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Self-testing protocols refer to novel device-independent certification schemes wherein the devices are un-
characterized and the dimension of the system remains unspecified. The optimal quantum violation of Bell’s
inequality facilitates such self-testing. In this work we put forth a protocol for self-testing of noisy quantum
instruments, specifically, the unsharpness parameter of smeared projective measurements in any arbitrary dimen-
sion. Our protocol hinges on the sequential quantum violations of a bipartite Bell-type preparation noncontextual
inequality, involving three measurement settings per party. First, we demonstrate that at most three sequential
independent Bobs manifest simultaneous preparation contextuality with a single Alice through the violation of
this inequality. Subsequently, we show that the suboptimal sequential quantum violations of the noncontextual
inequality form an optimal set, eventually enabling the self-testing of a shared state, local measurements, and
unsharpness parameters of one party. Notably, we derive the optimal set of quantum violations without specifying
the dimension of the quantum system, thereby circumventing the constraint that may arise due to Naimark’s
theorem. Furthermore, we extend our investigation to quantify the degree of incompatible measurements
pertaining to the sequential observers, exploring how variations in the degree of incompatibility impact the
values of unsharp parameters necessary for sequential quantum violation.
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I. INTRODUCTION

Self-testing represents a novel approach that facilitates
the strongest possible form of device-independent (DI) cer-
tification of quantum systems solely from the observed
input-output statistics [1]. In such a protocol, quantum de-
vices are considered to be black boxes and the dimension
of the quantum system is unknown. The DI self-testing re-
lies on the optimal quantum violation of a suitable Bell
inequality [2], enabling unique characterization of the state
and measurements. For instance, the optimal violation of
the Clauser-Horn-Shimony-Holt (CHSH) inequality [3] self-
tests the bipartite state to be maximally entangled, and local
observables are anticommuting [4]. Besides a plethora of ap-
plications in information-theoretic tasks, the DI self-testing
provides foundational insights into understanding the geomet-
ric structure of the set of quantum correlations. It is worth
noting that the optimal quantum violation of a Bell inequality
signifies that the quantum correlation in question is an ex-
tremal point of the set of all quantum correlations.

Since the inception of the self-testing protocol by Mayers
and Yao [5], a flurry of protocols have been proposed, in-
cluding parallel self-testing of multiple maximally entangled
two-qubit states [6,7] and self-testing of the pure nonmaxi-
mally entangled two-qubit state [8–13]. Recent developments
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have extended self-testing protocols to multipartite scenarios.
Using specific linear and quadratic Bell inequalities, self-
testing of the N-partite Greenberger-Horne-Zeilinger state
and anticommuting observables for each party has been
demonstrated [14]. Additionally, self-testing of the tripar-
tite W state has been proposed, utilizing the SWAP circuit
method [15]. Moreover, self-testing protocols have been
extended to higher-dimensional states, such as maximally
entangled two-qudit states [16], as well as to multipartite
graph states [17] and optimal states for XOR games [18].
Self-testing of measurements and inputs has been reported
in [19,20]. Quite a number of works on self-testing of the
nonprojective measurements in device-independent or semi-
device-independent scenarios have used either the dimension
of the quantum system or the prepare-and-measure scenario
[19,21–25]. Recently, device-independent certification of an
unsharp instrument was also reported [4]. The state and mea-
surements have been self-tested in the experiment scenario in
[26].

Note that the Bell inequality is a test of a notion of classi-
cality widely known as local realism. A distinct perspective
on classicality emerged through the work of Kochen and
Specker [27] and later was generalized by Spekkens [28], who
framed the notion of classicality in terms of noncontextual-
ity. In this regard, recent developments support [29,30] that
noncontextuality may constitute a more fundamental notion
of classicality than that of local realism. This assertion is
underpinned by establishing the connection between steering
with preparation noncontextuality via measurement incompat-
ibility and hence concluding noncontextual realist models as
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a subset of local realist models [29–31]. This implies that
even when a quantum correlation has an underlying local
realist model, it may manifest nonclassicality in the form
of contextuality. Apart from the immense foundational sig-
nificance the nonlocality and contextuality pose, the latter,
much like nonlocal correlations [1,32], emerges as a pivotal
resource with diverse applications in the realm of information
processing such as communication games [25,33–35], state
discrimination [36–38], semi-device-independent randomness
certification [39], sequential sharing of correlations [40], self-
testing protocols [41,42], and quantum computation [43–45].

In this paper we aim to self-test noisy quantum instru-
ments, specifically the unsharp parameter of the smeared
version of projective measurement, through the sequential
quantum violations of a preparation noncontextual inequal-
ity. Note that the unsharp measurement in a standard Bell
experiment produces suboptimal quantum violation and hence
any kind of certification becomes challenging. The suboptimal
quantum violation in an experiment may arise from various
factors, such as (i) the nonideal preparation of a state other
than that which is intended, (ii) the inappropriate implemen-
tation of local observables, or (iii) the presence of noise in
implementing projective measurements, which can be mod-
eled as unsharp measurements [46,47]. Hence, the self-test
of an unsharp quantum instrument inevitably requires the
simultaneous DI certification of the state, observables, and
unsharpness parameter from the same observed input-output
statistics. Note that the effect of the unsharp measurements
is reflected in the postmeasurement states and the standard
Bell test is incapable of certifying them. We invoke sequen-
tial Bell experiments which have the potential to self-test
the unsharpness parameter along with the state and measure-
ments as the sequential quantum violations depend on the
postmeasurement states. However, such sequential quantum
violations are suboptimal and the challenge is to certify the
state, measurements, and unsharpness parameter from a set
of suboptimal quantum violations. Note that the sequential
sharing of various forms of quantum correlation by multiple
sequential observers has been extensively explored [40,48–
51]. Our work can then be viewed as a potential application
of such studies.

A Bell test involves two distant parties Alice and Bob
who share a bipartite entangled state ρ1 ∈ H d ⊗ H d , where
d is the dimension of the local system. A sequential Bell
experiment involves a single Alice (who always performs
sharp projective measurements of her two observables) and
an arbitrary k numbers of sequential Bobs (say, Bobk) who
performs unsharp measurements. The kth Bob may perform
sharp measurement. After performing unsharp measurements
on their respective subsystems, Bob1 passes his residual sub-
system to another sequential observer Bob2 and so forth.
The process continues until Alice and Bobk get the violation
of Bell’s inequality. The choice of unsharp measurement is
imperative as projective measurements maximally disturb the
system, thereby destroying the entanglement and hence se-
quential Bobs have no chance to get the violation of Bell’s
inequality.

To this end, it is worth noting here that recently, semi-DI
certification of an unsharp instrument has been demonstrated
both theoretically [23,42,52–57] and experimentally [58,59]

by assuming a qubit system. Following this, quantification
of the degree of incompatibility of two sequential pairs of
quantum measurements has been demonstrated through the
sequential quantum advantage [58]. The first DI certification
of an unsharp instrument was proposed [4] based on the
CHSH inequality [3].

In this work we demonstrate how suboptimal quantum
violations form an optimal pair (or tuple) to self-test the
unsharpness parameters of Bob1. It was believed that the DI
self-testing of the unsharp parameter is not possible due to
Naimark’s theorem, which states that any nonprojective mea-
surement can be interpreted as the projective measurement
in higher-dimensional space. Since in the DI scenario no di-
mension restriction is imposed, a stubborn individual always
argues that the measurement is projective, but the experimen-
talist could not prepare the ideal observables required for the
optimal quantum value. We overcome this by considering
the dimension-independent optimization of sequential Bell
values simultaneously. We invoke an elegant sum-of-square
(SOS) approach to evaluate the suboptimal quantum value
of the Bell functional in the sequential scenario, without as-
suming the dimension of the system. We demonstrate that a
maximum of three independent sequential observers (Bob1,
Bob2, and Bob3) can demonstrate the suboptimal quantum
violation of the inequality with a single Alice. This enables
us to robustly certify the unsharpness parameters of Bob1 and
Bob2.

Note that incompatible measurements are necessary to
demonstrate the preparation contextual quantum correlations
[29,30]. By quantifying the degree of incompatibility per-
taining to Bob’s observables, we establish a quantitative
relationship between the degree of incompatibility and the se-
quential quantum violations of Bell’s inequality. We note that
such a relationship was introduced in [58], where the authors
demonstrated how the degree of incompatibility for each pair
of Bob’s measurements leads to sequential suboptimal viola-
tions of the CHSH inequality. However, they [58] considered
the qubit system for their demonstration. We first show that
such a relationship can be demonstrated without assuming
the dimension of the quantum system. The sequential quan-
tum violations of Bell’s inequality certify unsharp parameters,
enabling the certification of the degree of incompatibilities
of each sequential Bob’s observables. Further, we extend the
analysis to trine observables based on the sequential quan-
tum violations of our noncontextual inequality. By using the
degree of incompatibility for three observables defined in
[60,61], we quantitatively demonstrate how the degree of in-
compatibility for each sequential Bob can be certified from
the suboptimal violations of the noncontextual inequality. We
conclude with a summary and a brief discussion of future
possibilities.

II. BELL FUNCTIONAL AND ITS PREPARATION
NONCONTEXTUAL BOUND

We provide a brief overview of the ontological model
of operational quantum theory and the notion of classicality
in terms of noncontextuality. We consider a Bell functional
whose upper bound in a preparation noncontextual model is
lower than the local bound.
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A. Ontological model and preparation noncontextuality

The primitives of an operational theory are a set of
preparation procedures denoted by {P } and a set of mea-
surement procedures denoted by {M}. The probability of
obtaining a specific outcome k is given by p(k|P,M). In
operational quantum theory, a specific preparation procedure
P ∈ P prepares the quantum state ρ and the measurements
M ∈ M performed on the quantum state are in general char-
acterized by a set of positive-semidefinite operators, known
as positive-operator-valued measures (POVMs), denoted by
{Ek}, satisfying

∑
k Ek = 1. The quantum probability is ob-

tained from the Born rule, p(k|M, ρ) = Tr[ρEk].
In an ontological model of quantum theory the prepa-

ration of ρ through a specific procedure yields an ontic
state λ ∈ � with a probability distribution μ(λ|P ) satisfying∑

� μ(λ|P ) = 1, where � denotes the ontic state space. The
probability of obtaining an outcome k is given by a response
function E (k|λ, Ek ), with

∑
k E (k|λ, Ek ) = 1 ∀ λ. Any onto-

logical model that is consistent with quantum theory must
reproduce the Born rule, i.e.,∑

�

μ(λ|ρ,P )E (k|λ,M) = Tr[ρEk].

An ontological model of the operational theory is said to be
preparation noncontextual [28] if two preparation procedures
P1 and P2 yield the same quantum state ρ that cannot be
operationally distinguished by any measurement, i.e.,

p(k|P1,M) = p(k|P2,M) ⇒ μ(λ|ρ,P1) = μ(λ|ρ,P2) ∀ λ.

This means that in a preparation noncontextual ontic model,
ontic state distributions are equivalent, irrespective of the
preparation procedures.

B. Bipartite Bell functional for three inputs per party

We consider a Bell experiment featuring two spatially
separated parties Alice and Bob. Alice (Bob) randomly per-
forms one of three dichotomic local measurements Ax ∈
{A1, A2, A3} (By ∈ {B1, B2, B3}). The respective measurement
outcomes are denoted by a, b ∈ {+1,−1}. Given the above
Bell scenario, consider the Bell functional

I = (A1 + A2 − A3) ⊗ B1 + (A1 − A2 + A3) ⊗ B2

+(−A1 + A2 + A3) ⊗ B3. (1)

The quantum value of this Bell functional is given by I =
Tr[Iρ]. In an ontological model, the local bound of the Bell
functional is Il � 5 [62]. Note that while by employing a
particular type of communication game referred to as parity
oblivious communication game it has been shown [25] that the
preparation noncontextual bound is IPNC � 4, here we revisit
the evaluation of preparation noncontextual bound without
invoking such a game.

