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The energy extraction from quantum sources is a key task to develop new quantum devices such as quantum
batteries (QB). In this context, one of the main figures of merit is the ergotropy, which measures the maximal
amount of energy (as work) that can be extracted from the quantum source by means of unitary operations. One
of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation
can be done on the system. This assumption, in general, fails in practice since the operations that can be done are
limited and depend on the quantum hardware (experimental platform) one has available. In this work, we propose
an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
In this approach, we explicitly take into account a limited set of unitaries by using the hardware efficient ansatz
(HEA) class of parameterized quantum circuits. As a QB we use an one-dimensional spin chain described by
a family of paradigmatic first neighbor hamiltonians such as the XXX , XXZ , XY Z , XX , XY , and transverse
Ising models. By building our parameterized quantum circuits assuming that different types of connectivity may
be available depending on the quantum hardware, we numerically compare the efficiency of work extraction
for each model. Our results show that the best efficiency is generally obtained with quantum circuits that have
connectivity between first neighbor spins.
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I. INTRODUCTION

The development of new techniques and protocols to effi-
ciently store, transfer, and use energy on demand is arguably
one of the most important goals of human kind currently [1,2].
In the last decades, the emergent field of quantum informa-
tion and quantum thermodynamics allowed us to explore how
intrinsic quantum phenomena can impact the energetics of
quantum systems [3–8]. In this context, Alick and Fannes
proposed [9] a device termed the quantum battery (QB), in
which they sought to explore how nonclassical features such
as entanglement and coherence could be used as resources to
efficiently extract work from an ensemble of quantum sys-
tems. After this seminal work, QBs have been extensively
explored with the perspective that these resources could be
used to achieve better performance than their classical coun-
terparts [10–15]. For instance, a very promising property that
arose from QBs composed by multiple quantum systems is
the possibility to have a superextensive power charging scal-
ing, which means that charging power grows faster than the
number of systems in the QB [16].

When dealing with QBs, one of the central figures of
merit is the ergotropy [9,17–19]. The ergotropy quantifies
the maximum work that can be extracted by means of uni-
tary operations, i.e., without changing the QB’s entropy [19].
Naturally, the ergotropy depends on the quantum state of the
QB (or quantum source) and on its Hamiltonian. In the last
years, much effort has been made to find optimal processes to
charge and discharge the QB in a variety of theoretical models
[20–31]. This includes, for example, proposes of many-body
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QBs in which their Hamiltonians have interactions between
subsystems and, consequently, could have entangled eingen-
spectrum. Models of this type are known as spin-chain QBs.
The first spin-chain QB model was proposed by Le et al. [32],
where they studied the role of anisotropy in the energetics of
the Heisenberg and Ising spin-chain models. Further works
showed how disorder in the interactions and the dimension-
ality of the spin chain can enhance the performance of the
QB [33,34]. The optimal charging of dissipative spin-chain
batteries was also explored in Ref. [24], where feedback con-
trol techniques were used. Another interesting result regarding
spin-chain models for many-body QBs is that working near
phase transitions points can enhance the extractable energy
and the thermodynamic efficiency [35]. Despite all the the-
oretical results, there are still just a few experimental works
dealing with QBs in general [16,36–39], and even for proof
of principles experiments there are still challenges to over-
come. One of the difficulties is that, in practice, optimizing
the extractable work is a hard task because the unitary trans-
formations that can be done are limited and depend on the
experimental platform. Strategies to optimize the extractable
work in realistic scenarios are open problems. A very recent
review on the advances and the state of art in QBs can be
found in Ref. [40].

