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The preparation of an equilibrium thermal state of a quantum many-body system on noisy intermediate-
scale quantum (NISQ) devices is an important task in order to extend the range of applications of quantum
computation. Faithful Gibbs state preparation would pave the way to investigate protocols such as thermalization
and out-of-equilibrium thermodynamics and provide useful resources for quantum algorithms, where sampling
from Gibbs states constitutes a key subroutine. We propose a variational quantum algorithm (VQA) to prepare
Gibbs states of a quantum many-body system. The novelty of our VQA consists of implementing a parameterized
quantum circuit acting on two distinct, yet connected (via CNOT gates), quantum registers. The VQA evaluates the
Helmholtz free energy, where the von Neumann entropy is obtained via postprocessing of computational-basis
measurements on one register, while the Gibbs state is prepared on the other register via a unitary rotation
in the energy basis. Finally, we benchmark our VQA by preparing Gibbs states of the transverse-field Ising
and Heisenberg XXZ models and achieve remarkably high fidelities across a broad range of temperatures in
state-vector simulations. We also assess the performance of the VQA on IBM quantum computers, showcasing
its feasibility on current NISQ devices.

DOI: 10.1103/PhysRevA.110.012445

I. INTRODUCTION

An integral task in quantum state preparation is the
generation of finite-temperature thermal states of a given
Hamiltonian on a quantum computer. Indeed, Gibbs states
(also known as thermal states) can be used for quantum
simulation [1], quantum machine learning [2,3], quantum op-
timization [4], and the study of open quantum systems [5]. In
particular, combinatorial optimization problems [4], semidef-
inite programming [6], and training of quantum Boltzmann
machines [2] can be tackled by sampling from well-prepared
Gibbs states.

The preparation of an arbitrary initial state is a challenging
task in general, with finding the ground-state of a Hamiltonian
being a quantum Merlin–Arthur (QMA)-hard problem [7].
Preparing Gibbs states, specifically at low temperatures, could
be as hard as finding the ground state of that Hamiltonian [8].
The first algorithms for preparing Gibbs states were based
on the idea of coupling the system to a register of ancillary
qubits and letting the system and environment evolve under
a joint Hamiltonian, simulating the physical process of ther-
malization, such as in Refs. [5,9,10], while others relied on
dimension reduction [11].

*Contact author: mirko.consiglio@um.edu.mt

The algorithm proposed in this paper for preparing Gibbs
states can be placed in the category of VQAs, such as in
Refs. [12–16], and can similarly be used for preparing ther-
mofield double (TFD) states [17–19]. Variational ansätze
based on multiscale entanglement renormalization [20] and
the product-spectrum ansatz [21] have also been proposed to
prepare Gibbs states.

Alternative algorithms prepare thermal states through
quantum imaginary-time evolution, such as in Refs. [22–26],
starting from a maximally mixed state, while others start from
a maximally entangled state [27]. Reference [28] proposed
quantum-assisted simulation to prepare thermal states, which
does not require a hybrid quantum-classical feedback loop.
In addition, methods exist to sample Gibbs state expectation
values, rather than prepare the Gibbs state directly, such as in
quantum metropolis methods [29,30], imaginary-time evolu-
tion applied to pure states [31], and random quantum circuits
using intermediate measurements [32].

Recent methods also proposed using rounding promises
[33], fluctuation theorems [34], pure thermal shadow tomog-
raphy [35], and minimally entangled typical thermal states for
finite-temperature simulations [36].

The goal of this work is to propose a VQA that efficiently
prepares Gibbs states on NISQ computers, employing the
free energy as a (physically motivated) objective function.
This requires the evaluation of the von Neumann entropy
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[37], which is generally hard to obtain from a quantum reg-
ister. In contrast to some of the currently employed VQAs
[10,12–15,17,19,32], which employ truncated equations to
approximate it, we directly estimate the von Neumann entropy
without any truncation and with an error solely dependent
on the number of shots, using sufficiently expressible ansätze
capable of preparing the Boltzmann distribution. Our VQA, in
fact, is composed of two ansätze: a heuristic, shallow one that
prepares the Boltzmann distribution for a given temperature
and another one, possibly designed with a problem-inspired
approach, which depends on the Hamiltonian while being
independent of the temperature.

This paper is organized as follows: in Sec. II, we present
the VQA for preparing Gibbs states; in Sec. III, we apply
the algorithm to the Ising model using both state-vector and
noisy simulations, as well as running the algorithm on IBM
quantum hardware. In Sec. IV, we apply the algorithm to
the Heisenberg model, using both state-vector and shot-based
simulations. Finally, in Sec. V, we draw our conclusions and
discuss the future prospects of this work.

II. VARIATIONAL GIBBS STATE PREPARATION

Consider a Hamiltonian H, describing n interacting qubits;
then the Gibbs state at inverse temperature β ≡ 1/(kBT ),
where kB is the Boltzmann constant and T is the temperature,
is defined as

ρ(β,H) = e−βH

Z (β,H)
, (1)

where the partition function Z (β,H) is

Z (β,H) = Tr{e−βH} =
d−1∑
i=0

e−βEi . (2)

Here d = 2n, while {Ei} are the eigenenergies of H,
with {|Ei〉} denoting the corresponding eigenstates, i.e.,
H|Ei〉 = Ei|Ei〉.

Fixing a Hamiltonian H and inverse temperature β, for a
general state ρ, one can define a generalized Helmholtz free
energy as

F (ρ) = Tr{Hρ} − β−1S (ρ), (3)

where the von Neumann entropy S (ρ) can be expressed in
terms of the eigenvalues pi of ρ,

S (ρ) = −
d−1∑
i=0

pi ln pi. (4)

Since the Gibbs state is the unique state that minimizes the
free energy of H [38], a variational procedure can be put
forward that takes Eq. (3) as an objective function, such that

ρ(β,H) = arg min
ρ

F (ρ). (5)

In this case, pi = exp(−βEi )/Z (β,H) is the probability of
getting the eigenstate |Ei〉 from the ensemble ρ(β,H).

FIG. 1. PQC for Gibbs state preparation, with systems A and S
each carrying n qubits. CNOT gates act between each qubit Ai and
corresponding Si.

A. Framework of the algorithm

The difficulty in measuring the von Neumann entropy
[defined by Eq. (4)] of a quantum state on a NISQ device
is typically the challenging part of variational Gibbs-state-
preparation algorithms, as S (ρ) is not an observable. With this
in mind, we present a VQA that avoids the direct measurement
of the von Neumann entropy on a quantum computer by using
a carefully constructed parameterized quantum circuit (PQC).