Before proceeding further, let us briefly recapitulate the
notion of preparation noncontextuality in the CHSH scenario
[3] where Alice (Bob) measures two observables A1 and A2

(B1 and B2). Alice’s two measurements on her local part of
the shared state ρAB yield two density matrices on Bob’s wing
denoted by ρA1 and ρA2 . Naturally, ρA1 = ρA2 ≡ σ ; otherwise
the no-signaling condition will be violated. Such a feature

can be assumed to be equivalent to that represented in an
ontological model, if one assumes that the ontological model
is preparation noncontextual, i.e., μ(λ|σ, A1) = μ(λ|σ, A2). It
is then intuitively straightforward to conclude that a quantum
violation of the CHSH inequality can also be regarded as
proof of preparation contextuality. As demonstrated in [63],
in the CHSH scenario, preparation noncontextuality implies
the locality assumption. A modified version of this proof is
outlined in [4].

For the CHSH scenario, by using Bayes’ theorem, the
joint probability distribution in the ontological model can be
expressed as [4,29]

p(a, b|Ax, By) =
∑

λ

p(a|Ax, By)p(λ|a, Ax )p(b|By, λ). (2)

Now the locality condition implies the marginal probability of
Alice’s side is independent of Bob’s choice of observables and
hence we can write

p(a, b|Ax, By) =
∑

λ

p(a|Ax )p(λ|a, Ax )p(b|By, λ). (3)

From Bayes’ theorem, it follows that p(a|Ax )p(λ|a, Ax ) =
μ(λ|Ax )p(a|λ, Ax ), where we specifically denote the proba-
bility distribution p(λ|Ax ) by μ(λ|Ax ). Substituting this into
Eq. (3), we get

p(a, b|Ax, By) =
∑

λ

μ(λ|Ax )p(a|λ, Ax )p(b|By, λ). (4)

Assuming the preparation noncontextual for Bob’s prepa-
ration by Alice, i.e., μ(λ|ρ, A1) = μ(λ|ρ, A2) ≡ μ(λ), we
simplify Eq. (4) to

p(a, b|Ax, By) =
∑

λ

μ(λ)p(a|λ, Ax )p(b|By, λ). (5)

This result aligns with the desired factorizability condition
commonly derived for a local hidden-variable model. There-
fore, we argue that whenever the joint probability distribution
p(a, b|Ax, By) in the ontological model satisfies the assump-
tion of preparation noncontextuality, it inherently satisfies the
locality condition in the ontological model.

Moving beyond the CHSH scenario, we introduce a
nontrivial form of preparation noncontextuality in a Bell
experiment involving more than two inputs. This involves
imposing an additional relational constraint on Alice’s mea-
surement observables, expressed by the condition∑

x

P(a, b|Ax, By) =
∑

x

P(a ⊕ 1, b|Ax, By) ∀ b, y. (6)

In quantum theory, when Alice and Bob share an entangled
state ρAB, the above condition translates to∑

x

ρa
Ax

=
∑

x

ρa⊕1
Ax

≡ σ. (7)

Here ρa
Ax

= TrA(ρAB�a
Ax

⊗ 1) and Eq. (7) implies A1 + A2 +
A3 = 0. This introduces a nontrivial constraint on Alice’s
preparation procedures, leading to a local bound reduced to
the preparation noncontextual bound IPNC � 4.

Thus, nontrivial preparation contextuality provides a
weaker notion of nonlocality. It is important to note that the set
of observables of Alice for which the optimal quantum value
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Iopt = 6 is achieved satisfies the condition given by Eq. (6).
More precisely, our demonstration reveals that attaining the
optimal quantum value Iopt = 6 necessitates the fulfillment
of the constraint A1 + A2 + A3 = 0.

III. OPTIMAL QUANTUM BOUND OF THE BELL
FUNCTIONAL I

We derive the optimal quantum value of the Bell func-
tional, given by Eq. (1), devoid of assuming the dimension
of the quantum system and by utilizing an elegant SOS
approach introduced in [64]. For this, we consider a positive-
semidefinite operator γ , which can be expressed as γ =
β1d − I, where β is a positive real number and 1d is the
identity operator in an arbitrary d-dimensional system. This
can be proven by considering a set of operators Ly, which are
linear functions of the observables (Hermitian operators) Ax

and By, such that

γ = 1

2

3∑
y=1

ωyL†
y Ly. (8)

The operators Ly are defined as

Ly = Ay ⊗ 1 − 1 ⊗ By ∀ y ∈ [1, 3], (9)

where Ay and ωy are defined as

A1 = A1 + A2 − A3

ω1
, A2 = A1 − A2 + A3

ω2
,

A3 = −A1 + A2 + A3

ω3
, ωy = ‖Ay‖ρ, (10)

where ‖ · ‖ is the Frobenius norm, given by ‖O‖ =√
Tr[O†Oρ] and I = Tr[Iρ]. Now putting Eqs. (9) and (10)

into Eq. (8) and noting that A†
xAx = B†

yBy = 1d , we obtain

Tr[γ ρ] = −I +
3∑

y=1

ωy. (11)

Therefore, it follows from Eq. (11) that the quantum optimal
value of I is attained when 〈γ 〉 = Tr[γ ρ] = 0, which in turn
provides

Iopt = max

⎛
⎝ 3∑

y=1

ωy

⎞
⎠. (12)

Evaluating ωy from Eq. (10), we arrive at the relations

ω1 = √
3 + 〈{A1, A2 − A3}〉ρ − 〈{A2, A3}〉ρ,

ω2 = √
3 + 〈{A1,−A2 + A3}〉ρ − 〈{A2, A3}〉ρ,

ω3 = √
3 − 〈{A1, A2 + A3}〉ρ + 〈{A2, A3}〉ρ. (13)

Next, using the convex inequality
∑n

i=1 ωi �
√

n
∑n

i=1(ωi)2,
from Eqs. (12) and (13) we get

Iopt = max
√

3
(
ω2

1 + ω2
2 + ω2

3

)
= max

√
3[12 − (A1 + A2 + A3)(A1 + A2 + A3)†]

= 6. (14)
Clearly, the optimal value occurs when A1 + A2 + A3 = 0,
implying ω1 = ω2 = ω3 = 2. It is straightforward to check
that A1 + A2 + A3 = 0 implies Tr[{Ax, Ax′ }ρ] = −1 ∀ x �=
x′ ∈ {1, 2, 3} and consequently Tr[{Ay,Ay′ }ρ] = −1 ∀ y �=
y′ ∈ {1, 2, 3}.

State and observables for achieving optimal violation

The optimality condition Tr[γ ρ] = 0 ∀ ρ implies that∑3
y=1 Tr[L†

y Ly ρ] = 0 ∀ ρ. Given that L†
y Ly are positive and

Hermitian operators, this relation leads us to the crucial de-
duction that Tr[Lyρ] = 0 ∀ y. Hence, Eq. (9) allows us to
express

Tr[Lyρ] = 0 ⇒ Tr[1 ⊗ Byρ] = Tr[Ay ⊗ 1ρ]. (15)

Furthermore, to achieve optimal quantum violation,
it is crucial for Alice’s observable to satisfy the
condition 〈{Ax, Ax′ }x �=x′ 〉ρ = −1 ∀ ρ. As a consequence,
〈{Ay,Ay′ }y �=y′ 〉ρ = −1 ∀ ρ. Therefore, based on Eq. (15),
Bob’s observable must satisfy 〈{By, By′ }y �=y′ 〉ρ = −1 ∀ ρ for
optimal violation.

Since the optimality condition is Tr[L†
y Lyρ] = 0, Eq. (9)

leads to the inference that Tr[Ay ⊗ Byρ] = 1 ∀ y. Thus, ρ

must be a common eigenstate of the operators Ay ⊗ By with
y = 1, 2, 3. As these operators yield the maximum eigenvalue
with the normalized state ρ, we can deduce that the state
ρ is pure. As a result, we can expand ρ in terms of mutu-
ally commuting elements. However, since [(Ay ⊗ By), (Ay′ ⊗
By′ )]y �=y′ �= 0, we are unable to express ρ in terms of Ay ⊗ By

in contrast to the CHSH scenario [see Eq. (7) of [4]].
Let us first consider the general form of ρ in the bipartite

two-qubit scenario [65]

ρ = 1

4

⎛
⎝1 ⊗ 1 +

3∑
i=1

riσi ⊗ 1 +
3∑

j=1

s j1 ⊗ σ j +
3∑

i, j=1

ti jσi ⊗ σ j

⎞
⎠, (16)

where ti j = Tr[σi ⊗ σ jρ] are the elements of the correlation
matrix T = [ti j] and ri and s j are positive real numbers, satis-
fying the relations [65]

3∑
i=1

r2
i +

3∑
j=1

s2
j +

3∑
i, j=1

t2
i j � 3, (17)

where the equality holds for pure states. Now let us consider
that there exist a two-qubit state ρ and a set of Hermi-
tian operators {Ci �= 1} ∀ i ∈ {1, 2, 3} such that the condition
Tr[Ci ⊗ Ciρ] = 1 holds. Then it is evident that ti j = 0 ∀ i �= j
and ti j = ±1 ∀ i = j, implying

∑3
i, j=1 t2

i j = 3. Consequently,

from Eq. (17) it follows that
∑3

i=1 r2
i = ∑3

j=1 s2
j = 0.
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FIG. 1. Diagram depicting the sequential Bell scenario. Alice and Bob1 share an entangled state ρ1 ∈ H d ⊗ H d . Alice always performs
projective measurements and Bobk performs unbiased unsharp POVMs.

Therefore, for the condition Tr[Ci ⊗ Ciρ] = 1 to be satis-
fied, the bipartite qubit state must be of the form

ρ = 1

4

(
1 ⊗ 1 +

3∑
i=1

Ci ⊗ Ci

)
, (18)

where Ci ⊗ Ci = tiiσi ⊗ σi, satisfying [Ci ⊗ Ci,Cj ⊗ Cj]i �= j =
0. It is important to emphasize here that the state expressed by
Eq. (18) is an entangled state, meeting the criterion TrA(ρ) =
TrB(ρ) = 1

2 and ρ2 = ρ. This signifies that ρ is a pure maxi-
mally entangled two-qubit state. The significant insight gained
here is that a maximally entangled state can be represented in
terms of mutually commuting operators.