At the same time, the growth in complexity of quan-
tum computational tasks to address realistic problems in
noisy intermediate scale quantum (NISQ) devices demands
the development of novel optimization protocols [41]. We
can mention, among others, portfolio optimization [42–45],
quantum machine learning [46–51], and the simulation of
molecules, materials, and other many-body systems [52–55].
A very exciting way to deal with such complex problems
is using variational quantum algorithms (VQA), which have
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proved to be a powerful tool in a multitude of different
contexts [56]. In particular, the VQA named the variational
quantum eigensolver (VQE) [57,58] is specifically designed
to minimize the energy of many-body systems and find the
ground state of their Hamiltonians. Inspired by these remark-
able results, the goal of this work is to propose a VQE-inspired
optimization to address the optimization of the work extrac-
tion from spin-chain QBs. To do this, we choose a broad
family of spin-chain Hamiltonians as a QB. Moreover, we
consider a realistic limited set of quantum operations to per-
form the work extraction and also that we may have different
connectivity depending on the quantum hardware one has
available. With this, we expect that our protocol can be applied
to any experimental platform that is currently available. It is
worthwhile to mention that some recent works used machine
learning techniques to optimize the charging and discharging
processes of quantum batteries [26,59,60]. In particular, in
Ref. [26] a new scheme called variational quantum ergotropy
(VQErgo) was proposed to estimate the ergotropy in quantum
batteries.

This paper is organized as follows. We start by introduc-
ing the main tools of our work in Sec. II. In Sec. II A, we
briefly review the concept of work extraction and ergotropy. In
Sec. II B we introduce the spin-chain Hamiltonians describing
our QB. In Sec. II C we describe the VQE-inspired optimiza-
tion for work extraction. In Sec. III we show our results.
First, we use a specific example with only two qubits and
then we explore the dependence of the work extraction with
the number of qubits and the anisotropies of the Hamiltonian.
Finally, in Sec. IV, we conclude our work and discuss possible
next steps.

II. PRELIMINARIES AND METHODS

A. Work extraction and ergotropy

Given a closed quantum system described by the internal
Hamiltonian H , the amount of extractable work by means of
a reversible coherent operation is given by [9]

W (ρ, H ) = Eρ − Tr{HUρU †}, (1)

where U is a unitary operator and Eρ = Tr{Hρ} is the mean
energy of the arbitrary state ρ. We assume the Hamiltonian
with nondegenerate eigenvalues. In this scenario, the maximal
work that can be extracted from the system is called ergotropy
[9,17–19] and it is obtained by minimizing the second term of
Eq. (1) over all possible unitary operations

E ≡ Wmax(ρ, H ) = Eρ − min
U

Tr{HUρU †}
= Eρ − Tr{Hπρ}, (2)

where πρ is called the passive state associated to ρ. By def-
inition [17], no work can be extracted from a passive state
by means of unitary operations. For the case in which ρ is
a pure state, it is clear that the passive state is the ground
state of the Hamiltonian H . However, for general mixed states,
the passive state depends both on H and the eigenvalues of
ρ [17]. We note from Eq. (2) that, for reach the ergotropy,
it is assumed that any unitary operation can be performed
on the system. This assumption, however, is not usually true
in realistic scenarios where one has a limited control over

TABLE I. Hamiltonian models.

Parameters Models

� = 1, γ = 0 XXX
� �= 0, γ = 0 XXZ
� �= 0, −1 < γ < 1 XY Z
� = 0, γ = 0 XX
� = 0, −1 < γ < 1 XY
� = 0, γ = ±1 Transverse field Ising (TFI)

the systems. For this reason, to find protocols to optimize
the work that can be extracted (or injected) from the system
for different platforms is an interesting and current topic of
research [20–28].

B. Models

In this work, we explore the amount of work that can be
extracted from N-coupled spin-1/2 systems. To attain this
task, we consider that the internal energy of the system is
described by the following family of Hamiltonians (h̄ = 1):

H = − h
N∑

j=1

σ ( j)
z − J

N−1∑
j=1

[
(1 + γ )σ ( j)

x σ ( j+1)
x

+ (1 − γ )σ ( j)
y σ ( j+1)

y + �σ ( j)
z σ ( j+1)

z

]
, (3)

where σ (k)
x , σ (k)

y , and σ (k)
z are the usual Pauli matrices for the

kth spin-1/2 system in the basis {|↑k〉, |↓k〉}. For the sake of
simplicity, from now on we are going to use the term qubits
when referring to the spin-1/2 systems. The parameter J is
the coupling between the qubits while γ and � are constants
that introduce anisotropies in the chain. The h parameter is
an external field which breaks the degeneracy of the energy
levels of the Hamiltonian. By selecting specific parameters γ

and �, the family of Hamiltonians (3) can be divided in the
paradigmatic models described in Table I.

