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Entanglement structure detection via computer vision
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Quantum entanglement plays a pivotal role in various quantum information processing tasks. However, a
universal and effective way to detect entanglement structures is still lacking, especially for high-dimensional and
multipartite quantum systems. Noticing the mathematical similarities between the common representations of
many-body quantum states and the data structures of images, we are inspired to employ advanced computer vi-
sion technologies for data analysis. In this work, we propose a hybrid convolutional neural network–transformer
model for both the classification of Greenberger-Horne-Zeilinger and W states and the detection of various
entanglement structures. By leveraging the feature-extraction capabilities of convolutional neural networks and
the powerful modeling abilities of transformers, we not only can effectively reduce the time and computational
resources required for the training process but can also obtain high detection accuracies. Through numerical
simulation and physical verification, it is confirmed that our hybrid model is more effective than traditional
techniques and thus offers a powerful tool for characterizing multipartite entanglement structures.
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I. INTRODUCTION

Quantum entanglement underlies the unique characteristics
and advantages of quantum systems over classical systems
[1–3]. It plays a vital role in various branches of quan-
tum information [4,5] such as quantum communication [6],
quantum cryptography [7], and quantum computing [8,9].
An improper amount of entanglement, incorrect structure, or
pattern of a multipartite entangled state could all affect the
overall efficiency of given quantum computation tasks or the
performance of given quantum protocols. As a result, knowl-
edge of entangled states [2,10] is necessary, which is to say,
it is essential to determine the entanglement type, entangle-
ment separability, and entanglement depth [7] of these states.
For low-dimensional systems, a necessary and sufficient con-
dition exists for the separability of bipartite systems: the
Peres-Horodecki criterion based on the positivity-of-partial-
transpose criterion [11,12]. However, for higher-dimensional
systems, or more parties, the characterization of the set of
positive maps is an NP-hard problem. Various theoretical and
experimental tools [13–15] have been proposed to analyze and
detect multipartite quantum entanglement. One of the most
common approaches is the entanglement witness [16–20],
which can distinguish a specific entangled state from sepa-
rable ones.

However, existing entanglement detection methods lack
universality [19]. For example, one cannot determine the en-
tanglement witness operator for all possible entangled states
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and an arbitrary number of partitions. Even worse is the lack
of a general description of all entangled states in multipar-
tite quantum systems. Furthermore, the biggest challenge for
analytic or numeric approaches is that as the qubit number
increases, both the number of possible quantum states and
the number of entanglement structures increase exponentially.
Consequently, researchers have turned to machine learning
techniques for help [21].

At first, most related studies adopted supervised train-
ing methods [22–25], achieving high accuracy for specific
tasks. However, the process of labeling a large number of
quantum states is very time-consuming and almost impos-
sible for multiqubit systems. Thus, semisupervised [26,27]
and unsupervised learning [28] techniques that can predict
a large number of unlabeled quantum states from a small
number of labeled states have been developed. The problem
with these methods is they can offer only limited precision
and require further experimental validation. Considering the
structural resemblance between the mathematical represen-
tation of quantum states and classical image data, we are
inspired to utilize established computer vision techniques for
entanglement structure detection, which are known for their
reduced resource consumption and computational efficiency.

In this study, a hybrid convolutional neural network–
transform model is proposed for the detection of multipartite
entanglement. This network structure was initially devel-
oped for image processing and is particularly adept at
handling large quantities of data. Therefore, a deep convolu-
tional neural network (CNN) [29,30] can effectively identify
local features and alter data dimensions through convolu-
tion operations, while the self-attention mechanism of the
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transformer [31–33] can capture long-distance dependences.
Thus, the trained neural network can identify the key features
in different descriptions of entanglement structures, precisely
delineating the boundaries between completely independent
samples and various entangled samples. This brings about a
major advantage: the same neural network can be applied to
both the classification of entanglement states (Greenberger-
Horne-Zeilinger (GHZ) [34] and W states [35]) and the
detection of specific entanglement structures (entanglement
separability and entanglement depth). As far as we know, the
current machine learning method can handle only a single
specific task, such as determining whether a particular type
of entanglement exists or detecting the separability and depth
of some special multipartite entangled states. Different from
it, our hybrid model demonstrates exceptional performance in
accomplishing both classification and detection tasks with low
time and computational cost. Numerical examples, ranging
from 3- to 10-qubit systems, demonstrate that our network
achieves an average classification accuracy exceeding 99.57%
and a 95% accuracy in detecting entanglement structures.

