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A fault-tolerant way to prepare logical code states of Q1 codes, i.e., quantum polar codes encoding one qubit,
was recently proposed. The fault tolerance therein is guaranteed by an error detection gadget, where, if an error
is detected during the preparation, one entirely discards the preparation. Due to error detection, the preparation
is probabilistic and its success rate, referred to as the preparation rate, decreases rapidly with the code length,
preventing the preparation of code states of large code- lengths. In this paper, to improve the preparation rate,
we consider a factory preparation of Q1 code states, where one attempts to prepare several copies of Q1 code
states in parallel. Using an extra scheduling step, we can avoid discarding the preparation entirely every time
an error is detected, hence, achieving an increased preparation rate in turn. We further provide a theoretical
method to estimate preparation and logical error rates of Q1 codes, prepared using factory preparation, which
is shown to tightly fit the Monte Carlo simulation-based numerical results. Therefore, our theoretical method is
useful for providing estimates for large code lengths, where Monte Carlo simulations are practically not feasible.
Our numerical results, for a circuit-level depolarizing noise model, indicate that the preparation rate increases
significantly, especially for large code-length N . For example, for N = 256, it increases from 0.02% to 27% for a
practically interesting physical error rate p = 10−3. Remarkably, a Q1 code with N = 256 achieves logical error
rates around 10−11 and 10−15 for p = 10−3 and p = 3 × 10−4, respectively. This corresponds to an improvement
of about three orders of magnitude compared to a surface code with similar code length and minimum distance,
thus showing the promise of the proposed scheme for large-scale fault-tolerant quantum computing.
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I. INTRODUCTION

Polar codes are known for their execellent error correction
performance in both classical and quantum communication
settings [1–5]. In particular, they achieve the symmetric
capacity of any binary-input discrete memoryless classical
channel, and achieve the symmetric coherent information of
any quantum channel. They also come equipped with a fast
classical decoding algorithm (log-linear complexity), which
can readily be adapted for Pauli channels, using a syndrome-
based decoding approach [2,3].

Despite their excellent error correction performance and
nice algebraic and structural properties, polar codes remain
largely unexplored for fault-tolerant quantum computation
(FTQC). The main reason is due to the high weight of their
stabilizer group generators, which prevents fault-tolerant state
preparation and error correction from being implemented by
repeated syndrome measurements. This contrasts with con-
ventional approaches based on topological, or more generally,
quantum low-density parity-check (LDPC) codes, allow-
ing the implementation of a fault-tolerant quantum memory
through repeated syndrome measurements, with errors being
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detected by the difference between syndromes measured in
consecutive rounds [6–8].

Recently, a fault-tolerant procedure to prepare logical
states of Q1 codes, that is, CSS quantum polar codes encoding
one logical qubit, was proposed in [9]. Combined with Steane
error correction [10,11], this preparation procedure provides
an alternative and promising approach for building a fault-
tolerant quantum memory.

The preparation in [9] is measurement-based, where a
set of N qubits are first initialized in the Pauli Z basis and
then two qubit Pauli measurements are recursively applied
on them. To achieve fault tolerance, the preparation is aided
by an error detection gadget, which detects errors at each
level of recursion. For error-detection-aided preparation, it has
been explicitly proven that the preparation is fault-tolerant in
the sense that the weight of the error in the prepared state
does not exceed the number of components that fail during
the procedure. The fault tolerance therein has been further
confirmed by numerical simulations, revealing practically in-
teresting pseudothreshold values for small Q1 codes of length
N � 64 qubits, and showing the promise of the proposed
approach to fault-tolerant error correction.

However, the preparation of Q1 code-states in [9] is proba-
bilistic due to the error detection gadget. If the gadget detects
an error at some recursion level, one declares a preparation
failure and discards the prepared state. Hence, one may need
to restart the preparation from the beginning several times
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before a Q1 code is successfully prepared. The preparation
rate, i.e., the rate of successful preparation, decreases rapidly
with the code length and approaches zero as the code length
increases, hence preventing the preparation of large Q1 code
states.

In this paper, to improve the rate of successful preparation,
we consider a factory preparation of Q1 code states, where
one attempts to prepare several copies of polar code states in
parallel, using the measurement-based preparation with error
detection from [9]. Taking advantage of the recursive nature
of the preparation, we introduce an extra scheduling step at
some recursion levels, so that even if errors are detected we
may proceed to the next level of recursion. In other words,
we may not need to restart the entire procedure from the be-
ginning every time an error is detected. Therefore, the factory
preparation may provide better preparation rates compared to
the preparation in [9].

In addition, we conduct a thorough theoretical analysis of
the proposed factory-based preparation approach, constituting
one of the most significant contributions of the paper. To this
end, we define the notions of rough and smooth errors depend-
ing on whether or not the error flips one of the measurement
outcomes in the measurement-based preparation. Using rough
and smooth errors, we provide theoretical estimates of the
preparation rate, as well as the probability of X and Z errors on
the prepared state. The latter are used to estimate the logical
error rates of the Q1 codes under Steane error correction,
by using density evolution, as in [[9], Appendix E.4]. Our
theoretical estimates are further substantiated by Monte Carlo
simulations. For the circuit level depolarizing noise model, we
observe that our theoretical estimate of the preparation rate fits
well the Monte Carlo simulation for code lengths N = 64 and
N = 256. Further, for the code length N = 64, our theoretical
estimate of the logical error rate matches the logical error rate
obtained based on Monte Carlo simulation. Therefore, we use
our theoretical estimates to obtain logical error rates corre-
sponding to small physical error rates and large code lengths,
where Monte Carlo simulation is not practically feasible.

