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Permitting the transmission of unknown quantum states over long distances by using entanglement, quantum
teleportation serves as an important building block for many quantum technologies. However, in the noisy
intermediate-scale quantum era, the practical realization of quantum teleportation is inevitably challenged by the
noise-induced decoherence. We here propose a noise-mitigation mechanism applicable in both the discrete- and
continuous-variable quantum teleportation schemes. Via investigating the non-Markovian decoherence dynamics
of the two types of quantum teleportation schemes, we find that, as long as a bound state is formed in the energy
spectrum of the total system consisting of the involved subsystems and their respective reservoirs, the quantum
superiority of the fidelity is persistently recovered. Supplying an insightful understanding of the noise-mitigation
protocols, our result paves the way to the practical realization of noise-tolerant quantum teleportation.

DOLI: 10.1103/PhysRevA.110.012442

I. INTRODUCTION

Quantum teleportation allows the transfer of an arbitrary
unknown quantum state between distant parties by using
quantum entanglement [1-3]. It is not only a basic protocol of
quantum communication but also a building block in the real-
ization of various large-scale quantum technologies. It plays
important roles in quantum repeaters [4], which are pivotal
for quantum communication over long distances [5], quan-
tum computation [6-9], quantum networks [10], and quantum
secret sharing [11]. It is also used as a tool for exploring
fundamental physics, such as closed timelike curves [12] and
black-hole evaporation [13]. Following two parallel directions
to encode information in discrete-variable [1] or continuous-
variable [14] systems, quantum teleportation has been realized
in various systems [15-20]. Outstanding performances have
been achieved in terms of teleportation distance in aid of
satellites [21].

Being in the noisy intermediate-scale quantum era [22-24],
we are generally forced to make a persistent effort to beat
the unwanted decoherence effect induced by different kinds
of noises in quantum technologies. An ideal teleportation
process requires a noiseless quantum channel established by
sharing a pure maximally entangled state. The protection
of quantum channels from decoherence-induced disentangle-
ment is a prerequisite for the realization and application of
quantum teleportation [25-43]. It has been found that the
quantum advantages of teleportation typically disappear in a
noisy setting, with decoherence degrading quantum teleporta-
tion to classical teleportation. Many strategies, for example,
error correction [38], weak measurement [39], entanglement
purification [25], and noiseless linear amplification [41], have
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been proposed to overcome the destructive impacts of the
decoherence on quantum teleportation. However, the anal-
ysis and methodologies considered thus far to address the
decoherence effect on quantum teleportation are based on
the Born-Markovian approximation. Given the inherent non-
Markovian nature of the decoherence dynamics [44—47], it is
expected that such treatments are insufficient. Furthermore,
with the rapid development of experimental techniques, more
and more quantum systems have exhibited the non-Markovian
effect in experiments [48-55]. It was really found that the
non-Markovian effect may play an active role in retrieving
the quantum superiority from the noises in several proto-
cols of quantum technologies [56—62]. A natural question
is: What is the non-Markovian effect on the noisy quantum
teleportation? Although Refs. [63,64] have revealed that the
non-Markovian effect plays a constructive role in slowing
down the degradation of the average fidelity in quantum tele-
portation, its average fidelity in the long-time condition still
becomes smaller than the classical limit. How to preserve the
quantum superiority during the whole evolution process is still
an open question.

In this work, we propose a mechanism to recover the
quantum superiority of teleportation influenced by the local
dissipative noises. Via investigating the non-Markovian de-
coherence dynamics of the teleportation schemes for both
the discrete- and continuous-variable systems, we find that
the teleportation performance is sensitively determined by the
feature of the energy spectrum of the total system formed by
the involved subsystems of the quantum channels and their
local reservoirs. When a bound state is present in the energy
spectrum, the fidelity for both the teleportation schemes in
the long-time steady state surpasses their corresponding clas-
sical limits, which are also the achievable bounds under the
Born-Markovian approximate description to the decoherence.
Our result demonstrates that the non-Markovian effect has a

©2024 American Physical Society


https://orcid.org/0009-0002-3680-3967
https://orcid.org/0000-0002-3475-0729
https://ror.org/01mkqqe32
https://ror.org/01mkqqe32
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.012442&domain=pdf&date_stamp=2024-07-15
https://doi.org/10.1103/PhysRevA.110.012442

ZI-JIAN XU AND JUN-HONG AN

PHYSICAL REVIEW A 110, 012442 (2024)

|\r93

TUW
Bob

Alice’s measutement k

(@

S
Bob

‘Homodyne

Result z »
measurement

EPR

(®)

FIG. 1. Schematic diagrams of (a) discrete-variable and (b) continuous-variable quantum teleportation.

self-healing ability to rescue the teleportation from the noise-
induced degradation. Refreshing our understanding of the
noise effect on quantum teleportation, our result paves the way
for overcoming the destructive influence of the decoherence
on quantum teleportation in practical noises.