Expanding on this notion, if we extend the idea to express
a maximally entangled state in any arbitrary dimension d , we
can represent ρ in terms of mutually commuting operators
Ci ⊗ Ci, which are functions of both Ay and By. Thus, ρ takes
the form

ρ = 1

d2

⎛
⎝1d ⊗ 1d +

d2−1∑
i=1

Ci ⊗ Ci

⎞
⎠. (19)

Now, any three Ci ⊗ Ci can be derived based on the follow-
ing optimality conditions obtained from the SOS approach:
(i) Tr[Ay ⊗ Byρ] = 1, (ii) Tr[Ci ⊗ Ciρ] = 1, and (iii) [Ci ⊗
Ci,Cj ⊗ Cj]i �= j = 0. Using such conditions, we obtain the ex-
pressions for any three Ci ⊗ Ci (see Appendix A for detailed
derivations),

C1 ⊗ C1 = A1 ⊗ B1,

C2 ⊗ C2 = 1
3 (A2 ⊗ B2 + A3 ⊗ B3 − A3 ⊗ B2 − A2 ⊗ B3),

C3 ⊗ C3 = 1
3 (A2A1 ⊗ B2B1 − A2A1 ⊗ B3B1 − A3A1 ⊗ B2B1

+A3A1 ⊗ B3B1), (20)

where C3 ⊗ C3 satisfies the condition C3 ⊗ C3 = (C2 ⊗
C2)(C1 ⊗ C1). An explicit example for two-qubit maximally
entangled state is

ρ = 1
4 (1 ⊗ 1 + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz ). (21)

If we compare the given form of ρ with the form given
by Eq. (19), we can suitably choose C1 ⊗ C1 = σx ⊗ σx,
C2 ⊗ C2 = σz ⊗ σz, and C3 ⊗ C3 = −σy ⊗ σy. Then, using
Eqs. (10) and (20), we determine the following particular set

of observables that leads to the optimal quantum violation:

A1 = −B3 = σx + √
3σz

2
, A2 = −B2 = σx − √

3σz

2
,

A3 = −B1 = −σx. (22)

IV. SEQUENTIAL QUANTUM VIOLATIONS OF
NONCONTEXTUAL INEQUALITY

Let us quickly overview the sequential Bell experiment
scenario [48]. Unlike the traditional Bell scenario with spa-
tially separated Alice and Bob, we have one Alice who is
spatially separated from multiple Bobs (see Fig. 1). Initially, a
bipartite entangled state ρ1 ∈ H d ⊗ H d is shared between
Alice and Bob1. Following the reception of their respec-
tive subsystems, Alice performs a projective measurement
and Bob1 performs unsharp measurements (unbiased POVM).
Then Bob1 passes his residual subsystem to the next sequen-
tial independent observer Bob2. This process continues, with
Bob2 relaying his measured subsystem to Bob3 and so forth.

The observables of Alice and Bobk are given by

Ax ≡
{

A±|x | A±|x = 1

2
(1 ± Ax )

}
∀ x ∈ {1, 2, 3},

Bk
y =

{
Ek

±|y | Ek
±|y = 1

2

(
1 ± ηkBk

y

)}∀ y ∈ {1, 2, 3}, (23)

where Ek
±|y are POVM elements of Bobk’s measurement, sat-

isfying Ek
±|y � 0 and Ek

+|y + Ek
−|y = 1. The postmeasurement

state ρk after the (k − 1)th Bob’s measurement is evaluated
[66] as

ρk = 1

3

3∑
y=1

∑
b=±

(
1 ⊗

√
B(k−1)

b|y
)
ρABk−1

(
1 ⊗

√
B(k−1)

b|y
)

= 1

3

∑
b,y

[(
1 ⊗ Kk−1

b|y
)
ρk−1

(
1 ⊗ Kk−1

b|y
)]

= 1 + ξk−1

2
ρk−1

+1 − ξk−1

6

3∑
y=1

(
1 ⊗ Bk−1

y

)
ρk−1

(
1 ⊗ Bk−1

y

)
, (24)

012444-5



PAUL, SASMAL, AND PAN PHYSICAL REVIEW A 110, 012444 (2024)

where ξ j =
√

1 − η2
j and

Kk
±|y = 1

2

(√
1 + ηk

2
+
√

1 − ηk

2

)
1

±1

2

(√
1 + ηk

2
−
√

1 − ηk

2

)
Bk

y . (25)

The quantum value of the Bell functional I between Alice and
Bobk , I k = Tr[Iρk], is evaluated as (see Appendix B)

I k =
{

η1
∑3

y=1 ωyTr[Ay ⊗ Byρ1] = η1Iopt if k = 1

ηk
∑3

y=1 ωyω̃
k
yTr
(
Ay ⊗ Bk

yρk−1
)

if k � 2,

(26)
where Ay and ωy are given by Eq. (10), Bk

y = B̃y
k
/ω̃k

y with
ω̃k

y = ‖B̃k
y‖ρk−1 , and

B̃k
y = 1 + ξk−1

2
Bk

y + 1 − ξk−1

6

3∑
y′=1

Bk−1
y′ Bk

yBk−1
y′ ∀ y. (27)

Since Iopt = 6, it follows from Eq. (26) that the suboptimal
quantum Bell value between Alice and Bob1 is I 1 = 6η1.

Lemma 1. The suboptimal quantum Bell value between
Alice and Bob1 is I 1 = 6η1 with Bob1’s observable sat-
isfying the condition B1

1 + B1
2 + B1

3 = 0, thereby implying
〈{B1

y, B1
y′ }y �=y′ 〉ρ1 = −1.

We prove the following theorems.
Theorem 1. If Alice and Bob1 obtain the suboptimal Bell

value of I 1 = 6η1, the suboptimal quantum Bell value be-
tween Alice and Bob2 is I 2 = 3η2(1 +

√
1 − η2

1 ) with both
of Bob’s observables satisfying the condition Bk

1 + Bk
2 + Bk

3 =
0, thereby implying 〈{Bk

y, Bk
y′ }y �=y′ 〉ρ1 = −1 with k ∈ {1, 2}.

Proof. From Eq. (26) I 2 is

I 2 = η2

3∑
y=1

ωyω̃
2
y Tr
(
Ay ⊗ B2

y ρ1
)
, (28)

where B2
y = B̃2

y/ω̃
2
y , ω̃2

y = ‖B̃2
y‖ρ1 , and

B̃2
y = 1 + ξ1

2
B2

y + 1 − ξ1

6

3∑
y′=1

B1
y′B2

yB1
y′ ∀ y. (29)

To optimize I 2, we again employ the SOS approach and
define a positive operator as

γ = 1

2

3∑
y=1

ωyω̃
2
y L†

y Ly. (30)

The operators Li are given by

Ly = Ay ⊗ 1 − 1 ⊗ B̃2
y

ω̃2
y

, ω̃2
y = ∥∥B̃2

y

∥∥
ρ1

∀ y ∈ {1, 2, 3}.
(31)

Now, similar to the method presented in Sec. III, from
Eqs. (30) and (31) we obtain

I 2 = η2

⎛
⎝max

3∑
y=1

ωyω̃
2
y

⎞
⎠ [∵ Tr[γ ρ1] = 0]. (32)

Next, invoking the inequality
∑

y
√

rysy �
√∑

y ry

√∑
y sy,

we get

I 2 � η2 max
√

(ω1)2 + (ω2)2 + (ω3)2

× max
√(

ω̃2
1

)2 + (
ω̃2

2

)2 + (
ω̃2

3

)2
. (33)

Note that equality holds when ωy = ωy′ and ω̃y = ω̃y′ . From

Eq. (13) we already obtained max
√

ω2
1 + ω2

2 + ω2
3 = 2

√
3

when 〈{Ay, Ay′ }y �=y′ 〉ρ1 = −1 and A1 + A2 + A3 = 0. The opti-
mality condition Tr[γ ρ1] = 0 implies that Tr[Lyρ1] = 0. This

means that Ay ⊗ 1 = 1 ⊗ B̃2
y

ω̃2
y
. Therefore, A1 + A2 + A3 = 0

implies B̃2
1 + B̃2

2 + B̃2
3 = 0. By using this relation, we obtain

(see Appendix C)〈{
B2

y , B2
y′
}

y �=y′
〉
ρ1

= −1 ∀ y, y ∈ {1, 2, 3} (34)

and

3∑
y,y′=1

B1
y′B2

yB1
y′ = 0. (35)

Now, using the relation ω̃2
y = ω̃2

y′ and Eq. (35), we get (see
Appendix D)

3∑
y′=1

B1
y′B2

yB1
y′ = 0 ∀ y ∈ {1, 2, 3}. (36)

Using Eq. (36) in Eq. (29), we arrive at

B̃2
y = 1 + ξ1

2
B2

y . (37)

It is evident from Eq. (37) that

ω̃2
y = ∥∥B̃2

y

∥∥
ρ1

= 1 + ξ1

2
=

1 +
√

1 − η2
1

2
. (38)

Using Eq. (38), the suboptimal quantum Bell value between
Alice and Bob2 is [as derived from Eq. (33)]

I 2 = 3η2
(
1 +

√
1 − η2

1

)
. (39)

�
Theorem 2. If Alice and Bob1, and Alice and Bob2

obtain the suboptimal Bell violations, the suboptimal quan-
tum Bell value between Alice and Bob3 is I 3 = 3η3

2 (1 +√
1 − η2

1 )(1 +
√

1 − η2
2 ), with Bobk’s observables satis-

fying the condition Bk
1 + Bk

2 + Bk
3 = 0, thereby implying

〈{Bk
y, Bk

y′ }y �=y′ 〉ρ1 = −1 with k ∈ {1, 2, 3}.
Proof. By using Eq. (24) we can write ρ2 in terms of ρ1 and

from Eq. (26) we obtain the value of I 3 in terms of ρ1 as

I 3 = η3

3∑
y=1

ωyω̃
3
y Tr
(
Ay ⊗ B3

y ρ1
)
, (40)
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where B3
y = B̃3

y

ω̃3
y
, ω̃3

y = ‖B̃3
y‖ρ1 , and

B̃3
y = (1 + ξ1)(1 + ξ2)

4
B3

y + (1 − ξ1)(1 + ξ2)

12

3∑
y′=1

B1
y′B3

yB1
y′

+ (1 + ξ1)(1 − ξ2)

12

3∑
y′=1

B2
y′B3

yB2
y′ + (1 − ξ1)(1 − ξ2)

36

×
3∑

y′,y′′=1

B1
y′′B2

y′B3
yB2

y′B1
y′′ . (41)

From Lemma 1 and Theorem 1 we can see that Bob1’s
measurement settings and Bob2’s measurement settings sat-
isfy the same condition, i.e., (Bk

1 + Bk
2 + Bk

3)k∈{1,2} = 0. Then,
without loss of generality, we can take B2

y = B1
y ∀ y ∈ {1, 2, 3}.

With this condition B̃3
y is simplified as

B̃3
y = (1 + ξ1)(1 + ξ2)

4
B3

y + (1 − ξ1ξ2)

6

3∑
y′=1

B1
y′B3

yB1
y′

+ (1 − ξ1)(1 − ξ2)

36

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′ . (42)

To optimize I 3, we follow an approach similar to the proof
of Theorem 1. We define a positive operator

γ = 1

2

3∑
y=1

ωyω̃y
3L†

y Ly. (43)

The operators Ly are defined as

Ly = Ay ⊗ 1 − 1 ⊗ B̃3
y

ω̃3
y

, ω̃3
y = ∥∥B̃3

y

∥∥
ρ1

∀ y ∈ {1, 2, 3}.
(44)

Then, similar to the argument presented in Theorem 1, we
obtain

I 3 � η3 max
√

ω2
1 + ω2

2 + ω2
3

× max
√(

ω̃3
1

)2 + (
ω̃3

2

)2 + (
ω̃3

3

)2
, (45)

where the equality holds when ωy = ωy and ω̃3
y = ω̃3

y , leading
to the condition B̃3

1 + B̃3
2 + B̃3

3 = 0. Invoking this condition,
we obtain the relations (see Appendix E)〈{

B3
y, B3

y′
}

y �=y′
〉
ρ1

= −1 ∀ y, y′ ∈ {1, 2, 3}, (46)

3∑
y,y′=1

B1
y′B3

yB1
y′ =

3∑
y,y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′ = 0. (47)

By using the relation ω̃3
y = ω̃3

y′ and Eq. (47), we get (see
Appendix F)

3∑
y′=1

B1
y′B2

yB1
y′ =

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′ = 0. (48)

Now, by inserting Eq. (48) in Eq. (42), we obtain

B̃3
y = (1 + ξ1)(1 + ξ2)

4
B3

y, (49)

which in turn gives

ω̃3
y = ∥∥B̃3

y

∥∥
ρ1

= (1 + ξ1)(1 + ξ2)

4
∀ y ∈ {1, 2, 3}. (50)

Therefore, from Eqs. (45) and (50), the suboptimal quantum
Bell value between Alice and Bob3 is given by

I 3 = 3η3

2

(
1 +

√
1 − η2

1

)(
1 +

√
1 − η2

2

)
. (51)

�
Theorem 3. If Alice and Bob1, Alice and Bob2, and Alice

and Bob3 obtain the suboptimal Bell violations, then no fur-
ther sequential Bob gets the Bell violation.

