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Memory in quantum processes with indefinite time direction and causal order

Göktuğ Karpat 1,* and Barış Çakmak 2,3,†
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We examine the emergence of dynamical memory effects in quantum processes having indefinite time
direction and causal order. In particular, we focus on the class of phase-covariant qubit channels, which
encompasses some of the most significant paradigmatic open quantum system models. In order to assess the
memory in the time evolution of the system, we utilize the trace distance and the entanglement based measures
of non-Markovianity. While the indefinite time direction is obtained through the quantum time flip operation
that realizes a coherent superposition of forward and backward processes, the indefinite causal order is achieved
via the quantum switch map, which implements two quantum processes in a coherent superposition of their
two possible orders. Considering various different families of phase-covariant qubit channels, we demonstrate
that, when implemented on memoryless quantum processes, both the quantum time flip and the quantum switch
operations can generate memory effects in the dynamics according to the trace distance based measure under
certain conditions. On the other hand, with respect to the entanglement based measure, we show that neither
the quantum time flip nor the quantum switch could induce dynamical memory for any of the considered
phase-covariant channels.
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I. INTRODUCTION

In the classical world we inhabit, we naturally perceive
time as flowing in a single and definite direction, despite the
fact that the underlying fundamental laws of physics are not
incompatible with the reversal of time direction. In fact, in
macroscopic settings, time is considered to be an essentially
asymmetric parameter which only flows in the forward time
direction. It has been very recently argued that this is not
necessarily the case in the quantum domain, that is, the roles
played by the inputs and outputs of quantum processes can be
regarded as symmetric in the sense that it is also possible in
principle to formulate processes that receive their inputs in the
future and give their outputs in the past, as well as vice versa.

Such a symmetry between the inputs and outputs of
quantum processes has been previously discussed in litera-
ture in different contexts [1–10]. Remarkably, the authors of
Ref. [11] have introduced a mathematical framework to char-
acterize legitimate quantum operations under time reversal,
based on the idea of input-output inversion, which relates a
bidirectional forward process to the corresponding backward
one through a symmetry transformation. Furthermore, built
upon this framework, they have shown that the forward and
backward processes can be put in a coherent superposition,
giving rise to a quantum process with indefinite time direction,
which cannot be described by quantum operations pertaining
to a definite time direction. A prototypical instance of such
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an operation is the quantum time flip [11], which can en-
able processes, that are accessible in both time directions, to
act on systems in a coherent superposition of their forward
and backward modes. Using photonic setups, it has been
experimentally established that the wining probability of a
discrimination game under the implementation of quantum
time flip exceeds any other strategy having a definite time
direction [12,13]. In addition, it has also been proved that
indefiniteness of time direction in certain quantum channels
can result in information theoretic advantages over channels
having fixed time direction [14].

The principle of causality states that the events in the
present are results of the events that occurred in the past,
and concurrently, the present events become causes for the
future events. Nevertheless, it has also been recently demon-
strated that quantum mechanics allows events to take place
with no definite causal ordering. That is, there exist causally
inseparable quantum processes that are not compatible with
a fixed order between operations [15–20]. A well-studied ex-
ample of such a quantum process is the quantum switch [15],
which implements two processes in a coherent superposition
of their two alternative orders. The quantum switch, just as
the quantum time flip, is more than a theoretical concept and
has been experimentally realized and investigated in several
studies using a variety of different setups [21–27]. In ad-
dition, it has been shown that the indefiniteness of causal
order, generated by the quantum switch, gives rise to many
useful applications in various quantum information protocols,
for instance, in quantum metrology [28,29], quantum chan-
nel discrimination [30], quantum communication complexity
[31] and query complexity [32–34], noisy transmission
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of information [35–43], and quantum thermodynamics
[44–47].

Over the last two decades, characterization and quantifi-
cation of non-Markovianity, which stems from the onset of
dynamical memory effects in quantum processes, has been
one of the most active areas of research in open quantum
systems theory [48–50]. Contrary to the well-established
notion of non-Markovianity for classical processes [51], non-
Markovianity has been demonstrated to be a multisided
phenomenon in the quantum domain, whose different as-
pects could be identified using numerous different approaches
[52]. Due to the potential advantages that memory effects
could provide, non-Markovian quantum processes have re-
ceived significant attention and been investigated in various
fields of interest, such as quantum biology [53,54], quantum
key distribution [55], entanglement generation [56], quantum
metrology [57], information processing [58], and quantum
thermodynamics [59]. In addition, due to recent advances
in reservoir engineering techniques, it has become possible
to coherently control quantum systems and experimen-
tally test open system models involving dynamical memory
effects [60].

In this paper, our main aim is to comprehend the con-
sequences of the implementation of the quantum time flip
and the quantum switch, which respectively define processes
with indefinite time direction and causal order, for the on-
set of dynamical memory effects. Quantifying the degree of
memory with the well-established trace distance and entan-
glement based measures of non-Markovianity, we determine
the conditions under which memory arises in certain fami-
lies of phase-covariant processes, representing the archetypal
open system models of qubits, such as anisotropic depolariz-
ing, generalized amplitude damping, and eternally completely
positive (CP) indivisible quantum channels. In particular, we
concentrate on both CP divisible and CP indivisible families
of phase-covariant processes, neither of which could display
memory effects according to the here considered measures
of non-Markovianity and thus are Markovian according to
them. We show that memory effects can emerge dynamically
in otherwise memoryless phase-covariant processes through
the implementation of the quantum time flip or the quantum
switch under certain conditions, with respect to the trace
based distance measure. In fact, our results demonstrate that,
the quantum time flip and quantum switch supermaps them-
selves insert memory in the dynamics rather than activate it.
Nonetheless, no such effect can be observed if we choose
to quantify memory effects utilizing the entanglement based
measure. Among the other results, we demonstrate that some
degree of anisotropy in the depolarizing channel is required
for the emergence of memory induced by the indefiniteness of
the direction of time through the application of the quantum
time flip. Additionally, it is also rather remarkable that the
indefiniteness of causal order realized by the quantum switch
of identical maps can transform a CP divisible generalized
amplitude damping channel into a non-Markovian process,
having an unbounded degree of dynamical memory effects.

This paper is organized as follows. Section II introduces
the phase-covariant quantum processes describing the dynam-
ics of the open system models considered in our paper. In
Sec. III, we elaborate on characterization and quantification of

memory effects in dynamical quantum processes, and define
the non-Markovianity quantifiers that we consider. Section IV
provides an overview of the quantum time flip and the quan-
tum switch superchannels. In Sec. V, we present our main
results regarding the emergence of dynamical memory in
phase-covariant quantum processes having no definite time
direction and causal order. Section VI serves as a summary
of our central findings.