This paper is organized as follows. In Sec. II, we begin by
presenting the ideal quantum teleportation schemes for both
the discrete- and continuous-variable systems. In Sec. III, we
study the non-Markovian decoherence dynamics of the two
teleportation schemes. The dominate role of the bound state
of the involved subsystems of the quantum channels and their
respective local reservoirs in the teleportation performance is
revealed in this section. Section IV is devoted to the numerical
calculation to verify our result. A physical system to verify
our result is suggested in Sec. V. We conclude the paper in
Sec. VL.

II. IDEAL QUANTUM TELEPORTATION

Quantum teleportation is the transfer of an unknown quan-
tum state over a long distance by using a quantum channel
formed by entanglement and a classical channel via classi-
cal communication [1]. Depending on the properties of the
Hilbert space of the involved systems, the teleportation can be
classified into discrete- and continuous-variable [14,17,18,65]
quantum teleportation.

In the case of discrete-variable teleportation, both the
quantum channel and the unknown state are constructed of
two-level systems (TLSs) [16] [see Fig. 1(a)]. Consider that
Alice wants to transfer an unknown state |¢) = ale;) +
b|g1) carried by the first TLS on her hands to Bob, where
le;) and |g;) are the excited and ground states of the /th TLS,
respectively. She first shares an entangled pair of TLSs in the
state |Pp3) = f(|e2e3) + |g2g3)) as a quantum channel with
Bob. The quantum channel evolves with time under a unitary
dynamics governed by the Hamiltonian Hy = wy Z?:z 6;6,,
with 6; = |g;) (e;|. Thus, the state of the tripartite TLS dynam-
ically evolves to

|Pr(1)) =27 [| @55 + |@1,)65 + |W}5)65
+ W ,)i67 [ (ae™ " |es) + |g3)). (1)

where |®%) = (lee) £ gg))/v/2 and  |WE) = (leg) £
|ge))/~/2 are the four Bell states [66]. Then, Alice makes a
Bell-state measurement to her two TLSs. If the kth Bell state
IBellY)), with [Bell) € {|®*), |W*)}, is obtained, the state

of Bob’s TLS collapses to (Bellikz)ICDm(t)). Alice tells Bob
her measurement result k via the classical channel. Finally,
Bob performs a local operation U;k) on his TLS according to
the result k. If the measurement result is |®},), |®,), |¥}5),
and |W¥,), he chooses the operation I, 6%, 6%, and —ié”,
respectively. Bob’s final state then becomes

loP) = P20 (Bellly) |01 (1)), )

where P, = |(Bell'S)|®r(1))]>. Setting a = cos(6/2) and
b = sin(6/2)e'?, we can evaluate the average fidelity as

_ 7 sin @ 2
F:/O - d@/o d(PZPk [(olol)*
= [2 + cos(2wot)]/3. 3)

Thus, a maximal average fidelity max, F () = 1 is achieved at
times ¢ = nm /wy, with n being positive integers.

In the case of continuous-variable teleportation, the
information is encoded in quantized optical fields [see
Fig. 1(b)]. When Alice wants to transfer an unknown coher-
ent state |¢;) = Dy (@)|0;), with D;(a) = €%~ to Bob,
she first shares a two-mode squeezed vacuum state |$y3) =
explr(aas — &;&g)]|0203) as a quantum channel with Bob
[67]. Considering the unitary dynamics governed by Hy =
wo 213:2 &;&1 of the quantum channel, the state of the total
system reads

\\2 AF

—ad| —tanh re=%0' 3 fa

| (1)) = cosh™! B4310,0,05).  (4)

