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Multistability cannot be derived from any theoretical model that is based on a monostable master equation.
On the other hand, multistability is experimentally observed in a variety of quantum systems. A master equation
having a nonlinear term that gives rise to disentanglement has been recently proposed. The dynamics governed
by this master equation is explored for a quantum system made of coupled spins. It is found that the added
nonlinear term can give rise to multistability. The spins’ response to an externally applied magnetic field is
evaluated, and both a phase transition and a dynamical instability are found. These findings, which originate
from disentanglement-induced multistability, indirectly support the hypothesis that spontaneous disentanglement
occurs in quantum systems.
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I. INTRODUCTION

The time evolution of a quantum system in contact with
its environment is commonly described using a master equa-
tion (ME) for the system’s reduced density operator ρ.
A ME having a unique steady state solution is said to
be monostable. The widely employed Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) ME [1–3], which is linear in ρ,
is monostable, provided that the Hamiltonian is time indepen-
dent. For such Hamiltonians, the Grabert ME, which has a
nonlinear dependency on ρ, is also monostable (its unique
steady state solution is thermal equilibrium) [4,5].

In contrast, some experimentally observed behaviors in
quantum systems suggest multistability in the underlying
dynamics. For example, consider a single-domain ferromag-
net under the influence of a transverse (with respect to the
domain’s easy axis) static magnetic field. Above a critical
temperature Tc, the system is monostable. However, a phase
transition (PT) occurs at Tc, below which the magnetization
has two locally stable steady states. Both the PT and the
multistability cannot be derived from any monostable ME.

More generally, for any finite system having a static (i.e.,
time-independent) Hamiltonian, both PTs and multistabilities
cannot be derived from any monostable ME [6–11]. The term
finite commonly refers to one out of two of the system’s
properties. The first property is the number of particles, and
the second one is Hilbert space dimensionality. Exclusion of
PTs holds for both definitions of this term [12]. On the other
hand, all experimental observations of PTs are performed
using finite systems. Moreover, a PT has been experimen-
tally observed in small systems, including molecular magnets
[13–16].

For some cases, the time evolution of a given dynamical
system (i.e., a system having a time-dependent Hamiltonian)
can be described using a static (i.e., time-independent) Hamil-
tonian. For example, when the rotating-wave approximation
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(RWA) is applicable, a transformation into a rotating
frame yields a static Hamiltonian. Similarly to the case
of static systems, multistability can be theoretically excluded,
provided that the system is finite and the RWA is applicable
(see Appendix B of Ref. [17]). In contrast, multistability
has been experimentally observed in dynamical spin systems
(for which both the number of particles and Hilbert space
dimensionality are finite) [18]. One example is a dynamical
instability (DI) induced by parallel pumping applied to a
ferrimagnetic insulator containing a finite (though commonly
large) number of spins [19–21]. In these experiments, the par-
allel pumping angular frequency is tuned close to 2ωL, where
ωL is the spins’ resonance angular frequency. For a driving
amplitude ω1 smaller than a critical value ω1,c (instability
threshold), the system’s response is monostable. However, at
ω1,c a bifurcation occurs, above which the spins oscillate with
a relative phase φ, which is either φ = 0 or φ = π .

Theoretical models, which have been developed to account
for experimentally observed multistability in finite quantum
systems, are usually based on the assumption that the un-
derlying dynamics is nonlinear. Commonly, such nonlinearity
is introduced by implementing the mean-field approximation
(MFA). It has been shown that the MFA yields both PTs
[12] and DIs [22–27] in finite systems. The MFA is based
on the assumption that entanglement between subsystems can
be disregarded. However, it has remained unclear how such
an assumption can be justified within the framework of stan-
dard quantum mechanics (QM) [28–30], particularly for cases
where the MFA turns a given monostable time evolution into
a multistable one.

A modified ME has been recently proposed [31]. This
ME [see Eq. (1) below] has an added nonlinear term [32,33]
given by −�ρ − ρ� + 2〈�〉ρ, which can give rise to both
disentanglement and thermalization. Under some appropriate
conditions, the ME (1) becomes multistable. The dynamics
generated by the modified ME (1) is explored below for a sys-
tem made of a finite number of coupled spins. It is found that
the interplay between an externally applied static magnetic
field and the dipolar coupling between spins gives rise to a
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PT, which separates a region of monostability and a region of
bistability. Moreover, when an externally applied parametric
excitation (parallel pumping) is added, the modified ME (1)
yields a DI, above which a periodic limit cycle occurs.