For the circuit level depolarizing noise model, our nu-
merical results show that the factory preparation significantly
improves the preparation rate of Q1 code states compared to
[9]. In particular, for the physical error rate p = 10−3, the
preparation rate increases from 47% to 70% for a Q1 code
state of length N = 64 and from 0.02% to 27% for a Q1

code of length N = 256. The improvement for N = 256 is
quite significant as the preparation rate of 27% is practically
feasible and implies a qubit overhead only by a factor of 4. We
further included numerical results on the logic error rates of
Q1 codes, using Steane error correction that incorporates our
factory preparation of Q1 code states. The Q1-code of length
N = 256 achieves a logical error rate of 10−11 and 10−15 for
physical error rate of 10−3 and 3 × 10−4, respectively. A com-
parison with a surface code of similar length and minimum
distance is also provided, further reinforcing the promise of
polar codes for fault-tolerant quantum computation.

The paper is organized as follows. In Sec. II, we review
Q1 codes and the measurement-based preparation of Q1 code
states with error detection from [9]. In Sec. III, we describe
our factory preparation, in Sec. IV, we provide theoreti-
cal estimates of the preparation rate and of the Pauli error

FIG. 1. An example of the encoding of Q1 codes: The figure
shows the encoding of the code Q1(N = 23, i = 5), with frozen
states |u〉Z = |0, 0, 0, 0〉 and |v〉X = |+, +, +〉.

probabilities on the prepared state, and in Sec. V we present
our numerical results regarding the factory preparation and
comparison with surface codes. Finally, in Sec. VI, we con-
clude with some perspectives and future directions.

II. PRELIMINARIES

A. Q1 codes

Here, we briefly review Q1 codes, which are CSS quantum
polar codes that encode one logical qubit (for a review of CSS
quantum polar codes see [[9], Sec. II]).

The quantum polar transform QN , where N = 2n, with
n � 0, is the unitary operation on N qubits that operates
in the computational basis as the classical polar transform
PN . Precisely, for any u = (u1, . . . , uN ) ∈ {0, 1}N , we de-
fine QN |u〉 = |PN u〉, where PN = (1 1

0 1)⊗n. Hence, QN can
be realized by recursively applying the quantum CNOT gate,
transversely, on subblocks of 2k qubits, for k = 0, . . . , n − 1
(see Fig. 1).

Let S = {1, . . . , N} denote an N-qubit quantum system.
For a Q1 code, a position i ∈ S is chosen to encode the logical
information. Given the index i, the set of indices preced-
ing i, i.e., Z:={1, . . . , i − 1}, are frozen in a Z basis state
|u〉Z , u ∈ {0, 1}i−1. Further, the set of indices succeeding i,
i.e., X :={i + 1, . . . , N}, are frozen in an X basis state, |v〉X ,
where v ∈ {0, 1}N−i and we use the notation |0̄〉 := |+〉, and
|1̄〉 := |−〉.

Therefore, the logical code state, denoted by |φ̃〉S , is
given by |φ̃〉S = QN (|u〉Z ⊗ |φ〉i ⊗ |v〉X ). In the following,
we shall denote by by Q1(N, i) the Q1 code of length N , with
information position i ∈ S = {1, . . . , N}.

It is worth emphasizing that the error correction per-
formance of a Q1 code greatly depends on the choice of
the information position i. For depolarizing channels, the
information position providing the best error correction per-
formance, depending on the code length N , was determined
by using the density evolution in [9].

Shor-Q1codes. When the information position i ∈ S is a
power of 2, i.e., i = 2k, 0 � k � n, the corresponding Q1

code is a Shor code [[9], Theorem 1]. The subfamily of Shor
codes obtained from Q1 codes are referred to as Shor-Q1

codes. A Shor-Q1 code in general has inferior error correction

012438-2



FACTORY-BASED FAULT-TOLERANT PREPARATION OF … PHYSICAL REVIEW A 110, 012438 (2024)

FIG. 2. An example of Procedure 1: The figure shows the
measurement-based preparation of |qN 〉S in (1), with N=23,

i(n) = 7, that is, |0〉L corresponding to Q1(N = 23, i = 7). Here,
slightly flattened circles connected by a vertical wire denote either
an X ⊗ X or a Z ⊗ Z measurement on the corresponding qubits,
and |q2k 〉 are equivalent Q1 states of length 2k (|q20 〉 is a Pauli Z
basis state).

performance compared to a Q1 code of the same code length
and minimum distance as the successive cancellation (SC)
decoding of Q1 codes is able to decode beyond the minimum
distance [9].