Then, Alice makes a homodyne measurement to the two opti-
cal fields on her hands. It consists of the following two steps.
The first step Alice needs to do is to couple the optical fields
a; and a, by a 50:50 beam splitter, which can be described
by V= exp[%(&f&z — &;&1)]. The second one is to measure
= (a1 +a})/2 and

= (@, — a&,)/(2i). The homodyne measurement, with the
results x; and p», collapses the state of Bob’s optical field into

<X1P2|V|¢T(t))

two commuting quadrature operators X

( ) (a— 22)6 2007 tanh ra3|0 > (5)
P
. S
where z=x; —ipy, ¢(z) = m Xilx1) = xilx1),

Palp2) = palpa), and P, = [(x1palV|®r(0)) . In the deriva-
tion of Eq. (5), (p1x210,0,) = (%)1/26’)‘ P has been used.
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Alice tells Bob her measurement result z via the classi-
cal channel. Finally, Bob makes a displacement operation
D+(v/22) on his optical field to convert Eq. (5) into

|057) = c(@I[V2z + (@ — V22)e ™ tanh rl3).  (6)

If a series of teleported states are in sequence given to Alice
and the homodyne detector is able to respond to all of eigen-
values of the quadrature operators in the teleportation, then
the average fidelity over all the measurement results is [68]

2 1/2cosh™?r
" 1 — tanh r cosQaypt)’

F() = / dxidpaP;[(e]es”) ()

A maximal average fidelity of max, F(t) = (1 + e %) ! is
achieved when t = nrr /w,. It tends to 1 when r approaches
infinity.

III. NOISY EFFECTS

In practice, the quantum channel is inevitably influenced
by the noise-induced decoherence. It causes the degrada-
tion of the entanglement and deteriorates the performance
of quantum teleportation. Depending on whether the system
in the channel has energy exchange with the noise or not,
the decoherence is classified into dissipation and dephasing.
The description of decoherence is based on the idea of the
open system. Starting from the unitary dynamics of the to-
tal system formed by the system and its noise and tracing
over the degrees of freedom the noise, the dynamics of the
open system is achieved. A widely used approximation during
this procedure is the Born-Markovian approximation [69].
The spontaneous emission of the two two-level systems and
the photon loss involved in the quantum channel are two
main decoherence sources in quantum teleportation. Con-
ventionally, they were phenomenologically described by the
Kraus-operator representation for the discrete-variable chan-
nel [33,34] and by introducing an imperfect beam splitter for
the continuous-variable channel [70-72], both of which are
equivalent to the Born-Markovian approximate description
[30,72]. We here will go beyond this approximation [44—46]
and exactly evaluate the effects of local dissipative noises
on the two types of schemes of quantum teleportation. In
Ref. [63], the non-Markovian effect is simulated by coupling
the quantum system to an ancillary system, which feels a
white-noise reservoir. Different from this, we microscopically
investigate the non-Markovian effect caused by the direct
coupling of the quantum channel to the reservoir.

The dissipative noise can be described by a bosonic reser-
voir. Consider that each subsystem of the quantum channel
feels a local reservoir. The Hamiltonian for both the discrete-
and continuous-variable quantum channels can be universally
written as H = 2?22 H;, with

H; = w00, + Z[wkl;;kl;l,k + (gkI;;k??z +He)l,  (®)
k

where B,,k is the annihilation operator of the kth mode
with frequency wy; of the reservoir felt by the /th subsys-
tem of the quantum channel, g; is the coupling strength,
0= 6 for the discrete-variable teleportation, and 0 =a
for the continuous-variable teleportation. Commonly, the

coupling strength is further characterized by the spectral den-
sity J(w) =) |gk|28(w — wy). It may have the form J(w) =
na)sa)cl —Se=®/% where n is a dimensionless coupling constant,
w, is a cutoff frequency to avoid infrared catastrophe, and s is
the Ohmicity parameter. The reservoir is classified into sub-
Ohmic for 0 < s < 1, Ohmic for s = 1, and super-Ohmic for
s > 1 [73]. Under the condition that the reservoirs are initially
in the vacuum state, one can trace out the degrees of freedom
of the reservoirs exactly. The dynamics governed by Eq. (8)
for the discrete-variable system is exactly solvable because
only the Hilbert subspaces with the total excitation numbers
N =0 and 1 are involved [74]. The exact dynamics for the
continuous-variable system is obtainable by the Feynman-
Vernon’s influence-functional theory in the coherent-state
representation [75,76]. We obtain the non-Markovian master
equation as

p) = Y (=iQWI8[or. p(1)] + TOLp@]), )

