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Multiparty Spohn’s theorem for a combination of local Markovian
and non-Markovian quantum dynamics
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We obtain a Gorini-Kossakowski-Sudarshan-Lindblad-like master equation for two or more quantum systems
connected locally to a combination of Markovian and non-Markovian heat baths. The master equation was
originally formulated for multiparty systems with either exclusively Markovian or non-Markovian environments.
We extend it to encompass the case of multiple quantum systems connected to a mixture of Markovian
and non-Markovian heat baths. The coexistence of both non-Markovian and Markovian environments is a
plausible scenario, particularly when studying hybrid physical systems such as atom-photon arrangements. We
analyze the thermodynamic quantities for such a set of local environments, and derive a modified form of the
Spohn’s theorem for the setup. The modification of the theorem naturally leads to a witness as well as an
easily computable quantifier of non-Markovianity. Expectedly, we find that for multiparty situations, where a
combination of Markovian and non-Markovian heat baths are active, the response in thermodynamic system
characteristics due to non-Markovian baths is prominent at times close to the initial time of evolution, whereas
the long-time behavior is predominantly controlled by the Markovian ones.
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I. INTRODUCTION

Quantum thermodynamics is an emerging field of research
and the interconnections of it with quantum information the-
ory have been studied from myriad perspectives. The study of
quantum thermal devices [1–12] and that of their dynamics
governed by open quantum systems [13–16] has significantly
contributed to the understanding of thermodynamics in the
quantum regime [17–29]. A significant body of work that
analyze quantum devices deals with Markovian evolution,
although non-Markovian dynamics has also been considered.
Markovian environments are rare in nature and they exhibit
rather specific behaviors [13,30]. The bosonic baths with
infinite numbers of harmonic oscillators, within some re-
strictions, usually behave as Markovian environments, while
certain thermal baths, such as spin baths [31–37], do not
fit the Markovian framework easily and are categorized as
non-Markovian reservoirs. Some non-Markovian baths may
have Markovian limits, but for systems such as the spin star
model, this limit can be elusive [32]. Detecting and charac-
terizing non-Markovianity has been achieved through various
measures [38–46], which are not all equivalent.

Heat current and entropy production rate (EPR) are two
fundamental quantities that give an idea about the thermal
properties of a system. The second law of thermodynam-
ics leads to a balance equation, relating EPR (σ ), the von
Neumann entropy (S), and heat current (J) for a single sys-
tem immersed in a heat bath, given by σ = dS

dt + J . Spohn’s
theorem [47,48] states that for a Markovian evolution, with
bath initial states being thermal, EPR of the system is
always positive. It is known that for non-Markovian evo-
lutions, the EPR may take negative values [36,49–55]. For
a deeper understanding of the entropy production rate, see,
e.g., [21,56–98].

In physical systems, the presence of memory effects and
strong system-bath correlations may lead to deviations from
Markovian dynamics. In some cases, certain components or
interactions within a system may exhibit Markovian behav-
ior, while others display non-Markovian behavior. This can
arise due to the complexity of the system’s architecture or
the interplay between different timescales involved in the
dynamics. For example, this type of model holds significant
relevance as a plausible approach for investigating hybrid
systems, such as atom-photon arrangements. In atom-photon
systems [99–101], the timescales of atomic and photonic in-
teractions with their respective environments can vary. For
instance, atomic transitions may occur on a different timescale
compared to the relaxation processes involving emitted or
absorbed photons. This can lead to a situation where cer-
tain aspects of the system-environment interaction exhibit
Markovian characteristics, while others show non-Markovian
features. Moreover, in atom-photon setups, the environment
may not be homogeneous. Some components of the environ-
ment may induce memory effects and correlations, resulting
in a non-Markovian influence, while other components may
exhibit Markovian behavior. So, understanding and charac-
terizing the interplay between Markovian and non-Markovian
elements in atom-photon systems is essential for optimizing
their performance in quantum technologies and information
processing applications.

Here, we consider a situation where the local parts of the
physical system under study are affected by local environ-
ments, which can be a few non-Markovian and the remaining
not so. We derive a Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL)-like master equation of the system for this case and
study the thermodynamic quantities such as heat current and
EPR, for the composite system. Furthermore, we obtain a
modified form of the well-known Spohn’s theorem [47,48]
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FIG. 1. Combination of local Markovian and non-Markovian dy-
namics of a multiparty system. Here we present a schematic diagram
of m + n subsystems, evolving under their system Hamiltonian as
well as local environments, some of which are Markovian and the
rest are not so. BM1 · · · BMm are the baths which can be treated
under the Born-Markov approximations, hence are Markovian baths,
and BN1 · · · BNn are the baths residing in a non-Markovian family.
A simplified scenario with only two subsystems interacting with
two baths locally, among which one is Markovian and the other is
non-Markovian is presented in the gray box.

in connection to the second law of thermodynamics for this
multiparty setup and propose an easily computable quan-
tity that can be treated as a quantifier of non-Markovianity.
For a four-qubit system, under the combined evolution of
local Markovian and non-Markovian dynamics we observe
that, the response in thermodynamic system characteristics
is dominated by the effect of non-Markovian baths at short
times. However, as expected, with the increase of time, non-
Markovianity effects reduce, and the dynamics is more and
more Markovian-like.

II. MULTIPARTY GKSL-LIKE EQUATION FOR LOCAL
MARKOVIAN AND NON-MARKOVIAN BATHS

We consider m + n subsystems locally coupled to m
Markovian and n non-Markovian baths, respectively. The situ-
ation is depicted in Fig. 1. The composite system consisting of
m + n subsystems will evolve under the combined influence
of the local Markovian and non-Markovian baths. Before con-
sidering the case of arbitrary m and n, we deal with the case of
two subsystems (SM1 and SNM1 ), locally coupled, respectively,
to two heat baths, one of which is a Markovian bath (BM1 ) that
can be treated under the Born-Markov approximation, while
the other is a non-Markovian one (BNM1 ), whose frequency
spectrum is discrete and goes beyond the Markovian regime.
This two-party two-bath setup is illustrated in the gray box of
Fig. 1. The Hamiltonian of the composite setup is given by
H = Hs + HB + HI , where Hs describes the Hamiltonian of
the composite system consisting of the two subsystems, HB