When preparing an n-qubit state starting from the input
state |0〉⊗n, given that a quantum computer operates using only
unitary gates, the final quantum state of the entire register will
be pure. As a result, in order to prepare an n-qubit Gibbs state
on the system register, we require an m � n qubit ancillary
register. For example, in the case of the infinite-temperature
Gibbs state, which is the maximally mixed state, we require
m = n qubits in the ancillary register to achieve maximal
von Neumann entropy. In order to evaluate the von Neumann
entropy, without any truncation, we need to be able to prepare
the entire Boltzmann distribution on the ancillary register;
hence, we set m = n, irrespective of the temperature.

We denote the ancillary register as A, while the preparation
of the Gibbs state is carried out on the system register S. The
purpose of the VQA is to effectively create the Boltzmann
distribution on A, which is then imposed on S via intermediary
CNOT gates, to generate a diagonal mixed state. In the ancillary
register we can choose a unitary ansatz capable of preparing
such a probability distribution. Thus, the ancillary qubits are
responsible for mixing in the probabilities of the thermal
state while also being able to access these probabilities via
measurements in the computational basis. On the other hand,
the system register will host the preparation of the Gibbs state
as well as the measurement of the expectation value of our
desired Hamiltonian.

The specific design of the PQC instead allows classical
postprocessing of simple measurement results carried out on
ancillary qubits in the computational basis to determine the
von Neumann entropy. A diagrammatic representation of the
structure of the PQC is shown in Fig. 1. Note that while
the PQC of the algorithm has to have a particular structure—a
unitary acting on the ancillae and a unitary acting on the
system, connected by intermediary CNOT gates—it is not de-
pendent on the choice of Hamiltonian H; inverse temperature
β; or the variational ansätze, UA and US , employed within.

B. Modular structure of the PQC

The PQC, as shown in Fig. 1 for the VQA, is composed
of a unitary gate UA acting on the ancillary qubits and a
unitary gate US acting on the system qubits, with CNOT gates
in between. Note that the circuit notation we are using here
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means that there are n qubits for both the system and the
ancillae, as well as n CNOT gates that act in parallel and are
denoted as

CNOTAS ≡
n−1⊗
i=0

CNOTAiSi . (6)

The parameterized unitary UA acting on the ancillae, fol-
lowed by CNOT gates between the ancillary and system qubits,
is responsible for preparing a probability distribution on the
system. The parameterized unitary US is then applied on the
system qubits to transform the computational-basis states into
the eigenstates of the Hamiltonian.

A general unitary gate of dimension d = 2n is given by

UA =

⎛
⎜⎜⎜⎜⎝

u0,0 u0,1 · · · u0,d−1

u1,0 u1,1 · · · u1,d−1

...
...

. . .
...

ud−1,0 ud−1,1 · · · ud−1,d−1

⎞
⎟⎟⎟⎟⎠. (7)

Starting with the initial state of the 2n-qubit register |0〉⊗2n
AS ,

we apply the unitary gate UA on the ancillae to get a quantum
state |ψ〉A, such that

(UA ⊗ 1S )|0〉⊗2n
AS = |ψ〉A ⊗ |0〉⊗n

S , (8)

where

|ψ〉A =
d−1∑
i=0

ui,0|i〉A (9)

and 1S is the identity operator acting on the system. The next
step is to prepare a probability mixture on the system qubits,
which can be done by applying CNOT gates between each
ancilla and system qubit. This results in a state

CNOTAS
(|ψ〉A ⊗ |0〉⊗n

S

) =
d−1∑
i=0

ui,0|i〉A ⊗ |i〉S. (10)

By then tracing out the ancillary qubits, we arrive at

TrA

⎧⎨
⎩

(
d−1∑
i=0

ui,0|i〉A ⊗ |i〉S

)⎛
⎝d−1∑

j=0

u∗
j,0〈 j|A ⊗ 〈 j|S

⎞
⎠

⎫⎬
⎭

=
d−1∑

i, j=0

ui,0u∗
j,0〈i| j〉|i〉〈 j|S =

d−1∑
i=0

|ui,0|2|i〉〈i|S, (11)

ending up with a diagonal mixed state on the system, with
probabilities given directly by the absolute square of the en-
tries of the first column of UA, that is, pi = |ui,0|2. If the
system qubits were traced out instead, we would end up with
the same diagonal mixed state, but on the ancillary qubit
register:

TrS

⎧⎨
⎩

(
d−1∑
i=0

ui,0|i〉A ⊗ |i〉S

)⎛
⎝d−1∑

j=0

u∗
j,0〈 j|A ⊗ 〈 j|S

⎞
⎠

⎫⎬
⎭

=
d−1∑

i, j=0

ui,0u∗
j,0〈i| j〉|i〉〈 j|A =

d−1∑
i=0

|ui,0|2|i〉〈i|A. (12)

This implies that by measuring in the computational basis
of the ancillary qubits, we can determine the probabilities
pi, which can then be postprocessed to determine the von
Neumann entropy S of the state ρ via Eq. (4) (since the
entropy of A is the same as that of S). As a result, since UA

serves only to create a probability distribution from the entries
of the first column, we can do away with a parameterized
orthogonal (real unitary) operator, thus requiring fewer gates
and parameters for the ancillary ansatz.

The unitary gate US then serves to transform the
computational-basis states of the system qubits to the eigen-
states of the Gibbs state, such that

ρ = US

(
d−1∑
i=0

|ui,0|2|i〉〈i|S
)

U †
S

=
d−1∑
i=0

pi|ψi〉〈ψi|, (13)

where the expectation value Tr{Hρ} of the Hamiltonian can
be measured. Ideally, at the end of the optimization procedure,
pi = exp(−βEi )/Z (β,H) and |ψi〉 = |Ei〉, so that we get

ρ(β,H) =
d−1∑
i=0

e−βEi

Z (β,H)
|Ei〉〈Ei|. (14)

The VQA therefore avoids the entire difficulty of mea-
suring the von Neumann entropy of a mixed state on a
quantum computer and instead transfers the task of post-
processing computational-basis-measurement results to the
classical computer, which is much more tractable.