B. Measurement-based preparation of Q1 code states

In this section, we summarize the measurement-based
preparation from [9] and discuss briefly its fault tolerance,
under a circuit-level Pauli noise model.

Consider a Q1(N, i) code, with N = 2n and i ∈ S =
{1, . . . , N}. We consider logical Z and X states of the code
Q1(N, i), hence the information position is also frozen in
either the Z or X basis, accordingly. Therefore, a Q1(N, i)
code state has the following form:

|qN 〉S := QN (|u, v〉S ) = QN
(|u〉Z (n) ⊗ |v〉X (n)

)
, (1)

where Z (n) = {1, . . . , i(n)} and X (n) = {i(n) + 1, . . . , N},
where

i(n) =
{

i, for Z logical state,
i − 1, for X logical state.

Therefore, i(n) simply represents the length of Z type
frozen set after the nth level of recursion. When no confu-
sion is possible, we may simply write |qN 〉 instead of |qN 〉S .
Finally, Q1 states defined by the same value of i(n) are consid-
ered equivalent, regardless of the corresponding frozen values
u, v. Note that the equivalent Q1 states are defined by the same
stabilizer generators, up to sign factors [[9], Lemma 2].

1. Recursive measurement-based preparation without noise

Any Q1 code state can be prepared using the follow-
ing measurement-based procedure [[9], Theorem 2] (see also
Fig. 2).

Procedure 1 (Measurement-based Preparation [11]).
Consider |qN 〉S from (1) and let b1 · · · bn be the binary
representation of i(n) − 1, with bn being the most

FIG. 3. Two-qubit Pauli measurements: Panels (a),(b) provide
quantum circuits implementing Pauli Z ⊗ Z and X ⊗ X measure-
ments, respectively.

significant bit, i.e., i(n) − 1 = ∑n
k=1 bk2k−1. Then, the

measurement-based procedure to prepare |qN 〉S is carried out
in n + 1 steps, as follows.

(0) First, S = {1, . . . , N} is initialized in a Pauli Z basis
state |u〉S , for some u ∈ {0, 1}N .

(1 → n) Then, two-qubit Pauli measurements are recur-
sively applied for n levels. The recursion is the same as
the recursion of the quantum polar transform (see Fig. 1),
except that each CNOT gate is replaced by either Pauli
X ⊗ X or Z ⊗ Z measurement. Precisely, if bk = 0 (or,
bk = 1), we apply Pauli X ⊗ X (or, Z ⊗ Z) measure-
ments at the kth recursion level, k = 1, . . . , n.

Note that a Pauli Z basis state can be considered as a Q1

code state of length 20. Therefore, the first step of Procedure
1, i.e., the initialization in a Pauli Z basis, corresponds to the
zeroth level of recursion, where one prepares 2n copies of
|q20〉. After any kth level of recursion, 1 � k � n, Procedure
1 prepares 2n−k equivalent code states |q2k 〉, with i(k) − 1 =∑k

k=1 bk2k−1 (see Fig. 2). In particular, each |q2k 〉 is produced
by applying transversal Pauli X ⊗ X or Z ⊗ Z measurements
on two equivalent |q2k−1〉 from the (k − 1)th level of recursion
[[9], Lemma 1].

2. Recursive measurement-based preparation with noise

We consider the standard implementation of Pauli Z ⊗ Z
and X ⊗ X measurements, using an ancilla qubit, as depicted
in Fig. 3. Then, the measurement-based procedure consists of
the following basic components: qubits initialization in either
the Pauli X or Z basis, CNOT gates, measurements in the Pauli
X or Pauli Z basis. It is easy to see that the total number of
components in the preparation of a Q1 code state of length N ,
denoted here by CN , is given by [9]

CN = N (1 + 2 log2 N ). (2)

Noise model. We further assume that each component fails
independently with some probability p, referred to as the
physical error rate, according to a circuit level depolarizing
noise model as follows [12].
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(1) A noisy initialization in Pauli Z (or X ) basis corre-
sponds to the perfect initialization, followed by an X (or Z)
error on the initialized qubit, with probability p.

(2) A noisy CNOT gate corresponds to applying the perfect
CNOT gate, followed by a two-qubit depolarizing channel, with
probability p. Precisely, after the perfect CNOT, any one of the
following 15-two qubit Pauli errors I ⊗ X, I ⊗ Y, I ⊗ Z, X ⊗
I, X ⊗ X, X ⊗ Y, X ⊗ Z , Z ⊗ I , Z ⊗ X , Z ⊗ Y , Z ⊗ Z , Y ⊗ I ,
Y ⊗ X , Y ⊗ Y , Y ⊗ Z may happen, with total probability p
(probability p/15 each).

(3) A noisy Pauli Z (or X ) basis measurement corresponds
to first applying a Pauli X (or Z) error on the qubit to be
measured with probability p, then doing the perfect Pauli Z
(or X ) measurement.

The measurement-based preparation given in Procedure 1
is not fault-tolerant by itself under the above noise model.
The reason is that the outcomes of transversal Pauli Z ⊗ Z
or Pauli X ⊗ X measurements, which are needed to determine
the values corresponding to the frozen Z and X sets, get error
corrupted, thus leading to a wrong determination of frozen
values [9].