stands for the combined local Hamiltonian of the two baths
and HI = ∑

X HIX1
for X ∈ {M, NM}. Here HIM1

represents the
interaction between SM1 and BM1 , and HINM1

presents the inter-
action between SNM1 and BNM1 . Note that the Hamiltonian Hs,
describing the Hamiltonian of the composite system contain-
ing two subsystems, is a general Hamiltonian encompassing
both the local and interacting part of the two subsystems.
Precisely, this Hs can be written as Hs = Hloc + V , where Hloc

is the local Hamiltonian of the two subsystems and V repre-

sents the interaction between them. In the Schrödinger picture,
let the density matrix of the composite two-party two-bath
setup at time t be represented by ρ(t ). It is useful to perform
the calculation in the interaction picture [13]. The von Neu-
mann equation in that picture will be

dρint(t )

dt
= − i

h̄

[
HIint (t ), ρint(t )

]
, (1)

where HIint (t ) = e
i(Hs+HB )t

h̄ HI e− i(Hs+HB )t
h̄ , ρint(t ) =

e
i(Hs+HB )t

h̄ ρ(t )e− i(Hs+HB )t
h̄ , without assuming a commutativity

relation of HI and ρ(t ) with Hs and HB. Here we assume that
initially the systems are uncorrelated to the baths, and that
the baths themselves are also in a product state, so that at
time t = 0, ρ(0) = ρs(0) ⊗ ρBM1

(0) ⊗ ρBNM1
(0), where BM1

is initially in its stationary state, i.e., [HBM1
, ρBM1

(0)] = 0,
with HBNM1

being the free Hamiltonian of the non-Markovian
bath BNM1 . The derivation of the GKSL-like equation for
this two-party two-bath setup is given in Appendix A. As we
mentioned earlier, the bath BM1 is Markovian and therefore in
the derivation, while talking about BM1 , we have imposed the
Born-Markov approximations, which tells that the coupling
between the subsystem SM1 and BM1 is weak, so that the
state of BM1 regains its initial state after every time step of
interaction with SM1 , and that any correlation created between
BM1 and SM1 is also destroyed after the same time step.
Moreover, BM1 will also be assumed to remain uncorrelated
with BNM1 during the evolution. And also, the development of
the reduced state of the system with respect to the bath BM1 ,
at each time, is assumed memoryless. The reduced system
dynamics in the Schrödinger picture turns out to be

d ρ̃s(t )

dt
= L[ρ̃s(t )] ≡ − i

h̄
[Hs, ρ̃s(t )] + DM1 [ρ̃s(t )]

+ DNM1 [ρsB2 (t )], (2)

where

DM1 [ρ̃s(t )] = 1

h̄2

∑
ω

∑
k,l

γk,l (ω)

(
AM1l

(ω)ρ̃s(t )A†
M1k

(ω)

− 1

2

{
A†

M1k
(ω)AM1l

(ω), ρ̃s(t )
})

,

DNM1

[
ρsBNM1

(t )
] = − i

h̄
trBNM1

[
HINM1

(t ), ρsBNM1
(t )

]
. (3)

We denote ρ̃s(t ) = trBNM1
[e

iHBNM1
t

h̄ ρsBNM1
(t )e

−iHBNM1
t

h̄ ] =
trBNM1

[ρsBNM1
(t )]. Here ω is the transition energy, AM1k

(ω)
are the Lindblad operators defined after Eq. (A1), and
γk,l (ω) are the transition rates defined after Eq. (A8) in
Appendix A. Here we have neglected the possible effects
of the Lamb-shift Hamiltonian in the dynamics [55,102].
Effectively, DM1 [ρ̃s(t )] contains the dissipative part of the
GKSL-like equation due to the influence of the Markovian
bath and DNM1 [ρsBNM1

(t )] contains the non-Markovian
contribution. Interestingly, although the bath BM1 is treated
as Markovian, the dissipator DM1 [ρ̃s(t )] of Eq. (3) reveals a
crucial distinction between our approach and the traditional
Markovian cases [13,15]. In the Markovian scenario, the
dissipative term would involve the system’s state uncorrelated
with any environment. However, in our formulation, this
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term incorporates ρ̃s(t ), which represents the system’s state
correlated with the non-Markovian bath. The correlation
between the system and non-Markovian baths implies that the
composite state of the system and the non-Markovian bath
at time t cannot be expressed as a product state, unlike in
the case of Markovian baths. Therefore, a crucial distinction
arises due to the presence of the non-Markovian effect
of BNM1 , which persists within the contribution of BM1 .
Therefore, both DM1 [ρ̃s(t )] and DNM1 [ρsBNM1

(t )] serve as
non-Markovian dissipators for this combined evolution.

The two-party dynamical equation given in Eq. (2) can be
extended to the situation where m + n subsystems are con-
nected to m Markovian and n non-Markovian baths locally
(see Fig. 1). For that general case, the dynamical equation of
the system takes the form,

L[ρ̃s(t )] = − i

h̄
[Hs, ρ̃s(t )] +

m∑
j=1

DM j [ρ̃s(t )]

+
n∑

j=1

DNM j

[
ρsBNM1...n

(t )
]
. (4)

Here ρ̃s(t ) = trBNM1...n
[ρsBNM,1...n (t )]. The DM j [ρ̃s(t )] presents

the contribution of the jth Markovian bath. Similarly,
DNM j [ρsBNM1...n

(t )] represents the contribution of the jth
non-Markovian bath. With the increase in the number of non-
Markovian baths, the system in general will tend to become
more and more correlated with the non-Markovian baths,
but the effect of the Markovian baths will also in general
become significantly altered in comparison to the situation
where non-Markovian environments are absent. This in turn
may affect the general properties and interrelations between
thermodynamic quantities that are typically considered in ei-
ther Markovian or non-Markovian situations before. Below,
we study the response of the heat current and EPR, and their
interrelation via the Spohn’s theorem, for the combination of
local Markovian and non-Markovian dynamics.