C. Objective function

Finally, we can define the objective function of our VQA
to minimize the free energy (3) via our constructed PQC to
obtain the Gibbs state

ρ(β,H) = arg min
θ,ϕ

F (ρ(θ,ϕ))

= arg min
θ,ϕ

[Tr{HρS (θ,ϕ)} − β−1S (ρA(θ))]. (15)

It is worth mentioning that while the energy expectation
depends on both sets of angles θ (as UA is responsible for
parametrizing the Boltzmann distribution) and ϕ (as US is
responsible for parametrizing the eigenstates of the Gibbs
state), the calculation of the von Neumann entropy depends
on only θ.

Furthermore, once we obtain the optimal parameters θ∗ and
ϕ∗, preparing the Gibbs state ρ(β,H) on the system qubits S,
we can place the same unitary US with optimal parameters ϕ∗
on the ancillary qubits to prepare the TFD state on the entire
qubit register, as shown in Fig. 2. A TFD state [12,17,19] is
defined as

|TFD(β )〉 =
d−1∑
i=0

√
e−βEi

Z (β,H)
|i〉A ⊗ |i〉S, (16)

and tracing out either the ancilla or system register yields
the same Gibbs state on the other register. Equation (16) is
equivalent to Eq. (10) after applying US on both registers.
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FIG. 2. Optimal PQC for TFD state preparation, with systems A
and S each carrying n qubits. CNOT gates act between each qubit Ai

and corresponding Si.

D. Alternative implementations of the algorithm

There are several adjustments that could be applied to
the PQC to modify the procedure. One specific example is
replacing the intermediary CNOT gates with midcircuit mea-
surements and implementing classically controlled NOT gates
since no subsequent unitary gates act on the control qubits, as
shown in Fig. 3. This method has a few benefits:

(1) Since the ancillary system needs to be measured
to compute the von Neumann entropy, utilizing midcircuit
measurements followed by classically controlling the system
qubits is a natural approach to the algorithm.

(2) The two registers A and S can be made fully distinct in
terms of the device topology, as well as reducing the depth of
the entire circuit, leading to less overall decoherence affecting
the protocol.

(3) Once optimization is carried out, the classically con-
trolled NOT gates can still be kept in the circuit, yet if the
experimentalist ignores the measurement information (equiv-
alent to tracing out), then there is no operational difference
between preparing an ensemble of pure states and preparing a
mixed state using quantum CNOT gates.

The only downside occurs when the ancillary qubits are
intended to be used again, such as when preparing the TFD
state. In this case, the optimization for finding optimal param-
eters to prepare the Gibbs state can still be carried out using
classically controlled NOT gates. However, at the end of the
optimization procedure, the classically controlled NOT gates
can be replaced with CNOT gates, followed by the optimized
system unitary with the same structure as in Fig. 2, to obtain
the TFD state.

The VQA can be further adapted so that UA is replaced
by a classical procedure that generates the probability distri-
bution and prepares pure states of the Gibbs state ensemble
{pi, |Ei〉}, where pi = exp(−βEi )/Z on the system qubits S.
This procedure can be carried out by parametrizing a classical
probability distribution p(θ) by O(poly(n)) parameters θ, us-
ing methods such as Markov chains composed of a sequence
of local stochastic matrices, among others. The probability
distribution will output bit strings |i〉 that can be fed as a
computational input state to the unitary US that prepares the

FIG. 3. PQC for Gibbs state preparation using midcircuit mea-
surements, with systems A and S each carrying n qubits. Classically
controlled NOT gates act between each qubit Ai and corresponding Si.

eigenstates |Ei〉 of the Hamiltonian. By reducing the number
of qubits and eliminating the requirement for intermediary
CNOT gates, this process may result in a less expressible prob-
ability distribution function because entanglement is not used
as a resource.

Furthermore, if the parametrization of the probability dis-
tribution corresponds to the output distribution of a known
unitary circuit of a sufficiently shallow depth and express-
ibility, then the optimization can be carried using only the
classical subroutine of sampling bit strings from the proba-
bility distribution p(θ) and feeding them to US to compute the
free energy. Once the VQA is trained, UA can be introduced
with the optimized parameters θ∗ to prepare the mixed Gibbs
state on the quantum computer. Nevertheless, finding such a
parametrization that corresponds to a shallow, but expressible
enough, unitary is a nontrivial task.

III. PERFORMANCE OF THE VQA IN THE ISING MODEL

In this section we assess the performance of the VQA for
Gibbs state preparation of an Ising model. The Ising model is
defined as

H = −
n∑

i=1

σ x
i σ x

i+1 − h
n∑

i=1

σ z
i . (17)

The Ising Hamiltonian is a widely investigated model [39],
and here we report only one relevant property for implement-
ing a problem-inspired ansatz for US . The Hamiltonian in
Eq. (17) commutes with the parity operator P = ⊗n−1

i=0 σ z
i . As

a consequence, the eigenstates of H have definite parity, and
so will the eigenstates of ρβ .

We use the Uhlmann-Josza fidelity [40], defined as
F (ρ, σ ) = (Tr{√√

ρσ
√

ρ})2, as a figure of merit for the per-
formance of our VQA since it describes how “close” the
prepared state is to the Gibbs state and it is also the most
commonly employed measure of distinguishability. However,
other measures can be used which have different interpreta-
tions. One example is the trace distance [41], which has the
property that, if its value between the two states is bounded
by ε, expectation values computed on the effectively prepared
state differ from those taken on the Gibbs state by an amount
that is, at most, proportional to ε [34]. Another choice is the
relative entropy [41], which describes the distinguishability
between the two states as the surprise that occurs when an
event that is not possible with the true Gibbs state happens
[42].

We use a simple, linearly entangled PQC for the unitary
UA, with parameterized Ry(θi) gates and CNOT gates as the
entangling gates. This ansatz is hardware efficient and is
sufficient to produce real amplitudes for preparing the prob-
ability distribution. Note that we require the use of entangling
gates because, otherwise, we will not be able to prepare any
arbitrary probability distribution, including the Boltzmann
distribution of the Ising model. A proof of this is given in
Appendix B.

For the unitary US , we choose a parity-preserving PQC.
We employ a brick-wall structure, with the gates be-
ing Rxy(ϕi ) ≡ exp[−ıϕi(σ x ⊗ σ y)/2] followed by Ryx(ϕ j ) ≡
exp[−ıϕ j (σ y ⊗ σ x )/2] gates.
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FIG. 4. Decomposed Rp gate in Eq. (18).