C. VQE-inspired optimization

The VQE optimization consists in two main ingredients.
First, we need a parameterized circuit (ansatz) which imprints
a set of parameters θ = {θ1, θ2, . . . , θ j} on the input state ρ. In
general, the ansatz is expressed as a unitary parameterized op-
eration U (θ). In particular, we are going to use some ansätze
belonging to the class of the hardware efficient ansatz (HEA)
[56,58,61]. The main characteristic of the HEA is that it can be
tailored for a specific quantum device (experimental platform)
in which one wants to run the protocol. In this class of ansätze,
the unitaries are taken from a limited set of gates which are
determined from the native connectivity for the chosen device.
Moreover, in Ref. [62] it was shown that HEA can be used
to tailor more expressive parameterized operations using less
entangling gates, which provides a better efficiency to the
problem of finding ground states of some small molecules.
Adding to that, in Ref. [63] it was shown that HEA can be
used to find ground states of small spin-chain systems with
reasonable accuracy. As discussed in Ref. [58], using HEA in
a VQE optimization process is a very convenient tool to prove
principles when dealing with a small number of quantum
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FIG. 1. Types of ansätze we are using in this work. The graphs represent the connectivity we are considering in each ansatz followed by
the parameterized quantum circuit. The ansätze consist in a layer of local rotations followed by a specific type of connections, which in this
work are built using CNOT gates. Those are examples for four qubits and can be directly generalized for N qubits.

systems. These later results motivate us even more using HEA
in our work since we focus on small controllable chains (up
to eight qubits). For the purposes of this work, we can express
the parameterized unitary U (θ) as

U (θ) =
∏
k, j

�k, j

N∏
m=1

R(m)
y (θm), (4)

where R(m)
y (θm) = e−iθmσ (m)

y is a local rotation of the mth qubit
around the y axis in the Bloch sphere, �k, j = |↑k〉〈↑k| ⊗
σ

( j)
0 + |↓k〉〈↓k| ⊗ σ

( j)
x is a CNOT gate applied to the qubits k

(control) and j (target) and N denotes the number of qubits
considered on the chain. Here, the operations �k, j express
the connectivity of U (θ), i.e., the capability of the ansatz
to generate entanglement between qubits k and j, and the
number of �k, j is specific for each ansatz. In our notation
σ

( j)
0 is the identity operator for the qubit j. The ansätze we are

considering in this work are depicted in Fig. 1. As an example,
we can cast the all-to-all (ata) connection ansatz for N = 4 in
the shape of Eq. (4) as

Uata (θ) =

⎛
⎜⎜⎝

k=3, j=4∏
k=1, j=2

k< j

�k, j

⎞
⎟⎟⎠

T

4∏
m=1

R(m)
y (θm), (5)

where the transpose operation (·)T is taken to maintain the
correct order of the CNOTs application, as shown in Fig. 1.
For the no connections (nc) ansatz only the local rotations
R(m)

y (θm) are performed.
The second ingredient is the definition of a cost (or loss)

function which encodes our problem solution. As we are
interested in the extractable work from the quantum source
defined by the Hamiltonian in Eq. (3) and an input state ρ, we
can naturally define the cost function as

W (θ) = Eρ − Tr{HU (θ)ρU †(θ)}, (6)

where W (θ) is the extractable work in Eq. (1) parameterized
by the ansatz U (θ). Our task now is to optimize W (θ) for a
given ansatz U (θ). The optimization is carried out using the
following steps. We start with a random set of parameters θ

and register the value of W (θ). Then, we apply the gradient
descent method, which consists in updating the set of param-

eters θ using the iterative process

θ j+1 → θ j + k
∂W (θ)

∂θ j
, (7)

where k is the step size taken towards the gradient. The it-
erative process in Eq. (7) is repeated until the cost function
converges. Then, we obtain a set of parameters leading to
W (θopt ) ≡ W , where W is the optimal amount of work that
we can extract from ρ using a given ansatz described by a
parameterized circuit.

