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Twin-field (TF) quantum key distribution (QKD) has been extensively researched because of its long transmis-
sion distance. The phase-encoding TF-QKD can realize both a high key rate and a long transmission distance,
so it has attracted a lot of attention. In this article, we are inspired by the sending-or-not-sending TF-QKD, in
which the information leakages of correct rounds and erroneous rounds are calculated separately. And, we notice
that this kind of method has been used in many QKD protocols—for example, the six-state QKD. We apply a
similar method to the phase-matching TF-QKD and find some improvement in it. With the new analysis, the
transmission distance can be improved without any changes in experiments. We also apply the new analysis in
the four-phase partial-phase-postselection protocol, and a similar improvement can be achieved.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] could help to estab-
lish secret communication between two distant peers (Alice
and Bob) by sharing private keys remotely. QKD is of high
practicability with the present technology and has been the
subject of wide concern in the last few decades.

In the pursuit of a long distance and a high key rate,
twin-field (TF) QKD [3] is a landmark invention. Before the
appearance of TF-QKD, the PLOB bound [4,5] gives a linear
key rate limitation for point-to-point QKD protocols, in which
the key rate decreases linearly with the transmittance of the
channel [R � O(η)] (see another bound called TGW bound
in Ref. [6]). TF-QKD is the first protocol that can break the
PLOB bound without a quantum repeater to realize a key
rate of O(

√
η) level. With this advantage, TF-QKD is suitable

for long-distance key distribution, so it has been extensively
researched both in theory [7–11] and experiments [12–24].

The variants of TF-QKD can be divided into two
kinds, sending-or-not-sending (SNS) TF-QKD [8] and phase-
encoding TF-QKD [7,9–11]. In SNS-TF-QKD, the informa-
tion is encoded in the selection of sending a vacuum state
or a weak coherent state. In phase-encoding TF-QKD, the
information is encoded in the phase of a weak coherent state.
We noticed that in the analysis of the SNS-TF-QKD, the infor-
mation leakages of the correct rounds and erroneous rounds
are estimated separately. The phase error rate of erroneous
rounds can be directly set to 50% and one only needs to
estimate the phase error rate of correct rounds.

In phase-encoding QKD protocols, the security analysis
is usually conducted by treating all rounds as a whole. In
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this article, we try to analyze the information leakage of
correct rounds and erroneous rounds separately. We give
our improved security analysis for the phase-matching (PM)
TF-QKD [7] and the four-phase partial-phase-postselection
(FP-PPP) TF-QKD [25]. We conducted numerical simulations
to see the improvement of our analysis. For both PM-TF-QKD
and FP-PPP-TF-QKD, our analysis could improve the chan-
nel loss tolerance of about 1.5 dB. Though the improvement
seems not so large, our analysis could bring this improvement
without any changes in experiments.

This article is organized as follows. In Sec. II, we give our
improved analysis for the PM-TF-QKD. In Sec. III, we give
our improved analysis for the FP-PPP-TF-QKD. In Sec. IV,
we introduce the result of our simulation. Finally, we come to
a conclusion in Sec. V.

II. IMPROVED ANALYSIS FOR THE
PHASE-MATCHING TF-QKD

A. Protocol description

Firstly, we review the process of the PM-TF-QKD for
the completeness of the article. We describe a case of in-
finite decoy states [26–28] below. For a realistic case, two
intensities of decoy states are enough to realize a good
performance [29].

(1) State preparation. For each round, Alice (Bob) ran-
domly selects an intensity μI ∈ {μ, ν1, ν2, . . . } with prob-
abilities {pμ, pν1 , pν2 , . . . } separately. The intensity μ cor-
responds to the signal state and the intensities ν1, ν2, . . .

correspond to decoy states. Alice (Bob) randomly prepares a
state |√μI ei(θA+sAπ )〉 (|√μI ei(θB+sBπ )〉), where θA (θB) is ran-
domly selected in [0, 2π ) and sA (sB) is randomly selected in
{0, 1}. She (he) records θA and sA (θB and sB) locally. Then,
Alice and Bob send the states to Charlie, who is located in the
middle of the channel.
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(2) State measurement. If Charlie is honest, he will mea-
sure the states from Alice and Bob in an interferometer and
use two single-photon detectors to detect the outputs. We
assume that the left detector corresponds to constructive in-
terference and the right detector corresponds to destructive
interference. Then, Charlie will declare a left click (only the
left detector clicks), a right click (only the right detector
clicks), or a failed measurement (both detectors click or no
clicks) according to the clicks of the detectors. Left clicks and
right clicks are collectively called successful clicks and the
corresponding rounds are called successful rounds. For the
rounds with right clicks, Bob flips his corresponding local key
bits sB.