II. PHASE-COVARIANT PROCESSES

In this section, we describe the type of dynamical pro-
cesses to be considered in our investigation. In the theory
of open quantum systems, assuming that the system is not
coupled to its surrounding environment at the initial time, the
time evolution of a physical system is described by a family
of time-parametrized linear dynamical maps �(t ) : B(H) →
B(H), t � 0, which satisfies the properties of being com-
pletely positive and trace preserving (CPTP), with the initial
condition �(0) = I, where I is the identity operator. Here, H
denotes a finite-dimensional Hilbert space and B(H) the set
of linear operators acting on it. At any later time, the state of
the system represented by its density operator � ∈ B(H) will
be given by

�(t ) = �(t )[�(0)] = trenv[U (t )(�(0) ⊗ ζ (0))U †(t )], (1)

where trenv is the partial trace over the environmental degrees
of freedom, ζ (0) ∈ B(Henv) is the initial density operator of
the environment, and U (t ) ∈ B(H ⊗ Henv) is a unitary time-
evolution operator for the open system and its environment
[61,62]. We note that, throughout this paper, the terms quan-
tum maps, quantum channels, and quantum processes are used
interchangeably.

In our analysis, we intend to focus on a class of quan-
tum processes having a particular kind of symmetry, i.e., the
covariance property. A quantum process �(t ) is said to be
covariant with respect to the unitary representation V ∈ B(H)
of a group G if

�[V (g)�V †(g)] = V (g)�[�]V †(g), (2)

for all density operators � ∈ B(H) and for all group elements
g [63–65]. Conceivably, depending on the unitary representa-
tion of the group, the covariance property imposes restrictions
on the mathematical form of quantum processes. The family
of quantum maps that we consider in this paper is known
as phase-covariant quantum processes for two-level systems
(qubits), which are covariant with respect to the phase ro-
tations on the Bloch sphere. Such phase-covariant processes
�(t ) : B(H2) → B(H2) satisfy

�[U (φ)�U †(φ)] = U (φ)�[�]U †(φ), (3)

with U (φ) = exp(−iσzφ) for all φ ∈ R and for any density
operator � ∈ B(H2). As H2 stands for a two-dimensional
Hilbert space, the standard Pauli operators will henceforth
be denoted by σx, σy, σz ∈ B(H2). Up to an irrelevant unitary
rotation, the most general phase-covariant qubit map �(t ) can
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FIG. 1. Illustrative view of the Bloch sphere under the effect
of phase-covariant quantum processes, where we display only the
upper half of of the Bloch ball for convenience. Due to the action
of the phase-covariant maps, the Bloch ball is deformed, that is, it
is contracted in the vertical direction by a factor of λz and in the
horizontal plane by a factor of λ, and finally its center is displaced
by a factor of λ∗. Depending on the dynamics of these three real
parameters, the ball contracts uniformly, or as a prolate or an oblate
spheroid.

be expressed as [66,67]

�(t )[�] = 1
2 {tr[�](I + λ∗(t )σz ) + λ(t )tr[σx�]σx

+ λ(t )tr[σy�]σy + λz(t )tr[σz�]σz}, (4)

where the three parameters λ(t ), λz(t ), and λ∗(t ) ∈ R satisfy
the following eigenvalue equations:

�[σx] = λσx, �[σy] = λσy, �[σz] = λzσz,

�[�∗] = �∗ = 1

2

[
I + λ∗

1 − λz
σz

]
. (5)

The time evolution described by the map in Eq. (4) is a
valid dynamics, satisfying the conditions required by a CPTP
transformation, if and only if [67]

|λz(t )| + |λ∗(t )| � 1, 4λ2(t ) + λ2
∗(t ) � [1 + λz(t )]2. (6)

It can be observed that the last equation in Eq. (5) dic-
tates the invariant state of the dynamical quantum process,
which remains unaffected by the time evolution. Indeed, it is
straightforward to notice that if λ∗ = 0, then ρ∗ = I/2, that
is, we obtain the maximally mixed state, implying that the
process is unital. Thus, the degree of unitality of the process
is determined by λ∗. From a geometrical point of view, phase-
covariant processes �(t ) transform the Bloch sphere into a
spheroid, for which the equatorial radius is |λ|, the distance
from center to pole along the symmetry axis (z axis) is |λz|,
and whose center is shifted by λ∗ along the z axis (see Fig. 1).

It is well known that a linear map admits an operator-sum
(or Kraus) representation if and only if it is CPTP and thus
describes a quantum process [68,69]. Then, the action of the
phase-covariant channels �(t ) on a density operator � can be
obtained as [66]

�[�] =
4∑

i=1

Mi�M†
i , (7)

where the Kraus operators {Mi}, satisfying the condition∑
i M†

i Mi = I, can be written as

M1 =
√

1 − λz + λ∗
2

(
0 1
0 0

)
, M3 =

√
λ+

(
cos ϑ 0

0 sin ϑ

)
,

M2 =
√

1 − λz − λ∗
2

(
0 0
1 0

)
, M4 =

√
λ−

(− sin ϑ 0
0 cos ϑ

)
,

with the auxiliary parameters λ± and ϑ given by

λ± = 1 + λz ± √
λ2∗ + 4λ2

2
,

cot ϑ = λ∗ + √
λ2∗ + 4λ2

2λ
. (8)

It should also be noted that any phase-covariant quantum pro-
cess �(t ) on qubits can be realized physically in the context of
a time-local master equation of the time-dependent Lindblad
form [70]

d�(t )

dt
= γ+(t )

[
σ+�(t )σ− − 1

2
{σ−σ+, �(t )}

]

+ γ−(t )

[
σ−�(t )σ+ − 1

2
{σ+σ−, �(t )}

]

+ γz(t )[σz�(t )σz − �(t )], (9)

where σ± = (1/2)(σx ± iσy), and the real-valued time-
dependent decoherence rates γ+(t ), γ−(t ), and γz(t ) are
linked to the three real-valued parameters, λ(t ), λz(t ), and
λ∗(t ), appearing in Eq. (4) in the following way:

γ+(t ) = 1
2 [λ̇∗(t ) − (λ̇z(t )/λz(t ))(λ∗ + 1)],

γ−(t ) = − 1
2 [λ̇∗(t ) + (λ̇z(t ))/λz(t )(1 − λ∗)], (10)

γz(t ) = 1
4 [(λ̇z(t )/λz(t ) − 2λ̇(t )/λ(t )],

where ẋ(t ) ≡ dx(t )/dt denotes the derivative with respect to
time. In Eq. (9), as the first and the second terms on the
right-hand side describe the energy gain and the energy dis-
sipation processes, respectively, the last term describes pure
dephasing. Therefore, it follows that the phase-covariant chan-
nels �(t ) embody the combination of these three fundamental
physical mechanisms. Actually, some of the most important
paradigmatic dynamical quantum processes, such as the am-
plitude damping [γ+(t ) = γz(t ) = 0], generalized amplitude
damping [γz(t ) = 0], pure dephasing [γ+(t ) = γ−(t ) = 0],
and depolarizing [γ+(t ) = γ−(t ) = 2γz(t )] channels, reside
inside the class of phase-covariant quantum maps.