Proof. From Lemma 1 and Theorems 1 and 2 we prove
that Alice and Bob1, Alice and Bob2, and Alice and Bob3 will
obtain suboptimal violation if all of Bob’s observables satisfy
the conditions Bk

1 + Bk
2 + Bk

3 = 0 and {Bk
i , Bk

j}i �= j = −1 for
all k ∈ {1, 2, 3}. Now, without loss of generality, we can al-
ways take Bk

i = Bk
j ∀ k ∈ {1, 2, 3}. By using these facts, from

Eq. (26) we obtain

I 4 = 3η4

4

3∏
j=1

(
1 +

√
1 − η2

j

)
. (52)

Notably, in the context of the Alice-Bob1 violation, the bound
of η1 satisfies 2

3 < η1 � 1. Additionally, it is evident that 2
3 <

η1 < η2 < η3. Thus, the maximum Bell value achievable by
Alice and Bob4 is given by

I 4 = 3

4

(
1 +

√
5

3

)3

≈ 3.9876 < 4. (53)

�
To summarize, we have evaluated quantum suboptimal

Bell values for Alice and Bob1 (I 1), Alice and Bob2 (I 2),
and Alice and Bob3 (I 3). Subsequent sections will elaborate
on the way these concurrently suboptimal values play a pivotal
role in certifying the unsharp parameters under the condition
{I 1,I 2,I 3} > 4.

V. SELF-TESTING OF UNSHARP QUANTUM
INSTRUMENTS

Following Lemma 1 and Theorems 1 and 2, it is evident
that Alice and Bob1, Alice and Bob2, and Alice and Bob3

will attain simultaneous violations of the preparation non-
contextual bound of the Bell inequality given by Eq. (1) if
{I 1,I 2,I 3} > 4. Now, from Lemma 1 it is deduced that

I 1 > 4 ⇒ 2

3
< η1 � 1. (54)

Likewise, from Theorem 1 we obtain

I 2 > 4 ⇒ 4

3
(
1 +

√
1 − η2

1

) < η2 � 1. (55)

012444-7



PAUL, SASMAL, AND PAN PHYSICAL REVIEW A 110, 012444 (2024)

It is worth noting that since 0 < η2 � 1, Eq. (55) establishes a
lower bound for η2, which consequently fixes the upper bound
of η1. Thus, we have 2

3 < η1 � 2
√

2
3 .

Next Theorem 2 reveals that the suboptimal quantum Bell
violation for Alice and Bob3, i.e., I 3 > 4, imposes con-
straints on both the upper bound of η2 and the lower bound
of η3, evaluated as

η2 <

4

√
3
√

1 − η2
1 − 1

3
(
1 +

√
1 − η2

1

) , (56)

8

3
(
1 +

√
1 − η2

1

)(
1 +

√
1 − η2

2

) < η3 � 1. (57)

Together with Eqs. (55) and (56), we derive

4

3
(
1 +

√
1 − η2

1

) < η2 <

4

√
3
√

1 − η2
1 − 1

3
(
1 +

√
1 − η2

1

) . (58)

Notably, the upper and lower bounds of η2 consequently re-
strict the upper bound of η1, specifically η1 <

√
5

3 . Therefore,
the lower and upper bounds for η1 are given by

2

3
< η1 <

√
5

3
. (59)

Hence, for {I 1,I 2,I 3} > 4 we find the bounds of three
unsharpness parameters as given by Eqs. (57)–(59).

From Lemma 1 and Theorem 1 we have I 1 = 6η1 and

I 2 = 3η2(1 +
√

1 − η2
1 ). It is evident that an increase in the

unsharpness parameter η1 for Bob1 leads to a decrease in the
suboptimal Bell value between Alice and Bob2. This implies
that the more Bob1 extracts information, the less the value
of I 2 is obtained. Thus, there exists a trade-off between the
suboptimal quantum Bell values for Alice and Bob1 and for
Alice and Bob2.

Additionally, by applying Theorem 2 and rewriting I 3 in
terms of I 1 and I 2, we get

I 3 = 3

2

⎡
⎣1 +

√
1 −

(
I 1

6

)2
⎤
⎦

×

⎛
⎜⎝1 +

√√√√1 − (I 2)2

9
[
1 +

√
1 − (

I 1

6

)2]2
⎞
⎟⎠. (60)

The optimal trade-off between the suboptimal quantum
bounds of the Bell inequality for Alice and Bob1, Alice and
Bob2, and Alice and Bob3 is given by Eq. (60) and illustrated
in Fig. 2. It is important to highlight here that I 3 > 4 implies

4 < I 1 < 2
√

5 and 4 < I 2 < 4
√

1
2

√
36 − (I 1)2 − 1. The

lower bound of I 1 determines the upper bound of I 2, i.e.,

4 < I 2 < 4
√√

5 − 1.
Now, given that I 1

42 � 1 and I 2

42 � 1, we can expand the
right-hand side of Eq. (60) using the Taylor series expansion.
Furthermore, by neglecting higher-order terms of I 1

42 and I 2

42 ,

FIG. 2. Graph illustrating the trade-off among the suboptimal
quantum bounds for the Bell values between Alice and Bob1, Alice
and Bob2, and Alice and Bob3. The brown-colored cuboid depicts the
preparation noncontextual region of the concerned Bell inequality.
The colored curved surface indicates the region where the optimal
quantum values of the Bell function exceed the preparation noncon-
textual bound, which is 4. The black point on the three-dimensional
graph holds significance as it serves as a crucial point certifying the
unsharpness parameters η1 and η2 when the quantum values of all
three sequential Bobs are considered to be equal. Each point on the
curved surface represents a distinct set of sequential Bell values that
self-tests a particular set of unsharpness parameters {η1, η2}.

specifically, taking O(( I 1

42 )m) = O(( I 2

42 )m) = 0 with m � 3

and O(( I 1I 2

36 )n) = 0 with n � 2, we derive

−(I 3 − 6) ≈ 3

2

[(
I 1

6

)2

+
(

I 2

6

)2
]
. (61)

This equation represents a paraboloid about the negative I 3

axis, with the origin shifted to (6,0,0). We are particularly
interested in the region where I k ∈ [4, 6] with k = {1, 2, 3}
and consider only the half section of the paraboloid, i.e.,
semiparaboloid.1

It is crucial to emphasize that for sharp measurements of
Bob3, meaning η3 = 1, each point on the surface of the semi-
paraboloid in Fig. 2 uniquely certifies the pair (η1, η2). For
instance, the black point on the surface of the semiparaboloid
uniquely certifies (η1 = 20

29 ≈ 0.69, η2 = 4
5 ≈ 0.8) for I 1 =

I 2 = I 3 = 120
29 ≈ 4.14.

Self-testing statement in the sequential scenario

From Lemma 1 and Theorems 1 and 2, the optimal tuple
{I 1,I 2,I 3} uniquely certifies the state shared between

1A semiparaboloid is a three-dimensional geometric shape that is
formed by taking a paraboloid and cutting it along a plane. It is
essentially half of a paraboloid. The term “semi” indicates that only
half of the paraboloid is considered, resulting in a curved surface
resembling a half bowl or half umbrella.
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Alice and Bob1, along with the observables of both Alice and
Bob and the unsharpness parameters of Bob. The self-testing
statements are as follows.

(i) The initial shared state between Alice and Bob1 is a bi-
partite maximally entangled state in any arbitrary dimension.

(ii) Alice performs projective measurements on her subsys-
tem in any arbitrary local dimension. For the optimal values
of the tuple, Alice’s observables must satisfy the condition
A1 + A2 + A3 = 0, revealing a particular anticommutation re-
lation between her observables, given by {Ai, Aj}i �= j = −1.

(iii) Bobk performs unsharp measurements on his sub-
system in any arbitrary local dimension, which satisfies the
conditions Bk

1 + Bk
2 + Bk

3 = 0 and {Bk
i , Bk

j}i �= j = −1 for all
k ∈ {1, 2, 3}.

(iv) The optimal tuple {I 1,I 2,I 3} uniquely certifies the
pair of unsharpness parameters {η1, η2}. In other words, the
specific values of I 1, I 2, and I 3 allow for a precise deter-
mination of the unsharpness parameters η1 and η2 associated
with the experiment.

VI. ROBUST CERTIFICATION OF THE
UNSHARPNESS PARAMETER

Since the experimental demonstration of achieving the tu-
ple {I 1,I 2,I 3} is always subject to unavoidable noises
and imperfections, here we investigate to what extent the
self-testing statements, presented in Sec. V, remain valid and
reliable in the presence of such noises. Specifically, when the
optimal tuple {I 1,I 2,I 3} cannot be realized, it becomes
impossible to uniquely certify the pair {η1, η2}. Instead, in
such instances, it is only possible to certify the ranges of the
pair {η1, η2}.

It is important to note that according to Lemma 1, Alice
and Bob1 obtain a Bell violation when η1 lies in the range
( 2

3 , 1]. Consequently, if I 1 > 4, this implies that (η1)min = 2
3 .

However, the range of η1 that can be certified will become
more restricted when nonlocality is extended further between
Alice and Bob2.

Now, for sequential Bell violation between Alice and Bob1

and between Alice and Bob2, i.e., when I 1 and I 2 both
exceed 4, we employ Theorem 1 to determine an upper bound
of η1. In this case, with η2 = 1, we find that (η1)max = 2

√
2

3 .
Therefore, the simultaneous Bell violation between Alice and
Bob1 and between Alice and Bob2 certifies a range of η1,
specifically 2

3 < η1 < 2
√

2
3 .

Furthermore, if all three Bobs demonstrate Bell violations
with Alice independently, it further narrows down the range of
η1. As a result, the allowed interval for η1 becomes even more
restricted compared to the previous case. In order to evalu-
ate this range, we utilize Eq. (59), which yields the interval
η1 ∈ ( 2

3 ,
√

5
3 ). In addition to this, the presence of Bell violation

between Alice and Bob3 implies a range for η2, which is given
by η2 ∈ (3 − √

5, 4
5 ).

Therefore, when Alice and Bob1, Alice and Bob2, and
Alice and Bob3 all demonstrate a preparation contextuality
bound of the concerned Bell inequality, a particular range for
both η1 and η2 is certified. In conclusion, if I 1,I 2,I 3 > 4,

then it is established that η1 lies in the interval ( 2
3 ,

√
5

3 ) and η2

lies in the interval (3 − √
5, 4

5 ).
Finally, by considering the expression (51), we find that

I 3 > 4 fixes the lower bound of η3, which is given by

(η3)min = 2I 3

3
[
1 +

√
1 − (η1)2

min

][
1 +

√
1 − (η2)2

min

]
= 1

2
(3 +

√
5 −

√
6
√

5 − 2) ≈ 0.93. (62)

It is essential to underscore that the power of the sequential
scenario compared to the usual Bell scenario not only facili-
tates the certification of the unsharpness parameters but also
enables the certification of the incompatibility of sequential
measurements.