(3) Intensity sifting. After enough rounds of the first two
steps, Alice and Bob announce their choices of intensities of
all rounds. For the rounds where both Alice and Bob choose
the signal intensity μ, the key bits sA and sB are kept as the
raw key bits. The rounds where Alice and Bob choose the
same decoy intensity νi (i = 1, 2, . . . ) are also kept as decoy
rounds, which will be used in the parameter estimation.

(4) Phase postselection. Alice and Bob announce the
phases θA and θB of each round that has passed the intensity
sifting. If |θA − θB| � � or ||θA − θB| − 2π | � �, they keep
the round. If ||θA − θB| − π | � �, they also keep the round,
and Bob flips his local key bit sB.

(5) Parameter estimation and postprocessing. Alice and
Bob announce sA and sB of decoy rounds. They count the click
rates and error rates of decoy rounds to estimate the phase
error rates of signal states. Then, Alice and Bob conduct error
correction and privacy amplification to the raw key bits sA

and sB of successful signal rounds that have passed the phase
postselection to generate the final key.

B. The improved security analysis

In the phase postselection step, when the phases of Alice
and Bob are opposite (||θA − θB| − π | � �), the phase of
Bob’s state becomes θB + (sB + 1)π after the flip of sB. We
can define θ ′

B = θB + π and the phase of Bob becomes θ ′
B +

sBπ . Then, we have |θA − θ ′
B| � � or ||θA − θ ′

B| − 2π | � �.
This case is equivalent to the case where θA and θB are close
at the state preparation step. We only need to analyze the case
where θA and θB are close in the following.

Because the left-click events and right-click events can be
separated by Alice and Bob, we can also analyze the security
of left clicks and right clicks separately. In the following, we
give the analysis of the left clicks. The analysis of right clicks
is analogous.

Before the security analysis, we need to give the equivalent
protocol based on entanglement. We define that δ = θB − θA

and θA = θ . Then, the state of the equivalent protocol can be
given as

|ψ (θ, δ)〉 = 1

2
(|0〉A |√μeiθ 〉a + |1〉A |√μei(θ+π )〉a)

⊗ (|0〉B |√μei(θ+δ)〉b + |1〉B |√μei(θ+δ+π )〉b),
(1)

where the subscripts A, B correspond to the local ancillas
of Alice and Bob, and the subscripts a, b correspond to the
states prepared and sent out by Alice and Bob. The phase θ

is randomly chosen from [0, 2π ) and the phase δ is randomly
chosen from [−�,�]. After the preparation of this state, if
Alice and Bob measure their ancillas on the Z basis (|0〉
and |1〉), the measurement results correspond to sA and sB

of the state preparation step. If they measure on the X basis
(|+〉 = (|0〉 + |1〉)/

√
2 and |−〉 = (|0〉 − |1〉)/

√
2), the error

rates of successful rounds are related to the potential informa-
tion leakage to an eavesdropper. Thus, the core of the security
analysis is estimating the error rate when they measure on the
X basis.

We define that in C rounds, the encoding bits sA and sB of
Alice and Bob are the same, and in E rounds sA and sB are
opposite. The key length of the protocol can be given from
the Devetak-Winter bound [30], which is shown as

l = I (ZCZE : B) − I (ZCZE : E )

= H (ZCZE|E ) − H (ZCZE|B)

= H (ZC|ZEE ) + H (ZE|E ) − H (ZCZE|B), (2)

where I (· : ·) is the quantum mutual information and H (·|·)
is the quantum conditional entropy [31]. The second equality
is from the definition of mutual information and the third
equality is from the definition of conditional entropy. ZC cor-
responds to Alice’s information of successful-click C rounds
measured by the Z basis, and ZE is similarly defined. Note
that ZC and ZE only include the information of signal rounds
in which both Alice and Bob select the intensity μ. E is the
system of eavesdroppers and B is the system of Bob. The
term H (ZCZE|B) corresponds to the consumption from error
correction and we will discuss it later.