II. NONLINEAR ME

The proposed modified ME is given by [31,34,35]

dρ

dt
= ih̄−1[ρ,H] − �ρ − ρ� + 2〈�〉ρ, (1)

where h̄ is the Planck’s constant, H = H† is the Hamilto-
nian, the operator � = �† is allowed to depend on ρ, and
〈�〉 = Tr(�ρ). For the case H = 0, and for a fixed �, the
modified master equation (1) yields an equation of motion
for 〈�〉 given by d〈�〉/dt = −2〈(� − 〈�〉)2〉, which implies
that the expectation value 〈�〉 monotonically decreases with
time. Hence, the nonlinear term in the modified ME (1) can
be employed to suppress a given physical property, provided
that 〈�〉 quantifies that property. The operator � is assumed to
be given by � = γHQ(H) + γDQ(D), where both rates γH and
γD are positive, and both operators Q(H) and Q(D) are Hermi-
tian. The first term γHQ(H) gives rise to thermalization [4,5],
whereas the second one γDQ(D) gives rise to disentanglement.

The thermalization operator is given by Q(H) = βUH,
where UH = H + β−1 ln ρ is the Helmholtz free-energy op-
erator, β = 1/(kBT ) is the thermal energy inverse, kB is the
Boltzmann’s constant, and T is the temperature. The thermal
equilibrium density operator ρ0 = e−βH/ Tr(e−βH), which
minimizes the Helmholtz free energy 〈UH〉, is a steady state
solution of the ME (1), provided that γD = 0 (i.e., no dis-
entanglement) and the Hamiltonian H is time independent
[4,5,36,37]. The construction of the disentanglement operator
Q(D) is explained in Ref. [31].

III. SPIN PT

The one-dimensional transverse Ising model (TIM) Hamil-
tonian is given by [38–42]

H = −B
L∑

l=1

σl,z − J
L∑

l=1

σl,xσl+1,x, (2)

where both B and J are real non-negative constants. The num-
ber of spins, which is assumed to be finite, is denoted by L, and
the Pauli vector operator (σl,x, σl,y, σl,z ) represents the lth spin
angular momentum in units of h̄/2, where l ∈ {1, 2, . . . , L}. It
is assumed that the one-dimensional spin array has a ring con-
figuration, and thus the last (l = L) coupling term σl,xσl+1,x

[see Eq. (2)] is taken to be given by σL,xσ1,x.
For the two-spin case (i.e., L = 2), the matrix representa-

tion of H in the basis {|−1,−1〉, |−1, 1〉, |1,−1〉, |1, 1〉} is
given by

H=̇ − 2

⎛
⎜⎜⎝

B 0 0 J
0 0 J 0
0 J 0 0
J 0 0 −B

⎞
⎟⎟⎠, (3)

where the ket vector |σ2, σ1〉 is an eigenvector of σl,z with
an eigenvalue σl ∈ {−1, 1}, and where l ∈ {1, 2}. Steady state

FIG. 1. Two-spin PT. (a) The magnetization 〈σx〉, (b) two-spin
entanglement τ , (c) energy eigenvalues En, and (d) population prob-
abilities pn, are plotted as a function of the ratio J/B. Assumed
parameters’ values are h̄γH/B = 50 and h̄γDβ−1/B2 = 100.

solutions of the modified ME (1) are shown for this case in
Fig. 1 as a function of the ratio J/B. The magnetization 〈σx〉 =
〈σ1,x〉 + 〈σ2,x〉, which is plotted in Fig. 1(a), becomes finite
above a critical value of the ratio J/B (which depends on the
rates γH and γD and on the temperature). The plot in Fig. 1(b)
depicts the two-spin entanglement [43–47] τ = 〈Q(D)〉 [see
Eq. (11) of Ref. [31]]. Note that τ peaks near the PT.