=23

where p(f) is the reduced density matrix of the quan-
tum channel formed by the subsystems 0, and 03,
Lip(t) = 26,p(t)0] — [6}61, p(1)]+ is the Lindblad superop-
erator, I'(#) = —Re[u(t)/u(t)] is the decay rate, and Q2(¢) =
—Im[u(s)/u(t)] is the renormalized frequency. The time-
dependent function u(z) is determined by

L't(t)+iwou(t)+/ drp(t — Du(t) =0,  (10)
0

where p(x) = f0°° dwJ (w)e™ ™ is the noise correlation func-
tion and the initial condition is #(0) = 1.

In the special case when the system-reservoir coupling
is weak and the characteristic timescale of the correlation
function of the reservoirs is much smaller than that of the
system, we can apply the Born-Markovian approximation to
Eq. (10) by replacing u(tr) by u(t) and extending the up-
per limit of the integration from ¢ to infinity. Then using
the identity lim,_, fot dte 1 @=00T = 78(w — wy) + iwop_w,
with P being the Cauchy principal value, the Born-Markovian
approximate solution of Eq. (10) reads

upma (1) = e—[K+i(wo-0—Aw0)]l7 (11)

where k = J(wp) and A, =P [;* %dm.

In the general non-Markovian case, the exact evaluation
of the average fidelity F(¢) needs the numerical solving of
Eq. (10). However, via analyzing the long-time behavior of
u(t), we can obtain an analytical form of F(¢) in the steady-
state limit of the quantum channel. This is helpful for us
to build up a clear physical picture on the performance of
our quantum-teleportation schemes under the impact of the
local reservoirs. A Laplace transform to Eq. (10) results in
i(p) =[p+iwy+ [~ ]{i‘j?; dw]™". u(t) is obtained by the in-
verse Laplace transform to ii(p), which can be done by finding
the poles from

Y(E)Ea)o—/oo J(‘“I)Edsz E=ip). (12)
0

It is interesting to find that the roots of Eq. (12) are just the
eigenenergies of each subsystem and its local reservoir in
the single-excitation subspace. To be specific, we expand the
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eigenstate of H; as |®) = (xa-; +> yklA)]t)|®1, {O«}), where
|2) = |g) and |0) for the discrete- and continuous-variable
ones, respectively. Substituting it into H, |®) = E |®), with
E being the eigenenergy, we can readily find that the roots E
satisfy the same equation as Eq. (12). This result implies that
the decoherence dynamics of both of the quantum channels
are essentially determined by the energy-spectrum character-
istic of each local subsystem-reservoir system. It gives us an
insightful message to control the decoherence dynamics of
the quantum channels by artificially engineering the structure
of the energy spectrum. Because Y (E) is a monotonically
decreasing function in the regime E < 0, Eq. (12) has one
and only one isolated root E}, provided Y (0) < 0. We call the
eigenstate of £}, the bound state. On the other hand, since Y (E)
is not well analytic in the regime E > 0 due to the divergence
of its integration, Eq. (12) has infinite roots in this regime.
They form a continuous energy band. Then, after applying the
inverse Laplace transform using the contour integration and
the residue theorem, we obtain [77]

R o J(E)eiiEtdE
ue) = ze +/0 (E —wo— Mgl + I (E)P

where the first term with Z = [1 + fooo (Ei(_“’a)))z dw]™! is from
the potentially formed bound state and the second term is
from the band energies. Contributed by the branch cut of
the contour, the second term approaches O in the long-time
regime due to the out-of-phase interference of the continu-
ously changing oscillation frequency E. Thus, if the bound
state is absent, we have u(0co) = 0 characterizing a complete
decoherence; while if the bound state energy is formed, we
have u(oco) ~ Ze "' implying a decoherence suppression.
The condition Y (0) < 0, under which the bound state is
formed, can be evaluated for the Ohmic-family spectral den-
sity as wy — 2nw.y (s) < 0, where y (s) is the Euler’s gamma
function. Thus, via efficiently engineering the system fre-
quency g and the parameters in the spectral density to form
the bound state, we can suppress the decoherence in quantum
teleportation. To verify this expectation, we investigate the
decoherence effects on the two types of quantum teleportation
schemes in the following.

