution is

E�[tr[ρ|�〉〈� |]2] = E�[tr[ρ|�〉〈� |]tr[ρ|�〉〈� |]],
= E�[tr[(ρ|�〉〈� |) ⊗ (ρ|�〉〈� |)]],
= E�[tr[ρ⊗2(|�〉〈� |)⊗2]],

= tr[ρ⊗2E�[(|�〉〈� |)⊗2]],

= tr

[
ρ⊗2E�

[∏
S

(|φ〉〈φ |)⊗2

]]
,

= tr

[
ρ⊗2

∏
S

Eφ[(|φ〉〈φ |)⊗2]

]
,

=
(

1

3

)s

tr

[
ρ⊗2

∏
i∈S

�i
+

]
,

E�[tr[ρ|�〉〈� |]2] =
(

1

6

)|s| ∑
α∈P (s)

tr
[
ρ2

α

]
. (B14)

Here we used the independence of the marginal probability
distributions to take the expectation of each random state
variable in the tensor product separately and then applied
Lemma 1, i.e., the SWAP trick. After shuffling around factors
we arrive at

C|ψ〉(S) = 1 − 3sE�[tr[ρ|�〉〈� |]2]. (B15)

�
Proof of Theorem 4. Given two iid samples Q2i−1, Q2i, we

define Ŝ(K ) = ind[Q2i−1, Q2i], which is an unbiased estimator
of P2 :=∑q P(q)2. Thus, Ĉ (2)

i = 1 − 3sŜ(2) is an unbiased
estimator for C|ψ〉(S) using SIC measurements. From Lemma
3 we know that the variance of Ŝ(2) is bounded above by P2 for
K = 2, and therefore, Var[Ĉ (2)

i ] � 9sP2. From the expression
of CE in Eq. (33) in terms of SIC measurements, we know that
P2 � 1/3s, giving Var[Ĉ (2)

i ] � 3s. Then, using Proposition 2,
we obtain the desired result. �

Theorem 6 (CE estimation via SIC data and MoM). Given
a precision ε > 0 and confidence level 1 − δ ∈ (0, 1),
perform a total of M = NBKopt SIC measurements, where
NB = 8 ln(1/δ)� and

Kopt =
⌈

1

2

[
16

ε2

(
3

2

)s

+ 1

]

+ 1

2

√[
16

ε2

(
3

2

)s

− 1

]2

+ 32

ε2
3s

⌉
. (B16)

Denote Q1, . . . , QM to be the outcomes obtained from these
measurements. Break these M outcomes into NB batches of

size Kopt, and for each 1 � b � NB, compute an estimate

C (b)
|ψ〉(S) = 1 − 3sŜ

(Kopt )
b , (B17)

where

Ŝ
(Kopt )
b = 1

Kopt (Kopt − 1)

bKopt∑
k,k′=(b−1)Kopt+1

k �=k′

ind[Qk = Qk′].

(B18)

Then, we have the guarantee that

Pr
[|median

[
C (1)

|ψ〉(S), . . . , C (NB )
|ψ〉 (S)

]− C|ψ〉(S)| � ε
]
� δ,

(B19)

giving an upper bound of

O

{[(
3

2

)s

ε−2 +
√

3sε−1

]
ln

(
1

δ

)}
(B20)

on the sample complexity of estimating C|ψ〉(S) using SIC
measurements.

Proof. From Lemma 3, we know that for any K � 2,

Ŝ(K ) = 1

K (K − 1)

K∑
k,k′=1
k �=k′

ind[Qk = Qk′]

is an unbiased estimator of sum of squared probabilities for
SIC measurements, with

Var[Ŝ(K )] = 2P2(1 − P2) + 4(K − 2)
(
P3 − P2

2

)
K (K − 1)

,

where P2 =∑q P(q)2 and P3 =∑q P(q)3. Dropping −P2
2

terms form the above equation for variance, we obtain the
bound

Var[Ŝ(K )] � 2P2 + 4(K − 2)P3

K (K − 1)
.

To proceed, we need to bound P2 and P3. As mentioned in the
proof of Theorem 4, we have P2 � 1/3s. To bound P3, we note
that

P3 =
∑

q

P(q)P(q)2

� (max
q

P(q))P2

�

⎛⎝max
q

tr

⎡⎣ρ

⎛⎝ 1

2s

∏
i∈q

|ψi〉〈ψi |
⎞⎠⎤⎦⎞⎠( 1

3s

)

� 1

6s
.