Standard QM predicts that 〈σx〉 = 0 in steady state [note
that the Hamiltonian H (2) is invariant under the mirror reflec-
tion x → −x, and consequently, 〈n|σx|n〉 = 0 for all energy
eigenvectors |n〉]. In contrast, nonvanishing values for 〈σx〉 in
steady state become possible in the presence of spontaneous
disentanglement [see Fig. 1(a)]. For the TIM, the assumption
that the MFA is applicable leads to magnetization 〈σx〉MFA

given by [40]

〈σx〉MFA =
⎧⎨
⎩

0, for 2J
B < 1,

±
√

1 − (
B
2J

)2
, for 2J

B � 1.
(4)

However, as has been discussed above, it has remained un-
clear how the MFA can be justified within the framework of
standard QM. Even though both MFA and spontaneous dis-
entanglement can account for multistability, their predictions
are distinguishable, as is discussed below.

The relation � = γHQ(H) + γDQ(D) together with the ME
(1) suggest that disentanglement can be accounted for by
replacing the Helmholtz free energy 〈UH〉 by an effec-
tive free energy 〈Ueff〉, which is given by 〈Ueff〉 = 〈UH〉 +
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FIG. 2. The effective free energy 〈Ueff〉. (a) Dependency of 〈Ueff〉
on γD/(2γHBβ ) and s. The cross-section plots (c) and (b) demon-
strate the regions of monostability and bistability, respectively. The
overlaid white dotted lines in (a) indicate the two values of the ratio
γD/(2γHBβ ) corresponding to the cross-section plots in (b) and (c).
For (a)–(c) it is assumed that J/B = 1. (d) The critical value of the
ratio γD/(2γHBβ ) as a function of J/B.

β−1(γD/γH)〈Q(D)〉. Consider the case where the temperature
is sufficiently low to validate the approximation 〈UH〉 � 〈H〉.
The energy eigenvectors of the two-spin Hamiltonian (3)
are denoted by |1〉, |2〉, |3〉, and |4〉, and the correspond-
ing eigenenergies by E1 = −2

√
B2 + J2, E2 = −2J , E3 =

2J , and E4 = 2
√

B2 + J2 [see, respectively, blue, green, red,
and cyan lines in Fig. 1(c)]. As can be seen from the red
and cyan lines in Fig. 1(d), the probabilities p3 and p4

to occupy the energy eigenstates |3〉 and |4〉 are relatively
small both below and above the PT. Consider a class of
pure states, for which only the two lowest-energy states are
occupied. A state |ψ〉 belonging to this class is expressed
as |ψ〉 = eiϕ/2√(1 + cos s)/2|1〉 + e−iϕ/2√(1 − cos s)/2|2〉,
where both ϕ and s are real. With the help of Eq. (15) of
Ref. [31], the effective free energy 〈Ueff〉 can be analytically
calculated for this class of pure states. Note that for a given
s, the entanglement 〈ψ |Q(D)|ψ〉 is minimized for ϕ = 0, and
that the energy expectation value 〈ψ |H|ψ〉 does not depend
on the phase ϕ. Thus, for the current case, the minimiza-
tion of the effective free energy 〈Ueff〉 can be simplified
by setting ϕ = 0. Note that the magnetization 〈σx〉 for this
setting is given by 〈σx〉 = 2(1 + e−2 sinh−1(J/B) )−1/2 sin s. The
color-coded plot in Fig. 2(a) depicts the dependency of the ef-
fective free energy 〈Ueff〉 on the ratio γD/(2γHBβ ) and on the
parameter s (for ϕ = 0). The plot reveals a PT from monos-
tability to bistability occurring at a critical value of the ratio
γD/(2γHBβ ). The region of monostability is demonstrated by
the plot in Fig. 2(c), whereas bistability is demonstrated by
the plot in Fig. 2(b). The two values of the ratio γD/(2γHBβ )

corresponding to the plots in Figs. 2(b) and 2(c) are indicated
by the overlaid white dotted lines in Fig. 2(a).