The structure of this paper is organized as follows. In
Sec. II, we introduce the definition of GHZ and W entangled
states used for data generation and the concept of using entan-
glement separability and entanglement depth as descriptors of
the entanglement structure. In Sec. III, we describe the process
of dataset preparation for our analysis and introduce a hybrid
CNN-transformer model that captures the inherent properties
of quantum states to classify and detect entangled states. In
Sec. IV, we quantify the performance of our trained neu-
ral network through experiments with numerical simulations
and real quantum devices. Finally, this paper is concluded in
Sec. V.

II. PRELIMINARIES

A. GHZ and W entanglement states

Separable and entangled states. For two quantum systems
A and B, their states are represented by the state vectors |�A〉
and |�B〉 in their Hilbert spaces HA and HB. The joint quantum
state of the two systems is represented by the state vector
|�AB〉 in the Hilbert space HA ⊗ HB. If |�AB〉 can be written
as a product state, it is a separable state; otherwise, it is an
entangled state [36].

Generalized to an N-qubit case, the quantum state is usu-
ally represented by a density matrix:

ρ̂ =
∑

i

piρ̂i. (1)

Here, pi is the probability that 0 � pi � 1 and
∑

i pi = 1, and
ρ̂k

i is the pure-state density matrix of each subsystem. If this
density matrix ρ can be expressed as a convex combination of
multiple product states,

ρ̂ =
∑

l

piρ̂
1
i ⊗ ρ̂2

i · · · ⊗ ρ̂N
i , (2)

the corresponding state is considered separable; otherwise, it
is entangled.

For quantum systems with three or more particles, there
are primarily two interesting classes of entangled states: GHZ

and W states. These two classes of entangled states can be
partitioned into two disjoint categories through stochastic lo-
cal operations and classical communication (SLOCC) [37].

GHZ states. GHZ states are a special type of multipartite
entangled state in which the entanglement between all parti-
cles is global. In an N-particle system, the GHZ state can be
expressed as

|�GHZ〉 = 1√
2

( |1〉⊗N + |0〉⊗N ). (3)

W states. W states are another type of multipart entangled
state characterized by the fact that even if one particle is
lost after the measurement, the remaining particles remain
entangled, unlike the GHZ state, which becomes completely
separable. In an N-particle system, the W state can be ex-
pressed as

|�W 〉 = 1√
N

(|10 · · · 0〉 + |010 · · · 0〉 + · · · + |0 · · · 01〉.
(4)

The W state is locally indistinguishable from other states in
its equivalence class under local unitary transformations [38].
SLOCC can distinguish between these two classes of entan-
gled states because they exhibit different invariances under
local operations and classical communication. This classifica-
tion is significant for quantum information processing tasks,
such as quantum computation and quantum communication,
because it helps us to understand the application and limita-
tions of entanglement resources in these tasks.

B. Entanglement structure

The entanglement structure of quantum states refers to
entanglement separability and entanglement depth (or en-
tanglement producibility). This can be analogous to the
combinatorial problem of an N-body system. There are 2N−1

types of partitions, and (N + 1) kinds of split methods to
decompose an N-body system into multiple subsystems � =
{�1,�2, . . . , �k}, k � N . Determining the exact analytic
equation is very difficult, but recursive and dynamic program-
ming methods can be used to calculate the integer division
of n particles. In general, we can use the Young diagram
[39] to directly show the partition. For example, a four-body
system has eight types of partitions and five types of split
methods. These partitions include 4,1 ⊗ 3, 2 ⊗ 2, 1 ⊗ 1 ⊗ 2,
and 1 ⊗ 1 ⊗ 1 ⊗ 1. This can be represented by the Young
diagram shown in Fig. 1(a).