III. RESULTS

In what follows, we are going to show our results for
different number of qubits in the chain described by the family
of Hamiltonians in Eq. (3). For all simulations in this work, we
are going to fix the input state as (unless otherwise stated)

ρ =
N⊗

j=1

|↑ j〉〈↑ j |. (8)

This state is a fair assumption to illustrate our results
since it can be prepared in the most of experimental plat-
forms by means of projective measurements and other state
initialization techniques. We can mention, for instance, su-
perconducting qubits hardware in IBM quantum computers
[64,65], where these initial states, Eq. (8), and most of the
ansätze could be implemented. In trapped ions quantum hard-
ware [66], it is also possible to initialize the system in these
states and implement the all-to-all connections, which is the
most complex one [see Fig. 1]. Another platform where ini-
tialization and control techniques to attain the tasks proposed
can be reached is nuclear magnetic resonance (NMR) [38,67].
We also fix the couplings J = −1.0 a.u. and h = 1/2 a.u.,
where a.u. holds for arbitrary units. All of the following sim-
ulations were done using the software MATHEMATICA® with
help of the Melt library [68].

A. Work extraction from two interacting qubits

We start by showing our results for only two qubits (N =
2). This case is illustrative because there are only two pa-
rameters to optimize {θ1, θ2}. Then, the cost function can be
visualized as a three-dimensional (3D) function (cost function
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FIG. 2. Panels (a) and (b) show the convergence of the cost functions given by Eqs. (14) and (15) for two different sets of initial random
parameters {θ1, θ2}. Panels (c) and (d) show the convergence of Eqs. (14) and (15) on average after repeating the optimization process 2000
times with initial parameters chosen randomly in the interval [0, π ]. The red dashed lines depict the standard deviation from the average.

landscape), from which we can grasp some of the main fea-
tures of the VQE-optimization process for work extraction. In
this spirit, we choose the XX model as an example

H = − 1
2

(
σ (1)

z + σ (2)
z

) + (
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

)
, (9)

where the external field parameter is h = 1/2 a.u. This Hamil-
tonian can be diagonalized, from which we can find its
eigenstates

|E0〉 = 1√
2

(|↓↑〉 − |↑↓〉), (10)

|E1〉 = |↓↓〉, (11)

|E2〉 = |↑↑〉, (12)

|E3〉 = 1√
2

(|↓↑〉 + |↑↓〉), (13)

with associated energies {E0, E1, E2, E3} = {−2,−1, 1, 2}
a.u.. As we can see, this model has a Hamiltonian spectrum
with entangled eigenstates. In particular, the ground state is
the singlet state, Eq. (10). For two qubits, there are only two
ansätze available for our protocol: linear connection between
the qubits and no connections (local rotations only). For both
cases, the cost function (6) can be straightforwardly computed
and their analytical expressions are given by

Wnc(θ) = Eρ − cos2(θ1) cos2(θ2) + sin2(θ1) sin2(θ2)

− 4 cos(θ1) cos(θ2) sin(θ1) sin(θ2), (14)

Wlin(θ) = Eρ − [4 cos(θ1) sin(θ1) cos(2θ2)

+ cos2(θ1) sin2(θ2) − sin2(θ1) cos2(θ2)], (15)

where the subscripts are for the no connections case (nc) and
for the linear connection (lin) (see Fig. 1). The input state is
ρ = |E2〉〈E2| which has a mean energy of Eρ = 1.0 a.u. In
this case, the passive state is πρ = |E0〉〈E0|, then the ergotropy
[see Eq. (2)] is readily given by E = 3.0 a.u..