Plugging this back into the bound on Var[Ŝ(K )], we obtain

Var[Ŝ(K )] � 2

K (K − 1)

(
1

3s
+ 2(K − 2)

6s

)
. (B21)
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Since Ĉ (K ) = 1 − 3sŜ(K ) gives an unbiased estimate of C, we
obtain

Var[Ĉ (K )] = 9sVar[Ŝ(K )]

� 2

K (K − 1)

[
3s + 2(K − 2)

(
3

2

)s]
. (B22)

With the future use of median-of-means estimation in mind,
we impose the requirement that Var[Ĉ (K )] � ε2/4, given
the precision ε > 0 for estimating CE. Using this require-
ment with the bound on the variance of Ĉ (K ) determined in
Eq. (B22), we obtain the inequality

K2 −
[

16

ε2

(
3

2

)s

+ 1

]
K − 8 × 3s

ε2

(
1 − 1

2|s|−1

)
� 0.

Noting that 1 − 1
2s−1 � 0 for s � 1, we obtain the solution K =

Kopt given in Eq. (B16), which is the smallest integer value of
K satisfying the above inequality. Since for any integer n, we
have n � n� � n + 1, one can verify using Eq. (B22) that the
above choice of K gives Var[Ĉ (K )] � ε2/4.

Thus, Ĉ (b)
|ψ〉(S) defined in Eq. (B17) is an unbiased estimator

of C|ψ〉(S), with Var[Ĉ (b)
|ψ〉] � ε2/4 for each b. Consequently,

using Proposition 2, we obtain the desired result. �
The only remaining step is to compute the variance of

the estimator for the sum of squared probabilities for SIC
measurements. We summarize this calculation in the lemma
below.

Lemma 3. Given iid outcomes Q1, . . . , QK from SIC mea-
surements with K � 2, let

Ŝ(K ) = 1

K (K − 1)

K∑
k,k′=1
k �=k′

ind[Qk = Qk′ ] (B23)

be an unbiased estimator of P2 =∑q P(q)2, where P(q) de-
notes the probability of observing the string q after a local SIC
measurement. Then, the variance of this estimation is given by

Var[Ŝ(K )] = 2P2(1 − P2) + 4(K − 2)
(
P3 − P2

2

)
K (K − 1)

, (B24)

where P3 =∑q P(q)3.
Proof. That Ŝ(K ) is an unbiased estimator of P2 can be

verified using similar arguments given for LRMs. To compute
the variance, we again break the sum defining Ŝ(K ) into three
cases, following the proof of Lemma 2 for LRMs. The first
two cases are identical to the variance calculation for LRMs,
except that P2 =∑q P(q)2 and P3 =∑q P(q)3. The third case
is also the same, except that Cov(Xk,k′ , Xj, j′ ) = E[Xk,k′Xj, j′ ] −
E[Xk,k′ ]E[Xj, j′ ] = 0, since Xk,k′ and Xj, j′ are independent with
respect to the outcome probabilities, and we do not need
to take an expectation over unitaries for SIC measurements.
Putting these observations together, we find that the variance
of Ŝ(K ) is given by Eq. (B24). �

APPENDIX C: SIMULATION DETAILS

1. LRM simulations

In the main text, our simulations evaluate the CEs of
two canonical examples of entangled states. The first is the

2 3 4 5 6 7 8

n

0.0

0.2

0.4

0.6

0.8

1.0

C |
ψ
〉(

[n
])

GHZ Exact
W Exact
GHZ LRM Mean
W LRM Mean

FIG. 3. CEs via LRM data. Simulation of LRM experiment with
L = 104 local Haar random unitaries and K = 2 shots per unitary
estimating the CE of the GHZ and W states on n qubits. We see
complete agreement with analytical results, confirming our estimator
is unbiased. See Appendix C 1 for details.

n-qubit Greenberger-Horne-Zeilinger (GHZ) state, which is
defined as

|GHZ〉n = 1√
2

(|0〉⊗n + |1〉⊗n). (C1)

Because the purity of any subsystem of this state is 1/2, the
CE of the full state can easily be computed as [34]

C|GHZ〉([n]) = 1

2
− 1

2n
. (C2)

The W state is defined as a uniform superposition of all states
with Hamming weight 1:

|W 〉n = 1√
n

(|10 · · · 0〉 + |010 · · · 0〉 + · · · + |0 · · · 01〉).

(C3)

The general formula is somewhat harder to prove, but the
result is similarly simple [34]:

C|W 〉([n]) = 1

2
− 1

2n
. (C4)

These are the exact formulas used to benchmark the perfor-
mance of our estimators as shown in Fig. 3.

Recall from Theorem 1 the estimator for the CEs based on
L rounds of LRMs, Z1,1, . . . , Z1,K , . . . , ZL,1, . . . , ZL,K is

Ĉ|ψ〉(S) = 1 −
(

3

2

)s 1

L

L∑
l=1

Ŝ(K )
l . (C5)
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From this, we employ the following algorithm to simulate this
estimator:

ALGORITHM 1. LRM-mean simulation

1: Input: n-qubit pure state ρ = |ψ〉〈ψ |, S ⊆ [n], number of
unitaries L of the form

∏
i∈S Ui, and K � 2 shots per unitary.