From the uncertainty relations of the quantum entropy
[32,33], the first two terms of Eq. (2) can be converted to
Alice’s information measured by the X basis conditioned on
Bob’s system, which is shown as

H (ZC|ZEE ) + H (ZE|E )

� nC − H (XC|B) + nE − H (XE |B)

� nC
[
1 − H2

(
eCph

)] + nE
[
1 − H2

(
eEph

)]
, (3)

where XC corresponds to Alice’s information of successful-
click C rounds measured by the X basis. We use the
uncertainty relation twice for the first inequality, and for
the first term, we can treat the subsystems ZE and E as a
whole. Thus, the uncertainty relation can be directly used. nC
is the number of successful-click C signal rounds and nE is
the number of successful-click E signal rounds. eCph and eEph are
the corresponding phase error rates. H2(x) = −x log2(x) −
(1 − x) log2(1 − x) is the binary entropy function. The fol-
lowing analysis aims to estimate these two phase error rates.

The C rounds correspond to the case where sA = sB in the
analysis of left clicks. To estimate their phase error rate, we
should give the state of C rounds by operating |00〉 〈00|AB +
|11〉 〈11|AB on Eq. (1), which is shown as

(|00〉 〈00|AB + |11〉 〈11|AB) |ψ (θ, δ)〉

= 1

2
(|00〉AB |√μeiθ 〉a |√μei(θ+δ)〉b

+ |11〉AB |√μei(θ+π )〉a |√μei(θ+δ+π )〉b). (4)
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If Alice and Bob measure their ancillas on the X basis,
we define that |+−〉AB, |−+〉AB correspond to correct results
and |++〉AB, |−−〉AB correspond to phase errors. Operating

|++〉 〈++|AB + |−−〉 〈−−|AB on Eq. (4), the state becomes
|00〉AB+|11〉AB√

2
⊗ |√μeiθ 〉a |√μei(θ+δ)〉b+|√μei(θ+π )〉a |√μei(θ+δ+π )〉b

2
√

2
. Thus, the proba-

bility of a phase error can be estimated as

PLC
ph (θ, δ) = PL

(
|√μeiθ 〉a |√μei(θ+δ)〉b + |√μei(θ+π )〉a |√μei(θ+δ+π )〉b

2
√

2

)
, (5)

where PL(|·〉) [or PL(ρ)] is the left-click rate when a state |·〉 (with the density matrix ρ) is sent by Alice and Bob. For the
unnormalized state, we define PL(c |·〉) = |c|2PL(|·〉) [PL(rρ) = rPL(ρ), r is a real number]. Note that PL(ρ1) + PL(ρ2) =
PL(ρ1 + ρ2).

Note that the probability of a C round (equal to 1/2) has been included in Eq. (5), because of the unnormalized probability
from Eq. (4).

Since θ and δ are randomized in all rounds, we can get the average phase error probability in Eq. (6), where P[|·〉] = |·〉 〈·|.
Thus, the phase error probability can be estimated by a linear combination of click rates of even-photon states. Every term of the
PLC

ph can be estimated with decoy states shown in the Appendix.

PLC
ph = 1

4�π

∫ �

−�

dδ

∫ 2π

0
dθPLC

ph (θ, δ)

= PL

(
1

4�π

∫ �

−�

dδ

∫ 2π

0
dθP

[
|√μeiθ 〉a |√μei(θ+δ)〉b + |√μei(θ+π )〉a |√μei(θ+δ+π )〉b

2
√

2

])

= PL

⎛
⎜⎜⎜⎝ 1

4�π

∫ �

−�

dδ

∫ 2π

0
dθ

1

2
P

⎡
⎢⎢⎢⎣

∞∑
n = 0

n is even

√
e−2μ(2μ)n

n!
einθ

n∑
j=0

√(n
j

)
ei(n− j)δ | j〉a |n − j〉b√

2n

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

= 1

2

∞∑
n = 0

n is even

e−2μ(2μ)n

n!
PL

⎛
⎜⎝ 1

2�

∫ �

−�

dδP

⎡
⎢⎣ n∑

j=0

√(n
j

)
ei(n− j)δ | j〉a |n − j〉b√

2n

⎤
⎥⎦

⎞
⎟⎠ (6)

The phase error estimation of E rounds is a little more
complex. Firstly, the state of the E rounds can be given as

(|01〉 〈01|AB + |10〉 〈10|AB) |ψ (θ, δ)〉

= 1

2
(|01〉AB |√μeiθ 〉a |√μei(θ+δ+π )〉b

+ |10〉AB |√μei(θ+π )〉a |√μei(θ+δ)〉b). (7)

In this case, it is not easy to judge which group has a larger
click rate, the |++〉AB, |−−〉AB group or the |+−〉AB, |−+〉AB
group. The |++〉AB, |−−〉AB group corresponds to the destruc-
tive interference of even photons. The |+−〉AB, |−+〉AB group
corresponds to the destructive interference of odd photons.
When the protocol runs on a normal transmission distance,

the click rate of the single-photon term is larger than others,
so defining |++〉AB and |−−〉AB as errors is a good choice.
However, when the protocol runs on an extremely long dis-
tance, the click rate of the zero-photon term becomes larger
because of the dark counts, so we need to define |+−〉AB and
|−+〉AB as errors. In the following, we give the phase error
probabilities of these two cases separately.