In the Young diagram, each row represents the number
of entanglements contained in a subsystem, with the number
of entanglements in the subsystems decreasing from top to
bottom. Therefore, the width of the top row represents the
maximum number of entangled particles, and the number of
rows represents the number of separable subsystems.

k-separable (h-inseparable). k-separability (h-
inseparability) is an indicator used to represent the number
of separable subsystems in a multiparticle quantum system.
A quantum state of N particles is said to be k-separable
if it can be divided into k groups (1 � k � N) such that
there is no entanglement between these groups, although
particles within each group may be entangled with each
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FIG. 1. Young-diagram representation and entanglement struc-
ture analysis of multibody systems. (a) All possible Young diagrams
for a four-particle system. (b) The separability hierarchy of N-qubit
states. (c) Characterization of the entanglement structure of a nine-
body system using Young diagrams, which can be divided into h = 4
subsystems, with an entanglement depth of w = 5, corresponding to
the height h and width w of the Young diagram.

other. Mathematically, a k-separable pure state ρk-sep can be
expressed as

ρk-sep = ρA1 ⊗ ρA2 · · · ⊗ ρAk, (5)

indicating that the N-body system is divided into k-separable
subsystems. A mixed state is called k-separable if it is a con-
vex combination of k-separable pure states. If a quantum state
is not k-separable, it is considered h-inseparable, implying
that the system cannot be divided into h-separable subsystems.

As shown in Fig. 1(b), an N-qubit state is considered
N-separable (N-sep) if it can be fully decomposed into N
independent quantum subsystems, implying that the entire
quantum system exhibits no entanglement. On the contrary,
if a multiqubit state cannot be represented as a convex combi-
nation of any separable states, it exhibits genuine multipartite
entanglement (GME) [40]. GME represents an entanglement
structure involving the entire multiqubit system and cannot be
described by decomposing it into smaller subsystems’ entan-
glement structures, indicating that the quantum state exhibits
strong quantum correlations among all its subsystems.

k-producible (entanglement depth w). k-producibility is an
indicator used to represent the maximum degree of entan-
glement in the system, which can also be referred to as the
entanglement depth w. A k-producible pure state ρk-pro can be
written as

ρk-pro = ρA1 ⊗ ρA2 · · · ⊗ ρAmm (6)

where ρAm denotes the state with the maximum number of k
entangled particles. If a quantum state is not k-producible, its
entanglement depth is at least k + 1, indicating that there are
at least k + 1 particles entangled together in the system.

The larger the value of entanglement depth w or the smaller
the value of k-separability is, the greater the entanglement in
the multipartite system is. This concept is intuitively illus-
trated in Fig. 1(c).

III. METHODS

A. Dataset preparation

For this study, we developed a comprehensive and diverse
dataset to train and evaluate the performance of our pro-
posed computer vision techniques for quantum entanglement
detection. The dataset comprises 200 000 density matrices,
100 000 for GHZ states and 100 000 for W states. To ensure a
robust and representative dataset, we employed a systematic
approach to generate a wide range of entangled structures,
spanning from GME to completely separable states.

Our dataset creation process involved several key steps to
ensure the inclusion of all possible subsystem configurations
and entanglement depths. As a starting point, we considered
a preset number of particles, denoted as N , which served as
the foundation for our subsequent steps. We then performed
10 000 random integer decompositions on this preset num-
ber N to obtain a variety of potential subsystem sizes ki.
The number of integers generated in each decomposition,
termed h, corresponds to the number of separable subsys-
tems in the N-partite system. The largest integer among
the ki values represents the entanglement depth w, which is
the maximum number of particles entangled together within
the entire system. By controlling the number of subsystems
h and the entanglement depth w through the integer de-
composition process, we were able to precisely engineer the
entanglement structure of each quantum state in our dataset,
especially for complex scenarios involving a large number of
particles.