If we combine the two gates, which we denote as Rp(ϕi, ϕ j ), we get

Rp(ϕi, ϕ j ) = Ryx(ϕ j )Rxy(ϕi ) =

⎛
⎜⎜⎜⎜⎝

cos
( ϕi+ϕ j

2

)
0 0 sin

( ϕi+ϕ j

2

)
0 cos

( ϕi−ϕ j

2

) − sin
( ϕi−ϕ j

2

)
0

0 sin
( ϕi−ϕ j

2

)
cos

( ϕi−ϕ j

2

)
0

− sin
( ϕi+ϕ j

2

)
0 0 cos

( ϕi+ϕ j

2

)

⎞
⎟⎟⎟⎟⎠, (18)

which can be decomposed into two CNOT gates, six
√

X gates,
and 10 Rz gates. One layer of the unitary acting on the system
qubits consists of a brick-wall structure composed of an even-
odd sublayer of Rp gates, followed by an odd-even sublayer
of Rp gates. The decomposed unitary is shown in Fig. 4. An
example of a PQC split into a four-qubit ancillary register and
a four-qubit system register is shown in Fig. 5. Table I shows
the scaling of the VQA assuming a closed ladder connectivity
for n > 2.

A. State-vector results

Figure 6 shows the fidelity of the generated mixed state
when compared with the exact Gibbs state of the Ising model

with h = 0.5, 1.0, 1.5 across a range of temperatures for sys-
tem size between two and six qubits. The VQA was carried
out using state-vector simulations with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimizer [43]. We used one layer
for the ancilla ansatz and n − 1 layers for the system ansatz
with the scaling highlighted inTable II. The number of layers
was heuristically chosen to satisfy, at most, a polynomial
scaling in quantum resources while achieving a fidelity higher
than 98% in state-vector simulations. Furthermore, in order
to alleviate the issue of getting stuck in local minima, the
optimizer is embedded in a Monte Carlo framework, that is,
taking multiple random initial positions and carrying out a
local optimization from each position, which we call a “run,”
and, finally, taking the global minimum to be the minimum
over all runs.

FIG. 5. Example of an eight-qubit PQC, consisting of one ancilla layer acting on a four-qubit register and three (n − 1) system layers
acting on another four-qubit register. Each Ry gate is parameterized with one parameter, θi, while each Rp gate has two parameters, ϕi and ϕ j .
The Rp gate is defined in Eq. (18). Note that the intermediary CNOT gates, as well as the Rp gates acting on qubits 2 and 3 and on qubits 1 and
4 of the system, can be carried out in parallel.
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FIG. 6. Fidelity F of the obtained state via state-vector simulations (using BFGS) with the exact Gibbs state vs inverse temperature β for
two to six qubits of the Ising model with h = 0.5, 1.0, 1.5. A total of 100 runs is made for each point, with the optimal state taken to be the
one that maximizes the fidelity.

A total of 100 runs of BFGS per β was carried out to
verify the reachability of the PQC, with Fig. 6 showcasing
the maximal fidelity achieved for each β out of all runs. The
results show that, indeed, our VQA is able to reach a very
high fidelity F � 0.98 for up to six-qubit Gibbs states of the
Ising model. In the case of the extremal points, that is, β → 0
and β → ∞, the fidelity reaches unity for all investigated
system sizes. However, for intermediary temperatures β ∼ 1,
the fidelity decreases with the number of qubits, which can
be attributed to one layer of UA not being expressible enough
to prepare the Boltzmann distribution around intermediary
temperatures [since the von Neumann entropy depends solely
on UA(θ) as in Eq. (15)]. Moreover, at intermediary tempera-
tures, most of the Boltzmann probabilities pi are still relatively
small, resulting in a larger error in obtaining the correct eigen-
state. On the other hand, at high temperatures, all probabilities
are equally likely, and preparing the maximally mixed state
is a straightforward task. However, at low temperatures, the
VQA effectively reduces to a variational quantum eigensolver
(VQE), i.e., finding the ground state of the Hamiltonian.

B. Noisy simulation results

The next step was to carry out noisy simulations of the
VQA. We took the noise model of IBM Quantum (IBMQ)
Guadalupe [44] for the Ising model with h = 0.5, which sim-
ilarly has one layer for the ancilla ansatz and n − 1 layers for
the system ansatz. However, it must be noted that in this case,

TABLE I. Scaling of the VQA assuming a closed ladder connec-
tivity for n > 2 of the Ising model, where lA and lS are the number
of ancilla ansatz and system ansatz layers, respectively, and P is 12
when n is even and 18 when n is odd.

Total Order

No. of parameters n(lA + 1) + 2nlS O(n(lA + lS ))
No. of CNOT gates (n − 1)lA + 2nlS + n O(n(lA + lS ))
No. of

√
X gates 2n(lA + 1) + 6nlS O(n(lA + lS ))

Circuit depth (n + 1)lA + PlS + 3 O(nlA + lS )

the scaling of the algorithm does not follow Table II because
IBMQ Guadalupe does not have a closed ladder connectivity.
As a result, transpilation was carried out by the QISKIT tran-
spiler using the SWAP-based BidiREctional heuristic search
(SABRE) algorithm [45]. Apart from this, because the BFGS
optimizer is incapable of optimizing a noisy objective func-
tion, an optimizer that accommodates noisy measurements
was chosen: simultaneous perturbation stochastic approxima-
tion (SPSA) [46].

Using SPSA, 10 runs were carried out for each β, while
the number of iterations was taken to be 100n for each run,
with only two measurements at each iteration to estimate the
gradient in a random direction, i.e., 200n. As a consequence,
a total of 2000n function evaluations was used to obtain the
fidelity for each β shown in Fig. 7 (with an extra 50 function
evaluations at each run to calibrate the hyperparameters of
SPSA). Similar to the number of layers, the choice of the
number of iterations was heuristically chosen so that, at most,
the scaling is linear while still retaining a fidelity greater than
95% for the two- and three-qubit noisy simulation cases.

To measure the energy expectation value of the Ising model
Tr{Hρ}, we need to split the Ising Hamiltonian into its con-
stituent Pauli strings, whose number scales linearly with the
number of qubits as 2n. However, we can group the σ xσ x

terms, as well as the σ z terms, and measure them simul-
taneously, reducing the number of measurement circuits to
two. Each circuit was also measured with 1024 shots. The
M3 package [47] was also utilized to perform basic error

TABLE II. Scaling of the VQA assuming a closed ladder con-
nectivity for n > 2, with lA = 1 and lS = n − 1; P is 12 when n is
even and 18 when n is odd. The depth counts both CNOT and

√
X

gates.