Stability analysis is employed to extract the critical value
of the ratio γD/(2γHBβ ) from the effective free energy 〈Ueff〉.
The plot shown in Fig. 2(d) depicts the ratio γD/(2γHBβ )
as a function of J/B at the PT. While the MFA yields a
constant value for J/B at the PT [see Eq. (4)], disentangle-
ment makes this value becoming dependent on the rate γD

[see Fig. 2(d)]. Moreover, in the region where 〈σx〉 �= 0, the
magnetization 〈σx〉 dependency on the ratio J/B according to
the spontaneous disentanglement hypothesis [see Fig. 1(a)] is
distinguishable from the one that is derived from the MFA
[see Eq. (4)].

Only nearest-neighbor spins are coupled in the TIM
[see Eq. (2)]. The disentanglement operator Q(D) for the
case L > 2 (i.e., for more than two spins) is accordingly
constructed, by including only nearest-neighbor terms. The
case L = 5 is demonstrated by the plots shown in Figs. 3
and 4. The time evolution of the single-spin Bloch vector
kl = (〈σl,x〉, 〈σl,y〉, 〈σl,z〉) is shown in Fig. 3(1), where l ∈
{1, 2, 3, 4, 5}. These plots demonstrate flow towards a locally
stable steady state with positive magnetization 〈σx〉. A state
with the opposite magnetization value is also locally stable.
The entire Hilbert space is divided into two basins of attraction
associated with these two locally stable steady states.

For the case L = 5, each spin has two nearest neighbors,
and two second nearest neighbors (see the inset of Fig. 4). The
time evolution of the entanglement variable τ for all spin pairs
is shown in the plot in Fig. 4. Plots corresponding to nearest-
(second-nearest-) neighbor pairs are blue (cyan) colored. The
shared steady state value of τ for all nearest-neighbor pairs,
which is denoted by τNN, is found to be larger than the shared
steady state value of τ for all second-nearest-neighbor pairs,
which is denoted by τSNN (τNN/τSNN � 1.11 for the example
shown in Fig. 4).

IV. SPIN PARAMETRIC INSTABILITY

Disentanglement-induced multistability is explored below
for a system made of two spins under parallel pumping. The
time-dependent Hamiltonian H is given by

H
h̄

= ωzσz

2
+ ωLϑ

σ 2
y − σ 2

x

4
, (5)

where ωz = −ωL + ω1 cos(2ωLt ). The Larmor angular fre-
quency ωL, the longitudinal driving amplitude ω1, and the
(assumed small) demagnetization asymmetry factor ϑ [48]
are all real constants, and σi = σ1,i + σ2,i for i ∈ {x, y, z}.
Note that the term in Eq. (5) proportional to σ 2

y − σ 2
x gen-

erates squeezing [49–51]. In the RWA, the time-dependent
laboratory frame Hamiltonian H is transformed into a time-
independent rotating frame Hamiltonian HRWA, which has a
matrix representation given by [see Eq. (17.212) of Ref. [52],
and compare to Eq. (3)]

HRWA

h̄
=̇ − 2

⎛
⎜⎜⎝

B 0 0 J
0 0 0 0
0 0 0 0
J 0 0 −B

⎞
⎟⎟⎠ + O(ϑ2), (6)

where B = −ω1/2 and J = −ω1ϑ/4.
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FIG. 3. Five-spin TIM. The green (red) cross symbols represent initial (final) values of the single-spin Bloch vectors. Initially the spins
are in a product state, where the lth spin is pointing in the direction [cos[2π (l − 1)/L], sin[2π (l − 1)/L], 0]. Parameters’ assumed values are
J/B = 2, h̄γH/B = 5, and h̄γDβ−1/B2 = 100.

As can be seen from Eq. (6), HRWA becomes diagonal
when the demagnetization asymmetry factor ϑ vanishes. This
behavior is attributed to the observation that for ϑ = 0 there
is no preferred direction in the plane perpendicular to the
constant magnetic field (the xy plane). Thus, for ϑ = 0 the
relative phase φ of precession with respect to the parametric
driving has no preferred value. On the other hand, for finite
ϑ , the relative phase φ has two preferred values denoted by
φ1 = 0 and φ2 = π .