Next, we carefully selected quantum states for each sub-
system based on their physical significance and the number
of particles involved. For single-particle subsystems (ki = 1),
we chose arbitrary points on the Bloch sphere and computed
their density matrices. In the case of two-particle subsystems
(ki = 2), we randomly selected one of the four Bell states
and calculated its density matrix. For subsystems with three
or more particles (ki � 3), we derived their density matrices
using the GHZ- and W -state definitions, Eqs. (3) and (4), as
these states are particularly important within their respective
subsystems. Finally, we combined these various states follow-
ing the formula in Eq. (2) to construct our comprehensive
dataset.

To further enhance the dataset’s robustness and reduce
redundancy, we implemented a data augmentation technique
inspired by the quantum circuit [41]. This involved rotating
the density matrices generated for each subsystem within a
range of 0 to π/10, effectively mitigating overfitting and
increasing the dataset’s diversity and representativeness.

To accurately capture the composition and entanglement
structures of the quantum states, we developed a precise
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labeling scheme. The labels, represented as strings, encap-
sulate the subsystems: “One” for a single-particle subsystem
in a pure state, “Bell” for a two-particle subsystem in a
Bell state, and “GHZk” for a k-particle subsystem in a GHZ
state. By combining these terms with hyphens, we created
comprehensive labels such as GHZ6, Bell-One-GHZ3, and
One-Bell-GHZ3, which effectively illustrate the multifaceted
nature of quantum entanglement in complex multiparticle sys-
tems.

This approach to dataset generation ensures a comprehen-
sive representation of entangled states while maintaining the
rigor and objectivity necessary for academic research. By
systematically exploring the full range of entangled structures
and incorporating randomization into the probability coeffi-
cients, our dataset serves as a robust foundation for evaluating
the performance of our machine learning and computer vision
techniques for quantum entanglement detection.

B. Hybrid CNN-transformer model

In our experiments, we pretested with a traditional fully
connected neural network (FNN) [42] and found that the re-
sults were excellent when the number of particles was small,
but when the number of particles was greater than seven,
the accuracy dropped significantly. This is because the FNN
cannot extract local features, and it cannot capture the local
spatial information of the input data. This problem can be
solved by a CNN, which can effectively identify local features
through a convolution operation, making it superior for image
processing and other artificial-intelligence fields.

In essence, the FNN needs to flatten the input data into
a one-dimensional vector, thus losing spatial information,
whereas the CNN can accept the input data of the original
shape, retain the spatial structure information, and help ex-
tract more efficient features. Through convolution operations,
CNN can efficiently extract local features while reducing the
number of parameters. The addition of convolutional layers
makes CNN translationally invariant and thus achieves re-
markable success in image processing, computer vision, and
other fields. However, CNNs still have limitations in terms of
capturing long-distance dependences. With the development
of computer vision technology, a vision transformer (ViT)
[31,33], which is the latest neural network development direc-
tion, aims to make full use of the advantages of transformer
structure. Transformers have made breakthroughs in the field
of natural language processing, mainly because their self-
attention mechanism can capture long-distance dependences.
ViT divides an image into small pieces and then processes
these small pieces using a transformer to capture global fea-
tures. ViT has surpassed CNN in many image-recognition
tasks and has become the current frontier technology in the
field of computer vision.

We adopted the perspective that quantum states can be
regarded as analogous to images in the context of their
mathematical representations. Drawing upon this conceptual
similarity, we leverage advanced computer vision techniques
to analyze these quantum states, effectively transforming
the problem of entanglement detection into a task that par-
allels image analysis. This innovative approach facilitates
the exploration of entanglement structure detection using

FIG. 2. Hybrid CNN-transformer model.

well-established methods in the field of computer vision.
Inspired by the paper “An image is worth 16x16 words:
Transformers for image recognition at scale” [33], we employ
CNNs and transformers to extract local and global features,
respectively. The dimensions of the density matrices vary with
the number of particles. When the particle count is high, the
density matrices become larger, necessitating more time and
computational resources for the transformer. To address this
issue, we first applied a convolutional layer to extract features
from the density matrices while altering their dimensions.

For particle numbers n = 3, 4, 5, 6, and 7, the density
matrix dimensions were relatively small, eliminating the need
for dimensionality reduction. However, for n = 8, 9, and 10,
the density matrix dimensions were larger, and we applied
two-dimensional convolutions to reduce their dimensions to
128 × 128. This process minimizes redundant features and
decreases the computational load for the subsequent trans-
former calculations.