III. QUANTIFYING MEMORY EFFECTS

In this section, we will examine the methods that we utilize
to characterize dynamical memory effects in quantum pro-
cesses, describing the dynamics of open quantum systems.
There exists a diverse number of techniques in the recent liter-
ature to identify the emergence of memory effects in quantum
processes [52], but these techniques do not always agree on
the presence or the degree of memory in the dynamics, since
non-Markovianity is known to be a multifaceted phenomenon
in quantum theory [71–74]. Here, we will mainly focus on
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two different approaches, where two distinct measures of non-
Markovianity are constructed, both of which are based on the
backflow of information from the environment to the open
system, but from different perspectives.

Before we begin to discuss the characterization of memory
in dynamical quantum processes, let us first establish what we
actually mean by the term memory effects, and its relation to
the concept of non-Markovianity. Conventionally, a Marko-
vian quantum process is characterized by a Lindblad-type
master equation [70,75]:

�̇(t ) = L� = −i[H, �]+
∑

i

γi

[
Ai�A†

i −
1

2
{A†

i Ai, �}
]
, (11)

where the decoherence rates γi � 0, and the noise operators
Ai and the Hamiltonian H are all time independent, gener-
ating CPTP maps �(t, 0) = exp[Lt], t > 0, that satisfy the
semigroup property, �(t1 + t2, 0) = �(t1, 0)�(t2, 0), for all
t2, t1 � 0. More general quantum maps are described by the
time-dependent Lindblad master equation, where γi, Ai, and
H might explicitly depend on time. Such maps can be written
as �(t, 0) = T exp[

∫ t
0 L(t ′)dt ′], where T is the time-ordering

operator. Provided that all decoherence rates are non-negative
throughout the evolution of the system, γi(t ) � 0, these maps
satisfy another property, known as CP divisibility, which
states that a CPTP map �(t2, 0) can be expressed as a con-
catenation of two other CPTP maps �(t2, t1) and �(t1, 0) such
that

�(t2, 0) = �(t2, t1)�(t1, 0). (12)

In the recent literature, quantum processes obeying the CP
divisibility property in Eq. (12) are conventionally recognized
as Markovian quantum processes. Indeed, �(t2, t1) is a CPTP
map if and only if the rates γi(t ) are positive for all t � 0 [76].
Hence, CP divisibility is equivalent to non-negative decay
rates in time-dependent Lindblad master equations [77]. At
this point, it should be emphasized that the decoherence rates
γi(t ) can have negative values during the time evolution and
yet the dynamical map �(t, 0) might still be CPTP, describ-
ing a legitimate quantum evolution. Nevertheless, in such a
situation, the map �(t2, t1) becomes no longer CPTP and thus
the CP divisibility property is violated. Such quantum pro-
cesses, which do not obey the CP divisibility rule in Eq. (12),
are called CP indivisible and thus traditionally dubbed as
non-Markovian quantum processes. In other words, it is the
negativity of decoherence rates γi(t ) and the consequent vi-
olation of the CP divisibility that give rise to a conventional
non-Markovian quantum dynamics.

When it comes to quantification of non-Markovianity, al-
most all of the measures proposed in literature are actually
witnesses rather than strict measures for the violation of
the CP divisibility [48]. To put it in a different way, while
they all vanish for CP divisible dynamics, implying a mem-
oryless process, they are not always able to identify the
breakdown of the CP divisibility property. However, some of
these non-Markovianity witnesses have still been considered
as measures of non-Markovianity or measures of memory
effects in their own right. This is due to the fact that they
quantify the flow of information from the environment back
to the open system, which can make the future states of the

open system dependent on its past states, and thus gives rise
to memory [78–81]. We emphasize that the two quantifiers
we introduce here can be regarded as strict measures of non-
Markovianity, or equivalently, of memory effects in quantum
processes on their own, since both of them have operational
interpretations based on information backflow from the sur-
rounding environment to the open system. From this point
on, we interchangeably use the terms memory effects and
non-Markovianity to indicate the degree of memory effects
in quantum processes, as characterized by the quantifiers we
specify below.

The first measure we consider in our treatment is con-
structed upon the distinguishability of a pair of quantum
systems that are individually undergoing the same quantum
process [77,78]. This approach interprets the distinguishabil-
ity between the two initial states of an open quantum system
as a manifestation of information flow between the system and
its environment based on a protocol introduced in Ref. [82].
When distinguishability monotonically decreases over time
for any pair of initial system states, dynamics is characterized
as Markovian, signifying a unidirectional information flow
from the system to its environment. Conversely, even if a
single initial-state pair shows a temporary increase in distin-
guishability during the dynamics, it indicates a backflow of
information from the environment to the system, suggesting a
non-Markovian evolution. Distinguishability of two quantum
systems can be expressed as the trace distance between their
density operators �1 and �2 as

D(�1, �2) = 1
2 tr[(�1 − �2)†(�1 − �2)]1/2, (13)

which reaches its maximum value for an orthogonal pair of
states. Then, based on the trace distance, the degree of mem-
ory effects in a quantum process is found as

ND = max
�1(0),�2(0)

∫
Ḋ(t )>0

Ḋ(t )dt, (14)

where the maximization is evaluated for all possible initial-
state pairs. We note that it has been proved that the optimal
state pair for the non-Markovianity measure ND is always
given by a pair of orthogonal states [83]. Let us here briefly
discuss the relation of quantum non-Markovianity based on
trace distance and the notion of CP indivisibility. We first note
that all measures of non-Markovianity in the recent litera-
ture, including the trace distance measure, share a common
property, that is, they are all CP indivisibility witnesses. In
other words, by construction they all agree on the fact that CP
divisible processes are memoryless and thus Markovian. At
the same time, we should stress that trace distance measure
ND is not equivalent to the characterization of non-Markovian
behavior in quantum processes based on the CP indivisibility
property. In particular, like many other measures of memory
effects available in the literature, ND can vanish and thus
indicate the absence of memory in the dynamics for certain CP
indivisible processes due to the lack of information backflow
from the environment to the open system. In any case, it is
critical to acknowledge that ND can be employed as a measure
of memory effects in general, that is, without referring to a
time-local master equation of Lindblad form and the notion
of CP divisibility. For instance, the operational usefulness of
the measure ND has been first demonstrated in Ref. [84] as a
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resource for noisy quantum teleportation in a nonlocal setting,
where there exist initial correlations between environmental
degrees of freedom [85]. Similarly, it could also be reliably
used as a measure of memory for open systems described by
collision models involving repeated interactions in the strong-
coupling regime as, for example, discussed in Ref. [86]. Thus,
the trace distance measure ND can be utilized as meaningful
measure of memory in its own right.