With a similar calculation of the C rounds, when |++〉AB
and |−−〉AB are defined as errors the phase error probability is
shown in Eq. (8), and when |+−〉AB and |−+〉AB are defined as
errors the phase error probability is shown in Eq. (9). These
two equations can be obtained by calculating the measuring
probability of the projectors |++〉 〈++|AB and |−−〉 〈−−|AB
and the measuring probability of the projectors |+−〉 〈+−|AB
and |−+〉 〈−+|AB on Eq. (7),

PLE
ph1 = 1

2

∞∑
n = 0

n is even

e−2μ(2μ)n

n!
PL

⎛
⎜⎝ 1

2�

∫ �

−�

dδP

⎡
⎢⎣ n∑

j=0

(−1)n− j
√(n

j

)
ei(n− j)δ | j〉a |n − j〉b√

2n

⎤
⎥⎦

⎞
⎟⎠. (8)

PLE
ph2 = 1

2

∞∑
n = 0

n is odd

e−2μ(2μ)n

n!
PL

⎛
⎜⎝ 1

2�

∫ �

−�

dδP

⎡
⎢⎣ n∑

j=0

(−1)n− j
√(n

j

)
ei(n− j)δ | j〉a |n − j〉b√

2n

⎤
⎥⎦

⎞
⎟⎠. (9)
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Every term of the average click rates can be estimated with
decoy states, which is shown in the Appendix.

With the phase error probabilities above, we can give the
expression of the final key rate RL = lL/N , where N is the
total number of pulses sent by Alice and lL is the key length
from Eqs. (2) and (3) of the left clicks. The error correction
consumption can be estimated by the bit error rate ebit, which
is shown as H (ZCZE|B) � f (nC + nE)H2(ebit ), where f is
the efficiency of error correction. The key rate is shown as

RL �
2�p2

μ

π

{
PL
C

[
1 − H2

(
PLC

ph

PL
C

)]

+ PL
E

[
1 − H2

(min
(
PLE

ph1 , PLE
ph2

)
PL
E

)]
− f PL

totH2
(
eL

bit

)}
,

(10)

where 2�
π

is the efficiency of phase postselection, PL
C (PL

E) is
the correct (erroneous) left-click rate when a round has passed
the phase postselection, PL

tot = PL
C + PL

E is the total left-click
rate when a round has passed the phase postselection, and eL

bit
is the bit error rate of left clicks.

PL
tot can be easily obtained by counting the number of

successful rounds that passed the phase postselection. After
the error correction step, Alice and Bob naturally know the bit
error rate eL

bit . Then, PL
C = (1 − eL

bit )P
L
tot and PL

E = eL
bitP

L
tot can

be easily obtained.

III. IMPROVED ANALYSIS FOR THE FOUR-PHASE
PARTIAL PHASE POSTSELECTION PROTOCOL

Since there are some quantities representing similar mean-
ings in the PM-TF-QKD and the FP-PPP-TF-QKD, we may
use some of the same quantity names from Sec. (II) in the
following without causing any confusion.

A. Protocol description

The four-phase TF-QKD is proposed in Ref. [34], and has
been experimentally verified in Ref. [23]. Then, the partial
phase postselection is introduced in Ref. [25] to realize both a
long distance and a high key rate. Here, we review the process
of this protocol. Since this protocol is similar to the PM-TF-
QKD in some steps, we only give the difference between them
in the following.

(1) State preparation. For each round, Alice (Bob) ran-
domly selects an intensity μI ∈ {μ, ν1, ν2, . . . } with prob-
abilities {pμ, pν1 , pν2 , . . . } separately. The intensity μ cor-
responds to the signal state and the intensities ν1, ν2, . . .

correspond to decoy states. When Alice (Bob) selects the
signal intensity μ, she (he) randomly prepares a state
|√μei(sAπ+tA

π
2 )〉 [|√μei(sBπ+tB

π
2 )〉], where sA (sB) is randomly

chosen from {0, 1} and tA (tB) is also randomly chosen from
{0, 1}. She (he) records sA and tA (sB and tB) locally. When she
(he) selects the decoy intensity νi, she (he) prepares a state
|√νieiθA〉 (|√νieiθB〉), where θA (θB) is randomly selected in
[0, 2π ). She (he) records θA (θB) locally. Then, they send the
states to Charlie, who is located in the middle of the channel.