Total Order

No. of parameters 2n2 O(n2)
No. of CNOT gates 2n2 − 1 O(n2)
No. of

√
X gates 2n(3n − 2) O(n2)

Circuit depth (P + 1)n − P + 4 O(n)
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FIG. 7. Fidelity F of the obtained state via noisy simulations
(using SPSA) of IBMQ Guadalupe with the exact Gibbs state vs
inverse temperature β for two to six qubits of the Ising model with
h = 0.5. A total of 10 runs is made for each point, with the optimal
state taken to be the one that maximizes the fidelity.

mitigation. It operates by using a matrix-free preconditioned
iterative-solution method to mitigate measurement error that
does not form the full assignment matrix or its inverse. A
summary of the optimization scaling is shown in Table III.

From Fig. 7, one can see that the fidelity is significantly
high in the case of n = 2, 3, 4. However, in the case of n =
5, 6, the Gibbs state is faithfully prepared only for low β.
This can be attributed to the level of noise present in the
optimization procedure, with the transpiled circuits going well
beyond the quantum volume of IBMQ Guadalupe. There are
also some points which obtain a worse fidelity for five qubits
than for six qubits, which could be due to the larger depth
acquired by an odd number of qubits in the system ansatz, as
highlighted in Table II.

The performance of VQAs is heavily impacted by the pres-
ence of noise-induced barren plateaus [48]. While the analysis
of barren plateaus for Gibbs state preparation is beyond the
scope of this paper, which aims at providing an alternative
approach for variationally preparing Gibbs states and avoiding
any estimations of the entropy using Taylor expansions or
other truncations, we still carry out brief analyses as start-
ing points for future works. In particular, we discuss the
implications of barren plateaus in Appendix C, and we also
carry out analysis of the error from estimating the entropy in
Appendix A.

TABLE III. Scaling of SPSA for noisy simulations on quantum
hardware.

Total Order

No. of iterations for each run 100n O(n)
No. of function evaluations for each run 200n O(n)
No. of circuits per function evaluation 2 O(1)
No. of circuit evaluations for each run 400n O(n)
No. of shots for each circuit evaluation 1024 O(1)

FIG. 8. Fidelity F of the obtained state (using SPSA) running
directly on IMBQ Nairobi with the exact Gibbs state vs inverse
temperature β for two and three qubits of the Ising model with
h = 0.5. The dashed line represents the run with no Rp gate between
nonadjacent qubits in the system layers. One run is carried out for
n = 2 and for n = 3 denoted by the dashed line, and two runs are
carried out for n = 3 denoted by the solid line.

C. IBM quantum device results

Finally, the VQA was carried out on an actual quantum
device. Figure 8 displays the fidelity of Gibbs states ob-
tained using IBM quantum hardware [44], specifically IMBQ
Nairobi. Like for the noisy simulations, SPSA was used, but
this time with only one run for each β in the case n = 2 and
two runs in the case n = 3, with 100n iterations and 1024
shots. The Gibbs states were obtained by taking the opti-
mal parameters from the optimization carried out on IMBQ
Nairobi and determining the state vector on a classical com-
puter.

The solid lines in Fig. 8 represent the two- and three-qubit
results. At all points, the two-qubit Gibbs state shows excel-
lent fidelity. On the other hand, the three-qubit Gibbs state
is remarkably reproduced at certain temperatures, while it is
lacking at other points. Since IMBQ Nairobi does not have a
closed ladder connectivity, several SWAP gates are necessary
for carrying out transpilation. In an attempt to reduce the
number of SWAP gates, we carried out another run at each β,
where we removed the Rp gate acting on nonadjacent qubits in
the system layers, with the result shown by the dashed line in
Fig. 8 (note that this also resulted in fewer parameters and less
depth of the PQC). A considerable improvement in fidelity
is achieved at the points where fidelity was lacking in the
previous case. Since the available run time on the quantum
device was limited, the number of runs is still too low to
determine the reason why the Gibbs state was not achieved
with higher fidelity. Nevertheless, comparing the results in
Fig. 8 with the state-vector results in Fig. 6 and with the
noise-simulated results in Fig. 7, we conclude that limited
connectivity, combined with device noise, is severely hamper-
ing the effectiveness of the VQA.

In addition, quantum state tomography for the two-qubit
case was carried out on IMBQ Nairobi with 1024 shots for
the cases of β = 0, 1, 5, where the fidelities obtained were
0.992, 0.979, and 0.907, respectively. A three-dimensional
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FIG. 9. Three-dimensional bar plot of the two-qubit results from
IMBQ Nairobi for β = 0, 1, 5 for the Ising model with h = 0.5.
The analytical Gibbs states are shown in the left column, while the
tomographically obtained Gibbs states are shown in the right column.

(3D) bar plot of the tomographic results is given in the right
column Fig. 9 and can be compared with the analytical form
of the Gibbs state in the left column. The largest discrepancies
can be seen in the off-diagonal terms, which increase as β

increases, showcasing symptoms of amplitude damping. This
can be attributed to the thermal relaxation and dephasing
noise present in the quantum devices, leading to an overall
decoherence in the Gibbs state.

While noisy simulations were run using the calibration data
of IBMQ Guadalupe—since it has access to up to 16 qubits—
the actual hardware used for the two- and three-qubit Gibbs
state preparation was IMBQ Nairobi due to its accessibility.

IV. PERFORMANCE OF THE VQA IN
THE HEISENBERG XXZ MODEL

In this section, to further explore the feasibility of our VQA
for few-body thermal state preparation on NISQ devices, we
assess its performance on a more complex, interacting sys-
tem: the Heisenberg model. The Heisenberg XXZ model is

TABLE IV. Scaling of the VQA assuming a closed ladder con-
nectivity for n > 2 of the Heisenberg model, where lA and lS are the
number of ancilla ansatz and system ansatz layers, respectively, and
P is 2 when n is even and 3 when n is odd.

Total Order

No. of parameters n(lA + 1) + 2nlS O(n(lA + lS ))
No. of CNOT gates nlA + 2nlS + n O(n(lA + lS ))
No. of

√
X gates 2n(lA + 1) + 6nlS O(n(lA + lS ))

Circuit depth PlA + 2PlS + 1 O(lA + lS )

defined as

H = −1

4

n∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + 	σ z

i σ z
i+1

) − h
n∑

i=1

σ z
i .