The network structures for different numbers of particles
are shown in Fig. 2. The convolutional layers (“Conv layers”)
initially act as feature detectors, scanning the input data to
highlight patterns that are akin to edges or textures in an
image. These layers are critical for discerning local variations
within the quantum data, which are essential clues to the
nature of entanglement. The “Max pooling” layer serves to
distill information by focusing on the most prominent features
detected by the convolutional layers, effectively reducing the
dimensionality and computational complexity of the data. The
“Flatten” operation then converts this condensed feature map
into a one-dimensional array, setting the stage for a deeper
analysis.
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FIG. 3. During the training process, the evolution of feature vectors for 10 000 entangled samples of five-qubit states.

The ViT model includes a patch-embedding process and
position embedding. The patch-embedding process divides
these feature maps into smaller, manageable pieces, or
patches, similar to breaking an image into segments. For
different numbers of particles (n = 3 to 10), we vary the
patch size accordingly (from 2 × 2 to 32 × 32), optimizing
the model’s ability to process quantum states of varying com-
plexity. Position embeddings are added to these patches to
retain information about the relative or absolute position of
the features within the original quantum state, which is crucial
since the spatial relationship can hold significant quantum
information.

The circle labeled “C” in Fig. 2 represents the concatena-
tion process. It combines the features extracted from separate
pathways in a network. This step is essential for merging
different types of information processed by the network (both
local and global features) into a comprehensive feature set.

Finally, the fully connected layers, a multilayer perceptron
[43], take this richly processed information and determine the
specific type of entanglement structure. This process mirrors
the way we classify images based on a detailed understand-
ing of their content, learned through both local and global
observations.

IV. NUMERICAL RESULT

In this section, we present our numerical results, includ-
ing the evaluation metrics used to assess the performance of
the model. By implementing the CNN and CNN-transformer
architectures, we showcase the successful classification of
GHZ or W states and the detection of entanglement structures.
Furthermore, we assess the robustness of the model under var-
ious noisy settings, providing valuable insights for optimizing
future quantum state classification tasks in real experiments.

A. Classification of GHZ- and W -class states

In our study, we initially focused on classifying GHZ and
W states. We generated mixed states in the dataset, which
comprised both GHZ and W states. Through the implemen-
tation of both CNN and CNN-transformer models, we could
accurately and effectively discern whether the quantum states

of 3- to 11-particle systems contained GHZ or W states. By
fine-tuning the model parameters, we attained a 100% accu-
racy rate in distinguishing between these quantum states.

We used t-distributed stochastic-neighbor-embedding (t-
SNE) [44,45] plots to analyze our data. Figure 3 shows t-SNE
plots for the case of N = 5. It can be seen that as training
progressed the clustering features were more and more clear.
In early training, the GHZ- and W -state data points over-
lapped or were disorganized, indicating that the model had not
fully learned their differences. In later epochs, the GHZ- and
W -state data points separated and formed compact clusters,
indicating that the model captured the high-dimensional data
structure. This allows it to effectively differentiate between
these two quantum states. As training continued, the clus-
ters became more distinct, indicating improved classification
performance.

Compared with the CNN model, the CNN-transformer
showed better classification on the t-SNE plot. It achieved
clear separation and compactness of data point clusters in
fewer epochs, learning distinguishing features more quickly.
The CNN-transformer model also had fewer outlier points,
suggesting better handling of potential anomalies or noise.
This difference in performance is due to the CNN-transformer
model combining the CNN’s local perception and the trans-
former’s global perception, making it better at capturing
complex data correlations and context.

In summary, the CNN-transformer model outperformed the
CNN model when classifying the GHZ and W states. The
t-SNE plots exhibit faster learning and better classification
performance.

B. Detecting entanglement structure

Detecting entanglement structures, particularly in our mas-
sive dataset, is a challenging multiclassification problem. As
the number of particles increases, the number of classifi-
cations exponentially increases, making the problem more
complex. To address this issue effectively, we need to design
a powerful model that can capture the entanglement features
of different particle numbers.