(2) State measurement. The same as the PM-TF-QKD.
(3) Intensity sifting. The same as the PM-TF-QKD.
(4) Phase postselection. For the signal rounds that have

passed the intensity sifting, Alice and Bob announce tA and tB
of every round. If tA = tB, they keep the round. If tA 	= tB, they
discard the round. For the decoy rounds that have passed the
intensity sifting, Alice and Bob announce θA and θB of every
round. They keep the rounds where |θA − θB| � � or ||θA −
θB| − 2π | � � and the rounds where ||θA − θB| − π | � �

separately [25].
(5) Parameter estimation and postprocessing. Alice and

Bob count the click rates of decoy rounds to estimate the
phase error rates of signal states. Then, they conduct error
correction and privacy amplification to the raw key bits sA

and sB of successful signal rounds that have passed the phase
postselection to generate the final key.

B. The improved security analysis

In the following, we give the analysis of left clicks. The
analysis of right clicks is analogous. Firstly, we give the
equivalent protocol based on entanglement in the following.
Because tA = tB for the rounds that passed the phase postse-
lection, we define tA = tB = t in the following:

|ψ (t )〉 = 1

2
(|0〉A |√μeit π

2 〉a + |1〉A |√μei(π+t π
2 )〉a)

⊗ (|0〉B |√μeit π
2 〉b + |1〉B |√μei(π+t π

2 )〉b), (11)

where t is randomly chosen from {0, 1} for each round.
With the same method shown in our analysis of the PM-

TF-QKD, we can also separate all rounds into two parts. For
left clicks, the C rounds correspond to the case where sA =
sB, and the E rounds correspond to the case where sA 	= sB.
We can analyze the information leakages of these two parts
separately.

For C rounds, we define |++〉AB and |−−〉AB as phase
errors. The state of the C rounds can be obtained by operating
|00〉 〈00|AB + |11〉 〈11|AB on Eq. (11), which is shown as

1

2
(|00〉AB |√μeit π

2 〉a |√μeit π
2 〉b

+ |11〉AB |√μei(π+t π
2 )〉a |√μei(π+t π

2 )〉b). (12)

The phase errors correspond to the measuring re-
sults of |++〉AB and |−−〉AB. Operating |++〉 〈++|AB +
|−−〉 〈−−|AB on Eq. (12), the state becomes |00〉AB+|11〉AB√

2
⊗

|√μe
it π

2 〉a |√μe
it π

2 〉b+|√μe
i(π+t π

2 )〉a |√μe
i(π+t π

2 )〉b
2
√

2
. Thus, the probability of a

phase error can be estimated as

PLC
ph (t ) = PL

(∣∣√μeit π
2
〉
a

∣∣√μeit π
2
〉
b + ∣∣√μei(π+t π

2 )
〉
a

∣∣√μei(π+t π
2 )

〉
b

2
√

2

)
. (13)
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Then, the average phase error probability for t = 0, 1 can be estimated in Eq. (14):

PLC
ph = 1

2

[
PLC

ph (0) + PLC
ph (1)

]
= 1

2
PL

[
P

( |√μ〉a |√μ〉b + |−√
μ〉a |−√

μ〉b

2
√

2

)
+ P

( |i√μ〉a |i√μ〉b + |−i
√

μ〉a |−i
√

μ〉b

2
√

2

)]

= 1

4
PL

⎡
⎢⎢⎢⎣P

⎛
⎜⎜⎜⎝

∞∑
n = 0

n is even

√
e−2μ(2μ)n

n!

n∑
j=0

√(n
j

) | j〉a |n − j〉b√
2n

⎞
⎟⎟⎟⎠ + P

⎛
⎜⎜⎜⎝

∞∑
n = 0

n is even

√
e−2μ(2μ)n

n!
in

n∑
j=0

√(n
j

) | j〉a |n − j〉b√
2n

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

= 1

2
PL

⎛
⎜⎜⎜⎝

∞∑
n = 0

n ≡ 0 mod 4

√
e−2μ(2μ)n

n!

n∑
j=0

√(n
j

) | j〉a |n − j〉b√
2n

⎞
⎟⎟⎟⎠ + 1

2
PL

⎛
⎜⎜⎜⎝

∞∑
n = 0

n ≡ 2 mod 4

√
e−2μ(2μ)n

n!

n∑
j=0

√(n
j

) | j〉a |n − j〉b√
2n

⎞
⎟⎟⎟⎠.