To achieve fault tolerance, an error detection gadget is
incorporated into the measurement-based procedure. Taking
advantage of the redundancy in the transversal Pauli measure-
ments, the error detection gadget detects errors at each level
of recursion.

Error detection gadget. Here, we briefly present the error
detection gadget for the case of Pauli Z ⊗ Z measurements
(see [[9], Procedure 2] for more details). For K = 2k , con-
sider two equivalent Q1 code states |q1

K/2〉S1
= QK/2|u1, v1〉

and |q1
K/2〉S2

= QK/2|u2, v2〉, where u1, u2 ∈ {0, 1}i(k−1), and

v1, v2 ∈ {0, 1}K−i(k−1). Consider first the noiseless scenario.
The result of the transversal Pauli-Z ⊗ Z measurements on
these polar code states is a codeword of a classical polar code
as follows:

m = PK
2

(u′, x) ∈ {0, 1} K
2 , (3)

where u′ = u1 ⊕ u2 ∈ {0, 1}i(k−1) and x ∈ {0, 1} K
2 −i(k−1) is a

random unknown vector and PK
2

is the classical polar trans-
form. After measurements, the state of the joint system S =
S1 ∪ S2 is a Q1 state

|qK〉S = QK |(u′, x, u2), v1 ⊕ v2〉S , (4)

with i(k) = i(k − 1) + K/2 > K/2, and where x is deter-
mined from the measurement outcome m in (3) by, x =
PK

2
(m)|X (k−1), i.e., the subvector of PK

2
(m) ∈ {0, 1}K/2 corre-

sponding to indices in the set X (k − 1).
For the noisy scenario, the measurement outcome gives a

noisy codeword of the classical polar code instead of (3), as
follows:

m = PK
2

(u′, x) ⊕ eX . (5)

The error detection gadget determines the syndrome of
the error term eX in the measurement outcome m as,
PK

2
(eX )|Z (k−1) = PK

2
(m)|Z (k−1) ⊕ u′. If the syndrome is zero,

we proceed as in the noiseless case. If the syndrome is not
zero, we report a component failure and discard the prepared
state. For example, in Fig. 2, if an error is detected in one of

the |q2
2〉 prepared at the second level of recursion, we discard

the other prepared state even if no error is detected in it and
restart the procedure from the beginning.

Therefore, one needs to repeat the preparation until a
preparation succeeds without an error detection. The prepa-
ration rate is defined as

pprep = lim
R→∞

t

R
, (6)

where t is the number of successful preparations out of R
independent preparation attempts.

Finally, it is worth noting that some errors may not be
detected by the gadget and hence will remain on the success-
fully prepared states. It has been shown that the successfully
prepared state is fault-tolerant in the sense that the errors in
the prepared state do not exceed the number of component
failures [[9], Theorem 3].

III. FACTORY PREPARATION OF POLAR CODE STATES

Note that the rate of the preparation pprep in (6) decreases
as the code length N increases. Intuitively, this is because the
number of components increases with respect to N , as given in
(2), thus resulting in an increased expected number of failures,
and as a consequence a higher probability of error detec-
tion. Numerical results in [9] suggest that the pprep decreases
rapidly as N increases, hence, prohibiting the preparation of
Q1 code states of larger code lengths in a practical scenario.

In this section, to improve the preparation rate, we consider
a factory preparation, where several Q1 code states of length
N are prepared in parallel. We modify [[9], Procedure 2], so
that at some intermediate levels of recursion, we only discard
Q1 code states where an error is detected, and keep all the
successfully prepared intermediate states and continue the
preparation for the next levels of recursion. As this allows
to avoid restarting the preparation from the beginning every
time an error is detected, we may achieve better preparation
rate than [[9], Procedure 2].

Below we describe our factory preparation in detail.
Let ST :={1, . . . , T N}, T � 1 be a set of T N qubits, on

which we want to prepare several copies of a Q1 code state
of length N = 2n, i.e., |qN 〉, with a given i(n) value, so that
b1 · · · bn ∈ {0, 1}n is the binary expansion of i(n) − 1. We will
refer to T as the size of the factory, as T is the maximum num-
ber of copies of |qN 〉 that can be produced. Further, consider
the following ordered set:

nsch := {
i1, i2, . . . , i|nsch|

} ⊆ {1, . . . , n}, (7)

such that 0 < i1 < i2 < · · · < i|nsch|, and i|nsch| = n. We shall
refer to nsch as the scheduling set and the elements in nsch as
the scheduling recursion levels.