III. THERMODYNAMIC QUANTITIES AND THEIR
PROPERTIES FOR COMBINATION OF LOCAL

MARKOVIAN AND NON-MARKOVIAN ENVIRONS

Heat current and EPR are two fundamental thermodynamic
properties of a system, which provide information about heat
flow from the system to its environment or vice versa, and
further aspects of equilibrium and nonequilibrium physics of
the system. It is known that for a non-Markovian evolution,
EPR can take a negative value [36,49–55] and as a conse-
quence, it can be treated as a witness of non-Markovianity.
The definitions of the thermodynamic quantities can strongly
depend on the character of the environments under which
the system is being evolved. In general, entropy flux or heat
current can be defined as the amount of entropy exchanged per
unit time between the open system and its environment [13].
Entropy flux for the composite two-party system depicted in

the grey box of Fig. 1 can be defined as J{M1,NM1} = d
dt |dissE ,

which indicates the change in internal energy resulting from
the dissipative effects. Here E = tr[Hsρ̃s(t )]. So,

J{M1,NM1} = tr
[
Hs

(
DM1

[
ρ̃s(t )

] + DNM1

[
ρsBNM1

(t )
])]

= tr
[
HsL[ρ̃s(t )]

]
. (5)

We define the local heat currents of each subsystem as JM1 =
tr[HsDM1 [ρ̃s(t )]] and JNM1 = tr[HsDNM1 [ρsBNM1

(t )]]. The def-
inition of JM1 is quite similar to that in the Markovian
approach, but the effect of non-Markovianity resides in the
state ρ̃s(t ), as the system’s state is correlated with the
non-Markovian bath. The formulation of JNM1 is inherently
non-Markovian.

EPR is a thermodynamic quantity of a system, which is
defined as a source term in the balance equation involving
the rate of change of entropy with time and heat current
[47,48,103]. For a two-party two-bath composite setup, this
balance equation can be considered as

σ{M1,NM1} = dS(ρ̃s(t ))

dt
− 1

TM1

JM1 − 1

TNM1

JNM1 , (6)

where S(·) is the von Neumann entropy of its argument and
defined as S(ρ) = −kBtr[ρ ln(ρ)] = −kB

∑
i λi ln(λi), with

λi’s being the eigenvalues of the density matrix ρ. TM1

and TNM1 are the temperatures of the Markovian and non-
Markovian baths, respectively. kB is the Boltzmann constant.
In this formulation, the balance equation is the definition of
the EPR, denoted by σ{M1,NM1}.

We now move over to the case of m + n subsystems (see
Fig. 1). For m + n parties, the global heat current and the
global EPR take the following forms:

J{M1···m,NM1···n} =
m∑

j=1

JM j +
n∑

j=1

JNM j ,

σ{M1···m,NM1···n} = dS(ρ̃s(t ))

dt
−

m∑
j=1

1

TM j

JM j −
n∑

j=1

1

TNM j

JNM j .

(7)

Here the local heat currents, JM j = tr[HsDM j [ρ̃s(t )]],
presents the heat current flowing to or from the jth
Markovian bath for j = 1, . . . , m, and the second term,
JNM j = tr[HsDNM j [ρsBNM1···n (t )]], signifies the local heat
currents flowing towards or outwards from the jth
non-Markovian bath for j = 1, . . . , n.

IV. MODIFICATION TO SPOHN’S THEOREM

For the evolution of a system under a Markovian reser-
voir, which is initially kept in its canonical equilibrium state,
Spohn’s theorem assures the positivity of EPR, as under this
circumstance, the canonical equilibrium state of the system is
a stationary state with respect to the Markovian dynamics. For
non-Markovian evolutions, the positivity of the same quantity
may hold, but is not guaranteed even if the bath is initially
in its thermal state. So, there may exist a modified form of
Spohn’s theorem for non-Markovian evolutions, which can
describe the thermodynamics of non-Markovian scenarios.
Our aim is to obtain a thermodynamic condition similar to
that in the Spohn’s theorem, which can describe a multiparty
situation with a combination of local Markovian and non-
Markovian environs.

For the ease of notation and calculations, we take the sim-
ple two-party two-bath situation depicted in the gray box of
Fig. 1. The dynamical equation of the system for this setup is
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given in Eq. (2). We define the partial superoperators [104],

LM1 [ρ̃s(t )] = − ip

h̄
[Hs, ρ̃s(t )] + DM1 [ρ̃s(t )],

LNM1

[
ρsBNM1

(t )
] = − i(1 − p)

h̄
[Hs, ρ̃s(t )] + DNM1

[
ρsBNM1

(t )
]
,

(8)

where L[ρ̃s(t )] = LM1 [ρ̃s(t )] + LNM1 [ρsBNM1
(t )] and p is a

weight factor. The two parts LM1 [ρ̃s(t )] and LNM1 [ρsBNM1
(t )]

act as GKSL-like equation operators individually, with
tr[LM1 [ρ̃s(t )]] = tr[LNM1 [ρsBNM1

(t )]] = 0. Hence, the
local heat currents can be described in terms of the
local superoperators as JM1 = tr[HsLM1 [ρ̃s(t )]], JNM1 =
tr[HsLNM1 [ρsBNM1

(t )]]. Now we introduce two local canonical
equilibrium states of the composite system at temperatures

TM1 and TNM1 [104] having the form, ρ̃thX1
= e

−βX1
Hs

ZX1
, for

X ∈ {M, NM}. Note that Hs is a Hamiltonian of two parties.
ZX1 ’s stand for the corresponding partition functions and
defined as ZX1 = tr[e−βX1 Hs ]. Here βX1 = 1

kBTX1
. Thus, using

ρ̃thX1
and the partial superoperators, we get

σ{M1,NM1} = − d

dt

∣∣∣
M

S
(
ρ̃s(t )||ρ̃thM1

)

− kBtr
[
LNM1

[
ρsBNM1

(t )
](

ln(ρ̃s(t )) − ln(ρ̃thNM1
)
)]

,

(9)

where the relative entropy distance, S(ρ||σ ) = kBtr(ρ ln ρ −
ρ ln σ ), is used to quantify the distance between the evolved
state and the local canonical equilibrium state at temperature

TM1 , and d
dt |MS(ρ̃s(t )||ρ̃thM1

) = kBtr{LM1 [ρ̃s(t )]( ln(ρ̃s(t )) −
ln(ρ̃thM1

))}. In the Markovian limit of the setup under
consideration, i.e., when both the baths are Markovian, the
first term of Eq. (9) will be duplicated for the other bath,
and the second term will be nonexistent. Hence, Eq. (9)
can be presented as a general expression of EPR for a
two-party system evolving under a combination of local
Markovian and non-Markovian dynamics.