As mentioned earlier, the CNN-transformer model demon-
strates superior performance in classifying the GHZ and W
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FIG. 4. The confusion matrices for six-particle entanglement structures. In each confusion matrix, the horizontal axis (x axis) represents
the predicted class labels, while the vertical axis (y axis) represents the true class labels. Each cell in the matrix contains a count of instances
where the model predicted a particular class label (x axis) for the instances of the true class label (y axis). There are a total of 32 entanglement
structures for six particles, resulting in label sequences from 0 to 31. The values in the cells are represented by varying shades of blue, with
larger values corresponding to darker shades and smaller values appearing lighter, almost white.

states. Its advantage lies in the combination of the CNN’s
local perception capabilities and the transformer’s global per-
ception capabilities. This also allows the CNN-transformer
model to perform better in complex multiclassification prob-
lems. As the number of particles and classifications grows
exponentially, we should further optimize the architecture of
the CNN-transformer model to maintain its high performance.
Our approach involves increasing the number of layers of
the model and adjusting its hyperparameters to enhance its
expressive power.

To validate the performance of the CNN-transformer
model’s performance in handling this multiclassification prob-
lem, we adopted confusion matrices [46] as visualization
tools. By examining the confusion matrices, we can observe
the superior performance of the CNN-transformer model in

detecting entanglement structures of the GHZ and W states
more intuitively. Figure 4 shows the case with N = 6. Fig-
ure 4 showcases four confusion matrices: the top left corner
represents the CNN model for the GHZ class with an accuracy
of 92.25%, the top right corner represents the CNN model
for the W class with an accuracy of 94.32%, the bottom left
corner represents the CNN-transformer model for the GHZ
class with an accuracy of 94.25%, and the bottom right corner
represents the CNN-transformer model for the W class with
an accuracy of 94.81%. It can be noticed that the main diag-
onal elements (i.e., true positives and true negatives) of the
CNN-transformer model are larger than those of the CNN
model, suggesting that the CNN-transformer model has
an advantage in predicting the correct number of GHZ-
and W -state samples. This observation indicates that the
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CNN-transformer model has higher accuracy in distinguish-
ing these two quantum states. In addition, we find that the
off-diagonal elements (i.e., false positives and false negatives)
of the CNN-transformer model are smaller compared to those
of the CNN model.

This performance difference can be attributed to the
CNN-transformer model’s combination of the CNN’s local
perception capabilities and the transformer’s global percep-
tion capabilities, making it more advantageous in capturing
correlations and contextual information in complex data.
Therefore, when dealing with GHZ- and W -state classification
tasks, the CNN-transformer model achieves better perfor-
mance than the pure CNN model.

As the particle number increases, the entanglement struc-
tures become more complex, and the density matrices exhibit
higher dimensions, increasing the computational complexity.
We anticipate that the accuracy and precision of our CNN
and CNN-transformer models may gradually decrease with
an increase in the particle number. However, with complex
optimization, the maximum particle number could potentially
reach 15 while still achieving an accuracy greater than 75%.
The scalability of our methods depends on the efficiency of
feature extraction and the balance between local-information
preservation and computational-complexity reduction. Fur-
ther experiments are required to validate our results.

C. Physical verification of entanglement detection

In practical applications, different types of noise make
the precise determination of the entanglement structure more
challenging. It is crucial to note that datasets formed by real
experimental states may exhibit different distributions com-
pared with random test datasets. This discrepancy is a primary
challenge in real-world applications of machine learning, par-
ticularly when obtaining labels for test data is difficult or
expensive, such as in biomedicine [47], material science [48],
and physical science [49].

Fortunately, our hybrid CNN-transformer model can ad-
dress this issue. In the following, we test the performance of
our model with real nonidealities in noisy intermediate-scale
quantum (NISQ) devices [50]. OriginQ’s quantum computing
platform is favored for its accessibility and the maturity of its
software development tool kit, QPANDA [51]. All subsequent
physical experiments were conducted on a six-qubit super-
conducting quantum computer, OriginQ Wuyuan No. 2 [52].
Owing to the limitations of the current quantum computing
capabilities, our data were restricted to three, four, and five
particles.