We denote by Bi→ j the recursion levels from i + 1, . . . , j
of Procedure 1, with respect to the binary string bi+1, . . . , b j .
For the particular case B0→ j , we also include the initialization
of the data qubits. We shall also assume that Bi→ j incorporates
the error detection gadget, as explained in Sec. II B 2, and
detailed in [[9], Procedure 2]. If an error is detected at one of
the recursion levels of Bi→ j , we declare a preparation failure
and discard the prepared state, hence no output is produced.
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FIG. 4. An example of Procedure 2: The figure illustrates the factory preparation for N = 16, T = 3 and nsch = {2, 4}, successfully
preparing one copy of |qN 〉. The factory preparation proceeds from top to bottom. Each double line denotes a set of four qubits and the
box Bi→ j , 0 � i < j � n denotes the preparation using [[9], Procedure 2] between (i + 1)th and jth level of recursion, and a red box Bi→ j

signifies that an error was detected, and therefore, no output is produced. First, we initialize qubits in ST (i.e., the set of all qubits) in the Pauli
Z basis. Then, we split the set ST in groups containing four qubits, which is denoted by the double wires in the figure. Then, on each group,
we attempt to prepare the code state |q22 〉, by applying B0→2 (note that for the analysis in Sec. IV, we actually consider the initialization step
as part of B0→2). Further, we split the successful prepared states into groups, each containing four copies of |q22 〉. On each group, we attempt
to prepare |q24 〉, by applying B2→4.

If no error is detected during Bi→ j , we successfully prepare a
Q1 code state of length 2 j (as shown in Fig. 4).

Our factory preparation is as follows (see also Fig. 4).
Procedure 2 (Factory Preparation). Consider the set of

qubits ST = {1, . . . , T N}, T � 1, N = 2n, n > 0, and the
scheduling set nsch ⊆ {1, . . . , n} according to (7). Then, the
factory preparation consists of the following steps.

(i) We first split ST in groups, each containing 2i1 qubits.
We then apply B0→i1 on each group.

(ii) To prepare several copies of |q2n〉, we then recursively
apply the preparation Bik→ik+1 , 1 � k < |nsch|, as follows.

After any scheduling recursion level ik , 1 � k < |nsch|, if
more than 2n−ik copies of |q2ik 〉 are successfully prepared, we
do the following.

We split the set of successfully prepared code states |q2ik 〉
into groups, each containing 2ik+1−ik copies of |q2ik 〉. We then
attempt to prepare |q2ik+1 〉 by applying Bik→ik+1 on each group.

Otherwise, if less than 2n−ik copies of |q2ik 〉 are successfully
prepared, we declare a preparation failure and discard entirely
the factory preparation.

Note that, after a scheduling recursion level ik , we need to
have at least 2n−ik copies of |q2ik 〉 to be able to prepare at least
one copy of |q2n〉. Therefore, if the number of successfully
prepared state is less than 2n−ik , we discard the factory prepa-
ration. In other words, the factory preparation is successful if
we have at least 2n−ik successfully prepared copies of |q2ik 〉,
after all the scheduling recursion levels ik, 1 � k � |nsch|.

Finally, note that for nsch = {n}, the factory preparation
corresponds to applying B0→n, hence it is the same as the
preparation [[9], Procedure 1] with error detection.

Preparation rate and error probabilities of factory preparation

Consider the factory preparation of |qN 〉 from Procedure
2, with respect to some T � 1 and nsch ⊆ {1, . . . , n}. Suppose

we run the factory preparation R times, successfully preparing
tR � 0 copies of |qN 〉 in total. Then, we define the prepa-
ration rate of the factory preparation, denoted by pT,nsch

fact , as
follows:

pT,nsch
fact := lim

R→∞
tR

RT
. (8)

Note that for T = 1, pT,nsch
fact is equal to pprep from (6), i.e.,

the preparation rate of [[9], Procedure 2]. Another interesting
case is when T → ∞, for which we define

pnsch
fact:= lim

T →∞
pT,nsch

fact . (9)

Let e j
X , e j

Z ∈ {0, 1}N be the X and Z errors, respectively, on
the jth ∈ {1, . . . , tR} successfully prepared state |qN 〉. Then,
the average X and Z error probabilities, denoted respectively
by pprep

X and pprep
Z , are as follows:

pprep
X = lim

R→∞
1

tRN

tR∑
j=1

wt
(
e j

X

)
, (10)

pprep
Z = lim

R→∞
1

tRN

tR∑
j=1

wt
(
e j

Z

)
, (11)

where wt(e j
X ) is the Hamming weight of e j

X ∈ {0, 1}N . From
now on, we refer to pprep

X and pprep
Z as the X and Z prepa-

ration error probabilities, respectively. The preparation error
probabilities may be used to estimate the logical error rate of
Q1 code under Steane’s error correction, with the help of the
density evolution technique as in [9].
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FIG. 5. An example of rough error: The figure shows a faulty measurement-based preparation (Procedure 1) of |0L〉 corresponding to the
code Q1(N = 8, i(n) = 3), where Pauli Z ⊗ Z and Pauli X ⊗ X measurements are implemented according to the circuits in Fig. 3. A CNOT

failure at k = 2, t = 2 produces the nontrivial error X ⊗ Z , which flips the measurement outcome of a Pauli X measurement at k = 3, t = 4.
Therefore, the produced error is a rough error.

IV. THEORETICAL ESTIMATES OF PREPARATION RATE
AND ERROR PROBABILITIES

In this section, we define the notions of rough and smooth1

errors for the measurement-based preparation, and then using
them, we provide theoretical estimates of the preparation rate
pnsch

fact from (9) and preparation error probabilities pprep
X and pprep

Z

from (10) and (11), respectively.