(19)

At variance with the Ising model investigated in Sec. III,
the so-called XXZ model in a transverse magnetic field
is an interacting Hamiltonian once mapped into spinless
fermions. The phase diagram is much more complex and
exhibits a paramagnetic-to-ferromagnetic phase transition at
h = 1

2 (1 − 	) [39].
The Heisenberg model also commutes with the parity oper-

ator. As such, US is the same as in Sec. III. On the other hand,
we use an alternating layered ansatz for UA, with parameter-
ized Ry(θi ) gates and CNOT gates as the entangling gates. Once
again, this ansatz is hardware efficient and is sufficient to pro-
duce real amplitudes for preparing the probability distribution.
We utilize the fidelity as our figure of merit for quantifying the
performance of the algorithm. In this case, the scaling of UA

and US is given in Table IV. Moreover, an example of a PQC,
split into a four-qubit ancilla register and a four-qubit system
register, is shown in Fig. 10.

A. State-vector results

Figure 11 shows the fidelity of the generated mixed state
compared with the exact Gibbs state of the Heisenberg model
with h = 0.5 and 	 = −0.5, 0.0, 0.5 across a range of tem-
peratures for system size between two and six qubits. The
VQA was carried out using state-vector simulations with the
BFGS optimizer [43]. We used n − 1 layers for the ancilla
ansatz and n − 1 layers for the system ansatz, with the scaling
highlighted in Table V. The number of layers was heuristically
chosen to satisfy, at most, a polynomial scaling in quantum

TABLE V. Scaling of the VQA assuming a closed ladder con-
nectivity, for n > 2 for the Heisenberg model, with lA = n − 1, and
lS = n − 1, and P is 2 when n is even and 3 when n is odd. The depth
counts only CNOT gates.

Total Order

No. of parameters 3n2 − 2n O(n2)
No. of CNOT gates 3n2 − 2n O(n2)
No. of

√
X gates 8n2 − 6n O(n2)

Circuit depth 3Pn − 3P + 1 O(n)
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FIG. 10. Example of an eight-qubit PQC, consisting of three (n − 1) ancilla layers acting on a four-qubit register and three (n − 1) system
layers acting on another four-qubit register. Each Ry gate is parameterized with one parameter, θi, while each Rp gate has two parameters, ϕi

and ϕ j . The Rp gate is defined in Eq. (18). Note that the intermediary CNOT gates, as well as the Rp gates acting on qubits 2 and 3 and on qubits
1 and 4 of the system, can be carried out in parallel.

resources while achieving a fidelity higher than 98% in state-
vector simulations. Furthermore, in order to alleviate the issue
of getting stuck in local minima, the optimizer was embedded
in a Monte Carlo framework.

Like for the state-vector results for the Ising model in
Sec. III A, we obtained very high fidelities F > 0.98 for the
number of qubits ranging from two to six across a broad range
of temperatures of the Heisenberg XXZ model. It must be
noted that the paramagnetic-to-ferromagnetic transition point
lies at 	 = 0 for h = 0.5, resulting in the noninteracting
XX model and achieving a much better performance. The
same dip in fidelity at intermediary temperatures reappears at
around β ∼ 1 for all the plots in Fig. 11.

B. Shot-based results

The next step was to carry out shot-based simulations for
the Heisenberg model with h = 0.5 and 	 = −0.5, 0.0, 0.5,
as shown in Fig. 12. Using SPSA, 10 runs were carried out

for each β, while the number of iterations was taken to be
100n for each run, with 2n function evaluations at each it-
eration to estimate the gradient in n random directions, i.e.,
200n2. Similar to the number of layers, the choice of the
number of function evaluations was heuristically chosen so
that the scaling was polynomial. The number of commuting
sets of Pauli strings of the Heisenberg model is three. Fur-
thermore, each circuit was also measured with 1024 shots,
and the M3 package [47] was also utilized to perform error
mitigation. Table VI shows a summary of the optimization
scaling.

Naturally, the choice of optimizer, along with the finite
number of measurements used to reconstruct both the von
Neumann entropy and the expectation value, are shown to
affect the performance of the VQA. Nevertheless, while the
results in Fig. 12 exhibit a lower, albeit relatively high, fidelity
F � 0.93, the VQA shows notable promise in being able to
produce Gibbs states of complex interacting Hamiltonians,
such as the Heisenberg XXZ model.

FIG. 11. Fidelity F of the obtained state via state-vector simulations (using BFGS) with the exact Gibbs state vs inverse temperature β for
two to six qubits of the Heisenberg model with h = 0.5 and 	 = −0.5, 0.0, 0.5. A total of 100 runs is made for each point, with the optimal
state taken to be the one that maximizes the fidelity.

012445-9



MIRKO CONSIGLIO et al. PHYSICAL REVIEW A 110, 012445 (2024)

FIG. 12. Fidelity F of the obtained state via shot-based simulations (using SPSA) with the exact Gibbs state vs inverse temperature β for
two to six qubits of the Heisenberg model with h = 0.5 and 	 = −0.5, 0.0, 0.5. A total of 100 runs is made for each point, with the optimal
state taken to be the one that maximizes the fidelity.

V. CONCLUSION

We addressed the preparation of a thermal equilibrium
state of a quantum many-body system on a NISQ device. We
exploited the uniqueness of the Gibbs state as the state that
minimizes the Helmholtz free energy, thus providing a faithful
objective function for a VQA.

The novelty of the proposed VQA consisted of splitting
the PQC into two parameterized unitaries, one acting on an
ancillary register and one acting on a system register. The
former is tasked with determining the Boltzmann weights of
the Gibbs distribution, corresponding to a given temperature,
while the latter performs the rotation from the computational
basis to the energy basis of a given Hamiltonian.

We benchmarked our VQA preparing the Gibbs state of
the transverse-field Ising model and obtained fidelities F � 1
for system sizes of up to six qubits in state-vector simula-
tions across a broad range of temperatures, with a slight dip
at intermediate ones. Moreover, we tested our VQA on the
Heisenberg model with a transverse field, similarly obtaining
fidelities F � 1 in state-vector simulations. However, perfor-
mance on current NISQ devices, investigated by both noisy
simulations and real-hardware execution on IBMQ devices,
showed a degradation in the results of the VQA with increas-
ing system size. This may have been caused by the limited
connectivity and the noise present in the device. Nevertheless,
executing our VQA on NISQ devices still provides an im-
provement upon the recent developments in variational Gibbs
state preparation (see e.g., Ref. [19]).