First, let us discuss about the convergence for the different
cost functions given by Eqs. (14) and (15) when running
the optimization process. In Fig. 2 we show the plots for

Eqs. (14) and (15) as a function of the iteration steps. We
start by looking at the performance of the ansatz with no
connections between the qubits. In Fig. 2(a) it is shown two
examples of convergence for Wnc(θ), each one is initialized
with a different set of initial parameters {θ1, θ2}. The ini-
tial parameters are randomly selected in the interval [0, π ].
It is clear that both examples converge for the same value
Wnc ≈ 2.3 a.u., which is far from the ergotropy value of 3.0
a.u. (shown as the black dotted line). However, in Fig. 2(b)
we see that for different initial parameters, the cost function
Wlin(θ) does not always converge to the same value. While
the trajectory described by the yellow solid line reaches the
ergotropy, the blue dashed line reaches a value of Wlin ≈ 2.0
a.u., which is less than the one obtained with the no connec-
tions ansatz. Taking this into account, it is reasonable to look
at the convergence of the cost functions on average. To achieve
this, we repeat the optimization process M times to obtain
the average optimal extractable work 〈W〉. In Figs. 2(c) and
2(d) we show the convergence of the cost functions averaged
over M = 2000 realizations of the optimization process. We
can see that it is possible to extract more work on aver-
age using entangling operations, i.e., 〈W〉lin > 〈W〉nc. This
is somehow expected since the passive state is an entangled
state and the input state [see Eq. (8)] is separable. The same
plots show the standard deviation (red dashed line) as a func-
tion of each iteration step. It is interesting to remark that,
although we can extract more work on average using the
linear ansatz, its dispersion is larger than the ansatz with no
connections, which does not have any dispersion after the
convergence.

To deepen our understanding about the average behavior
of the cost functions, in Fig. 3 we show the cost function
landscape for both ansätze. The vectors within the contour
plots represent the gradient of the cost function. The red lines
track some trajectories of the parameters in the parameter
space during the optimization process. Each trajectory is ob-
tained from a different set of initial random parameters. For
the ansatz with no connections we see that, even though we
have different trajectories, they always converge to the global
maxima of the cost function. This is not the case for the linear
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FIG. 3. Plots of the cost functions landscapes. The red dots track the optimization trajectory ti of the parameters θ1 and θ2. For each ti we
use a different set of random initial parameters. The functions in Eqs. (14) and (15) are periodic presenting multiple global maxima, as we can
see from the landscapes.

connection ansatz. While the trajectories t1 and t4 converge
to the maximum value of the cost function, the trajectories t2
and t3 get stuck in a region of the parameter space where the
gradient is infinitely small (the norm of the gradient vector
is represented by the arrow size). In this case, this region is
due to the occurrence of local maxima in the cost function.
However, as the total dimension increases, it is known that the
HEA can lead to regions with highly dense local maxima and
barren plateaus [58,69–74], which are large regions in the cost
function landscape of parameters where the gradient vanishes.
It is also worth remarking on the fact that the functions given
by Eqs. (14) and (15) have a period π . Then, these functions
present multiple global maxima by periodicity.

B. Work extraction efficiency from N interacting qubits

We shall now present our results for chains up to eight
qubits. It is convenient to define the efficiency of the work
extraction protocol as