A. Rough and smooth errors with respect to Bi→ j

Recall that Bi→ j corresponds to the recursion levels i +
1, . . . , j of the measurement-based procedure with respect
to the binary string bi+1, . . . , b j , where bk = 0 signifies a
recursion level with Pauli X ⊗ X measurements and bk = 1
a recursion level with Pauli Z ⊗ Z measurements. For i = 0,
Bi→ j also includes initialization in Pauli Z basis at the zeroth
level of recursion. Further, Bi→ j takes as input 2 j−i copies
of |q2i〉, and produces as output a copy of |q2 j 〉 if no error
is detected.

1The terms “smooth” and “rough” are used to distinguish X and Z
boundaries in the topological quantum code literature. We emphasize
that our definition is unrelated to the one used for topological codes.

Consider the set of data qubits Si→ j :={1, . . . , 2 j} that are
input to Bi→ j , and let Ai→ j := {1, . . . , 2 j−1} be the set of
ancilla qubits used to implement the Pauli Z ⊗ Z and Pauli
X ⊗ X measurements in Bi→ j . Further, let Ci→ j be the set
of all components corresponding to Bi→ j . Note that Ci→ j

consists of Ti→ j = ( j − i)2 j−1 two qubit Pauli measurements.
Therefore, it consists of Ti→ j initializations and measurements
of the ancilla qubits and 2Ti→ j CNOT gates between the data
and ancilla qubits. If i = 0, it also has 2 j initializations in the
Pauli Z basis.

Any recursion level of Bi→ j consists of the following four
time steps (see also Fig. 5).

(t = 1) The ancilla qubits in Ai→ j are initialized in the
Pauli Z or X basis.

(t = 2) The first CNOT gate (corresponding to all Pauli X ⊗
X or Z ⊗ Z measurements) are applied in parallel.

(t = 3) The second CNOT gate (corresponding to all Pauli
X ⊗ X or Z ⊗ Z measurements) are applied in parallel.

(t = 4) The ancilla qubits in Ai→ j are measured in the Pauli
Z or X basis.

We now define rough and smooth errors with respect to
Bi→ j , as follows.
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Definition 1 (Rough and smooth errors). Let |ψk,t
i→ j〉 be the

quantum state corresponding to the joint system Si→ j ∪ Ai→ j ,
after a time step t = 1, 2, 3, 4 of the kth recursion level of
Bi→ j (i < k � j). We say a Pauli error Pe acting on |ψk,t

i→ j〉 is
a rough error if it satisfies the following two conditions.

(C.1) It is a nontrivial error in the sense that it not a stabi-
lizer of the quantum state |ψk,t

i→ j〉.
(C.2) It flips the outcome of at least one single qubit Pauli

Z or X measurement at a recursion level k′, k � k′ � j.

Further, we say that Pe is a smooth error if it satisfies
the above condition (C.1), however, it does not satisfy the
condition (C.2).

The condition (C.2) of Definition 1 is illustrated in Fig. 5
for B0→3, where the error Pe = X ⊗ Z happens at k = 2, t =
2. Recall that an X error propagates through the control of a
CNOT to its target, while it simply passes through the target.
An Z error propagates through the target of a CNOT gate to its
control, while it simply passes through the control. Further,
an error flips the outcome of a Pauli measurement if they
anticommute with each other. The error Pe in Fig. 5, consisting
of an X error on the first data qubit and a Z error on the first
ancilla qubit, flips the outcome of an X measurement at k =
3, t = 4. Since Pe is not a stabilizer of |ψ2,2

0→3〉, it corresponds
to a rough error.

The rough and smooth errors are related with the error
detection gadget as follows. An error is detected only if it flips
the outcome of at least one measurement. Hence, roughness is
a necessary condition for error detection. However, it is not a
sufficient condition as an error of large weight may flip several
measurement outcomes and the error detection is limited by
the minimum distance of the classical code. Nevertheless, due
to the recursive nature of the preparation procedure, for an er-
ror to survive it should not be detected at any of the recursion
levels that follow. Therefore, we expect that the rough errors
will go undetected with small probabilities. This justifies the
following assumption that we make for the estimation of the
preparation rate and preparation error probabilities.

Assumption 1. Any rough error on the quantum state
|ψk,t

i→ j〉, i < k � j, t = 1, 2, 3, 4, is detected by the error de-
tection gadget at one of the recursion levels k, . . . , j.

We will further use the rough error probability and smooth
error channel, defined below.

Definition 2 (Rough error probability). We define the
rough error probability for a component C ∈ Ci→ j , as the
probability that C produces a rough error in Bi→ j .

Considering Assumption 1, the error that remains on the
output of Bi→ j , when no error is detected, is due to the smooth
errors. We define below the smooth error channel correspond-
ing to a component.

Definition 3 (Smooth error channel). Let L(HSi→ j ) be the
set of linear operators acting on HSi→ j , the Hilbert space cor-
responding to Si→ j . Then, we define the smooth error channel
corresponding to a component C ∈ Ci→ j , denoted by WC :
L(HSi→ j ) → L(HSi→ j ), as the channel that acts on the output
quantum state of Bi→ j , due to the smooth errors produced by
the faults in C.