(14)

The phase error probability shown above is still hard to estimate, so we use the Cauchy-Schwarz inequality to give the upper
bound of PLC

ph . Note that the left-click rate of a state can be calculated with a measurement matrix ML, which is shown
as PL(|·〉) = Tr(ML |·〉 〈·|) [PL(ρ) = Tr(MLρ)]. Thus, we have the inequality shown in Eq. (15) using the Cauchy-Schwarz
inequality.

PL

(∑
n

cn |n〉
)

= Tr

[
ML

(∑
n

cn |n〉
)(∑

m

c∗
m 〈m|

)]

=
∑

n

|cn|2Tr(ML |n〉 〈n|) +
∑
m 	=n

cnc∗
mTr(ML |n〉 〈m|)

�
∑

n

|cn|2Tr(ML |n〉 〈n|) +
∑
m 	=n

|cncm|
√

Tr(ML |n〉 〈n|)
√

Tr(ML |m〉 〈m|)

=
∑

n

|cn|2PL(|n〉) +
∑
m 	=n

|cncm|
√

PL(|n〉)
√

PL(|m〉). (15)

Applying Eq. (15) into Eq. (14), we can give the upper bound of the phase error probability, which is shown in Eq. (16).
Note that in Eq. (16) every term is the same as the corresponding term in Eq. (6) when � = 0. Thus, the phase errors
can also be estimated by decoy states with a similar method. The decoy estimation with finite intensities can be seen in
Ref. [25].

PLC
ph �1

2

∞∑
n=0

e−2μ(2μ)2n

(2n)!
PL

⎛
⎜⎝ 2n∑

j=0

√(2n
j

) | j〉a |2n − j〉b√
22n

⎞
⎟⎠

+ 1

2

∑
m 	=n

e−2μ

√
(2μ)4m+4n

(4m)!(4n)!

√√√√√√PL

⎛
⎜⎝ 4m∑

j=0

√(4m
j

) | j〉a |4m − j〉b√
24m

⎞
⎟⎠

√√√√√√PL

⎛
⎜⎝ 4n∑

j=0

√(4n
j

) | j〉a |4n − j〉b√
24n

⎞
⎟⎠

+ 1

2

∑
m 	=n

e−2μ

√
(2μ)4m+4n+4

(4m + 2)!(4n + 2)!

√√√√√√PL

⎛
⎜⎝4m+2∑

j=0

√(4m+2
j

) | j〉a |4m + 2 − j〉b√
24m+2

⎞
⎟⎠

√√√√√√PL

⎛
⎜⎝4n+2∑

j=0

√(4n+2
j

) | j〉a |4n + 2 − j〉b√
24n+2

⎞
⎟⎠

(16)

For the E rounds, we also give the phase error probabilities for the two cases where when |++〉AB, |−−〉AB are
defined as errors and when |+−〉AB, |−+〉AB are defined as errors. Firstly, the state of the E rounds can be given
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as

(|01〉 〈01|AB + |10〉 〈10|AB) |ψ (t )〉 = 1

2
(|01〉AB |√μeit π

2 〉a |√μei(π+t π
2 )〉b + |10〉AB |√μei(π+t π

2 )〉a |√μeit π
2 〉b). (17)

The calculation of these two phase error upper bounds is similar to the analysis above by calculating the measuring probability of
the projectors |++〉 〈++|AB and |−−〉 〈−−|AB and the measuring probability of the projectors |+−〉 〈+−|AB and |−+〉 〈−+|AB.
The results are shown in Eqs. (18) and (19).

PLE
ph1 �1

2

∞∑
n=0

e−2μ(2μ)2n

(2n)!
PL

⎛
⎜⎝ 2n∑

j=0

(−1)2n− j
√(2n

j

) | j〉a |2n − j〉b√
22n

⎞
⎟⎠

+ 1

2

∑
m 	=n

e−2μ

√
(2μ)4m+4n

(4m)!(4n)!