Another approach to the characterization of memory in
quantum processes is based on the dynamics of quantum
entanglement between a principal system of interest and an
ancillary system [87]. Let us represent the quantum state of
the principal system and the ancilla by the density operators
�S ∈ B(H) and �A ∈ B(HA), respectively, and their compos-
ite quantum state by �SA ∈ B(H ⊗ HA). If we suppose that
solely the principal system undergoes a process �(t2, 0) as
the ancilla evolves trivially, the CP divisibility property given
in Eq. (12) and the monotonicity of entanglement under local
CPTP maps imply that

E [(�(t2, 0) ⊗ I)�SA] � E [(�(t1, 0) ⊗ I)�SA] (15)

for all times t2 � t1 � 0, where E is a legitimate entanglement
measure. As a consequence, breakdown of the property of CP
divisibility can be identified through the violation of the above
inequality. To put it differently, if entanglement between the
system and the ancilla shows a temporary revival during the
time evolution, it is understood that the process is not CP di-
visible and thus exhibits non-Markovian features. The degree
of such memory effects can be quantified by

NE = max
�SA(0)

∫
ĖSA(t )>0

ĖSA(t )dt, (16)

where ESA = E [(� ⊗ I)�SA] and the maximization is done
over all possible initial states of the composite system. We
note in passing that, provided that both the principal and
the ancillary systems are two-level systems, the optimal state
maximizing the measure is given by one of the Bell states [73].
Entanglement of formation (EoF), which is a monotonic func-
tion of concurrence, is defined as E = h(1/2 + √

1 − C2/2),
with h(x) = −x log2(x) − (1 − x) log2(1 − x). Concurrence
is given by C = max{0, λ1 − λ2 − λ3 − λ4}, where λi are the
square roots of the eigenvalues of �(σy ⊗ σy)�∗(σy ⊗ σy) in
decreasing order, and � ∈ B(H2 ⊗ HA

2 ) in our paper.
Clearly, the entanglement based quantity NE is a witness of

CP indivisibility, i.e., it measures the degree of CP divisibility
violation, and when it was first introduced in Ref. [87], it was
not in any way related to the flow of information between the
open system and its environment. However, later on, it has
been demonstrated that, if entanglement is quantified using
entanglement of formation [88], then NE actually measures
the amount of flow of information from the environment
back to the open system. In fact, it has been shown that, in
a typical tripartite decoherence scenario involving the open
system, a measurement apparatus, and the environment, the
degree of information flow between the open system and its
environment can be quantified by the entanglement between
the open system and its measurement apparatus. Particularly,
through the relation of the entanglement of formation be-
tween the open system and the apparatus to the amount of

classical information that the environment can access about
the open quantum system, known as accessible information,
it has been proved both theoretically and experimentally that
the emergence of memory in the dynamics due to the back-
flow of information can be captured by an increase in the
entanglement of formation shared by the open system and
the apparatus during dynamics of the system [79,80]. For this
reason, NE can be consequently considered as a measure of
quantum non-Markovianity in its own right. All in all, even
though both the trace distance and entanglement of formation
based measures of non-Markovianity (ND and NE ) are con-
structed upon the backflow of information, they are simply
not equivalent and could always be employed to characterize
different aspects of the memory in any legitimate quantum
dynamics.

IV. INDEFINITE TIME DIRECTION AND CAUSAL ORDER

This section is devoted to the description of quantum pro-
cesses having indefinite time direction and causal order. These
quantum channels with no classical analog are represented by
higher-order transformations called supermaps or superchan-
nels. Rather than mapping density operators to density oper-
ators as ordinary channels do, a superchannel instead takes
a quantum channel as an input and outputs another quantum
channel.

A. Indefinite time direction

Before introducing the higher-order channels with no def-
inite time direction, we briefly discuss the closely related
notion of indefinite input-output direction for quantum chan-
nels. Let us first note that a quantum process is bidirectional if
a forward channel �, which transforms the density operator
of the system in a given direction, has an associated valid
backward channel θ (�) mapping the density operator of the
system in the opposite direction [11,14]. Here the transforma-
tion θ that maps the forward channel into the corresponding
backward channel is an input-output inversion. In fact, a phys-
ical process such as the rotation of the polarization of a photon
as it traverses through an optical crystal is naturally bidirec-
tional since the photon might pass through the crystal in two
opposite directions giving rise to two different quantum pro-
cesses related by an input-output inversion. All the possible
input-output inversions have been characterized in Ref. [11],
and based on a few physically motivated assumptions, it has
been shown that a quantum channel � is bidirectional if
and only if it is a doubly stochastic (unital) process with an
operator-sum representation

�[�] =
∑

i

Mi�M†
i , (17)

where the requirements
∑

i M†
i Mi = ∑

i MiM
†
i = I are both

satisfied. Furthermore, it has also been established that, up
to a unitary equivalence, there are only two possible choices
for input-output inversion operation, that is, the transpose
�T [�] = ∑

i MT
i �Mi where Mi = (MT

i )†, and the conjugate
transpose �†[�] = ∑

i M†
i �Mi. However, for qubit channels,

transpose and conjugate transpose operations are unitarily
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equivalent, implying that the input-output inversion is indeed
uniquely defined.

We also note that the input-output inversion is closely
related to the conventional time reversal in quantum mechan-
ics represented by an antiunitary transformation as argued
by Wigner [89]. Nonetheless, the input-output inversion is
actually more general than time reversal as it can describe
processes involving other symmetries. From this point for-
ward, we focus on a particular type of supermap known as
the quantum time flip [11]. This channel takes a bistochastic
map � as an input and outputs another bistochastic process
F�, which operates on the density operator of the principal
system and an auxiliary qubit that controls the input-output, or
equivalently, time direction. The quantum time flip is written
as

F�(� ⊗ �c) =
∑

i

Fi�F †
i , (18)

with the above Kraus operators Fi given by

Fi = Mi ⊗ |0〉〈0| + MT
i ⊗ |1〉〈1|, (19)

where � ∈ B(H) and �c ∈ B(HC ) respectively denote the
density operators of the principal system and the control qubit.
It is clear that if the control qubit is in the state |0〉, F� acts
on the principal system as the forward process �. However, if
the control qubit starts out in the state |1〉, then F� acts as the
backward process �T . The notion of indefinite time direction
emerges once the control qubit is initialized in a superposition
of the states |0〉 and |1〉, in which case F� can be seen as
a superposition of the forward and the backward channels
[11,14,90–92]. The action of F� on the principal system is
schematically displayed in Fig. 2(a). Lastly, we stress that it
is impossible to express the quantum time flip channel as a
convex mixture of the forward and the backward processes
[11], thus it indeed describes a coherent superposition of two
quantum processes with no definite time direction.

B. Indefinite causal order

The other superchannel we will consider in our paper is
known as the quantum switch [15], which implements two
quantum processes �1 and �2 in a coherent superposition
of their two possible orders, �1�2 and �2�1. Analogously
to the quantum time flip process in Eq. (18), the quantum
switch makes use of an auxiliary qubit that controls the order
of the quantum processes to be implemented on the principal
system. If we denote the Kraus operators of �1 and �2 by
{M (1)

i } and {M (2)
i }, respectively, the Kraus operators of the

supermap Si j representing the output of the quantum switch
for �1 and �2 are given by

Si j = M (2)
i M (1)

j ⊗ |0〉〈0| + M (1)
j M (2)

i ⊗ |1〉〈1|, (20)

which acts on the composite density operator of the system
and the control qubits as

S (� ⊗ �c) =
∑
i, j

Si j (� ⊗ �c)S†
i j . (21)

As can be easily observed from the above definition, when
the control qubit starts out in the state |0〉, the supermap S
acts on the principal system implementing the channel �2�1.