We now try to establish the Spohn’s theorem with the
altered definition of EPR. From Eq. (9), we can write

σ{M1,NM1} + kBtr
{
LNM1

[
ρsBNM1

(t )
](

ln(ρ̃s(t )) − ln(ρ̃th ˜NM1
)
)}

= −kBtr
{
LM1

[
ρ̃s(t )

](
ln(ρ̃s(t )) − ln(ρ̃thM1

)
)}

. (10)

If the initial state of the Markovian bath is the canonical
equilibrium state, then the state ρ̃thM1

will be the stationary
state with respect to LM1 [·], i.e., LM1 [ρ̃thM1

] = 0. Spohn’s
inequality [47] tells us that for any superoperator of Lind-
blad form, say LM1 [·], with a stationary state, say ρ̃thM1

, the
right-hand side (RHS) of Eq. (10) is always � 0. On the
contrary, when one must go beyond the Markovian approx-
imations while considering the dynamics of a system, the
existence of a steady state is not guaranteed. Moreover, in the
second term of the left-hand side (LHS) of (10), ρ̃thNM1

will
in general not be the steady state corresponding to LNM1 [·]
irrespective of the initial state of the non-Markovian bath. So,
we cannot infer the sign of that term, as can, e.g., be seen for
the case involving four qubits undergoing a combined local

Markovian and non-Markovian evolution presented in Ap-
pendix D, where we show that this term can take both positive
and negative values. Thus, for the case of a two-party system
with the subsystems being attached separately to two baths,
one of which is Markovian and the other not, we get the
altered form of Spohn’s theorem as

σ{M1,NM1}

+ kBtr
{
LNM1

[
ρsBNM1

(t )
](

ln(ρ̃s(t )) − ln(ρ̃thNM1
)
)}

� 0,

(11)

provided that the Markovian bath is initially in its canon-
ical equilibrium state. The second term in the LHS of the
inequality is an extra term that has got appended due to the
presence of the non-Markovian bath in the set of local en-
vironments. Hence, a modified version of Spohn’s theorem
arises, which states that not the EPR, but the conjunction of
EPR and M1

NM[ρsBNM1
(t )] = kBtr{DNM1 [ρsBNM1

(t )](ln(ρ̃s(t )) −
ln(ρ̃thNM1

))} is assured to be positive for a combination
of local Markovian and non-Markovian environments. The
LNM1 [ρsBNM1

(t )] in (11) can be replaced by DNM1 [ρsBNM1
(t )],

as the first term of the local superoperator LNM1 [ρsBNM1
(t )]

has no contribution in M1
NM[ρsBNM1

(t )]. The presence of
M1

NM[ρsBNM1
(t )] in the inequality (11), therefore, indicates a

deviation from the Markovian regime.
For a general (m + n) subsystem, schematically depicted

in Fig. 1, the GKSL-like equation takes the form, d
dt ρ̃s(t ) =

L[ρ̃s(t )] ≡ ∑m
j=1 LM j [ρ̃s(t )] + ∑n

j=1 LNM j [ρsBNM1···n (t )]. The
modified Spohn’s theorem in this general case of m + n par-
ties turns out to be

σ{M1···m,NM1···n} +
n∑

j=1

M j
NM

[
ρsBNM1···n (t )

]
� 0, (12)

for all Markovian baths being kept in their canonical equi-
librium states at t = 0. Here, the number of non-Markovian
baths, n, can be interpreted as the count of partial superop-
erators for which the corresponding states ρ̃thNM j

are not the
stationary states. Conversely, if all the baths are Markovian,
then ρ̃thM j

will represent the stationary states of their respec-
tive partial superoperators for all j, resulting in n = 0. Hence,
Eq. (12) reverts to, σ{M1···m,NM1···n} � 0, which is the original
form of the Spohn’s theorem. On the other hand, in case
all baths are non-Markovian, we obtain an altered form of
the Spohn’s theorem that follows directly from the balance
equation and the concept of EPR. Appendix B contains a
detailed discussion on this matter.

In the context of inequality (12), we can introduce a
witness for detecting non-Markovian behavior, as well as
a measure for the same. Let us consider a situation where
we have q parties, each connected to q environments lo-
cally, and the initial states of these environments are the
respective canonical equilibrium states. Now, we evaluate
the quantity Mk[ρ ′(t )] = kBtr{Dk[ρ ′(t )](ln(ρ̃s(t )) − ln(ρ̃thk ))}
associated with the dissipators Dk[ρ ′(t )] coming from the
kth environment where k runs from 1 to q. The form of
ρ ′(t ) depends on whether the environment associated with the
dissipator is Markovian or non-Markovian. If the environment
is Markovian, then ρ ′(t ) equals ρ̃s(t ) = trB1···q [ρsB1···q (t )]. If the
environment is non-Markovian, then ρ ′(t ) equals ρsB1···q (t ),
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representing the composite state of the systems and the baths.
This construction of ρ ′(t ) is possible as we can replace the
trace taken over the non-Markovian baths, denoted as trBNM1···n
in Eq. (4), with the trace taken over all the baths, denoted as
trB1···q while constructing the dissipators, because tracing out
the Markovian baths has no impact on the dissipators, as they
are product states with the remaining part of the system-bath
setup. Therefore, in this q-party scenario, we can use ρsB1···q in-
stead of ρsB1···n . With the above definitions, we can now define
a quantity M[t, ρs(0)] = ∑q

k=1 max{0, Mk[ρ ′(t )]}. If all the
baths are Markovian, M[t, ρs(0)] will be zero. However, if at
least one bath is non-Markovian, M[t, ρs(0)] can take values
greater than zero. Hence, this quantity M[t, ρs(0)] serves as a
witness of non-Markovianity as it detects the deviation of the
altered Spohn’s theorem for the combined local Markovian
and non-Markovian dynamics from the original version of
Spohn’s theorem. Note that it is crucial to start with envi-
ronments initially in their canonical equilibrium states. If the
environments do not begin in these states, then M[t, ρs(0)]
can yield positive values even for Markovian environments.
We can therefore define a quantifier of non-Markovianity as