In the following, we denote by pC and WC , the rough error
probability and the smooth error channel associated with a
component C, respectively. We further define kmin

i→ j , as follows:

kmin
i→ j := min{k ∈ {i + 1, . . . , j − 1} | bi′ = b j,∀k < i′ � j}.

(12)

In other words, kmin
i→ j is the minimum value in {i + 1, . . . , j −

1}, so that the recursion levels of Bi→ j after kmin
i→ j consists of

only one type of two-qubit Pauli measurements, given by the
value of b j .

We provide below pC and WC for the initialization of data
qubits (Lemma 1), initialization and measurement of ancila
qubits (Lemma 2), and CNOT gates (Lemma 3), considering
the circuit level depolarizing noise model from Sec. II B 2,
with the physical error rate p. The proofs of lemmas are given
in Appendix.

Lemma 1. Consider the recursion levels corresponding to
B0→ j, j > 0 and let C be an initialization component on a data
qubit q ∈ S0→ j , at the zeroth level of recursion. Then, pC and
WC are as follows:

pC =
{

0, if
∑ j

t=1 bt = 0,

p, otherwise.
(13)

WC =
{

IS0→ j\q ⊗ Bp
q , if

∑ j
t=1 bt = 0,

IS0→ j , otherwise,
(14)

where B(p)
q is a bit-flip channel, acting on q with the error

probability p, i.e., B(p)
q (ρ) := (1 − p)ρ + pXρX .

Lemma 2. For an initialization and measurement compo-
nent on an ancilla qubit in Ai→ j, 0 � i < j, we have the
following:

pC = p, (15)

WC = ISi→ j . (16)

Lemma 3. Consider a CNOTq→a on the kth recursion level
of Bi→ j, 0 � i < k � j, acting between a data qubit q ∈ Si→ j

and an ancilla qubit a ∈ Ai→ j . Then, depending on k, pC is as
follows:

pC =

⎧⎪⎪⎨⎪⎪⎩
8p/15, if k = j,

4p/5, if kmin
i→ j � k < j,

14p/15, otherwise.

(17)

Further, WC = ISi→ j\q ⊗ Wq, where Wq is a quantum channel
acting on q as follows:

Wq =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D(6p/15)
q , if k = j,

B(2p/15)
q , if kmin

i→ j � k < j, and b j = 0,

P (2p/15)
q , if kmin

i→ j � k < j, and b j = 1,

Iq, otherwise,
(18)

where D(p)
q is a depolarizing channel, acting on q with er-

ror probability p as D(p)
q (ρ) := (1 − p)ρ + p

3 (XρX + Y ρY +
ZρZ ), B(p)

q is a bit-flip channel, acting on q with the error
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FIG. 6. Two rough errors together may produce a smooth error:
The figure shows a faulty Pauli Z ⊗ Z measurement. The fault in
CNOTq1→a produces the error Xq1 ⊗ Xa and the fault in CNOTq2→a

produces the error Iq2 ⊗ Xa. Both errors Xq1 ⊗ Xa and Iq2 ⊗ Xa are
rough individually as they will flip the measurement outcome of
the Pauli Z measurement on the ancilla qubit. However, when these
errors are considered together, they do not flip the measurement
outcome as the X errors on the ancilla qubit get canceled. Hence, the
total error may not be a rough error. Note that after the measurement,
the remaining error on data qubits is Xq1 ⊗ Iq2 , which may flip a
measurement outcome at one of the subsequent levels of recursion.

probability p as B(p)
q (ρ) := (1 − p)ρ + pXρX , and P (p)

q is a
phase-flip channel, acting on q with the error probability p as
P (p)

q (ρ) := (1 − p)ρ + pZρZ .

B. Success probability of Bi→ j

Considering Assumption 1, the success probability of Bi→ j

corresponds to the probability that a rough error is not pro-
duced at any of the recursion levels in Bi→ j . In this regard, we
consider the following two cases.

(1) The component failures at the previous recursion lev-
els, i.e., B0→i, producing smooth errors with respect to B0→i.

(2) The component failures at one of the recursion levels
corresponding to Bi→ j .

Let p(1) and p(2) be the probability that a rough error with
respect to Bi→ j is not produced due to Point (1) and Point
(2), respectively. In the following, we give approximations of
p(1) and p(2), using which we may approximate the success
probability of Bi→ j .

We first consider Point (2). We may approximate p(2) di-
rectly from Lemmas 1, 2, and 3, as follows:

p(2) ≈
∏

C∈Ci→ j

(1 − pC ). (19)

Recall that pC is the rough error probability associated with
the component C. We have the following remark.

Remark 1. We note that the total error produced by com-
ponent failures in a set C ′ ⊆ Ci→ j (containing two or more
components, i.e., |C ′| � 2) can be a smooth error, even though
individual component failures in C ′ produce rough errors (see
Fig. 6). To get the actual value of p(2), we need to add in the
right-hand side (RHS) of (19), the probabilities of the events
for all the subsets C ′ ⊆ Ci→ j, |C ′| � 2, where each component
in C ′ produces a rough error individually but the total error
is a smooth error. As the probability of such an event is upper
bounded by

∏
C∈C′ pC , we expect the RHS in (19) to be a good

lower bound of p(2).
In the next paragraph, we give an approximation of p(1).
Rough error probability due to previous recursion levels.