FIG. 2. (a) Quantum time flip. If the control qubit is initiated
in the state |0〉, the forward channel � (dotted line) acts on the
principal system. Conversely, if the control qubit is in the state
|1〉, the backward channel θ (�) (dashed line) affects the system.
However, when the control qubit is found in a coherent superposition
of the states |0〉 and |1〉, then the principal system experiences the
quantum time flip, which describes the superposition of the forward
and the backward channels, giving rise to a process with indefinite
time direction. (b) Quantum switch. If the control qubit starts out in
the state |0〉, the principal qubit is first affected by �1 and then �2

(dotted line). Contrarily, when the state of the control qubit is fixed
to |1〉, first �2 and then �1 acts on the principal qubit (dashed line).
Nevertheless, if the control qubit is in a superposition of the states
|0〉 and |1〉, then the quantum switch implements a superposition
of orders �2�1 and �1�2, resulting in a dynamics with no definite
causal order.

In contrast, if the initial state of the control qubit is set to
|1〉, the order of the processes is switched and S implements
the channel �1�2 on the principle system. A particularly
compelling quantum effect arises once the control qubit is in
a superposition of |0〉 and |1〉. That is, the supermap S given
in Eq. (21) implements a superposition of the two quantum
channels �1 and �2 simultaneously in two alternative causal
orders, or with no definite causal order, as shown in Fig. 2(b).
We should note that the supermap S , which is the output
of the quantum switch for quantum processes �1 and �2,
does not depend on the Kraus representations of the channels
�1 and �2. Furthermore, its action cannot be replicated by
classical mixing or serial application of quantum channels.
Hence, the superposition of time evolutions implemented by
the quantum switch generates entirely new dynamics, which
cannot be realized considering any other approach pertaining
to definite causal order [15].

Before moving on to our main results, we would like to
elaborate on a crucial point on the nature of the time evolution
dictated by the supermaps we consider. The postselection of
the measurement results both in case of quantum time flip
and quantum switch in general makes the time evolution of
the density operator ρ nonlinear. However, we once again
want to highlight the fact that we consider the nonmonotonic
dynamical behaviors of the trace distance and entangle-
ment as the main defining property of non-Markovianity or
memory effects in quantum processes, based solely on their
two distinct interpretations in terms of the information flow
between the open system and its environment. Since these
two measures only depend on the evolution of quantum states,
and not directly on the mathematical properties of the map
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that describes it, they can be reliably used to characterize the
memory behavior of any legitimate CPTP quantum dynamics.
Finally, it should be noted that postselection is one of the
main mechanisms which enable the emergence of memory
effects after the implementation of quantum time flip and
quantum switch. Indeed, as will be seen in the next section,
the memory inserted by these two supermaps is due to the
combination of two effects: first, the interference between the
Kraus operators of the phase-covariant maps as a result of the
coherent superposition of evolutions realized by the choice of
a coherent initial state for the control qubit, and second, the
postselection of quantum states after the measurement of the
control qubit.

V. MAIN RESULTS

A. Quantum time flip

We will first focus on the memory effects which can be
potentially induced by the quantum time flip in Eq. (18),
where the bistochastic channel � is described by certain
classes of phase-covariant quantum channels. In order to see
the quantum effects brought by the superposition of forward
and backward processes, we initialize the control qubit in the
maximally coherent state �c = |+〉〈+|. After the measure-
ment of the control qubit in the coherent basis defined by the
orthogonal projectors {|+〉〈+|, |−〉〈−|}, where |±〉 = (|0〉 ±
|1〉)/

√
2, we obtain the dynamics of the principal system. As-

suming that the outcome corresponding to the measurement
operator |+〉〈+| happens, the time evolution of the principal
system reads

�(t ) = trc[(I ⊗ |+〉〈+|)F�(� ⊗ �c)(I ⊗ |+〉〈+|)]
tr[(I ⊗ |+〉〈+|)F�(� ⊗ �c)]

. (22)

In what follows, we consider two different classes of unital
phase-covariant processes to analyze the memory behavior of
the dynamics induced by the quantum time flip.

1. CP divisible process

Let us choose the real parameters defining the phase-
covariant process in Eq. (4) as

λ(t ) = e−ωt , λz(t ) = e−t , λ∗(t ) = 0, (23)

where the vanishing of λ∗(t ) guarantees that the process is
unital (doubly stochastic) following the requirement that �

is bidirectional. It is straightforward to check that, according
to the conditions given in Eq. (6), this process defines a le-
gitimate CPTP quantum evolution provided that ω � 1/2. In
fact, if ω = 1, the corresponding channel is nothing other than
the isotropic depolarizing channel that describes the uniform
contraction of the Bloch sphere down to a single point, i.e., the
maximally mixed state I/2 in the origin. In addition, while
1 > ω � 1/2 indicates the contraction of the Bloch sphere
to the origin as an oblate spheroid, ω > 1 corresponds to its
contraction as a prolate spheroid, as can be observed in Fig. 1.
On the other hand, the decoherence rates given in Eq. (10), ap-
pearing in the associated Lindblad master equation in Eq. (9),
can be calculated as

γ+(t ) = γ−(t ) = 1/2, γz(t ) = (2ω − 1)/4. (24)

It turns out that none of the decoherence rates are time de-
pendent and only γz(t ) depends on the parameter ω. Since
we require ω � 1/2 to have a valid dynamics, γz(t ) never
takes on negative values. Hence, all three decoherence rates
are non-negative at all times throughout the evolution of the
system, which implies that the process is CP divisible and
thus all of the non-Markovianity quantifiers vanish for this
depolarizing channel.

Understanding that the considered depolarizing channel
cannot exhibit memory effects by itself, we turn our attention
to the possibility of the emergence of memory through the
implementation of the quantum time flip for this depolarizing
process. If the Kraus operators {Mi} in Eq. (19) are taken as
the Kraus operators of the phase-covariant channel with the
parameters given in Eq. (23), we obtain the quantum time
flip map for the depolarizing channel. At this point, it is
important to note that the unital phase-covariant channels we
consider are transposition invariant, that is, the time evolu-
tions described by the forward and the backward channels are
identical. All the same, the interference between the forward
and the backward processes leads to nontrivial outcomes. Let
us now consider the trace distance measure and choose the or-
thogonal initial-state pair for the principal system in Eq. (13)
as �1 = |+〉〈+| and �2 = |−〉〈−|. Then, the dynamics of the
trace distance for the depolarizing channel with indefinite time
direction is given by

D(�1(t ), �2(t )) = 4et (1−ω) + et − 1

3et + 1
. (25)

It is not difficult to show that the above function monoton-
ically decreases in time if 1 � ω � 1/2. Conversely, when
ω > 1, there occurs a temporary revival in the dynamics of the
trace distance, which signals the emergence of memory effects
in the dynamics via the backflow of information from the
environment to the principal system. This actually indicates
that the quantum time flip supermap inserts the memory in
the dynamics rather than activate it as the considered map
here is CP divisible and hence memoryless according to all
non-Markovianity criteria. Figure 3 demonstrates the dynam-
ical behavior of the trace distance for different values of the
parameter ω. From a geometrical point of view, the quantum
time flip channel gives rise to memory effects only when
the bidirectional depolarization process contracts the Bloch
sphere to the origin as a prolate spheroid, i.e., when ω > 1.
Despite the fact that we cannot analytically prove that the
considered initial-state pair is optimal, it appears to be the
case, based on the numerical simulations we performed.