MNM = max
ρs (0)

∫ ∞

0
M[t, ρs(0)]dt . (13)

For a Markovian dynamics, we get MNM = 0. In case there
is at least one non-Markovian bath, the quantifier MNM may
give a positive (nonzero) value. For a single system, MNM

reduces to the well-known BLP measure of non-Markovianity
proposed in Ref. [38] within some restrictions, while for
higher number of parties this equality does not hold. See
Appendix C in this regard. Note that the quantifiers of non-
Markovianity described in the literature are typically not
easily computable. The quantifier MNM is, however, eas-
ily computable, and therein lies its potential utility, viz. in
providing a computable strength of non-Markovianity in the
dynamics of a system. In Appendix D, we have explored
how introducing non-Markovian baths or substituting Marko-
vian baths with non-Markovian ones impacts the dynamics
of the system. We find that, initially non-Markovian baths
have a strong effect, but over time, Markovian baths dominate,
suppressing the amplitude of oscillations of the witness of
non-Markovianity to approximately zero. This is expected
because for a long time, the impact of memory effects, arising
from the presence of non-Markovianity, diminishes. Also,
more the number of Markovian baths, the quicker is the sup-
pression. For a complete non-Markovian situation, where all
the baths are from the non-Markovian family, the periodic
oscillatory pattern of the witness of non-Markovianity gets
disrupted.

V. CONCLUSION

To summarize, we have derived the GKSL-like equa-
tion for a situation containing more than one system, each
interacting locally with a separate heat bath, some of which
are Markovian, while others are non-Markovian. We present
the dynamics of a multipartite system evolving under a
mixture of Markovian and non-Markovian local environ-
ments. Our work provides a significant broadening of the
area of investigation of open quantum dynamics, as a com-

bination of non-Markovian and Markovian environments is
a reasonable possibility in a realistic situation, especially
when considering hybrid physical systems such as atom-
photon arrangements. Our setup leads to a modification of
the Spohn’s theorem, taken to the multiparty case with a set
of local Markovian and non-Markovian environments. As a
consequence of the modification, we obtained a computable
quantifier of non-Markovianity, which can detect the deviation
from a Markovian situation. Most of the known quantifiers
of non-Markovianity available in the literature are not easily
computable. The computability of our measure can potentially
be a useful tool to detect non-Markovianity. Analysis of the
time dynamics of the quantifier expectedly showed that for an
evolution affected by a combination of local Markovian and
non-Markovian baths, non-Markovian effects are prominent
for times close to initial time, but with the increase of time,
non-Markovianity of the dynamics decreases and the evolu-
tion tends to be more and more Markovian-like.
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APPENDIX A: DERIVATION OF THE TWO-PARTY
GKSL-LIKE EQUATION FOR LOCAL MARKOVIAN

AND NON-MARKOVIAN BATHS

A schematic diagram of the two-party two-bath setup is
depicted in the right panel of Fig. 2. (The left panel depicts the
more general case of an arbitrary number of parties with some
connected to Markovian baths and the rest to non-Markovian
ones.) The Hamiltonian of the composite setup is given by
H = Hs + HB + HI , where Hs describes the Hamiltonian of
the composite system consisting of the two parties, HB stands
for the combined local Hamiltonian of the two baths and
HI = ∑

X HIX1
for X ∈ {M, NM}. Here HIM1

represents the
interaction between SM1 and BM1 , and HINM1

presents the inter-
action between SNM1 and BNM1 . Note that the Hamiltonian Hs,
describing the Hamiltonian of the composite system contain-
ing two subsystems, is a general Hamiltonian encompassing
both the local and interacting part of the two subsystems.
Precisely, this Hs can be written as Hs = Hloc + V , where
Hloc is the local Hamiltonian of the two subsystems and V
represents the interaction between them. In the Schrödinger
picture, let the density matrix of the composite two-party
two-bath setup at time t be represented by ρ(t ). It is useful
to perform the calculation in the interaction picture [13]. The
von Neumann equation in interaction picture will be

dρint(t )

dt
= − i

h̄
[HIint (t ), ρint(t )], (A1)

where HIint (t ) = e
i(Hs+HB )t

h̄ HI e− i(Hs+HB )t
h̄ , ρint(t ) =

e
i(Hs+HB )t

h̄ ρ(t )e− i(Hs+HB )t
h̄ , without assuming a commutativity
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FIG. 2. A combination of local environments. In the left panel, we present a schematic diagram of m + n TLSs, evolving under their
system Hamiltonian as well as local environments, which are some Markovian and the rest not so. BM1 · · · BMm are the baths, which can be
treated under the Born-Markov approximations, hence are Markovian baths, and BN1 · · · BNn are the baths residing in a non-Markovian family.
A special case of the left panel is presented in the right one where only two TLSs are interacting with two baths locally, among which one is
Markovian and the other is non-Markovian. SM1 and SNM1 are the two TLSs. BM1 is the Markovian bath, while BNM1 is non-Markovian one.

relation of HI and ρ(t ) with Hs and HB. The interaction
Hamiltonian in the Schrödinger picture can be decomposed
in the form [13,15], HIX1

= ∑
k AX1k

⊗ BX1k
, with AX1k

and
BX1k

being the system and bath operators, respectively.
Here X ∈ {M, NM} and k runs from 1 to the maximum
number of terms required for the decomposition for each
j. Reverting to the interaction picture we get, HIX1 ,int (t ) =∑

k AX1k
(t ) ⊗ BX1k

(t ), where AX1k
(t ) = e

iHst
h̄ AX1k

e− iHst
h̄ ,

BX1k
(t ) = e

iHBt
h̄ BX1k

e− iHBt
h̄ . The system operators AX1k

can
be decomposed in the eigenspace of the system Hamiltonian
as AX1k

(ω) = ∑
ε′−ε=ω 	(ε)AX1k

	(ε′), where 	(ε)’s are the
projectors onto the eigenspaces of the system Hamiltonian
Hs corresponding to the eigenfrequency ε. Therefore,
we have the properties, [Hs, AX1k