η = 〈W〉
E , (16)

which is a dimensionless quantity varying from 0 to 1. This ef-
ficiency quantifies how close we can get to the ergotropy using
a given ansatz. First, we analyze the performance of our proto-
col for the paradigmatic XXX , XX , and TFI models. In Fig. 4,
we show the behavior of η with the number of qubits for each
model using the ansätze described in Fig. 1. An interesting
result is that the ansatz with no connections, i.e., no entan-
gling operations, achieves a high efficiency (more than 0.9)
for the TFI model with γ = 1.0 a.u.. Specifically, for three
and four qubits, an efficiency about η ≈ 0.99 is achieved.
Another interesting result, is that the efficiency obtained using
the one-to-all connections ansatz decreases as the number of

qubits in the chain increases. For more than five qubits, the
efficiency of this ansatz is the worst one for all shown cases.
This may be explained by the fact that the connectivity of
the one-to-all ansatz is incompatible with the structure of the
Hamiltonian, which has couplings between first neighbours
only. Then, one does not expect the ground state (which is
the passive state) to have entanglement between distant qubits
in the chain. This also explains why the linear, ring, and all-
to-all connection ansätze, which have entangling operations
between first neighbors, presented the best efficiencies for
all models. We stress here that the all-to-all ansatz produce
both long-range and first neighbor correlations, in contrast
with the one-to-all ansatz, which only generates long-range
correlations.

Now, let us turn our attention to the TFI model with γ =
−1.0 a.u.. As we can see, its efficiency decays as N increases
for all ansätze, differently from what happens for the TFI
model with γ = 1.0 a.u.. This suggests that the anisotropy
parameter γ plays an important role in the amount of work
that can be extracted given a specific ansatz. Taking this into
account, we analyze the role of the anisotropy by looking
at the efficiency as a function of γ for the models XY and
XY Z , as shown in Fig. 5. For the XY model, we clearly see
that the amount of work that can be extracted from the spin
chain increases as the anisotropy parameter γ varies from
−1.0 a.u. to 1.0 a.u. for all ansätze used. The XY Z model
exhibits a similar result for almost all ansätze. For N = 8,
we see that the efficiency obtained with the all-to-all ansatz
suddenly decreases when compared with its value obtained
for fewer qubits.

Finally, let us discuss about how the work extraction ef-
ficiency behaves as we vary the parameter � for the XXZ
model. In Fig. 6, it is shown the plots for the efficiency as
a function of � for the ansätze in Fig. 1 up to eight qubits.
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FIG. 4. Efficiency η as in Eq. (16) as a function of N for the XXX , XX , and TFI models. Each pattern corresponds to a different ansatz
as depicted in Fig. 1. The plot legends on the top means: no connections (nc), linear connections (lin), ring connections (ring), one-to-all
connections (ota), and all-to-all connections (ata).

From the plots, we can see an interesting behavior. For � <

−0.25 a.u. the no connections ansatz is the best option, and is
able to extract the ergotropy for � = {−1.0,−0.75} a.u. For
� > −0.75 a.u., the entangling ansätze (with the exception
of the one-to-all ansatz) become more efficient than the no
connections ansatz. This suggests a change on the passive
state structure, which probably changes from a separable state
to an entangled one.

IV. CONCLUSION

In this work we proposed a VQE-inspired optimization to
investigate the amount of work that can be extracted from
first neighbor coupled qubits. We compared the efficiency of
work extraction assuming different types of connectivity. Our
simulation results show that the ansätze that generate entan-
glement between first neighbors (i.e., linear, ring and all-to-all
connections) have the best performance while the one-to-all
ansatz has, in general, the worst. This can be explained by
the fact that the connectivity of the one-to-all ansatz is not
compatible with the structure of first neighbor Hamiltonians.
Our results also suggest that using only local rotations can be
a good strategy depending on the connectivity available and
the setup of the QB (Hamiltonian and number of qubits). It is
worthwhile to remark that, although the all-to-all present the

best results, the number of CNOTs in this ansatz scales with
N (N − 1)/2, while for the linear and ring ansätze it scales
with N − 1 and N , respectively. In practice, the all-to-all
ansatz can be problematic depending on the number of qubits
in the QB since CNOT gates are more prone to errors when
compared to local operations.