Having witnessed that the quantum time flip for the de-
polarization process can induce memory effects, quantified by
the trace distance measure, we now consider the entanglement
based measure of non-Markovianity. Since both the principal
system and the ancilla are qubits, the optimal initial state of
them is given by one of the Bell states, i.e., �SA = |�〉〈�|,
where |�〉 = (|00〉 + |11〉)/

√
2. Then, dynamics of the con-

currence under the quantum time flip for the depolarizing
process is given by

C[�SA(t )] = max

{
0,

4et (1−ω) − et + 1

3et + 1

}
. (26)
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FIG. 3. Dynamics of the trace distance under the quantum
time flip for the CP divisible process with the initial-state pair
�1 = |+〉〈+| and �2 = |−〉〈−|, supposing that ω = 0.5 (dotted line),
ω = 1.0 (dot-dashed line), ω = 3.0 (dashed line), and ω = 9.0 (solid
line). The inset shows the degree of memory effects quantified
via the trace distance measure ND as a function of the channel
parameter ω.

It is interesting to observe that C[�SA(t )] is a monotonically
decreasing function of time for all values of the parameter, i.e.,
ω � 1/2. Consequently, entanglement of formation E[�SA(t )],
which is a monotonic function of concurrence, exhibits the
same behavior displaying no revivals. In Fig. 4, we show
the dynamics of the entanglement of formation for different
values of ω, confirming the memoryless nature of the process
with respect to the entanglement based measure. Comparison
of the trace distance and entanglement based measures of
non-Markovianity, both of which depend on the information
dynamics between the system and environment, indicates that
the kind of memory induced by the quantum time flip for the
depolarization process can only be captured by the former,
never by the latter. We also note that henceforth when we
calculate the entanglement based measure, we always take the
initial density operator as �SA = |�〉〈�|.

FIG. 4. Dynamics of the entanglement of formation under the
quantum time flip map for the CP divisible process for the maxi-
mally entangled initial state |�〉, assuming that ω = 0.5 (dotted line),
ω = 1.0 (dot-dashed line), ω = 3.0 (dashed line), and ω = 9.0 (solid
line). The inset shows the degree of memory effects quantified by
the entanglement based measure NE as a function of the channel
parameter ω.

2. CP indivisible process

The second quantum process that we intend to analyze here
is defined by choosing the three real parameters in Eq. (4) as

λ(t ) = (1 + e−νt )/2, λz(t ) = e−t , λ∗(t ) = 0. (27)

This map represents a legitimate unital phase-covariant pro-
cess if ν � 1 satisfying the two inequalities in Eq. (6). The
three decoherence rates in the corresponding Lindblad master
equation can be obtained using Eq. (10) as

γ+(t ) = γ−(t ) = 1/2, γz(t ) = 1

4

(
2ν

eνt + 1
− 1

)
. (28)

Clearly, only the last decoherence rate depends on time, and it
is easy to show that γz(t ) takes on positive values up until the
time t = ln(2ν − 1)/ν. After this instance, it turns negative
and forever remains so. Indeed, if ν = 1, this channel reduces
to what is known as the eternal non-Markovianity channel
in the recent literature [93], since γz(t ) = (−1/4) tanh[t/2],
which is negative at all times, implying that the channel is
eternally CP indivisible.

It has been shown that the trace distance based measure
witnesses the memory in phase-covariant channels if and only
if either one of the conditions

γ+(t ) + γ−(t ) + 4γz(t ) < 0, γ+(t ) + γ−(t ) < 0 (29)

is satisfied [74]. Obviously, the second inequality cannot be
satisfied for the considered channel. In addition, the first in-
equality implies that ν < 0, which is forbidden as the map is
CPTP only when ν > 1. Hence, the trace distance measure
cannot detect the signatures of the memory effects in this
process. When it comes to the entanglement based measure,
the time evolution of the concurrence is simply given by
C[�SA(t )] = (e−t + e−νt )/2, which is a monotonic function of
time for all ν. Thus, this CP indivisible process is viewed
as memoryless with respect to both the trace distance and
the entanglement based measures of non-Markovianity on its
own.

Next, we investigate the consequences of the quantum time
flip map for the emergence of memory effects considering
the bidirectional CP indivisible process defined by the three
parameters given in Eq. (27). Substituting the Kraus operators
{Mi} in Eq. (19) with those corresponding to the CP indivisible
phase-covariant channel results in the quantum time flip map
for this dynamical process. Fixing the initial-state pair for the
principal system as �1 = |+〉〈+| and �2 = |−〉〈−|, the dy-
namics of the trace distance for the considered CP indivisible
process with no definite time direction reads

D(�1(t ), �2(t )) = 2et (1−ν) + 3et − 1

3et + 1
. (30)

Remarkably, this function behaves monotonically in time
only in the case ν = 1, which corresponds to the eternal
non-Markovianity channel. For ν > 1, the trace distance in
Eq. (30) undergoes revivals signaling the presence of memory
in the dynamics. Figure 5 demonstrates the dynamical be-
havior of D(�1(t ), �2(t )) for different ν values. At this point,
we should mention that, to be able to analytically prove that
the quantum time flip map for the CP indivisible channel
is memoryless when ν = 1 according to the trace distance
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FIG. 5. Dynamics of the trace distance under the quantum time
flip for the CP indivisible process with the initial-state pair �1 =
|+〉〈+| and �2 = |−〉〈−|, supposing that ν = 1.0 (dotted line), ν =
2.0 (dot-dashed line), ν = 4.0 (dashed line), and ν = 9.0 (solid line).
The inset shows the degree of memory effects quantified through the
trace distance measure ND as a function of the channel parameter ν.

measure, one needs to determine the optimal initial-state pair
in Eq. (14). Although we do not have an analytical proof, our
numerical simulations strongly suggest that the state pair we
consider is indeed optimal. Moreover, we calculate the time
evolution of the concurrence for the quantum time flip map
implemented for the CP indivisible channel and obtain

C[�SA(t )] = 2et (1−ν) + et + 1

3et + 1
, (31)

which can be easily shown to be a monotonic function of time
for all allowed values of the parameter, i.e., ν � 1. Since this
implies a monotonically decaying entanglement of formation
as shown in Fig. 6, we conclude that there exists no memory
induced by this quantum time flip map, as quantified by the
entanglement based measure.