VII. QUANTIFYING AND CERTIFYING SEQUENTIAL
MEASUREMENT INCOMPATIBILITY

The measurement incompatibility in quantum theory gives
rise to a wide range of intriguing phenomena such as un-
certainty relations [61,67], preparation contextuality [68,69],
and state discrimination [70]. Incompatibility is also crucial
for comprehending quantum correlations such as quantum
steering [63] and nonlocality [32,71,72]. Since incompati-
ble measurements are necessary for demonstrating quantum
correlations, sequential violations of the preparation noncon-
textual bounds of I 1, I 2, and I 3 device-independently
certifies that three POVMs for each Bob are incompatible
[73]. It should be noted here that using the CHSH inequality,
two incompatible POVMs have been certified in the sequential
scenario in terms of the degree of incompatibility introduced
in [74]. However, such certification assumed the dimension
of the state and observables. Here, by suitably quantifying
the degree of incompatibility [60,74,75], we first certify the
sequential degree of incompatibility for two POVMs in the
CHSH scenario. For this purpose, we invoke the recently
obtained [4] DI bounds of the CHSH value between Alice and
Bob1 and between Alice and Bob2. Then we proceed to the
certification of the degree of incompatibility of three POVMs.

A. DI sequential certification of the degree
of incompatibility of two POVMs

Following [60,74], where qubit observables were assumed,
we define the degree of incompatibility between two di-
chotomic observables in arbitrary dimensions

D(B1, B2) = ‖B1 + B2‖ + ‖B1 − B2‖ − 2. (63)

All compatible observables obey D(B1, B2) � 0, whereas B0

and B1 are incompatible, if 0 < D(B1, B2) � (2
√

2 − 2).
Now considering the CHSH functional [3]

C = A1 ⊗ (B1 + B2) + A2 ⊗ (B1 − B2) (64)

and employing the SOS method introduced in [35], the opti-
mal CHSH value C = Tr[C ρ] also can be expressed as [4]

C � ‖B1 + B2‖ + ‖B1 − B2‖ = D(B1, B2) + 2. (65)

Therefore, B1 and B2 will be incompatible if and only if
D(B1, B2) � C − 2 > 0.
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In the sequential scenario, the degree of incompatibility of
Bob1’s observables is given by

D
(
B1

1, B1
2

)
� C1

η1
− 2 (66)

Then the measurements of B1
1 and B1

2 will be incompatible if
and only if C1 > 2, which in turn fixes the lower bound of η1,
i.e., 1√

2
< η1 � 1.

The CHSH value between Alice and Bob2 is evaluated as
(see Sec. 3 of [4])

C2 � 1

2

(
1 +

√
1 − η2

1

)[∥∥B2
1 + B2

2

∥∥+ ∥∥B2
1 − B2

2

∥∥]
= 1

2

(
1 +

√
1 − η2

1

)[
D
(
B2

1, B2
2

)+ 2
]
. (67)

Thus, the degree of incompatibility of Bob2’s observables is
given by

D
(
B2

1, B2
2

)
� 2C2

1 +
√

1 − η2
1

− 2 (68)

and B2
1 and B2

2 will be incompatible if and only if C2 > 2.
This in turn fixes the upper bound of η1, i.e., 0 � η1 <√

2(
√

2 − 1).
Now, to obtain simultaneous CHSH violations between

Alice and Bob1 and between Alice and Bob2, the degree of
incompatibility must be greater than zero, i.e., D(B1

1, B1
2) > 0

and D(B2
1, B2

2) > 0. These conditions then fix both the upper
and lower bounds of Bob1’s unsharp parameter η1, given by

1√
2

< η1 <

√
2(

√
2 − 1). (69)

From Eqs. (66) and (68) we obtain the trade-off between the
degree of incompatibility of Bob1’s and Bob2’s observables.
Note that with increasing values of η1, while the incompati-
bility of Bob1’s observables decreases, the incompatibility of
Bob2’s observable increases up to a certain upper bound of

(η1)max =
√

2(
√

2 − 1).

B. DI sequential certification of the degree
of incompatibility of three POVMs

The degree of incompatibility between any three di-
chotomic observables is defined as [60]

D(B1, B2, B3)

= ‖B1 + B2 + B3‖ + ‖B1 − B2 + B3‖
+ ‖B1 + B2 − B3‖ + ‖ − B1 + B2 + B3‖ − 4, (70)

where B1, B2, and B3 are incompatible if and only if 0 <

D(B1, B2, B3) � 4(
√

3 − 1). The maximum incompatibility
bound is saturated if {Bi, Bj}i �= j = 0.

However, if we choose B1, B2, and B3 in such a way that
they satisfy B1 + B2 + B3 = 0 (trine-spin observables), then

the degree of incompatibility can be defined as

DT (B1, B2, B3) = ‖B1 − B2 + B3‖ + ‖B1 + B2 − B3‖
+‖ − B1 + B2 + B3‖ − 4. (71)

Note that for the case of trine observables, the maximum
value of the right-hand side of Eq. (71) is 2 (see Sec. III).
Thus, B1, B2, and B3 are incompatible if and only if 0 <

DT (B1, B2, B3) � 2. The maximum incompatibility bound is
saturated if {Bi, Bj}i �= j = −1.

In order to witness sequential quantum violations, all Bobs
must perform a smeared version of a projective measurement,
known as unsharp measurement, characterized by the unbi-
ased POVM. Unbiased POVMs are defined by By ≡ {1±ηBy

2 }.
Consequently, the degree of incompatibility is determined by
the unsharpness parameter η. For three anticommuting qubit
observables By, the B′

y are jointly measurable or compatible
if and only if η � 1√

3
[60]. In addition, it has been demon-

strated that the triplewise joint measurability condition for the
smeared version of trine qubit observables is given by η � 2

3 .
Here we first certify the sequential measurement incompat-

ibility between a specific class of three observables, known
as trine observables, that satisfy

∑
By = 0 ∀ y. Subsequently,

using the sequential scenario considered in [4], we generalize
our treatment of the certification of the degree of incompati-
bility for any set of three unbiased POVMs.

DI sequential certification of the degree
of incompatibility of trine observables

In the sequential scenario, it is evident from Sec. III that
the degree of incompatibility of Bob1’s observables is given
by

DT
(
B1

1, B1
2, B1

3

)
� I 1

η1
− 4. (72)

Thus, B1
1, B1

2, and B1
3 are incompatible if and only if I 1 > 4,

which in turn fixes the lower bound of η1, i.e., 2
3 < η1 � 1.

Reexpressing Eq. (1), we arrive at the Bell value between
Alice and Bob2,

I 2 = η2

3∑
y=1

Tr
(
Ay ⊗ B2

yρ2
)
, (73)

where B2
1 = B2

1 + B2
2 − B2

3, B1
2 = B2

1 − B2
2 + B2

3, and B1
3 =

−B2
1 + B2

2 + B2
3. By employing the SOS method outlined in

Sec. III we obtain

I 2 � η2

3∑
y=1

∥∥B2
y

∥∥
ρ2

. (74)

By evaluating ρ2 from Eq. (24), we derive

I 2 � η2

2

(
1 +

√
1 − η2

1

) 3∑
y=1

∥∥B2
y

∥∥
ρ1

= η2

2

(
1 +

√
1 − η2

1

)[
DT
(
B2

1, B2
2, B2

3

)+ 4
]
. (75)
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Thus, the degree of incompatibility of Bob2’s observables is
deduced as

DT
(
B2

1, B2
2, B2

3

)
� 2I 2

η2
(
1 +

√
1 − η2

1

) − 4. (76)

Hence, it follows from Eq. (76) that Bob2’s observables are
incompatible if and only if I 2 > 4. Subsequently, the upper
bound of η1 is restricted as 0 � η1 < 2

√
2

3 and the lower bound
of η2 is given by 4

3(1+
√

1−η2
1 )

< η2 � 1, which is in conformity

with the bound previously found in Sec. VI. Therefore, the
minimum value of η2 is restricted from the lower bound of η1,
which is 2

3 < η2 � 1.
Note that both Bobs’ observables will be incompatible for

the ranges 2
3 < η1 � 2

√
2

3 and 3 − √
5 < η2 � 1. An inter-

esting point to be emphasized here is that although Bob2’s
observable are incompatible for η2 > 2

3 , in the sequential na-
ture of the experiment, they become compatible in the range
2
3 < η2 < 3 − √

5. Hence, in the sequential scenario, there ex-
ists a trade-off between the degree of incompatibility between
Bob1’s and Bob2’s observables.

Similarly, we analyze the sequential degree of incompati-
bility of Bob3’s observables. For this, we write the Bell value
between Alice and Bob3 as

I 3 = η3

3∑
y=1

Tr
(
Ay ⊗ B3

yρ3
)

� η3

3∑
y=1

∥∥B3
y

∥∥
ρ3

� η3

4

(
1 +

√
1 − η2

1

)(
1 +

√
1 − η2

2

)∥∥B3
y

∥∥
ρ1

= η3

4

(
1 +

√
1 − η2

1

)(
1+
√

1 − η2
2

)[
DT
(
B3

1, B3
2, B3

3

)+ 4
]
.

(77)

Therefore, the degree of incompatibility of Bob3’s observ-
ables is given by

DT
(
B3

1, B3
2, B3

3

)
� 4I 3

η3
(
1 +

√
1 − η2

1

)(
1 +

√
1 − η2

2

) − 4.

(78)

Bob3’s observables are incompatible if and only if I 3 > 4,
which fixes the lower bound of η3 and the upper bounds of
η1 and η2. It then straightforwardly follows that, in order to
ensure all three sequential Bobs’ observables are incompat-
ible, i.e., {DT (Bk

1, Bk
2, Bk

3)} > 0 ∀ k ∈ {1, 2, 3}, the relations
between three unsharpness parameters are reproduced as
given by Eqs. (57)–(59).

Notably, three sequential Bobs have the same degree
of incompatibility for the following values of unsharpness
parameters:

η1 = 4η3
(
4 + η2

3

)
16 + 12η2

3 + η4
3

, η2 = 4η3

4 + η2
3

,

×1

2
(3 +

√
5 −

√
6
√

5 − 2) � η3 � 1. (79)

FIG. 3. Graph illustrating the trade-off between the degree of
incompatibilities of three Bobs with respect to η1 and η2. Here we
take η3 = 1. The yellow-, blue-, and green-colored planes in the
three-dimensional plot illustrate variations of the degree of incompat-
ibility of Bob1, Bob2, and Bob3, respectively. The black point on the
three-dimensional graph signifies a particular point where the degree
of incompatibility of the three Bobs is the same.

Under such a set of conditions on unsharpness parameters,
Bell values between Alice and Bob1, Alice and Bob2, and
Alice and Bob3 are identical, given by I k = 24η3(4+η2

3 )
16+12η2

3+η4
3
∀ k ∈

{1, 2, 3}. This is anticipated because incompatibility implies
the Bell violation. If we take η3 = 1, then the values of η1

and η2 are η1 = 20
29 and η2 = 4

5 , leading to DT (Bk
1, Bk

2, Bk
3) =

29I k

20 − 4 ∀ k ∈ {1, 2, 3}. Therefore, it is evident that the same
degree of incompatibility implies identical Bell values for
Alice and Bob1, Alice and Bob2, and Alice and Bob3. If
we choose a specific Bell value, such as I k = 120

29 ≈ 4.14,
the degree of incompatibility becomes 2, signifying that the
optimal Bell value corresponds to the maximum degree of in-
compatibility. The variations between the three Bobs’ degrees
of incompatibility are illustrated in Fig. 3.