13)

A. Discrete-variable case

Solving the master equation (9) with 0 = & under the initial
state pp3(0) = |Dy3) (P3|, we obtain

p23(t) = {[Ple) (el + (1 — P)lg)(gl1®* + |g) (g®?
+ [P (1)le) (g|®* + H.c.1}/2, (14)

where P, = |u(t)|*>. Repeating the similar procedure as the
ideal case, we get the average fidelity as

sin 0 m
F(t)= / 4 / d¢>Z |04 (Bell ) |1 ) (@1 |

® p23<r>|Be11§’;>)U;"”|¢>
= {2+ [u@®P(u@)|* — 1) + Re[u()*]}/3.  (15)

It is readily checked that u(¢) = e~ and thus F (¢) tends to
the ideal result of Eq. (3) in the noiseless limit. Substituting

the Born-Markovian approximation result (11) into Eq. (15),
we also obtain

Fama(t) = {24+ e *'[e " —

where the frequency shift A, has been renormalized into the
bare frequency wy. Fema(?) tends to 2/3 with time, which is
just the classical-communication limit [78]. It means that the
quantum advantage of teleportation is completely destroyed
by the Markovian dissipative noises. A similar result was also
reported in many previous works.

In the non-Markovian case, it is natural to expect that F (¢)
tends to 2/3 with time too when no bound state is formed in
the energy spectrum of each TLS and its local reservoir. We
focus on the situation in the presence of the bound state. Sub-
stituting lim,_, o u(¢t) = Ze~"E in the situation into Eq. (15),
we obtain

lim F(t) = {2 + Z%[Z% —
11— 00

2sin®(wot)1}/3, (16)

2 sin®(Eyt)1}/3. (17)

It is remarkable to find that max lim,_, F(t) = (2 + Z*)/3
is always larger than the classical fidelity 2/3. Therefore, the
quantum superiority of the teleportation is retrieved in the
non-Markvoain dynamics as long as the bound state is formed.

B. Continuous-variable case

Within the framework of the path-integral influence-
function method, the solution of the master equation (9) for
the continuous-variable quantum channel is [75,76]

,o(df,ot};t)z /d,u(a,-)d,u(ot;)j(&f,a};t|oz,<,61;;0)

where p(ay, ot},;t) = (af|p23(t)|ot},) is the reduced den-
sity matrix expressed in coherent-state representation and
J(ay, oe};tl&i, «};0) is the propagating function. We have
=T1I._, lw), with
log) = exp(alaj)lol), which obeys the resolution of identity
f du(a)|a){e| =1 with the integration measures du(o) =

— 2 .
I e_‘"""’%. a denotes the complex conjugate of «. The
propagating function reads

used the coherent-state representation |«)

TGy el tlan, @20) = exp ( Sty + 100,
1=2,3

+[1 - Iu(t)|2]&;’,»otu}>- (19)

The coherent-state representation of the two-mode squeezed
state as the initial state is

o(@&;, &};0) = cosh™ rexp[— tanh r(@@, + aja})]. (20)

Substituting Egs. (20) and (19) into Eq. (18) and performing
the Gaussian integration, we obtain

b
p(@y, ay;t) = aexp |:Z <§5tlf5l1'f + caypo,
Il

b*
+ ?a,'fozl’,f> , (21)
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with a =xcosh™2r, b= —xu()*tanhr, ¢ = x|lu@®)]*(1 —
lu(t)*) tanh? r, and x = [1 — (1 — |u(¢)|?)* tanh? r]~!. A pro-
cedure similar to that of the ideal case leads to the average
fidelity as

P = / dxidpa(91D3(v22)(x1 palV 101) (@1 [oma (V'

N a
® x1p2)Di(V22)lg) = 5[1 +Re(b) —c]™'. (22)
In the noiseless limit, u(t) = e~ and thus a = cosh™2 r
b= —e 2™ tanh r, and ¢ = 0, which readily reduces F@)
to Eq. (7). Considering the Born-Markovian approximation
solution (11), we obtain

Fama(?) = {2 + sinh(2r)e™ > [tanh r — cos(2awot)]} . (23)