(ω)] = −h̄ωAX1k
(ω) and

[Hs, A†
X1k

(ω)] = h̄ωA†
X1k

(ω), indicating the fact that AX1k
(t )

and AX1k
(ω) are related by a Fourier transformation from the

t space to the ω space, as AX1k
(t ) = ∑

ω e−iωt AX1k
(ω) and

A†
X1k

(t ) = ∑
ω eiωt A†

X1k
(ω). Now the interaction Hamiltonian

becomes

HIint (t ) =
∑

X

HIX1 ,int =
∑
X,k,ω

e−iωt AX1k
(ω) ⊗ BX1k

(t ). (A2)

The state of the entire setup ρint(t ), is given by

ρint(t ) = ρ(0) − i

h̄

∫ t

0
ds

[
HIint (s), ρint(s)

]
. (A3)

We assume that initially the systems are uncorrelated to the
baths, and that the baths themselves are also in a product state,
so that at time t = 0, ρ(0) = ρs(0) ⊗ ρBM1

(0) ⊗ ρBNM1
(0). As

we mentioned earlier, that the bath BM1 is Markovian and
therefore in the further calculations, while talking about BM1 ,
we will impose the Born-Markov approximations, which tells
that the coupling between the subsystem SM1 and BM1 is weak,
so that the state of BM1 regains its initial state after every time
step of interaction with SM1 , and that any correlation created
between BM1 and SM1 is also destroyed after the same time
step. Moreover, BM1 will also be assumed to remain uncorre-

lated with BNM1 during the evolution. So, at time t , the state of
the entire setup will take the form, ρ(t ) ≈ ρsBNM1

(t ) ⊗ ρBM1
,

where ρsBNM1
(t ) is the density matrix of the systems SM1 and

SNM1 combined along the bath BNM1 at time t , and ρBM1
=

ρBM1
(0). Now we make a further assumption for the Marko-

vian bath BM1 [13], viz.

trB
[
HIM1 ,int (t ), ρint(0)

] = 0. (A4)

As a consequence of this assumption, the Markovian bath BM1

possesses the property,

trBM1

(
BM1k

ρBM1

) = 0. (A5)

Here we assume BM1 is initially in its stationary state, i.e.,
[HBM1

, ρBM1
(0)] = 0. This Eq. (A5) is a very important rela-

tion for the succeeding calculations of this paper. Now, using
the integral form of ρint(t ), given in Eq. (A3), and then using
Eq. (A4) in the von Neumann equation, we get

dρint(t )

dt
=

∑
X

− 1

h̄2

∫ t

0
ds

[
HIX1 ,int (t ),

[
HIX1 ,int (s), ρsBNM1 ,int(s)

⊗ ρBM1

]] − i

h̄

[
HINM1 ,int (t ), ρsBNM1 ,int(t ) ⊗ ρBM1

]
,

(A6)

for X ∈ {M, NM}. The first term for X = NM vanishes by
using the relation given in Eq. (A5). Thus the reduced system
dynamics comes out to be

dρ̃s,int(t )

dt
= − 1

h̄2

∫ t

0
ds trBM1

[
HIM1 ,int (t ),

[
HIM1 ,int (s), ρ̃s,int(s)

⊗ ρBM1

]]− i

h̄
trB

[
HINM1 ,int (t ), ρsBNM1 ,int(t ) ⊗ ρBM1

]
.

(A7)

Here ρ̃s,int(t ) = trBNM1
{ρsBNM1 ,int(t )}. Next we use the Markov

approximation, i.e., replace the integrand ρ̃s,int (s) in the first
term by ρ̃s,int(t ), so that the development of the reduced state
of the system at time t only depends on the present state
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ρ̃s,int(t ). Furthermore, we substitute s by t − s and let the
upper limit of the integral go to infinity so that we can avoid
the dependency of the reduced density matrix on the explicit
choice of the initial preparation at time t = 0. See Ref. [13]
for more details about the Markovian approximations. Hence,
after applying the rotating wave approximation, the right-hand
side of the above equation comes out to be

= 1

h̄2

∑
ω

∑
k,l

γk,l (ω)
[
AM1 l

(ω)ρ̃s,int(t )A†
M1k

(ω)

− A†
M1k

(ω)AM1 l
(ω)ρ̃s,int(t )

] + H.c.

− i

h̄
trBNM1

[
HINM1 ,int (t ), ρsBNM1 ,int(t )

]
. (A8)

γk,l (ω) is given by γk,l (ω) = ∫ ∞
0 dseiωstrBM1

{B†
M1k

(t )BM1l
(t −

s)ρBM1
}. Now we go to the Schrödinger picture. ρBM1

will be
the same in both the pictures as ρBM1

commutes with HBM1
.

So, ρ̃s,int(t ) = trBNM1
[e

i(Hs+HBNM1
)t

h̄ ρsBNM1
(t )e−

i(Hs+HBNM1
)t

h̄ ]. Using

ρ̃s(t ) = trBNM1
{e

iHBNM1
t

h̄ ρsBNM1
(t )e

−iHBNM1
t

h̄ } = trBNM1
(ρsBNM1

), the
reduced system dynamics in the Schrödinger picture turns out
to be

dρ̃s(t )

dt
= L

[
ρ̃s(t )

] ≡ − i

h̄

[
Hs, ρ̃s(t )

] + DM1

[
ρ̃s(t )

]

+ DNM1

[
ρsBNM1

(t )
]
, (A9)

where

DM1

[
ρ̃s(t )

] = 1

h̄2

∑
ω

∑
k,l

γk,l (ω)
(
AM1l

(ω)ρ̃s(t )A†
M1k

(ω)

− 1

2

[
A†

M1k
(ω)AM1l

(ω), ρ̃s(t )
])

,

DNM1

[
ρsBNM1

(t )
] = − i

h̄
trBNM1

[
HINM1

(t ), ρsBNM1
(t )

]
. (A10)