B. Quantum switch

Having discussed the dynamical memory that can be in-
duced by the quantum time flip map, we will now focus on

FIG. 6. Dynamics of the entanglement of formation under the
quantum time flip map for the CP indivisible process for ν = 1.0
(dotted line), ν = 2.0 (dot-dashed line), ν = 4.0 (dashed line), and
ν = 9.0 (solid line). The inset shows the degree of memory effects
quantified by the entanglement based measure NE as a function of
the channel parameter ν.

the quantum switch, which implements two quantum pro-
cesses with no definite causal order. Similarly to the case
of the quantum time flip map in the previous part, here
we analyze the consequences of the quantum switch for
the emergence of memory effects, considering two different
families of phase-covariant processes. Before starting to
present our results, we note that the possibility of observing
non-Markovian behavior, in connection with the violation of
the divisibility property, due to quantum switch has been very
recently discussed in Refs. [94–96] for two specific instances
of unital channels, i.e., isotropic depolarizing and eternal non-
Markovianity processes.

Once again, we set the initial state of the control qubit
as the maximally coherent state �c = |+〉〈+| and measure
the control qubit in the coherent basis defined by the pair
of projectors {|+〉〈+|, |−〉〈−|} to obtain the dynamics of our
system of interest. If we assume that the outcome associated
with the measurement operator |+〉〈+| occurs, dynamics of
the principal system is given by

�(t ) = trc[(I ⊗ |+〉〈+|)S (� ⊗ �c)(I ⊗ |+〉〈+|)]
tr[(I ⊗ |+〉〈+|)S (� ⊗ �c)]

. (32)

In the following, we will study the dynamical memory due to
quantum switch for nonunital CP divisible and CP indivisible
phase-covariant maps.

1. CP divisible process

The first map we consider is defined by choosing the pa-
rameters in Eq. (4) as

λ(t ) = e−t , λz(t ) = e−2t , λ∗(t ) = 2 sin αt√
4 + α2

, (33)

where α > 0. This quantum channel has been first introduced
in Ref. [67] as a curious example of a CP divisible quantum
process, under which the time evolution of the population
terms of the density operator exhibits nonmonotonic behavior
for any given initial state. The decoherence rates appearing in
the Lindblad master equation in Eq. (9) can then be calculated
using Eq. (10) as

γ±(t ) = 1 ± (2 sin αt + α cos αt )√
4 + α2

, γz(t ) = 0. (34)

Since all three decoherence rates above are non-negative at all
times, the process is CP divisible and hence memoryless with
respect to all non-Markovianity quantifiers. In other words,
both the trace distance and the entanglement of formation
monotonically decay for this process despite the fact that the
population terms of the density operator oscillate in time. In
addition, as γz(t ) = 0 throughout the dynamics, this process
actually represents a class of generalized amplitude damping
channels.

Let us explore what happens when the quantum switch
is implemented supposing that both quantum channels �1

and �2 are chosen identically as the considered generalized
amplitude damping channel. That is, substituting the three
real parameters given by Eq. (33) in the Kraus operators in
Eq. (20) representing the two identical quantum processes
�1 and �2, we obtain the switched generalized amplitude
damping process having no definite causal order. It is quite in-
teresting to note that even though the two quantum processes
here are chosen identically, the implementation of quantum
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FIG. 7. Dynamics of the trace distance under the quantum switch
for the CP divisible process with the initial-state pair �1 = |+〉〈+|
and �2 = |−〉〈−|, supposing that α = 8.0 (dotted line), α = 4.0 (dot-
dashed line), α = 2.0 (dashed line), and α = 1.0 (solid line). The
trace distance measure ND tends to infinity for all positive values of
the parameter α.

switch still gives rise to new dynamics due to the interference
between the two channels. Setting the initial-state pair of
the open system as �1 = |+〉〈+| and �2 = |−〉〈−|, we can
determine the time evolution of the trace distance. Although it
is straightforward to calculate D(�1(t ), �2(t )) for the switched
quantum channel, we omit writing the explicit expression here
as it is rather cumbersome. Instead, in Fig. 7, we show the
dynamics of trace distance as a function of time for different
values of the channel parameter α. Indeed, as also demon-
strated in Fig. 7, D(�1(t ), �2(t )) for this switched process
forever oscillates for all α > 0 between the maximum value of
0.2 and minimum value of α2/(25 + 4α2). Consequently, we
conclude that the quantum switch, when applied to identical
maps described by the considered CP divisible and memo-
ryless generalized amplitude damping channel, results in the
emergence of an unbounded degree of memory according to
the trace distance measure ND. We also notice that as the
parameter α gets larger, the amplitude of oscillations in the
trace distance will tend to zero. We stress that, similarly to
the case of the quantum time flip, emerging memory in the
dynamics here is indeed inserted by the action of the quantum
switch superchannel. We next calculate the entanglement of
formation considering the same switched process. In Fig. 8,
we display the evolution of E[�SA(t )] plotted for the same set
of α values as in Fig. 7. Since E[�SA(t )] in fact decays mono-
tonically in time for all values of the parameter α > 0, no
dynamical memory could be induced by the quantum switch
for this process according to the entanglement based measure.

2. CP indivisible process

The final quantum dynamical map we consider is described
by the choice of parameters

λ(t ) = 1
2

√
(1 + e−t )2 − μ2(1 − e−t )2,

λz(t ) = e−t , λ∗(t ) = μ(1 − e−t ) (35)

where |μ| < 1 and the requirements for a legitimate quantum
dynamics given in Eq. (6) is satisfied. A direct calcula-
tion yields that the corresponding decoherence rates in the

FIG. 8. Dynamics of the entanglement of formation under the
quantum switch for the CP divisible process for α = 8.0 (dotted
line), α = 4.0 (dot-dashed line), α = 2.0 (dashed line), and α = 1.0
(solid line). The inset shows the degree of memory effects quantified
by the entanglement based measure NE as a function of the channel
parameter α.

Lindblad master equation in Eq. (9) are given by

γ±(t ) = 1

2
(1 ± μ), γz(t ) = (−1 + μ2) sinh t

4[1 + μ2 + (1 − μ2) cosh t]
.

(36)

It can be observed that with the choice of |μ| < 1, the
two time-independent decoherence rates γ±(t ) are positive.
However, the dephasing rate γz(t ) is negative at all times
throughout the time evolution, implying an eternally CP
indivisible dynamics [67]. Actually, this quantum channel
is a nonunital generalization of the particular case of the
unital eternal non-Markovian map we have considered in
Eq. (27) with ν = 1 since the dephasing rate reduces to
γz(t ) = (−1/4) tanh[t/2] for μ = 0.