TABLE VI. Scaling of SPSA for shot-based simulations.

Total Order

No. of iterations for each run 100n O(n)
No. of function evaluations for each run 200n2 O(n2)
No. of circuits per function evaluation 3 O(1)
No. of circuit evaluations for each run 600n2 O(n2)
No. of shots for each circuit evaluation 1024 O(1)

It is important to note that the structure of our VQA does
not depend on the specific Hamiltonian to be tackled or on any
prior knowledge of its spectrum. For example, the structure
of the unitary US (ϕ) could be adjusted in order to match
some specific features of the eigenstates (if they are known),
or the parameterized unitary UA(θ) could be replaced by a
deterministic procedure (e.g., the one reported in [49]) if the
probabilities of the Boltzmann distribution are known.

However, even without requiring any such knowledge,
our “Hamiltonian-agnostic” variational approach gives an ef-
fective way to prepare Gibbs states of arbitrary quantum
many-body systems on a quantum computer, providing an
advancement over previous methods, especially thanks to
the modular structure of our PQC. This could significantly
contribute to both performing quantum thermodynamical ex-
periments on a quantum computer and faithfully preparing
Gibbs states to be used in a great variety of computational
tasks. Furthermore, preparing moderately sized many-body
systems with our VQA may also be sufficient for exploring
finite-size effects of certain physical models [50].

Some final remarks are in order: many modular elements
of the VQA have the capacity to be significantly improved.
While the scope of this paper was to provide a proof-of-
concept VQA for preparing Gibbs states by estimating the
entropy directly without any truncation, we will mention po-
tential avenues for future research. In particular, more robust
error mitigation techniques could be implemented, such as
those present in the MITIQ library [51]. In addition to this,
we delve into the consequences of working with a limited
number of samples when attempting to estimate the entropy
in Appendix A. Moreover, we explore an alternative entropy
estimation technique that exhibits promise in its potential to
scale beyond the NISQ era of computing. Barren plateaus in
deep PQCs and noisy devices are also a considerable chal-
lenge to address. In Appendix C, we qualitatively discuss the
requirements needed to investigate barren plateaus for our
algorithm, as well as the PQCs that stem from its particular
structure. Last, it is worth noting that the choice of optimizer
plays a pivotal role in the performance of the VQA, particu-
larly in the presence of noise. An in-depth analysis of various
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optimizers could significantly enhance the reliability of
the VQA.

The PYTHON code for running the state-vector simulations,
using QULACS [52], and the noisy simulations, as well as
the run-time program, using QISKIT [53], can be found on
GitHub [54].
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APPENDIX A: ERROR ANALYSIS OF ENTROPY
ESTIMATION

In general, reconstructing the probability distribution
faithfully requires an exponential number of shots, and par-
ticularly, free-fermion distributions can be hard to learn [55].
However, let us look at estimating the entropy using the
maximum-likelihood (ML) estimator, rather than focusing on
the reconstruction of the probability distribution. The ML
estimator was shown to have a bias and a variance that, in
general, decreases as O(N−1) for N � M [56]. The outcome
of one shot of a quantum circuit can be described by a multi-
nomial distribution 
p, where pi is the probability of observing
a bit string i. Given N shots filling M bins, the ML estimator
[56,57] of the von Neumann entropy is given by

SML = −
M∑

i=1

qi ln qi, (A1)

were qi = ni/N , such that ni represents the number of times
the bit string i appears after N shots. The variance of the
entropy can be easily computed as

V (SML) =
M∑
i

(1 + ln qi )
2V (qi). (A2)

where V (qi ) ≈ qi(1 − qi )/N . In fact, it can be shown that for
all N and all possible distributions, the variance of the ML
estimator for entropy is bounded above as

V (SML) � [ln(N )]2

N
, (A3)

as proven in Ref. [58], and that

P(|SML − E(SML)| > ε) � 2e− Nε2

2[ln(N )]2 . (A4)

It is important to note that this bound is not particularly tight,
and it is independent of M and the probability distribution.
Moreover, the ML estimator was proven to be negatively
biased everywhere, and

E 
p(SML) � S ( 
p), (A5)

where E 
p denotes the conditional expectation given 
p; that
equality is achieved only when S ( 
p) = 0, meaning the dis-
tribution is supported on a single point (or in the case of
Boltzmann distributions for β → ∞). In the case of N � M,
the Miller-Madow bias correction [56,57] gives

S ( 
p) = SML( 
p) + M − 1

2N
+ O(N−1). (A6)

In the case of NISQ and future quantum algorithms, given
that the Hilbert space of qubits grows as M = 2n, we can
reasonably assume that N � M as soon as n > 20. As a result,
we need to look towards entropy estimation techniques when
we are in a heavily undersampled regime. Bayesian inference
is typically employed in these situations. While learning a
probability distribution might generally require an exponen-
tial number of samples [55], computing functionals of such
distributions might not. As a result, the Nemenman-Shafee-
Bialek (NSB) estimator employs Bayesian inference to obtain
both the entropy and its a posteriori standard deviation. We
utilize the PYTHON package NDD [59] to compute SNSB; inter-
ested readers are referred to Refs. [60,61] for the details.

Figure 13 shows the results of using the ML and NSB
estimators using a finite number of shots N = 1024 for the
Ising model with h = 0.5, 1.0, 1.5. In particular we show how
the additive error (bias) of the entropy scales as the number
of qubits increases. Each point in Fig. 13 is obtained by
averaging the entropy over 100 samples, with the error bars
representing the standard deviation.

As one can expect, for a number of qubits n such that
2n � N , both ML and NSB estimators obtain a bias and
standard deviation close to zero for all values of β. There is
a transition region where 2n ∼ N , where the bias, particularly
for low values of β, starts to increase. In the region where
2n � N , the ML estimator is valid in only the large-β regime
since there is usually a finite number of nonzero probabili-
ties which is much smaller than N . It is important to note
that although the error increases linearly with the number of
qubits, the number of shots N needed to reduce the bias to

012445-11



MIRKO CONSIGLIO et al. PHYSICAL REVIEW A 110, 012445 (2024)

FIG. 13. Average additive error 	S (bias) in the entropy estimation as a function of the number of qubits n, using the ML (solid lines) and
NSB (dashed lines) estimators, where the error bars represent the standard deviation. The number of shots is N = 1024, and the number of
samples for each point is 100, with h = 0.5, 1.0, 1.5 for the Ising model.

a constant error increases exponentially as a function of the
number of qubits n. Specifically, in the region 2n � N , the
ML estimator reaches the upper bound of ln(N ), and so for
β = 0, 	SML = ln(2n) − ln(N ) = ln(2n/N ).