VIII. CONCLUSION

The present study has explored the self-testing of noisy
quantum instruments based on the preparation contextual
quantum correlations. For this purpose, we employed a spe-
cific Bell inequality wherein two spacelike separated parties
Alice and Bob perform three measurements each. A notable
aspect of such an inequality is its preparation noncontextual
bound of 4, which is less than the local bound of 5. Conse-
quently, this offers an advantage in exploiting nonclassicality
within a quantum correlation. Using an elegant SOS approach,
we derived the optimal quantum violation of this inequality
to be 6 devoid of assuming the dimension of the quantum
system. Subsequently, based on this optimal bound, the con-
ditions for both party’s observables have been established. In
particular, the optimal quantum violation self-tests that Al-
ice’s and Bob’s observables must satisfy the conditions A1 +
A2 + A3 = 0 and B1 + B2 + B3 = 0, respectively. This in turn
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provides 〈{Ai, Aj}i �= j〉 = 〈{Bi, Bj}i �= j〉 = −1 ∀ i, j ∈ {1, 2, 3}.
This particular class of observables is called trine observables
if an analogy is drawn with a qubit system. Furthermore, we
derived that the shared state must be a maximally entangled
state in any dimension.

We provided the self-testing of unsharp quantum instru-
ments based on the suboptimal sequential quantum violations
of the Bell inequality. We explicitly demonstrated that at
most three sequential Bobs can violate the preparation non-
contextuality inequality. As mentioned, the standard Bell test
is incapable of self-testing the unsharpness parameter as the
effect of the unsharp measurements is reflected in the post-
measurement states. Since the suboptimal quantum violations
may originate from many different sources, the self-testing
of an unsharp quantum instrument inevitably requires the
simultaneous DI certification of the state, measurement, and
unsharpness parameter. We showed that the suboptimal quan-
tum violations of Alice and Bob1, Alice and Bob2, and Alice
and Bob3 form an optimal tuple leading to a trade-off relation-
ship among three sequential violations (illustrated in Fig. 2)
and enabling the self-testing of the unsharpness parameters
of Bob1 and Bob2. This in turn self-tests that the shared state
between Alice and Bob1 must be maximally entangled and
all observables of Alice and the three sequential Bobs must
satisfy the conditions of trine observables.

Further, we have provided a robust self-testing in a practi-
cal experimental scenario involving noise and imperfections.
Due to the presence of noise, one may obtain lower values
than the predicted suboptimal quantum values of the Bell
functional. We demonstrated that in such a case only specific
ranges of unsharp parameters can be self-tested, which in turn
demonstrates the noise robustness of our protocol.

Finally, by noting that incompatible measurements are
necessary for demonstrating preparation contextual quantum
correlations [29,30], we investigated the quantification of
sequential Bob’s degree of incompatibility. Specifically, we

introduced an expression for the degree of incompatibility of
a trine class of observables. We then evaluated the lower and
upper bounds to demonstrate the extent to which the degree of
incompatibility affects the bounds of unsharp parameters. The
dependence of the degree of incompatibility on unsharp pa-
rameters was presented in Fig. 3. This dimension-independent
analysis is a significant advancement over prior works and cre-
ates possibilities for comprehending the intricate relationships
governing quantum correlations.

We remark here that a suboptimal quantum violation of
a Bell inequality can occur if the state is not maximally en-
tangled or if both parties’ respective measurement operators
are not sharp projective measurements. In our present work
we have certified the unsharp parameter by introducing the
noise to the measurement. On the other hand, recent studies
[76,77] have demonstrated to what extent a maximally entan-
gled state can be self-tested from the quantum violation of
CHSH inequality in the presence of noise in the shared state.
While our approach does not consider noise in the state, as
suboptimal sequential violation requires the initial state to be
maximally entangled, the works of [76,77] did not consider
the noise in the measurement procedure. Thus, extending our
dimension-independent framework, it would be worthwhile to
investigate the extent to which one can certify a noisy quantum
instrument if a noisy channel affects the initial bipartite state.

ACKNOWLEDGMENTS

R.P. acknowledges financial support from the Coun-
cil of Scientific and Industrial Research [Grant No.
09/1001(12429)/2021-EMR-I], Government of India. S.S.
acknowledges support from the National Natural Science
Fund of China (Grant No. G0512250610191) and from
Project DST/ICPS/QuST/Theme No. 1/Q42, Government of
India. A.K.P. acknowledges support from Research Grant No.
SERB/CRG/2021/004258, Government of India.

APPENDIX A: DERIVATION OF EXPRESSIONS OF Ci ⊗ Ci AND PROOFS
OF [Ci ⊗ Ci,Cj ⊗ Cj]i �= j = 0, Tr[Ciρ] = 1, AND Tr[(Ai ⊗ Bi )ρ] = 1

Here Tr[(Ai ⊗ Bi )ρ] = 1 implies ρ is a pure state. Hence, we rewrite the optimality condition in terms of a pure state |ψ〉 as

Ai ⊗ Bi |ψ〉 = |ψ〉 ∀ i ∈ {1, 2, 3}. (A1)

Now, for i = 1, from Eq. (A1) we obtain the following set of relations:

A2A1 ⊗ B2B1 |ψ〉 = A2 ⊗ B2 |ψ〉 [multiplying A2 ⊗ B2 from the left by Eq. (A1)], (A2)

A3A1 ⊗ B3B1 |ψ〉 = A3 ⊗ B3 |ψ〉 [multiplying A3 ⊗ B3 from the left by Eq. (A1)], (A3)

A3A1 ⊗ B2B1 |ψ〉 = A3 ⊗ B2 |ψ〉 [multiplying A3 ⊗ B2 from the left by Eq. (A1)], (A4)

A2A1 ⊗ B3B1 |ψ〉 = A2 ⊗ B3 |ψ〉 [multiplying A2 ⊗ B3 from the left by Eq. (A1)]. (A5)

First, we consider C1 ⊗ C1 = A1 ⊗ B1, thus implying Tr[C1 ⊗ C1ρ] = 1. Next, for i = 2 and i = 3, from Eq. (A1) we obtain
another set of relations

A2 ⊗ B3 |ψ〉 = 1 ⊗ B3B2 |ψ〉 [multiplying 1 ⊗ B3B2 from the left by Eq. (A1)], (A6)

A3 ⊗ B2 |ψ〉 = 1 ⊗ B2B3 |ψ〉 [multiplying 1 ⊗ B2B3 from the left by Eq. (A1)]. (A7)

012444-12



SELF-TESTING OF MULTIPLE UNSHARPNESS … PHYSICAL REVIEW A 110, 012444 (2024)

Adding A2 ⊗ B2 |ψ〉 = |ψ〉 with A3 ⊗ B3 |ψ〉 = |ψ〉 and subtracting with Eqs. (A6) and (A7), we get

(A2 ⊗ B2 + A3 ⊗ B3 − A2 ⊗ B3 − A3 ⊗ B2) |ψ〉 = (21 ⊗ 1 − 1 ⊗ {B2, B3}) |ψ〉 ,

1

3
(A2 ⊗ B2 + A3 ⊗ B3 − A2 ⊗ B3 − A3 ⊗ B2) |ψ〉 = |ψ〉 for 〈{B2, B3}〉ρ = −1, (A8)

Tr

[
1

3
(A2 ⊗ B2 + A3 ⊗ B3 − A2 ⊗ B3 − A3 ⊗ B2)ρ

]
= 1. (A9)

Next, taking C2 ⊗ C2 = 1
3 (A2 ⊗ B2 + A3 ⊗ B3 − A2 ⊗ B3 − A3 ⊗ B2), Eq. (A9) simplifies to Tr[C2 ⊗ C2ρ] = 1. Finally,

adding Eqs. (A2) and (A3) as well as subtracting Eqs. (A4) and (A5), we derive

(A2A1 ⊗ B2B1 + A3A1 ⊗ B3B1 − A3A1 ⊗ B2B1 − A2A1 ⊗ B3B1) |ψ〉 = (A2 ⊗ B2+A3 ⊗ B3 − A2 ⊗ B3−A3 ⊗ B2) |ψ〉 ,

(A2A1 ⊗ B2B1 + A3A1 ⊗ B3B1 − A3A1 ⊗ B2B1 − A2A1 ⊗ B3B1) |ψ〉 = 3 |ψ〉 [from (A8)],

Tr

[
1

3
(A2A1 ⊗ B2B1 + A3A1 ⊗ B3B1 − A3A1 ⊗ B2B1 − A2A1 ⊗ B3B1)

]
= 1. (A10)

We choose C3 ⊗ C3 = 1
3 (A2A1 ⊗ B2B1 + A3A1 ⊗ B3B1 − A3A1 ⊗ B2B1 − A2A1 ⊗ B3B1); consequently, Tr[C3 ⊗ C3ρ] = 1.

It is straightforward to obtain that C3 ⊗ C3 = (C2 ⊗ C2)(C1 ⊗ C1). In the following we show that, for [Ci ⊗ Ci,Cj ⊗ Cj]i �= j =
0 ∀ i, j ∈ {1, 2, 3},

[C1 ⊗ C1,C3 ⊗ C3] = 1

3
[A1 ⊗ B1, (A2A1 ⊗ B2B1 − A2A1 ⊗ B3B1 − A3A1 ⊗ B2B1 + A3A1 ⊗ B3B1)]

= 1

3
[(A1 ⊗ B1)(A2A1 ⊗ B2B1 − A2A1 ⊗ B3B1 − A3A1 ⊗ B2B1 + A3A1 ⊗ B3B1)

−(A2A1 ⊗ B2B1 − A2A1 ⊗ B3B1 − A3A1 ⊗ B2B1 + A3A1 ⊗ B3B1)(A1 ⊗ B1)]

= 1

3
(A2 ⊗ B2 + A3 ⊗ B3 − A3 ⊗ B2 − A2 ⊗ B3 − A2 ⊗ B2 − A3 ⊗ B3 + A3 ⊗ B2 + A2 ⊗ B3) = 0.

(A11)

Here, in order to get the third line from the second line, we invoke the relations A1 + A2 + A3 = B1 + B2 + B3 = 0 and
〈{Ai,A j}i �= j〉 = 〈{Bi, Bj}i �= j〉 = −1:

[C1 ⊗ C1,C2 ⊗ C2] =
[
A1 ⊗ B1,

1

3
(A2 ⊗ B2 + A3 ⊗ B3 − A3 ⊗ B2 − A2 ⊗ B3)

]

= 1

3
[(A1A2 ⊗ B1B2 + A1A3 ⊗ B1B3 − A1A3 ⊗ B1B2 − A1A2 ⊗ B1B3) − (A1A2 ⊗ B1B2

+1 ⊗ 1 + 1 ⊗ B1B2 + A1A2 ⊗ 1 + A1A3 ⊗ B1B3 + 1 ⊗ 1 + A1A3 ⊗ 1 + 1 ⊗ B1B3 − A1A3 ⊗ B1B2

−1 ⊗ 1 − 1 ⊗ B1B2 − A1A3 ⊗ 1 − A1A2 ⊗ B1B3 − 1 ⊗ 1 − 1 ⊗ B1B3 − A1A2 ⊗ 1)] = 0. (A12)

Therefore, from Eqs. (A11) and (A12) and given the condition C3 ⊗ C3 = (C2 ⊗ C2)(C1 ⊗ C1), it follows that [C2 ⊗ C2,C3 ⊗
C3] = 0. Furthermore, [Ci ⊗ Ci,Cj ⊗ Cj]i �= j = 0 implies Tr[Ci ⊗ Ciρ] = Tr[Cj ⊗ Cjρ] = 1.