We first demonstrate that although this channel is CP indi-
visible for all t > 0, it is memoryless with respect to both the
trace distance and the entanglement based non-Markovianity
measures. Let us recall that the nonmonotonic behavior in
trace distance dynamics requires that either one of the in-
equalities in Eq. (29) is satisfied. As γ+(t ) + γ−(t ) = 1, the
second inequality clearly cannot be satisfied. Also, the fact
that 4γz � −1 for |μ| < 1 at all times implies that the first
equality cannot be satisfied either, which proves that the con-
sidered channel exhibits no memory according to the trace
distance measure. We then calculate the time evolution of
entanglement quantified by concurrence under this nonunital
CP indivisible channel which can be written as

C[�SA(t )] = 1
2 [

√
(e−2t + 1)(1 − μ2) + 2e−t (1 + μ2)

+
√

(e−t − 1)2(1 − μ2)]. (37)

Because the above function is a monotonically decaying func-
tion of time, the process has no memory with respect to the
entanglement based measure either.

Recognizing that neither of the memory quantifiers in our
paper deems the considered CP indivisible quantum maps as
non-Markovian, we explore whether the implementation of
the quantum switch for these processes gives rise to dynamical
memory. We assume that both �1 and �2 are identically set to
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FIG. 9. Dynamics of the trace distance under the quantum switch
for the CP indivisible process with the initial-state pair �1 = |0〉〈0|
and �2 = |1〉〈1|, supposing that μ = 0.8 (dotted line), μ = 0.6 (dot-
dashed line), μ = 0.4 (dashed line), and μ = 0.0 (solid line). The
inset shows the degree of memory effects quantified through the trace
distance measure ND as a function of the channel parameter μ.

be the CP indivisible quantum process defined by the three pa-
rameters in Eq. (35). The switched quantum channel S (�⊗�c)
is then given by substituting these three parameters in the
Kraus operators in Eq. (20). To analyze the trace distance
measure for the switched channel, we fix the initial-state pair
of the open system to be �1 = |0〉〈0| and �2 = |1〉〈1|, and then
calculate the dynamics of the trace distance D(�1(t ), �2(t )).
Since the mathematical form of D(�1(t ), �2(t )) turns out to
be unwieldy, and therefore not really providing much insight
on its own, we choose to merely show its dynamical behavior
in Fig. 9 for several allowed values of the parameter μ. We
simply observe that the quantum switch implemented for two
identical CP indivisible channels can induce memory in the
dynamics according to the trace distance measure, and the
degree of memory measured by ND increases as μ → 0, i.e.,
as nonunitality of the process weakens. On the other hand,
memory in the dynamics tends to vanish while the quan-
tum process resembles more and more the inverse amplitude
damping channel, that is, as μ → 1. Lastly, in Fig. 10, we

FIG. 10. Dynamics of the entanglement of formation under the
quantum switch for the CP indivisible process for μ = 0.8 (dotted
line), μ = 0.6 (dot-dashed line), μ = 0.4 (dashed line), and μ = 0.0
(solid line). The inset shows the degree of memory effects quantified
by the entanglement based measure NE as a function of the channel
parameter μ.

display the dynamical behavior of the entanglement of for-
mation E[�SA(t )] for the switched CP indivisible channel
considering the same values of μ. It is clear that, as in all of
the previously analyzed cases of quantum processes with no
definite time or causal direction, there emerges no memory
here either, due to the implementation of the switch with
respect to the entanglement based measure.

VI. CONCLUSION

In summary, we have presented a systematic analysis of
dynamical memory effects, quantified by two distinct mea-
sures of non-Markovianity, namely the trace distance and the
entanglement based measures in quantum processes having no
definite time direction and causal order. We have described
the open system dynamics of the system using the class of
phase-covariant quantum channels, which encompasses pro-
cesses such as the depolarizing, dephasing, and generalized
amplitude damping channels.

Quantum processes with indefinite time direction have
been employed through the quantum time flip superchannel
for certain phase-covariant families of quantum dynamical
maps. We have first demonstrated that the CP indivisible and
CP divisible quantum channels we considered in this part
have vanishing memory according to the studied quantifiers of
memory effects. Afterwards, we have shown that dynamical
memory can emerge in both these types of processes as a
consequence of the quantum time flip map, but only according
to the trace distance based measure of non-Markovianity. For
this measure, we have determined the conditions on the chan-
nel parameters that lead to the onset of dynamical memory
effects in the time evolution. For instance, we have found out
that some degree of anisotropy in the depolarizing channel is
necessary for the appearance of memory induced by the indef-
inite time direction. In addition, for the studied CP indivisible
maps, the only quantum process that fails to have any memory
after the application of the quantum time flip is the eternally
CP indivisible channel.

We have implemented the quantum switch superchannel to
obtain quantum processes having no definite causal order. In
particular, we have chosen the two quantum dynamical maps
to be switched in order as identical phase-covariant quantum
processes. Similarly to the case of the quantum time flip, we
have commenced our investigation by proving that the CP
indivisible and CP divisible channels in this section are not
able to give rise to memory effects in the dynamics of the
open system, which can be quantified by the two measures of
non-Markovianity we studied. Subsequently, we have shown
that the implementation of the quantum switch map for the
CP divisible generalized amplitude damping channel induces
an unbounded degree of memory in dynamics according to
the trace distance measure. Furthermore, considering the same
non-Markovianity measure, we have also established that the
application of the quantum switch for the nonunital gener-
alization of the eternally CP indivisible maps leads to the
generation of memory in the dynamics. It is interesting that
no dynamical memory can be generated with respect to the
entanglement based measure for the analyzed phase-covariant
processes either by implementing the quantum time flip or by
the quantum switch. At this point, we also emphasize that,
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in the scope of our paper, we show that the supermaps that
we consider, namely the quantum time flip and the quan-
tum switch, can induce memory in the dynamics of quantum
processes. However, this does not necessarily suggest that
memory can only be inserted in the open system dynamics
through the action of such supermaps, implementing quantum
processes having no definite time direction or causal order. In
fact, it is potentially possible that less exotic supermaps such
as one or two slot causally ordered quantum combs [97] can
give rise to a similar dynamical behavior regarding memory,
as observed in our paper.

In closing, we think that our findings can contribute to cur-
rent understanding of dynamical memory effects and exotic
supermaps such as quantum time flip and quantum switch in
a few ways. First, on one hand, memory effects are known
to provide some advantages in quantum information pro-
cessing tasks [53–60]. On the other hand, the quantum time
flip [12–14] and quantum switch [28–47] have been recently
shown to offer information theoretic and computational ad-
vantages. Hence, the finding that dynamical memory could
emerge, when otherwise memoryless quantum channels are
superposed via the implementation of such superchannels, is
a compelling point which may lead to new research directions.

Second, despite the fact that, for instance, the quantum time
flip as a supermap cannot be directly implemented, its action
on unital channels can be simulated in experiments. Even
though the recent experimental works have only implemented
unitary gates and measurements in a superposition of the
forward and backward time directions [12,13], it should in
practice be possible to implement the time flip supermap for
unital and memoryless phase-covariant channels and thus ex-
perimentally probe the emergence of memory effects in these
processes. Lastly, from the perspective of the quantification
of memory effects, our results demonstrate curious settings,
where the two well-known measures of non-Markovianity,
namely, the trace distance and entanglement of formation
based measures, seem to consistently disagree.
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