A natural step for future works would be explore how
long-range interactions in the qubits chain (as, e.g., considered
in Ref. [32]) would affect the efficiency of the VQE-inspired
optimization. In these cases, it is not obvious we will have
the same hierarchy behavior, where the ansätze that have cou-
plings between first neighbours have the best performances.
Considering the effects of disordered spins also would be
interesting. One could also explore how the efficiency of work
extraction would be impacted by increasing the number of
layers used in the ansätze shown in Fig. 1. In Ref. [63], it was
demonstrated that the efficiency in finding ground states of
some spin chains can be improved by considering a number of
layers at least linear in the system size when using HEA-type
structures built with local rotations and CZ gates. Connected
to this later work, our protocol can naturally find applica-
tions for the problem of preparing/finding the ground state of
many-body Hamiltonians. At this point, however, it is worth
remarking that there are limitations when using the HEA class
to solve optimization tasks. Even though it is a good choice

FIG. 5. Efficiency η as in Eq. (16) as a function of the anisotropy parameter γ for the XY (top panel) and XY Z (bottom panel) models
with different number of qubits. The anisotropy parameter γ is varied from −1.0 a.u. to 1.0 a.u. in steps of 0.25 a.u. For the XY Z model we
fixed � = 1.0 a.u. for all plots. Each pattern corresponds to a different ansatz as depicted in Fig. 1. The plot legends on the top means: no
connections (nc), linear connections (lin), ring connections (ring), one-to-all connections (ota), and all-to-all connections (ata).
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FIG. 6. Efficiency η as in Eq. (16) as a function of the parameter � for the XXZ model. The parameter � is varied from −1.0 a.u. to 1.0 a.u.
in steps of 0.25 a.u. Each pattern corresponds to a different ansatz as depicted in Fig. 1. The plot legends on the top means: no connections
(nc), linear connections (lin), ring connections (ring), one-to-all connections (ota), and all-to-all connections (ata).

for proof of principles in small systems as we stated before,
for more complex and large systems such as molecular ones,
the HEA is not expected to be a good option [58]. One of the
issues, is that HEA is very inefficient to span very large Hilbert
spaces, requiring circuits that may have exponential depth.
Due to that, the HEA is very prone to barren plateau problems
[58,69–74]. Nevertheless, finding optimal HEA structures and
develop optimal ansätze targeted to specific complex tasks are
both ongoing topics of research.

It is also important to remark that in this work we fixed
the initial state as Eq. (8). A very exciting next step would
be exploring how the VQE-inspired optimization protocol
performs for different classes of initial states. In tasks such
as energy extraction from QBs or thermal machines, the state
from which energy has to be extracted is dependent on the spe-
cific charging protocol (for QBs) or machine cycle. Moreover,
the preparation of the initial state to obtain better results when
optimizing a certain task using some VQA is a currently topic
of research which, to the best of our knowledge, has not been
universally addressed. Furthermore, the amount of resources
to prepare arbitrary states as the number of qubits grown it
is not a trivial issue to address. For instance, an interesting
discussion about the electrical energy cost of arbitrary state
preparation in the context of photonic integrated circuits is
provided in Ref. [75]. With the protocol we presented in this
work, we expect to shed some light in these tasks since it
can be applied to any initial state when treating a specific
protocol.

Finally, we would like to mention that recently a variational
algorithm to estimate the ergotropy from quantum many-body

batteries was proposed in Ref. [26]. In this work the authors
developed an algorithm, called variational quantum ergotropy
(VQErgo), to find the optimal unitary for the work extraction
from the QB. In their work, the QB is modelled by the internal
local Hamiltonian H = −h

∑
j σ

( j)
z and subjected to a drive

which induces a tranverse Ising coupling used to charge or
discharge the QB. Although similar in spirit, it is a very
different approach from ours. First, we considered our QB to
be encoded in a spin-chain Hamiltonian. Second, our ansätze
were built taking into account the connectivity that may be
available for different quantum platforms. That being said,
we truly believe that both approaches give important contribu-
tions to the areas of quantum thermodynamics and variational
quantum algorithms.
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