√√√√√√PL

⎛
⎜⎝ 4m∑

j=0

(−1)4m− j
√(4m

j

) | j〉a |4m − j〉b√
24m

⎞
⎟⎠

√√√√√√PL

⎛
⎜⎝ 4n∑

j=0

(−1)4n− j
√(4n

j

) | j〉a |4n − j〉b√
24n

⎞
⎟⎠

+ 1

2

∑
m 	=n

e−2μ

√
(2μ)4m+4n+4

(4m + 2)!(4n + 2)!

√√√√√√PL

⎛
⎜⎝4m+2∑

j=0

(−1)4m+2− j
√(4m+2

j

) | j〉a |4m + 2 − j〉b√
24m+2

⎞
⎟⎠

×

√√√√√√PL

⎛
⎜⎝4n+2∑

j=0

(−1)4n+2− j
√(4n+2

j

) | j〉a |4n + 2 − j〉b√
24n+2

⎞
⎟⎠ (18)

PLE
ph2 �1

2

∞∑
n=0

e−2μ(2μ)2n+1

(2n + 1)!
PL

⎛
⎜⎝2n+1∑

j=0

(−1)2n+1− j
√(2n+1

j

) | j〉a |2n + 1 − j〉b√
22n+1

⎞
⎟⎠

+ 1

2

∑
m 	=n

e−2μ

√
(2μ)4m+4n+2

(4m + 1)!(4n + 1)!

√√√√√√PL

⎛
⎜⎝4m+1∑

j=0

(−1)4m+1− j
√(4m+1

j

) | j〉a |4m + 1 − j〉b√
24m+1

⎞
⎟⎠

×

√√√√√√PL

⎛
⎜⎝4n+1∑

j=0

(−1)4n+1− j
√(4n+1

j

) | j〉a |4n + 1 − j〉b√
24n+1

⎞
⎟⎠

+ 1

2

∑
m 	=n

e−2μ

√
(2μ)4m+4n+6

(4m + 3)!(4n + 3)!

√√√√√√PL

⎛
⎜⎝4m+3∑

j=0

(−1)4m+3− j
√(4m+3

j

) | j〉a |4m + 3 − j〉b√
24m+3

⎞
⎟⎠

×

√√√√√√PL

⎛
⎜⎝4n+3∑

j=0

(−1)4n+3− j
√(4n+3

j

) | j〉a |4n + 3 − j〉b√
24n+3

⎞
⎟⎠ (19)

With the given phase error probabilities, the key rate is shown as

RL = p2
μ

2

{
PL
C

[
1 − H2

(
P̄LC

ph

PL
C

)]
+ PL

E

[
1 − H2

(min
(
P̄LE

ph1 , P̄LE
ph2

)
PL
E

)]
− f PL

totH2
(
eL

bit

)}
, (20)

where P̄LC
ph (P̄LE

ph1 , P̄LE
ph2) is the upper bound of PLC

ph (PLE
ph1 , PLE

ph2).
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TABLE I. The device parameters we used in our simulation.

pd d f emis

1 10−6 1.1 0.01

IV. NUMERICAL SIMULATION

We conduct numerical simulations to see the improvement
of our analysis. In our simulation, infinite decoy states are as-
sumed. The parameters we used are shown in Table I. pd is the
detecting efficiency of detectors. d is the dark counting rate
per pulse of each detector. f is the error correction efficiency.
emis is the misalignment error rate of the interferometer.

The simulation result of the PM-TF-QKD is shown in
Fig. 1. We simulated the key rate under the original analy-
sis for comparison. Note that in most of the situations, the
requirement for performance is not very strict. Thus, we can
only use the clicks of C rounds to generate the key, which
means that the phase error rate of E rounds is set to 50%.
Thus, the parameter estimation of the E rounds can be re-
moved. We also simulated this case in Fig. 1.

The simulation of the FP-PPP-TF-QKD is given in Fig. 2.
We also give the simulation when the phase error rate of E
rounds is set to 50%.

The simulation shows that at low transmission distance, the
improved performance is nearly the same as the original one.
However, our analysis can improve the channel loss tolerance
of about 1.5 dB, which means our analysis can improve the
transmission distance of about 7.5 km in a standard fiber
channel. With only C rounds, the key rate is reduced by about
10% in the PM-TF-QKD, but the distance improvement is still
retained. In the last 10 dB of the channel loss, the key rate

FIG. 1. The key rate simulation of the PM-TF-QKD. The PM-
original line corresponds to the key rate under the original security
analysis. The PM-improved line corresponds to the key rate under
our improved security analysis. The PM-improved-C line corre-
sponds to the key rate under our improved analysis when the phase
error rate of E rounds is set to 50%.