On the other hand, the NSB estimator obtains a much
lower bias at the cost of a slightly higher standard deviation.
While the behavior of the NSB estimator is hard to surmise
given that exact diagonalization results allowed us to see until
n = 24, there are a few instances where for intermediate and
high β the estimator seems to flatten or even decrease as n
increases. Proving that, for a particular β, the NSB estimator
reliably acquires a bias that scales as O(poly[ln(n)]) would
mean that using a number of shots N that scales polynomially
would achieve a constant additive error, implying scalability
in entropy estimation.

APPENDIX B: NECESSITY OF ENTANGLING GATES IN UA

In the main text, we specified that we required entan-
glement in the ancillary register to be able to prepare the
Boltzmann distribution of the Ising model. While we used
only one layer of a hardware-efficient ansatz, we concluded
that least one entangling layer is necessary for preparing the
Boltzmann distribution of the Ising model, and we will show
this by considering the converse. Suppose the ancilla ansatz is
composed of only local Ry gates; then we get

n−1⊗
i=0

Ry(θi )|0〉i =
n−1⊗
i=0

[
cos

(
θi

2

)
|0〉i + sin

(
θi

2

)
|1〉i

]

=
d−1∑
i=0

∏
j∈Si=0

cos

(
θ j

2

) ∏
k∈Si=1

sin

(
θk

2

)
|i〉

=
d−1∑
i=0

pi|i〉, (B1)

where Si=0 ≡ { j| j = 0 ∀ bits j ∈ i}, that is, the set of bits in i
which are equal to zero, with similar notation for Si=1, and |i〉

is the computational-basis state. This implies that

∏
j∈Si=0

cos

(
θ j

2

) ∏
k∈Si=1

sin

(
θk

2

)
= pi. (B2)

Now, without loss of generality, consider these specific cases:
n−1∏
j=0

cos

(
θ j

2

)
= p0, (B3a)

n−2∏
j=0

cos

(
θ j

2

)
sin

(
θn−1

2

)
= p1, (B3b)

n−3∏
j=0

cos

(
θ j

2

)
cos

(
θn−1

2

)
sin

(
θn−2

2

)
= p2, (B3c)

n−3∏
j=0

cos

(
θ j

2

)
sin

(
θn−2

2

)
sin

(
θn−1

2

)
= p3. (B3d)

Combining the above equations results in

p0

p1
= cos

(
θn−1

2

)
sin

(
θn−1

2

) , (B4a)

p0

p2
= cos

(
θn−2

2

)
sin

(
θn−2

2

) , (B4b)

p0

p3
= cos

(
θn−2

2

)
cos

(
θn−1

2

)
sin

(
θn−2

2

)
sin

(
θn−1

2

) , (B4c)

and finally, combining the above equations implies that

p0

p1

p0

p2
= p0

p3
⇒ p0

p1 p2
= 1

p3

⇒ p0 p3 = p1 p2

⇒ e−βE0 e−βE3 = e−βE1 e−βE2 . (B5)

Applying logs to both sides and simplifying, we get

E0 + E3 = E1 + E2, (B6)
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which is not, in general, true for the Ising model. The above
reasoning can be adjusted to obtain further constraints in the
manner of Eq. (B6).

APPENDIX C: BARREN-PLATEAU ANALYSIS

By following the analysis carried out in Ref. [62], we
qualitatively discuss the trainability of our VQA. We can
decompose our cost function as

F (ρS ) = Tr{HρS} − β−1S (ρA)

= Tr{HUSρ
′
SU †

S } + β−1
d−1∑
i=0

Tr
{
OiUA|0〉〈0|⊗n

A U †
A

}
× ln Tr

{
OiUA|0〉〈0|⊗n

A U †
A

}
, (C1)

where ρ ′
S = TrA{V |0〉〈0|⊗2n

AS V †}, V = CNOTAS (UA ⊗ 1S )m
and Oi = |i〉〈i|. Reference [62] considered cost functions
only of the form

C = Tr{OUρU †}, (C2)

where ρ is an arbitrary quantum state of n qubits, O is any
operator, and U is an alternating layered ansatz. Given that
our cost function in Eq. (C1) is not in the form of Eq. (C2)
because of the logarithm in the von Neumann entropy, our
comparison should be taken solely as a qualitative discussion
of the possibility of barren plateaus.

Now with reference to Eq. (C1), we have that H is 2-local,
while Oi is 1-local, and both UA and US are alternating layered
ansätze. Theorem 2 of Ref. [62] gives a lower bound on the

variance of the gradient of the cost function as a function
of the number of layers and, as such, the trainability of the
PQC. If the number of layers l = O( ln(n)), then the variance
vanishes no faster than polynomially, hence making the PQC
trainable. If the number of layers l = O(poly[ln(n)]), then the
variance vanishes faster than polynomially, but no faster than
exponentially, settling in a transition region between trainable
and untrainable.

In the case of β → ∞, our cost function equates directly to
Eq. (C2) (since the VQA effectively reduces to a VQE), and
thus, we require l = O( ln(n)) for our circuit to be trainable.
On the other hand, in the case of β → 0, the cost function
simplifies to maximizing the von Neumann entropy, that is,
acquiring the maximally mixed state. While we cannot di-
rectly relate the von Neumann entropy as a cost function with
Eq. (C2), we have numerically seen that preparing the mixed
state is a relatively straightforward task. Nevertheless, analy-
sis of the trainability of utilizing the von Neumann entropy as
the (or part of the) cost function should be sought to be able
to detect the presence of barren plateaus.

Now, for any finite β > 0, the problem of determining
whether a barren plateau is possible for the generalized free
energy is out of the scope of this work. Nevertheless, we
can possibly surmise that, given UA and US are alternating
layered ansätze, with H being a 2-local Hamiltonian con-
sisting of traceless operators, using a number of layers for
both UA and US that scales at most as l = O( ln(n)) might
result in a PQC that is trainable. This would hold if Theorem
2 of Ref. [62] also holds for cost functions in the form of
Eq. (C1).
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