Equation (23) tends to 1/2 in the long-time condition, which
is the classical (i.e., no entanglement) bound for teleporting
coherent states [79,80]. Therefore, the quantum advan-
tage of teleportation again is destroyed by the Markovian
noises. In the general non-Markovian dynamics, substituting
lim;_, oo u(t) = Ze~ "5 in the presence of the bound state into
Eq. (22), we have

lim F(t) = {2 + sinh(2r)Z*[tanh r — cosRExt)]} "' (24)

Its maximum max lim, o F() =[2 —Z%(1 — e 2)]7! is
achieved when t = nm /(2E;), with n being odd numbers. It
is always greater than the Born-Markovian approximate re-
sult, i.e., 1/2. Therefore, being similar to the discrete-variable
case, we can retrieve the quantum superiority of the noisy
teleportation in the non-Markovian dynamics by engineering
the formation of the bound state. It is noted that our result is
different from the one in Ref. [63], where the non-Markovian
effect just slows down the deterioration of the performance
of the quantum teleportation and the average fidelity still
becomes smaller than 1/2 in the long-time condition. In sharp
contrast to this, our result reveals a mechanism in the non-
Markovian dynamics to keep the quantum superiority of the
average fidelity till the long-time steady state. The validity
of this mechanism is guaranteed by the feature of the energy
spectrum of the total system formed by the quantum channel
and its reservoir, i.e., the formation of the bound state.

IV. NUMERICAL RESULTS

To verify our noise-mitigation mechanism in quantum
teleportation, we first plot in Fig. 2(a) the non-Markovian
evolution of |u(t)| in different w. by choosing s =1 and
n = 0.2. Two typical behaviors are observed. For o, < 5wy,
|u(t)| decays exclusively to 0. When w, > Swo, |u(?)| halts to
decay and tends to a finite value. It is interesting to see that this
finite value |u(oco)| matches exactly with Z evaluated from the
bound state [see the blue line in Fig. 2(a)]. Completely differ-
ent from the Markovian result, such decoherence suppression
is a distinctive feature of our non-Markovian dynamics. The
energy spectrum of the total system formed by each subsystem
of the quantum channel and its local reservoir in Fig. 2(b)
reveals that a bound state is formed when w,. > Swgy, which
coincided exactly with the regime where |u(oco)| tends to a
finite value in Fig. 2(a). The result demonstrates the decisive

0.0

FIG. 2. (a) Evolution of |u(¢)| obtained via numerically solving
Eq. (10) and Z (blue line) in different w.. (b) Energy spectrum of
the total system formed by the system and the reservoir in different
. obtained via numerically solving Eq. (12). We use n = 0.2 and
s = 1, where the bound state is formed when w. > Swy.

role of the bound state in suppressing the non-Markovian de-
coherence of the quantum channel. This gives us an insightful
inspiration to retrieve the superiority of quantum teleportation
in the presence of the practical noise by engineering the for-
mation of the bound state.

Figure 3 shows the evolution of the average fidelity F(t)
in Eq. (15) of the discrete-variable quantum teleportation. It
clearly indicates that F(¢) tends to 2/3 in the absence of
the bound state when w,. < Swy. As long as the bound state
is present, the transient maxima of F, which match with
the analytical result in Eq. (17) evaluated from the bound
state, approach max lim,_, ., F(t) = 2+ Z4)/ 3 in the long-

F(y

FIG. 3. Evolution of the average fidelity F(t) of Eq. (15) (the
lower surface), its transient maxima in Eq. (17) (the upper sur-
face), and its steady-state maxima max lim,_,., F(t) = 2+ Z*)/3
(red line) in different w, in the discrete-variable teleportation case.
The parameters are the same as those in Fig. 2.
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F(y

FIG. 4. Evolution of the average fidelity F(t) of Eq. (22) (the
lower surface), its transient maxima in Eq. (24) (the upper sur-
face), and its steady-state maxima max lim,_, ., F(¢) = [2 — Z*(1 —
e ]! (red line) in different . in the continuous-variable tele-
portation case. r = 2 and other parameters are the same as those in
Fig. 2.

time limit (see the red line in Fig. 3). It fully reveals the
recovery of the quantum advantage of the teleportation due to
the formation of the bound state in the non-Markovian deco-
herence dynamics. The result in the continuous-variable case
in Fig. 4 also confirms our expectation. It shows that when
w. < 5wy, F(t) approaches 1/2, which shows no difference
from the Markovian approximate result in Eq. (23). When
we > Swy, the transient maxima of F(¢) tend to the values
evaluated from the analytical Eq. (24). Its long-time maxima
fit very well with max lim,_, o, F(t) = [2 — Z2(1 — e,
which surpasses 1/2 and partially retrieves the quantum ad-
vantage from the destruction of noise.