The time evolution of the Bloch vector k =
(〈σx〉, 〈σy〉, 〈σz〉) is shown in Figs. 5(c) and 5(d). As is
demonstrated by the plot in Fig. 5(c), in the absence of
disentanglement (i.e., γD = 0), the steady state is a fixed
point. By turning on disentanglement (all other parameters
are kept unchanged), the steady state becomes a periodic
limit cycle, as is demonstrated by the plot in Fig. 5(d). The
dependency on the ratio J /B of the magnetization 〈σx〉 and
the two-spin entanglement τ is shown in Figs. 5(a) and 5(b),
respectively. Due to the similarity between the Hamiltonians

FIG. 4. Pair entanglement τ . Plots corresponding to nearest-
(second-nearest-) neighbor pairs are blue (cyan) colored. Parameters’
assumed values are listed in the caption of Fig. 3. The number
of both nearest- and second-nearest-neighbor pairs is L = 5. The
initial product state at γDt = 0, for which entanglement of all pairs
vanishes, is associated with the five green cross symbols shown in
Fig. 3. As is shown in Fig. 3, initially all five single-spin Bloch
vectors move from their initial values along the equator towards the
north pole of their Bloch spheres. This process corresponds to the
time interval of 0 < γDt � 0.3. The limit γDt → ∞ is represented
by the five red crosses in Fig. 3.

(3) and (6), the underlying mechanism responsible for the
instability seen in Fig. 5, is similar to the one seen in Fig. 1.

V. DISCUSSION

The current study explores multistability generated by the
modified master equation given by Eq. (1). The proposed
modified master equation (1) can be constructed for any phys-
ical system whose Hilbert space has finite dimensionality.
Any candidate master equation modification has to satisfy
some legitimizing properties. For the master equation given
by Eq. (1), the condition d Tr ρ/dt = 0 holds provided that
Tr ρ = 1 (i.e., ρ is normalized), and d Tr ρ2/dt = 0, pro-
vided that ρ2 = ρ (i.e., ρ represents a pure state). The first
property guaranties norm conservation, whereas positive-
semidefiniteness of ρ is ensured by the second property,
together with the relation d ln(det ρ)/dt = −2 Tr(� − 〈�〉)
[see Eq. (2.196) of Ref. [52]].

Suppression of entanglement (i.e., disentanglement) is
introduced using the operator Q(D) [31]. The added disentan-
glement term makes the collapse postulate of QM redundant.
This nonlinear term has no effect on any product (i.e., dis-
entangled) state. For a multipartite system, disentanglement

FIG. 5. Parallel pumping. (a) The magnetization 〈σx〉 and
(b) two-spin entanglement τ in steady state are plotted as a function
of the ratio J /B. Assumed parameters’ values are h̄γH/B = 5 and
h̄γDβ−1/B2 = 100. The green cross symbols in (c) and (d) represent
initial values of the Bloch vector. While disentanglement is inac-
tive (i.e., γD = 0) in (c), the dimensionless disentanglement rate is
h̄γDβ−1/B2 = 100 in (d). For both (c) and (d), J /B = 1.05.
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between any pair of subsystems can be introduced. The
expectation value 〈Q(D)〉 is invariant under any subsystem
unitary transformation. The disentanglement operator Q(D)

can be constructed for both distinguishable [31] and indis-
tinguishable particles [53]. Moreover, thermalization can be
incorporated using the operator Q(H).

VI. SUMMARY

The current study is motivated by an apparent discrepancy
between some experimental observations and the standard
theory of QM. Multistability has been experimentally ob-
served in a variety of quantum systems. On the other hand, in
standard QM the time evolution is governed by a monostable
ME. For some cases, it has remained unclear how multistabil-
ity can be theoretically derived from standard QM.

The spontaneous disentanglement hypothesis is inherently
falsifiable, because it yields predictions, which are experimen-
tally distinguishable from predictions obtained from standard
QM. It is found that multistability can be obtained in the
presence of spontaneous disentanglement. In particular, the
modified ME (1) yields a PT for the TIM (see Figs. 1–3), and
a DI for the longitudinally driven spins (see Fig. 5). These
theoretical findings, together with experimental observations
of multistability in finite quantum systems, indirectly support
the hypothesis that spontaneous disentanglement occurs in
quantum systems.
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