Next, with such a construction of Ci ⊗ Ci as a function of Ay ⊗ By, we demonstrate that the optimal conditions of Alice’s and
Bob’s observables can be recovered. Let us first recall the expression of the bipartite state ρ from Eq. (19),

ρ = 1

d2

⎛
⎝1d ⊗ 1d + C1 ⊗ C1 + C2 ⊗ C2 + C3 ⊗ C3 +

d2−1∑
i=4

Ci ⊗ Ci

⎞
⎠. (A13)

Now, in order to proof the relation Tr[Ay ⊗ Byρ] = 1, we need some additional conditions on Ay and By. At the optimal
condition, these relations are {Ai,A j}i �= j = {Bi, Bj}i �= j = −1d , which directly implies Tr[BiBj]ı �= j = Tr[AiA j]i �= j = − d

2 and

Tr[
∑d2−1

i=4 A jCi ⊗ BjCi] = 0 ∀ j = 1, 2, 3:

Tr[(A1 ⊗ B1)ρ] = 1

d2
Tr

[
A1 ⊗ B1 + 1d ⊗ 1d + 1

3
(A2 ⊗ B2 + A3 ⊗ B3 − A3 ⊗ B2 − A2 ⊗ B3

+A1A2 ⊗ B1B2)

]
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+ 1

d2
Tr

⎛
⎝1

3
(A1A3 ⊗ B1B3 − A1A3 ⊗ B1B2 − A1A2 ⊗ B1B3) +

d2−1∑
i=4

A1Ci ⊗ B1Ci

⎞
⎠

= 1

d2
Tr[1d ⊗ 1d ] + 1

3d2

(
d2

4
− d2

4
− d2

4
+ d2

4

)
= 1

d2
Tr[1d ⊗ 1d ] = 1, (A14)

Tr[(A2 ⊗ B2)ρ] = 1

d2
Tr

[
A2 ⊗ B2 + A2A1 ⊗ B2B1 + 1

3
(1d ⊗ 1d + A2A3 ⊗ B2B3 − A2A3 ⊗ 1d − 1d ⊗ B2B3 + A1 ⊗ B1)

]

− 1

d2
Tr

(
1

3
(A1 ⊗ B2B3B1 − A2A3A1 ⊗ B1 + A2A3A1 ⊗ B2B3B1) +

d2−1∑
i=4

A2Ci ⊗ B2Ci

)

= 1

d2

(
d2

4
+ 3 d2

4

)
Tr[1d ⊗ 1d ] = 1

d2
Tr[1d ⊗ 1d ] = 1, (A15)

Tr[(A3 ⊗ B3)ρ] = 1

d2
Tr

[
A3 ⊗ B3 + A3A1 ⊗ B3B1 + 1

3
(1d ⊗ 1d + A3A2 ⊗ B3B2 − A3A2 ⊗ 1d − 1d ⊗ B3B2 + A1 ⊗ B1)

]

− 1

d2
Tr

(
1

3
(A1 ⊗ B3B2B1 − A3A2A1 ⊗ B1 + A3A2A1 ⊗ B3B2B1) +

d2−1∑
i=4

A3Ci ⊗ B3Ci

)

= 1

d2

(
d2

4
+ 3 d2

4

)
Tr[1d ⊗ 1d ] = 1

d2
Tr[1d ⊗ 1d ] = 1. (A16)

APPENDIX B: EVALUATION OF THE BELL VALUE BETWEEN ALICE AND BOBk

The reduced state after the (k − 1)th Bob’s measurement is evaluated as

ρk = 1 + ξk−1

2
ρk−1 + 1 − ξk−1

6

3∑
y=1

(
1 ⊗ Bk−1

y

)
ρ1
(
1 ⊗ Bk−1

y

)
. (B1)

Now the Bell value between Alice and Bobk is given by

I k = Tr[Iρk] = ηkTr
{[

(A1 + A2 − A3) ⊗ Bk
1 + (A1 − A2 + A3) ⊗ Bk

2 + (−A1 + A2 + A3) ⊗ Bk
3

]
ρk
}

= ηk

3∑
y=1

ωyTr
(
Ay ⊗ Bk

yρk
)

[from Eq. (10)]

= ηk
1 + ξk−1

2

3∑
y=1

ωyTr
(
Ay ⊗ Bk

yρk−1
)+ ηk

1 − ξk−1

6

3∑
y=1

ωyTr

⎡
⎣Ay ⊗

⎛
⎝ 3∑

y′=1

Bk−1
y′ Bk

yBk−1
y′

⎞
⎠ρk−1

⎤
⎦

= ηk

3∑
y=1

ωyTr
(
Ay ⊗ B̃k

yρk−1
)

with B̃k
y = 1 + ξk−1

2
Bk

y + 1 − ξk−1

6

3∑
y′=1

Bk−1
y′ Bk

yBk−1
y′ ∀ y ∈ {1, 2, 3}. (B2)

APPENDIX C: PROOF OF EQS. (34) AND (35)

The condition B̃2
1 + B̃2

2 + B̃2
3 = 0 implies

1 + ξ1

4

(
B2

1 + B2
2 + B3

3

)+ 1 − ξ1

6

3∑
y,y′=1

B1
y′B2

yB1
y′ = 0 [from Eq. (B2)]. (C1)

Since B2
y and B1

i B2
yB1

i are independent of the quantity ξ1, the left-hand side of Eq. (C1) can be made zero by ensuring that both
of the coefficient of ξ1 and ξ 0

1 are simultaneously zero. This leads to the conditions

B2
1 + B2

2 + B3
3 = 2

3

3∑
y,y′=1

B1
y′B2

yB1
y′ , B2

1 + B2
2 + B3

3 = −2

3

3∑
y,y′=1

B1
y′B2

yB1
y′ . (C2)
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Therefore, Eq. (C2) implies

B2
1 + B2

2 + B3
3 = 0,

3∑
y,y′=1

B1
y′B2

yB1
y′ = 0. (C3)

It is then evident that B2
1 + B2

2 + B2
3 = 0 implies 〈{B2

i , B2
j }i �= j〉ρ1 = −1.

APPENDIX D: PROOF OF EQ. (36)

The maximization condition ω̃2
1 = ω̃2

2 results in ‖B̃2
1‖ρ1 = ‖B̃2

2‖ρ1 , implying Tr[B̃2†
1B̃2

1ρ1] = Tr[B̃2†
2B̃2

2ρ1]. Recalling the
quantities B̃2

y from Eq. (B2), we infer

2∑
y=1

(−1)1+y

(
6
(
1 − ξ 2

1

)〈{
B2

y ,

3∑
y′=1

B1
y′B2

yB1
y′

}〉
ρ1

+ (1 − ξ1)2

〈{
3∑

y′=1

B1
y′B2

yB1
y′ ,

3∑
y′=1

B1
y′B2

yB1
y′

}〉
ρ1

)
= 0. (D1)

Now comparing the coefficients of ξ1 from both sides of Eq. (D1), we get〈{
3∑

y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

1B1
y′

}〉
ρ1

=
〈{

3∑
y′=1

B1
y′B2

2B1
y′ ,

3∑
y′=1

B1
y′B2

2B1
y′

}〉
ρ1

. (D2)

At the maximization condition of I 2 as stated in Theorem 1, we have ω̃2
i = ω̃2

j and B̃2
1 + B̃2

2 + B̃2
3 = 0. This condition satisfies

〈{ B̃2
i

ω̃2
i
,

B̃2
j

ω̃2
j
}i �= j〉ρ1 = −1, given that B̃2

i and B̃2
j are not normalized. Hence, we express

〈{
B̃2

i , B̃2
j

}
i �= j

〉
ρ1

= −∥∥B̃2
i

∥∥2 = −∥∥B̃2
j

∥∥2
. (D3)

Taking 〈{B̃2
1, B̃2

2}〉ρ1 = −‖B̃2
1‖2, we obtain

1 − ξ 2
1

12

〈{
B2

1,

3∑
y′=1

B1
y′
(
B2

1 + B2
2

)
B1

y′

}
+
{

B2
2,

3∑
y′=1

B1
y′B2

1B1
y′

}〉
ρ1

+ (1 − ξ1)2

36

〈{
3∑

y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

2B1
y′

}

+
{

3∑
y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

1B1
y′

}〉
ρ1

= 0. (D4)

In Eq. (D4), B2
1, B2

2, and B2
3 are independent of (ξ1)0, (ξ1)1, and (ξ1)2. Therefore, the coefficients of (ξ1)0, (ξ1)1, and (ξ1)2 must

all be zero. The coefficient ξ1 = 0 implies〈{
3∑

y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

2B1
y′

}
+
{

3∑
y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

1B1
y′

}〉
ρ1

= 0. (D5)

The expression can be rewritten as〈{
3∑

y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′ (B2

1 + B2
2)B1

y′

}〉
ρ1

=
〈{

3∑
y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

3B1
y′

}〉
ρ1

= 0. (D6)

Likewise, by using 〈{B̃2
1, B̃2

2}〉ρ1 = −‖B̃2
2‖2, we find〈{

3∑
y′=1

B1
y′B2

2B1
y′ ,

3∑
y′=1

B1
y′B2

3B1
y′

}〉
ρ1

= 0. (D7)

From other pairs of B̃2
1 and B̃2

3 and of B̃2
2 and B̃2

3 we obtain〈{
3∑

y′=1

B1
y′B2

2B1
y′ ,

3∑
y′=1

B1
y′B2

3B1
y′

}〉
ρ1

=
〈{

3∑
y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

3B1
y′

}〉
ρ1

=
〈{

3∑
y′=1

B1
y′B2

1B1
y′ ,

3∑
y′=1

B1
y′B2

2B1
y′

}〉
ρ1

= 0. (D8)

With the help Eq. (D8) and subsequently squaring Eq. (C2), we arrive at⎛
⎝ 3∑

y′=1

B1
y′B2

1B1
y′

⎞
⎠

2

+
⎛
⎝ 3∑

y′=1

B1
y′B2

2B1
y′

⎞
⎠

2

+
⎛
⎝ 3∑

y′=1

B1
y′B2

3B1
y′

⎞
⎠

2

= 0. (D9)
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From Eq. (D2) it follows that ⎛
⎝ 3∑

y′=1

B1
y′B2

1B1
y′

⎞
⎠

2

=
⎛
⎝ 3∑

y′=1

B1
y′B2

2B1
y′

⎞
⎠

2

=
⎛
⎝ 3∑

y′=1

B1
y′B2

3B1
y′

⎞
⎠

2

. (D10)

Hence, combining Eqs. (D9) and (D10), we obtain⎛
⎝ 3∑

y′=1

B1
y′B2

1B1
y′

⎞
⎠

2

=
⎛
⎝ 3∑

y′=1

B1
y′B2

2B1
y′

⎞
⎠

2

=
⎛
⎝ 3∑

y′=1

B1
y′B2

3B1
y′

⎞
⎠

2

= 0. (D11)

Finally, from Eqs. (D2) and Eq. (D11) we deduce

3∑
y′=1

B1
y′B2

1B1
y′ =

3∑
y′=1

B1
y′B2

2B1
y′ =

3∑
y′=1

B1
y′B2

3B1
y′ = 0. (D12)

APPENDIX E: PROOF OF EQS. (46) AND (47)

The maximization of I 3 needs
∑3

y=1 B̃3
y = 0 to be satisfied. This in turn gives the relationship [refer to Eq. (42)]

3∑
y=1

[(
B3

y

4
+

3∑
y′=1

B1
y′B3

yB1
y′

6
+

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

36

)
+ (ξ1 + ξ2)

(
B3

y

4
−

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

36

)

+ξ1ξ2

(
B3

y

4
+

3∑
y′=1

B1
y′B3

yB1
y′

6
−

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

36

)]
= 0. (E1)