A total of 4000 data samples were prepared as the test
set in our pretrained model. The preparation of the dataset is
illustrated in Fig. 5, using the case of three particles as an
example. Figures 5(a) and 5(b) show the quantum circuits for
the generation of the three-particle GHZ state and W state.
Figures 5(c) and 5(d) depict the density matrices numerically
generated by the definitions of the GHZ and W state, whereas
Figs. 5(e) and 5(f) present the density matrices generated
through the real quantum devices.

We first used the model to classify quantum states,
achieving an experimental classification accuracy of 100%.

Subsequently, we classified the entanglement structures. The
CNN-transformer model achieved an accuracy of 99.27% for
three particles, 98.85% for four particles, and 97.36% for five
particles. The experimental results demonstrated the reliabil-
ity and robustness of our model.

However, it should be noted that in the NISQ device, as
the number of particles increases, fidelity inevitably becomes
lower and lower. In the quantum computer we used, fidelity
drops to 0.6158 for five particles. We noticed that the ele-
ments on the diagonal in the real quantum computer were
significantly larger than those in other positions. Therefore,
we added white noise to test the performance of our model
more comprehensively.

Quantum states with white noise were prepared for 6–10
particles:

ρng = p|�GHZ〉〈�GHZ| + (1 − p)In

2n
, p ∈ [0, 1], (7)

ρnw = p|�W 〉〈�W | + (1 − p)In

2n
, p ∈ [0, 1], (8)

where |�GHZ〉 is as given in Eq. (3) and |�W 〉 is as given in
Eq. (4).

After generating the dataset, we first classified these states
into GHZ and W classes. The classification performance is
demonstrated from two perspectives, as shown in Fig. 6(a).
The first perspective focuses on accuracy. It shows that accu-
racy remains at 100% without noise, even as the number of
particles increases. Meanwhile, in the presence of noise, we
maintain relatively good results despite a slight decrease in
detection accuracy. For five and seven particles, both the CNN
and CNN-transformer models achieve an accuracy of 100%.
However, as the number of particles increases to nine, the
accuracy of the CNN model drops to 93.45%, while the CNN-
transformer model maintains a higher accuracy of 95.83%.
This observation demonstrates that despite the presence of
noise, our models still perform well in handling complex
systems with increasing particle numbers. Furthermore, the
loss-function values for training and validation converge to a
low value, reinforcing the effectiveness and robustness of our
models. The second perspective is from the required epoch,
emphasizing that the exponential increase in data size with
the increase in particle number leads to more training itera-
tions. However, the growth of iterations remains linear, and
the epoch termination condition employs early stopping to
prevent model overfitting. Consequently, training stops auto-
matically when there is no performance improvement. It is
also noteworthy that, even as the particle number increases
to 11, the number of training iterations remains below 100.
This reflects a considerable level of efficiency and speed
which is particularly important for large-scale systems. We
utilize tenfold cross validation to evaluate the reliability of
our data.

Figure 6(b) displays the loss values of the CNN and CNN-
transformer models during the training epochs for quantum
systems with n = 5, 7, and 9 . The curves demonstrate a
steady decrease in loss, indicating learning and improve-
ment in detecting entanglement structures as the training
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FIG. 5. (a) The circuit employed for generating the GHZ state on OriginQ hardware. The circuit comprises a sequence of operations
executed on three qubits, namely, q[0], q[1], and q[2]. The operations involve Hadamard gates (H) and controlled-NOT (CNOT) operations.
(b) The circuit utilized for generating the W state on OriginQ hardware. This circuit consists of a series of operations applied to three qubits,
q[0], q[1], and q[2]. The operations include RY (Z rotations), Hadamard gates (H), CNOT operations, and controlled-Z (CZ) gates. Moreover,
barrier operations are employed to ensure the proper execution order on the hardware. (c) and (d) The ideal density matrices for the GHZ and
W states, respectively. (e) and (f) The experimentally obtained density matrices prepared using the OriginQ Wuyuan No. 2 hardware exhibited
fidelity of 0.8187 and 0.7578 for the GHZ and W states, respectively.

progresses. The CNN-transformer models exhibit lower loss
values compared to CNNs alone, especially in early epochs,
suggesting faster convergence. Despite the increasing com-
plexity with higher quantum bit numbers, CNN-transformer
models maintain lower losses, highlighting their potential for
handling larger quantum systems. The reduced number of
epochs required for convergence also implies that our models
can be trained more efficiently, achieving optimal perfor-
mance in a shorter period.