APPENDIX B: ALTERATION OF SPOHN’S THEOREM
IN CASE OF ALL NON-MARKOVIAN ENVIRONMENTS

The modified form of the Spohn’s theorem for the com-
bined local evolution under Markovian and non-Markovian
environments is presented in Eq. (11) for a two-party setup
and the generalization of this two-party scenario to a mul-
tiparty situation is given in Eq. (12). This altered version
of the Spohn’s theorem has been derived by imposing strict
restrictions on the Markovian environments. If the restric-
tions corresponding to the Markovian baths are relaxed for
the Markovian environments, i.e., if we consider all the
environments to be non-Markovian, i.e., m = 0, then there
will only be the non-Markovian dissipator DNM j [ρsBNM1···n (t )]
for j = 1 to n in the GKSL-like master equation given in
Eq. (4) of the main text. Let us first consider the sim-
plest situation of the two-party two-bath setup. If both
the baths are non-Markovian, then we will not get the
term −kBtr{LM1 [ρ̃s(t )]( ln(ρ̃s(t )) − ln(ρ̃thM1

))} in the RHS of

Eq. (10) of the main text. Instead, we will get the equation,

σ{NM1,NM2} +
2∑

j=1

kBtr
{
LNM j

[
ρsBNM12

(t )
](

ln(ρ̃s(t ))

− ln(ρ̃thNM j
)
)} = 0. (B1)

For n parties, j will run from 1 to n in this equation, σ{NM1,NM2}
is to be replaced by σ{NM1,··· ,NMn}, and ρsBNM12

(t ) will be
replaced by ρsBNM1···n (t ). Therefore, this equation will now be-
come the altered version of the Spohn’s theorem, valid for the
situation where all the environments exhibit non-Markovian
behavior, and is a direct consequence of the balance equa-
tion and the concept of EPR. This version of the Spohn’s result
does not incorporate any assumption about weak coupling, or
correlation destruction (system-bath as well as bath-bath), or
about an evolution being memoryless.

APPENDIX C: RELATION OF MNM WITH THE BLP
MEASURE OF NON-MARKOVIANITY

In this section, we aim to establish a relationship between
the proposed quantifier of non-Markovianity in the main text,
denoted as MNM, and the well-known BLP measure [38].
First, let us introduce the BLP measure of non-Markovianity.
For any two quantum states ρ1 and ρ2, we define the rate of
change of the distance between these states over time as


(t, ρ1,2(0)) = d

dt
D(ρ1(t ), ρ2(t )), (C1)

where ρi(t ) = �(t )(ρi(0)) for i = 1 and 2, and �(t )(·) repre-
sents any quantum channel. The function D denotes a distance
measure in the space of quantum states. For the purposes of
this discussion, we will choose the relative entropy as the
distance measure, which leads to


(t, ρ1,2(0)) = d

dt
S(ρ1(t ), ρ2(t )). (C2)

When 
 � 0, the dynamical process exhibits the divisibility
property of a dynamical semigroup, indicating a Markovian
dynamics. However, if divisibility breaks during the dynami-
cal evolution of the system, 
 may take a positive (nonzero)
value. As a result, 
 serves as a witness of non-Markovianity.
To quantify the non-Markovian behavior, we can therefore
define the corresponding measure of non-Markovianity as

N = max
ρ1,2(0)

∫

>0


(t, ρ1,2(0)) dt, (C3)

where N = 0 for all Markovian processes, i.e., the ones that
satisfy the divisibility property of a quantum dynamical semi-
group. If N > 0 the evolution must be non-Markovian. This is
the quantifier of non-Markovianity proposed by Breuer-Laine-
Piilo in Ref. [38].

To facilitate a comparison between the non-Markovianity
quantifier of BLP and the quantifier MNM [proposed in
Eq. (13) of the main text], we will impose an additional
restriction on the BLP quantifier. Consider a scenario where a
single system, described by the Hamiltonian Hs, is immersed
in a heat bath, initially kept in its canonical equilibrium state

ρ̃thB1
= e

−β1HB1

tr(e−β1HB1 )
with the inverse temperature kBβ1 and HB1
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being the free Hamiltonian of the bath. Consequently, the
canonical equilibrium state of the system can be expressed as
ρ̃th1 = e−β1Hs

tr(e−β1Hs ) . Now, we set ρ2(t ) = ρ̃th1 for all time. Hence
the BLP witness of non-Markovianity 
 reduces to


(t, ρ1(0), ρ̃th1 ) = d

dt
S(ρ1(t ), ρ̃th1 ). (C4)

Accordingly, the corresponding quantifier of non-
Markovianity can be expressed as

Ñ = max
ρ1(0)

∫

>0


(t, ρ1(0), ρ̃th1 ) dt . (C5)

In contrast, for the case of a single system, the witness of
non-Markovianity, denoted as M[t, ρs(0)] in the main text, is
given by

M
[
t, ρs(0)

] = max
{
0, M1

[
ρ ′(t )

]}

= max

{
0,

d

dt
S(ρ̃s(t )||ρ̃th1 )

}
, (C6)

where S(ρ̃s(t )||ρ̃th1 ) = kBtr{L1[ρ ′(t )](ln(ρ̃s(t )) − ln(ρ̃th1 ))}.
Therefore, the quantifier of non-Markovianity becomes

MNM = max
ρs (0)

∫ ∞

0
M

[
t, ρs(0)

]
dt

= Ñ . (C7)

Hence, we observe that the quantifier of non-Markovianity
MNM reduces to the BLP measure when the state ρ2(t ) in
BLP quantifier is fixed at ρ̃th1 . However, it is important to note
that for systems comprising two or more subsystems, this type
of relationship between MNM and Ñ is not attainable.

APPENDIX D: FOUR QUBITS COUPLED
TO A COMBINATION OF FOUR MARKOVIAN

AND NON-MARKOVIAN HEAT BATHS LOCALLY

We consider here the case of four noninteracting two-level
systems (TLSs), each locally immersed in a bath that is either
Markovian or not so. To begin, let us consider four nonin-
teracting single-qubit subsystems, each locally immersed in
a Markovian bosonic heat bath, kept in their canonical equi-
librium states at temperatures T1, T2, T3, and T4, respectively,
so that under the time evolution of the system in this circum-
stance, the local canonical equilibrium states are the steady
states of the partial superoperators. Here we use the dimen-
sionless temperatures of the baths, defined as Tj = h̄η̃

kBT̃j
, where

T̃j are the real temperatures for j = 1–4 and η̃ is a constant
having the dimension of frequency. So, as we discussed in
the main text, the quantifier, MNM = 0 in this case. We now
replace the Markovian baths one by one with non-Markovian
ones, and study its response in the non-Markovian witness
M[t, ρs(0)] with time.