As B3
y , B1

y′B2
yB1

y′ , and B1
y′′B1

y′B3
yB1

y′B1
y′′ are independent of the quantities ξ1, ξ2, and ξ1ξ2, the coefficients of ξ1, ξ2, ξ1ξ2, and (ξ1ξ2)0

must be zero. This leads to the relations

3∑
y=1

⎛
⎝B3

y

4
+

3∑
y′=1

B1
y′B3

yB1
y′

6
+

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

36

⎞
⎠ = 0, (E2)

3∑
y=1

⎛
⎝B3

y

4
−

3∑
y′=1

B1
y′B3

yB1
y′

6
+

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

36

⎞
⎠ = 0, (E3)

3∑
y=1

⎛
⎝B3

y

4
−

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

36

⎞
⎠ = 0. (E4)

Subtracting and adding Eqs. (E2) and (E3), we evaluate the conditions

3∑
y,y′=1

B1
y′B3

yB1
y′ = 0, (E5)

3∑
y=1

⎛
⎝B3

y

4
+

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

36

⎞
⎠ = 0. (E6)

Adding and subtracting Eqs. (E4) and (E6) implies

B3
1 + B3

2 + B3
3 = 0, (E7)

3∑
y,y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′ = 0. (E8)

Therefore, it is evident that the condition B3
1 + B3

2 + B3
3 = 0 obtained in Eq. (E7) leads to 〈{B3

i , B3
j}i �= j〉ρ1 = −1.
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APPENDIX F: PROOF OF EQ. (48)

The maximization condition ω̃3
1 = ω̃3

2 implies ‖B̃3
1‖ρ1 = ‖B̃2

2‖ρ1 , which further leads to Tr[B̃2†
1B̃2

1ρ1] = Tr[B̃2†
2B̃2

2ρ1]. Re-
calling the quantities B̃3

y from Eq. (42), we arrive at the expressions

2∑
y=1

(−1)1+y

(
(1 + ξ1)(1 + ξ2)(1 − ξ1ξ2)

24

〈{
B3

y,

3∑
y′=1

B1
y′B3

yB1
y′

}〉
ρ1

+ (1 − ξ 2
1 )(1 − ξ 2

2 )

144

〈{
B3

y,

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

}〉
ρ1

+ (1 − ξ1ξ2)2

36

〈{
3∑

y′=1

B1
y′B3

yB1
y′ ,

3∑
y′=1

B1
y′B3

yB1
y′

}〉
ρ1

+ (1 − ξ1)(1 − ξ2)(1 − ξ1ξ2)

216

〈{
3∑

y′=1

B1
y′B3

yB1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

}〉
ρ1

+ (1 − ξ1)2(1 − ξ2)2

362

〈{
3∑

y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

}〉
ρ1

)
= 0. (F1)

Comparing the coefficient of ξ1 and ξ1(ξ2)2 from both sides of Eq. (F1), we get

2∑
y=1

(−1)1+y

(
27

〈{
B3

y,

3∑
y′=1

B1
y′B3

yB1
y′

}〉
ρ1

− 3

〈{
3∑

y′=1

B1
y′B3

yB1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

}〉
ρ1

)

=
2∑

y=1

(−1)1+y

(〈{
3∑

y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

}〉
ρ1

)
, (F2)

2∑
y=1

(−1)1+y

(
− 27

〈{
B3

y,

3∑
y′=1

B1
y′B3

yB1
y′

}〉
ρ1

+ 3

〈{
3∑

y′=1

B1
y′B3

yB1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

}〉
ρ1

)

=
2∑

y=1

(−1)1+y

(〈{
3∑

y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

}〉
ρ1

)
. (F3)

Adding Eqs. (F2) and (F3), we evaluate〈{
3∑

y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

}〉
ρ1

=
〈{

3∑
y′,y′′=1

B1
y′′B1

y′B3
2B1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
2B1

y′B1
y′′

}〉
ρ1

. (F4)

Now comparing the coefficient of ξ1ξ2 from both sides of Eq. (F1) and using Eq. (F4), it is straightforward to obtain the relation〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′=1

B1
y′B3

1B1
y′

}〉
ρ1

=
〈{

3∑
y′=1

B1
y′B3

2B1
y′ ,

3∑
y′=1

B1
y′B3

2B1
y′

}〉
ρ1

. (F5)

At the maximization condition of I 3 as stated in Theorem 2, we have ω̃3
i = ω̃3

j and B̃3
1 + B̃3

2 + B̃3
3 = 0, which satisfies

〈{ B̃3
i

ω̃3
i
,

B̃3
j

ω̃3
j
}i �= j〉ρ1 = −1 as B̃3

i and B̃3
j are not normalized. Hence, we deduce

〈{
B̃3

i , B̃3
j

}
i �= j

〉
ρ1

= −∥∥B̃3
i

∥∥2 = −∥∥B̃3
j

∥∥2
. (F6)

Taking 〈{B̃3
1, B̃3

2}〉ρ1 = −‖B̃3
1‖2, we derive the equation

(1 + ξ1)(1 + ξ2)(1 − ξ1ξ2)

24

〈{
B3

1,

3∑
y′=1

B1
y′
(
B3

1 + B3
2

)
B1

y′

}
+
{

B3
2,

3∑
y′=1

B1
y′B3

1B1
y′

}〉
ρ1

+
(
1 − ξ 2

1

)(
1 − ξ 2

2

)
144

×
〈{

B3
1,

3∑
y′,y′′=1

B1
y′′B1

y′
(
B3

1 + B3
2

)
B1

y′B1
y′′

}
+
{

B3
2,

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

}〉
ρ1

× + (1 − ξ1ξ2)2

36

〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′=1

B1
y′
(
B3

1 + B3
2

)
B1

y′

}〉
ρ1
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+ (1 − ξ1)(1 − ξ2)(1 − ξ1ξ2)

216

〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′
(
B3

1 + B3
2

)
B1

y′B1
y′′

}
+
{

3∑
y′=1

B1
y′B3

2B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

}〉
ρ1

+ (1 − ξ1)2(1 − ξ2)2

362

〈{
3∑

y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′
(
B3

1 + B3
2

)
B1

y′B1
y′′

}〉
ρ1

= 0. (F7)

As
∑3

y=1 B3
y = 0, we arrive at

(1 + ξ1)(1 + ξ2)(1 − ξ1ξ2)

24

〈{
B3

2,

3∑
y′=1

B1
y′B3

1B1
y′

}
−
{

B3
1,

3∑
y′=1

B1
y′B3

3B1
y′

}〉
ρ1

+
(
1 − ξ 2

1

)(
1 − ξ 2

2

)
144

〈{
B3

2,

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

}

−
{

B3
1,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}〉
ρ1

− (1 − ξ1ξ2)2

36

〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′=1

B1
y′B3

3B1
y′

}〉
ρ1

+ (1 − ξ1)(1 − ξ2)(1 − ξ1ξ2)

216

×
〈{

3∑
y′=1

B1
y′B3

2B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

}
−
{

3∑
y′=1

B1
y′B3

1B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}〉
ρ1

− (1 − ξ1)2(1 − ξ2)2

362

×
〈{

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}〉
ρ1

= 0. (F8)

In Eq. (F7), as B3
1, B3

2, and B3
3 are independent of ξ2, ξ1, ξ1(ξ2)2, and ξ1ξ2, the coefficients of ξ2, ξ1, ξ1(ξ2)2, and ξ1ξ2 must all be

equal to zero. From Eq. (F7) the coefficient of ξ1 = 0 implies

27

〈{
B3

1,

3∑
y′=1

B1
y′B3

3B1
y′

}
−
{

B3
2,

3∑
y′=1

B1
y′B3

1B1
y′

}〉
ρ1

− 3

〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}

−
{

3∑
y′=1

B1
y′B3

2B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

}〉
ρ1

=
〈{

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}〉
ρ1

. (F9)

From Eq. (F7) the coefficient of ξ1(ξ2)2 = 0 implies

−27

〈{
B3

1,

3∑
y′=1

B1
y′B3

3B1
y′

}
−
{

B3
2,

3∑
y′=1

B1
y′B3

1B1
y′

}〉
ρ1

+ 3

〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}

−
{

3∑
y′=1

B1
y′B3

2B1
y′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

}〉
ρ1

=
〈{

3∑
y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}〉
ρ1

. (F10)

Adding Eqs. (F9) and (F10), we derive〈{
3∑

y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

}〉
ρ1

= 0. (F11)

Now, following the similar procedure for obtaining Eq. (F11) and taking into account the other pairs of B3
1 and B3

2, and B3
2 and

B3
2, we arrive at the condition〈{

3∑
y′,y′′=1

B1
y′′B1

y′B3
mB1

y′B1
y′′ ,

3∑
y′,y′′=1

B1
y′′B1

y′B3
nB1

y′B1
y′′

}〉
ρ1

= 0, m �= n, {m, n} ∈ {1, 2, 3}. (F12)

Comparing the coefficients of ξ1ξ2 from Eq. (F7) and putting them into Eq. (F11), we obtain〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′=1

B1
y′
(
B3

1 + B3
2

)
B1

y′

}〉
ρ1

= 0

〈{
3∑

y′=1

B1
y′B3

1B1
y′ ,

3∑
y′=1

B1
y′B3

3B1
y′

}〉
ρ1

= 0. (F13)

Similarly to Eq. (F13), considering other pairs of B3
m and B3

n, we derive〈{
3∑

y′=1

B1
y′B3

mB1
y′ ,

3∑
y′=1

B1
y′B3

nB1
y′

}〉
ρ1

= 0, m �= n, {m, n} ∈ {1, 2, 3}. (F14)
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Using Eq. (F14) and squaring Eq. (E5), we deduce〈(
3∑

y′=1

B1
y′B3

1B1
y′

)2

+
(

3∑
y′=1

B1
y′B3

2B1
y′

)2

+
(

3∑
y′=1

B1
y′B3

3B1
y′

)2〉
ρ1

= 0. (F15)

Now, from Eqs. (F5) and (F15) it is evident that〈(
3∑

y′=1

B1
y′B3

1B1
y′

)2
〉

ρ1

=
〈(

3∑
y′=1

B1
y′B3

2B1
y′

)2〉
ρ1

=
〈(

3∑
y′=1

B1
y′B3

3B1
y′

)2〉
ρ1

. (F16)

Hence, from Eqs. (F15) and (F16) it is straightforward to obtain that〈
3∑

y′=1

B1
y′B2

yB1
y′

〉
ρ1

= 0 ∀ y ∈ {1, 2, 3}. (F17)

With the help of Eq. (F12) and squaring of Eq. (E8), we evaluate〈(
3∑

y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

)2

+
(

3∑
y′,y′′=1

B1
y′′B1

y′B3
2B1

y′B1
y′′

)2

+
(

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

)2〉
ρ1

= 0. (F18)

Next Eqs. (F4) and (F18) lead to the relation〈(
3∑

y′,y′′=1

B1
y′′B1

y′B3
1B1

y′B1
y′′

)2〉
ρ1

=
〈(

3∑
y′,y′′=1

B1
y′′B1

y′B3
2B1

y′B1
y′′

)2〉
ρ1

=
〈(

3∑
y′,y′′=1

B1
y′′B1

y′B3
3B1

y′B1
y′′

)2

)2

〉
ρ1

. (F19)

Finally, from Eqs. (F18) and (F19) we show that〈(
3∑

y′,y′′=1

B1
y′′B1

y′B3
yB1

y′B1
y′′

)〉
ρ1

= 0 ∀ y ∈ {1, 2, 3}. (F20)
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