2: Let Dl denote a discrete probability distribution over bitstrings
and C(2) denote the set of single-qubit Clifford gates.
3: function MEANCEVIALRMsρ, S, L, K
4: l = 1
5: Ŝ(K ) = 0
6: while l � L do
7: Ul =∏i∈S Ui, Ui ∈ C(2)

8: Dl = {〈z|U †
l ρUl |z〉 → z}2s−1

z=0

9: Ml = Sample(Dl , K )
10: for i �= j ∈ Ml do
11: if Zl,i = Zl, j then Ŝ(K ) = Ŝ(K ) + 1
12: end if
13: end for
14: l = l + 1
15: end while
16: return Ĉ|ψ〉(S) = 1 − ( 3

2

)s 1
L

1
K (K−1) Ŝ(K )

17: end Function

It is worth noting that for Fig. 3 unitaries were sampled
from the Haar distribution rather than from the single-qubit
Cliffords. In practice, it is likely single-qubit Cliffords would
be preferable.

For median-of-means estimation, we directly call this func-
tion with a specific value for L:

ALGORITHM 2. LRM-MoM simulation

1: Input: n-qubit pure state ρ = |ψ〉〈ψ |, S ⊆ [n], number
of unitaries L, shots per unitary K � 2, and confidence level
1 − δ ∈ (0, 1).
2: function MoMCEviaLRMsρ, S, L, K, δ

3: NB = 8 ln( 1
δ
)�

4: B =  L
NB

�
5: return Median[{MeanCEviaLRMs[ρ, S, B, K]}NB

i=1]
6: end Function

2. SIC simulations

Following the same modality as in the LRM section, we
have the following estimator from Theorem 4:

Ĉ|ψ〉(S) = 1 − 3sŜ(K ), (C6)

where Q1, . . . , QM are the outcomes from M rounds of SIC
measurements. For ease of notation, let ρ ⊗ |0〉〈0 |⊗n denote
the state with qubits ordered such that each system qubit is
next to its ancilla qubit. Then the following algorithm simu-
lates this estimator:

ALGORITHM 3. SIC-MoM simulation

1: Input: n-qubit pure state ρ = |ψ〉〈ψ |, S ⊆ [n], K , and δ > 0
confidence level.
2: Let D denote a discrete probability distribution.
3: function MoMCEviaSICsρ, S, K, δ

4: NB = ⌈8 ln
(

1
δ

)⌉
5: U =∏i∈S USIC

6: D = {〈q|U †(ρ ⊗ |0〉〈0 |⊗n)U |q〉 → q}4s−1
q=0

7: b = 1
8: while b � NB do
9: Ŝ(K )

b = 0
10: Mb = Sample(D, K )
11: for i �= j ∈ Mb do
12: if Qi = Q j then Ŝ(K )

b = Ŝ(K )
b + 1

13: end if
14: end for

15: C (b)
|ψ〉(S) = 1 − 3s 1

K (K−1) Ŝ(K )
b

16: end while

17: return Ĉ|ψ〉(S) = median[{C (b)
|ψ〉(S)}NB

b=1]
18: end Function

To reproduce Fig. 4, to each of the simulations out-
lined in Table I we input a 5-qubit GHZ state that is
ρ = |GHZ5〉〈GHZ5 | and set δ = 0.05 for methods based

FIG. 4. Comparison of estimators at a fixed total measurement
budget and confidence level. Histograms generated from numerical
simulation of all four estimators (see Table I) of the CE of 5-qubit
GHZ state. Random local Clifford measurements were employed,
and the total measurement budget was computed from the upper
bound on SIC−MoM, Kopt in the case of ε = δ = 0.05. (It is worth
noting that the bin gaps in SIC-MoM, K = 2 originate from the
discrete outputs produced in simulation having a difference greater
than the bin width chosen for visual clarity.)
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on median-of-means. The total measurement budget is fixed
based on the measurements required for SIC-MoM, K = Kopt

to have ε = 0.05 precision at 1 − δ = 0.95 confidence. That
is a total measurement budget of M = Kopt8 ln( 1

δ
)� where,

Kopt =
⌈

1

2

[
16

ε2

(
3

2

)s

+ 1

]

+ 1

2

√[
16

ε2

(
3

2

)s

− 1

]2

+ 32

ε2
3s

⌉
. (C7)

The corresponding measurement splits were then computed
from this total number. Then 1000 trials of M total measure-
ments of LRM data and SIC data were generated. Since both
LRM-Mean and LRM-MoM have K = 2, i.e., two shots per
unitary, the same data was postprocessed according to each
estimator. This is possible as median-of-means changes only
how things are batched, since the total measurement budget
was fixed. The same was done for the SIC estimators. As a
final comment, to begin to see the asymptotic behavior within
this plot, one would have to go up to roughly 12–13 qubits.
This is because of the various prefactors hidden by big-O
notation.
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