The Hamiltonian of the composite four-qubit four-bath
setup is

Htot =
4∑

j=1

(
Hsj + HBXj

+ HIXj

)
, (D1)

with X in the suffixes of the second and the third terms indi-
cating whether the contribution is coming from a Markovian
(M) or a non-Markovian (NM) bath. The local Hamiltonian of
each TLS is given by

Hsj = h̄ω j

2
σ z

j , (D2)

having the ground-state eigenvalue − h̄ω j

2 corresponding to the

state |1〉 and the excited state eigenvalue h̄ω j

2 corresponding to
the state |0〉. For the Markovian harmonic oscillator baths, the
local Hamiltonian of each bath can be expressed as

HBM j
=

∫ ηmax j

0
h̄η̃dη ja

†
η j

aη j , (D3)

and the same for each non-Markovian bath is taken as

HBNM j
= h̄ν jJ

+
j J−

j . (D4)

For the harmonic oscillator baths, a†
η j

(aη j ) represents the
bosonic creation (annihilation) operator of the harmonic os-
cillator of the jth mode of the bath, having the unit of 1√

η j
and

connected by the commutation relation [aηi , a†
η′

i
] = δ(ηi − η′

i ),
ηmax j is the cutoff frequency of the jth Markovian bath. On the
contrary, each of the non-Markovian baths, with frequency ν j

for each j, is taken as one described by the spin-star model
[32,33] consisting of N localized quantum spin- 1

2 particles
centering the single-qubit system at equal distances on a
sphere, with J±

j = ∑N
l=1 σ±

j,(l ). Here σ±
j,(l ) = 1

2 (σ x
j,(l ) ± iσ y

j,(l ) ),
with 
σ (σ x, σ y, σ z ) representing the Pauli matrices. The in-
teraction between the systems and the local bosonic baths is
considered as

HIM j
=

∫ ηmax j

0
h̄
√

η̃dη jh(η j )(a
†
η j

σ−
j + aη j σ

+
j ), (D5)

where h(η j ) is a dimensionless function of η j , and represents
the system-bath coupling strength. For a harmonic oscillator
bath, η̃h2(η j ) = J (η j ), where J (η j ) is the ohmic spectral
density function. As we consider the spectral density func-
tion as ohmic, J (η j ) ∝ η j . Thus J (η j ) = κ jη j , where κ j are
unitless constants. For the qubits connected to non-Markovian
spin baths, the interaction is through a Heisenberg XY cou-
pling [108], given by

HINM j
= h̄α j (σ

+
j J−

j + σ−
j J+

j ). (D6)

Here α j quantifies the coupling strength between the jth
system and the jth non-Markovian bath, having the unit of fre-
quency. The dynamical equation for the [(m + n) = 4]-qubit
system, locally connected to a combination of Markovian and
non-Markovian heat baths, directly follows from Eq. (9), and
is given by

dρ

d (η̃t )
= 1

η̃
L[ρ̃s(t )] = − i

h̄η̃
[Hs, ρ̃s(t )]

+ 1

η̃

m∑
j=1

DM j [ρ̃s(t )] + 1

η̃

n∑
j=1

DNM j

[
ρsBNM,1...n (t )

]
.

(D7)
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FIG. 3. Time dynamics of M̃n
NM(t̃ ). Here we plot the behavior of M̃n

NM(t̃ ) with time for (a) n = 1, where only the fourth bath is non-
Markovian and the other three are Markovian, (b) n = 2, where the third and fourth baths are non-Markovian and the other two are Markovian,
and (c) n = 3, where only the first bath is Markovian and the other three are non-Markovian, for the initial state of the system taken as
|ψs(0)〉 = 1√

2
(|0000〉 + |1111〉). For the demonstration, we have chosen ω1 = 50.0, ω2 = 55.0, ω3 = 60.0, ω4 = 65.0, and ν1 = ν2 = ν3 =

ν4 = 1.0 and the temperatures of the heat baths are set to be T1 = 127.33, T2 = 105.57, T3 = 95.8, and T4 = 68.6. The coupling constants are
taken to be κ1 = κ2 = κ3 = 10−3 and α2 = α3 = α4 = 0.5. The quantities plotted along the horizontal axes are dimensionless and the same
along the vertical axes have the unit of kBη̃.

Both sides of the equation are made dimensionless. For the
purpose of our demonstration, we will take the variable t̃ = η̃t
as the dimensionless time.

In Fig. 3, we have depicted the time dynamics of the
quantity M̃n

NM(t̃ ) = ∑n
k=1 Mk

NM[ρsBNM1...n
(t̃ )] for n = 1, 2, and

3 in Figs. 3(a)–3(c), respectively, n being the number of
non-Markovian environments. In all the three panels, M̃n

NM(t̃ )
exhibits oscillating profiles. The envelope of M̃n

NM(t̃ ), having
positive and negative values, is significant in magnitude for
a short time near zero, but decreases monotonically, tending
to zero for large time. The existence of the positive part of
this envelope indicates that the witness of non-Markovianity,
M[t̃, ρs(0)] > 0. We find that the non-Markovian baths have a
significant contribution for times near the initial time, while
for larger time, the effect of Markovian baths dominate,

suppressing the amplitude of oscillations of M̃n
NM(t̃ ) to ap-

proximately zero. This is expected because for a long time, the
impact of memory effects, arising from the presence of non-
Markovianity, diminishes. Although both positive as well as
negative oscillations of M̃n

NM(t ) are suppressed in this specific
scenario, it is the suppression of the positive oscillations that
imply the dominance of the Markovian baths in the evolution.
The greater the number of Markovian baths, the quicker is
the suppression. [Compare Figs. 3(a)–3(c)]. For a complete
non-Markovian situation, where all the baths are from the non-
Markovian family, the periodic oscillatory pattern of M̃n

NM(t̃ )
gets disrupted. The amplitude of oscillation does not diminish
with time, as there is no Markovian bath to suppress the
oscillation like in case of the combination of local Markovian
and non-Markovian dynamics.
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