Next, we use noisy data to detect entangled structures with
particle numbers from 6 to 10. Figures 7(a) and 7(b) show the

accuracies of the two models with noise. It is worth noting
that our method achieves 95.42% accuracy for 6 particles and
90.23% accuracy for 10 particles, which is slightly lower than
the 93.52% accuracy for the noise-free cases. Although the
accuracy was somewhat affected, it is still acceptable con-
sidering the small error bars. This indicates that our method
exhibits good stability and robustness under different particle
numbers and noise levels. To address the issue of decreased
accuracy, we can construct more complex model structures,
adjust the model hyperparameters, and adopt more advanced
training strategies. In addition, we can enhance the ability of
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FIG. 6. (a) Classification of a GHZ-class state and a W -class
state. The bar chart and line chart use different colors to represent
the same model. For the bar chart: yellow shows CNN, light green
shows CNN_Noised, mint green shows CNN-Trans, and dark green
shows CNN-Trans_NOISE. For the line chart, black shows CNN,
red shows CNN_Noised, green shows CNN-Trans, and blue shows
CNN-Trans_Noise. The right y axis indicates the accuracy of these
four models at various particle numbers, while the left y axis denotes
the number of iterations required to achieve high accuracy in ma-
chine learning training. (b) The changes in the loss for both CNN
and CNN-transformer models during training with five, seven, and
nine particles as the number of epochs increases.

this model by increasing the diversity and size of the dataset
to accomplish more tasks. This will help the model to perform
better when dealing with various situations encountered in
real-world applications.

V. CONCLUSION

This article discussed the application of computer vision
methods to identify the entanglement types and structures of
quantum states simultaneously. Computer vision technolo-
gies, particularly the CNN and transformer models, are
inherently adept at handling and analyzing data in
regular-sized matrices quickly and accurately. Therefore,
compared with other data-driven methods for entanglement
detection, our hybrid CNN-transformer model has the
following advantages.

FIG. 7. (a) The accuracy of detecting GHZ entanglement struc-
tures with noise. (b) The accuracy of detecting W entanglement
structures with noise.

First, based on the same structure, our model can address
a broader range of problems. In this work, we used the same
trained neural network for both the classification of GHZ and
W states and the detection of specific entanglement structures.
If we were to expand the dataset, it would also allow for
the classification of cat, Gaussian, and Gottesman-Kitaev-
Preskill (GKP) states. Additionally, through detailed analysis
of quantum states, the model can detect more entanglement
structures, which has significant importance in fields such
as quantum communication and quantum computing. This
demonstrates the great practicality of our model.

Second, our approach exhibits significant accuracy and
efficacy. Numerical examples with 3–10 particles show that
even with the presence of noise, our model achieves an
average accuracy of 98.32% for entanglement state classi-
fication and an average accuracy of 95% for entanglement
structure detection. Moreover, our model offers a remarkable
balance between high performance and rapid data process-
ing. The rapid decrease in the loss value demonstrates the
effective convergence of our method. Thus, our approach can
effectively reduce time and computational costs and has the
potential for application to large-scale systems.

In conclusion, benefiting from the powerful data process-
ing capabilities of computer vision, we obtained high accuracy
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for both the classification of entangled states and detection
of various entanglement structures with low time and com-
putational costs. Here, we just considered the cases of 3–10
particles because of the limitation of the current quantum state
tomography [53,54] rather than the capability of our model.
In our next work [55], we adopt an innovative approach to
overcome this limitation and apply our model to systems with
a large number of qubits.
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