These results demonstrate the important role of the bound
state and non-Markovian dynamics in recovering the quantum
advantage of the discrete- and continuous-variable teleporta-
tion in the noisy situation. Such an amazing result is caused
by the suppressed decoherence induced by the bound state
in the non-Markovian dynamics. Therefore, we can mitigate
the loss of the quantum advantage of teleportation [26-30]
via engineering the formation of the bound state. It should be
noted that the distinguished roles played by the bound state in
other quantum protocols have been reported [56,60,61].

V. PHYSICAL REALIZATION

It should be emphasized that the bound-state-favored su-
periority in our quantum teleportation of both discrete- and
continuous-variable systems is independent of the explicit
form of the spectral density. Although only the Ohmic-family
spectral density is displayed, our result can be generalized to
other cases without difficulty. The most proper system to ver-
ify our result is structured reservoirs, whose non-Markovian
effect is generally strong. Inspired by the experimental re-
alization of quantum teleportation in the circuit quantum
electrodynamics setup for both the discrete-variable [81] and
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FIG. 5. Energy spectrum of a superconductor qubit or an LC
resonator interacting with a coupled resonator array and Z in dif-
ferent g obtained by numerically solving Eq. (12). We use N = 500,
wy = 1.150,, and £ = 0.08w,.

the continuous-variable [82] systems, we propose the fol-
lowing platform to verify our results. The discrete-variable
quantum channel is formed by two superconductor qubits.
The continuous-variable quantum channel is formed by two
quantized microwave fields in two LC resonators. Each sub-
system of the two quantum channels interacts with a coupled
resonator array as the reservoir. The Hamiltonians are

N N—1

Hir =) ob] b+ ) EOb] b +He), (25
N=1 N=1

H i = g(0}by1 + Hee), (26)

where w, is the frequency of the resonator, & is the coupling
strength between the nearest-neighbor resonators in the array,
and g is the coupling strength between the /th subsystem and
its own coupled resonator array. Equation (25) is rewritten in
the momentum space as ﬂl,R =3 wkéj,ké,,k, where 131,;( is

the Fourier transform of 151, ;- Its dispersion relation reads wy, =
w, + 2& cosk, which shows a finite bandwidth 4£ centered
at w,. The spectral density is J(w) = 25&_2 482 — (w — ).
Figure 5 shows the energy spectrum of the total system formed
by either the superconductor qubit or the LC resonator and
its coupled resonator array and Z in different g. It is found
that, with increasing g, a bound state is present in the energy
spectrum. The formation of the bound state results in an abrupt
jump of Z, which is equal to the long-time value of |u(¢)|, from
0 to a positive value. It is readily obtained from Egs. (17) and
(24) that, as long as Z is larger than 0, the quantum superiority
is recovered for both the discrete- and continuous-variable
quantum teleportation schemes even till the long-time steady
state.

The effects of the non-Markovian dynamics and the bound
state have been observed in recent experiments [51-55],
which provide a strong support in the experimental realization
of our noise-mitigation scheme.
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VI. CONCLUSION

In summary, we have proposed a noise-mitigation mech-
anism for quantum teleportation to be universal for both the
discrete- and continuous-variable quantum channels, under
which the the quantum superiority in the teleportation fidelity
is retrieved. This is in sharp contrast to the result under the
Born-Markovian approximation, where the fidelity exponen-
tially decays to, or even worse than, its classical limit. Our
analysis reveals that it is due to the constructive interplay
between the non-Markovian effect and the bound state of the
total system consisting of the involved systems of the quantum
channel and their reservoirs: The bound state supplies the
intrinsic ability and the non-Markovian effect supplies the

dynamical way to achieve the good performance. Efficiently
overcoming the decoherence obstacle in realizing quantum
teleportation, our result provides an experimentally feasible
strategy to realize high-fidelity teleportation in practice.
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