FIG. 2. The key rate simulation of the FP-PPP-TF-QKD. The
FP-PPP-original line corresponds to the key rate under the original
security analysis. The FP-PPP-improved line corresponds to the key
rate under our improved security analysis. The FP-PPP-improved-C
line corresponds to the key rate under our improved analysis when
the phase error rate of E rounds is set to 50%.

improvement is distinct. A similar improvement can be seen
in the simulation result of the FP-PPP-TF-QKD.

The improvement can be explained as follows. In our
improved analysis, the information leakage is estimated as

PCH2(
PC

ph

PC
) + PEH2(

PE
ph

PE
). In the original analysis, it is esti-

mated as (PC + PE)H2(
PC

ph +PE
ph

PC+PE
). Our analysis cannot reduce

the total number of phase errors but divides them into two
parts. Due to the concavity of the H2 function, the information
leakage of our analysis is smaller. Thus, we can give a better
performance. At the condition of short distance, the error rate
is relatively low. With a small PE, the difference is not notable.
For the case of extreme distance, the dark counts increase the
error rate a lot, so a longer distance can be achieved with our
analysis.

V. CONCLUSION

To conclude, we give the improved security analysis for
two phase-encoding TF-QKD protocols by analyzing the in-
formation leakages of correct rounds and erroneous rounds
separately. With our analysis, no modifications to experiments
are needed and the transmission distance can be improved.
In our numerical simulation, our analysis could improve the
channel loss tolerance of the PM-TF-QKD and the FP-PPP-
TF-QKD by about 1.5 dB. Since our analysis does not change
any experimental settings of the protocols, our analysis can be
a better choice for all situations when using these protocols.

Our method might be able to be applied in some other
protocols. We also tried it on the measurement-device-
independent protocol and the no-phase-postselection protocol,
but the efforts were not good. Thus, we do not show
them in the article. Since our improvement lies on the
ratio of bit errors, our method might not be able to work
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for time-bin encoding protocols, but other phase encoding
protocols—for example, the phase-encoding measurement-
device-independent protocol—may be able to benefit from our
method.
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APPENDIX: FEASIBILITY OF DECOY-STATE
ESTIMATION OF OUR IMPROVED ANALYSIS

In our calculation of the phase error rate, we need to esti-
mate the click rates of the following states:

1

2�

∫ �

−�

dδP

⎡
⎢⎣ n∑

j=0

√(n
j

)
ei(n− j)δ | j〉a |n − j〉b√

2n

⎤
⎥⎦, (A1)

1

2�

∫ �

−�

dδP

⎡
⎢⎣ n∑

j=0

(−1)n− j
√(n

j

)
ei(n− j)δ | j〉a |n − j〉b√

2n

⎤
⎥⎦.

(A2)

For ease of description, we define the states in Eqs. (A1) and
(A2) as ρ̄+

n and ρ̄−
n . One may find that when � → 0 these two

states correspond to the n-photon states causing constructive
and destructive interference separately.

When Alice and Bob both send the phase-randomized
decoy state with an intensity ν, we also use the phase post-
selection to select the rounds with a phase difference less than
�. The state of these rounds is shown as

1

4π�

∫ �

−�

dδ

∫ 2π

0
dθP (|√νeiθ 〉a |√νei(θ+δ)〉b)

=
∞∑

n=0

e−2ν (2ν)n

n!
ρ̄+

n . (A3)

Thus, the click rate of these decoy rounds can be expressed by
a linear combination of the click rates of ρ̄+

n . Note that Alice
and Bob can send decoy states with different intensities and
get different combinations of ρ̄+

n . Then, with linear program-
ming, one can get the upper bound of every click rate of ρ̄+

n . In
practical use, one may not need to estimate ρ̄+

n for all n since
the items are too small for a large n. For a large n, one can just
use 1 as the click rate upper bound.

The estimation of the click rates of ρ̄−
n is similar by select-

ing the decoy states with a phase difference in [π − �,π + �]
because of the following equation:

1

4π�

∫ �

−�

dδ

∫ 2π

0
dθP (|√νeiθ 〉a |−√

νei(θ+δ)〉b)

=
∞∑

n=0

e−2ν (2ν)n

n!
ρ̄−

n . (A4)

Note that the same parameter estimation is also used in the
original analysis of the PM-TF-QKD. Thus, our estimation
above does not change any steps or devices of the experimen-
tal realization.
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