We first estimate the errors that remain on the input of Bi→ j

due to the smooth errors in previous recursion levels, i.e.,
B0→i. We then estimate the probability that this remaining
error is a rough error with respect to Bi→ j (hence, giving an
estimate of p(1)).

To estimate the remaining error on the input of Bi→ j , we
simply concatenate the smooth error channels corresponding
to components in C0→i. The resulting channel after concatena-
tion is a Pauli channel as given in Lemma 4, which is proven
in Appendix.

Lemma 4. Let W0→i : L(HS0→i ) → L(HS0→i ) be the quan-
tum channel that corresponds to the concatenation of smooth
error channels for all C ∈ C0→i, i.e., W0→i = WC1 ◦ · · · ◦
WC|C0→i | . Then, W0→i = ⊗q∈S0→iWq (i.e., W0→i acts inde-
pendently and identically on qubits in S0→i), where Wq is
a Pauli channel, whose X , Y, and Z error probabilities are,
respectively, upper bounded by p0→i

x , p0→i
y , and p0→i

z , which
are as follows:

p0→i
x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − (1 − p)(1 − 2p/15)i, if

∑i
t=1 bt = 0,

1 − (1 − 2p/15)(i−kmin
0→i )+1, if

∑i
t=1 bt �= 0, and bi = 0,

2p/15, if bi = 1,

(20)

p0→i
y = 2p/15, (21)

p0→i
z =

{
2p/15, if bi = 0,

1 − (1 − 2p/15)(i−kmin
0→i )+1, if bi = 1.

(22)

As explained in Remark 1 and Fig. 6, a set of component
failures may produce a smooth error even though individual
component failures produce rough errors. Such smooth errors
are not taken into account in Lemma 4, therefore, the channel
W0→i therein underestimates the actual errors on the output
of B0→i. However, as the probability of such an event is
exponentially small in the number of component failures, we

expect W0→i approximates well the actual channel acting on
the output of B0→i.

We now estimate the probability that the channel W0→i in
Lemma 4 produces a rough error with respect to Bi→ j . Note
that an X (or Z) error on the qubit q ∈ Si→ j at the input of
Bi→ j , will flip the measurement outcome of the next Pauli Z ⊗
Z (or X ⊗ X ) measurement. Therefore, using (20), (21), and
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(22), the probability of preexisting error on a qubit q to be
rough in Bi→ j is upper bounded as

ppre =

⎧⎪⎪⎨⎪⎪⎩
p0→i

y + p0→i
z , if

∑ j
t=i+1 bt = 0,

p0→i
x + p0→i

y , if
∑ j

t=i+1 bt = j − i,

p0→i
x + p0→i

y + p0→i
z , otherwise.

(23)

Using (23) and the fact that there are 2 j qubits in Si→ j , the
probability that the preexisting errors do not produce a rough
error with respect to Bi→ j is given by

p(1) ≈ (1 − ppre)2 j
. (24)

Note that (24) is an approximation due to the fact that sev-
eral individual rough errors may be one smooth error when
considered together, as previously explained.

Finally, from (24) and (19), the probability that no-rough
error happens in Bi→ j (in other words, the success probability
of Bi→ j using Assumption 1) can be approximated as follows:

ps
i→ j ≈ (1 − ppre)2 j

∏
C∈Ci→ j

(1 − pC ). (25)

C. Preparation rate of the factory preparation

Using (25), we now estimate the preparation rate for the
asymptotically large factory size, that is, T → ∞ as in (9).
Suppose after the ith

k , ik ∈ nsch scheduling recursion level,
we have total Tik successfully prepared Q1 code-states of
length 2ik . As in Procedure 2, we split successfully prepared
code states into [Tik /(2ik+1−ik )] groups, each group containing
2ik+1−ik code states. We then apply Bik→ik+1 on each group to
prepare Q1 code states of length 2ik+1 . Using (25) and the law
of large numbers, we may estimate the number of prepared
state after Bik→ik+1 as follows:

Tik+1 ≈ [Tik /(2ik+1−ik )]ps
ik→ik+1

. (26)

Using (26), we have

ps
ik→ik+1

≈ Tik+1 (2ik+1−ik )

Tik

. (27)

Further, applying (27) recursively, we may get an estimate
of the preparation rate in (9), as follows (we take i0 = 0 and
recall i|nsch| = n),

pnsch
fact = Ti|nsch |

T
(28)

=
i|nsch |−1∏

k=0

Tik+1 (2ik+1−ik )

Tik

(29)

≈
i|nsch |−1∏

k=0

ps
ik→ik+1

, (30)

where we use Ti0 = T0 = NT in the second equality, and
approximation in the last line follows from (27). Therefore,
from (30), the factory preparation rate for T → ∞ is simply
a multiplication of the success probabilities of the blocks
Bik→ik+1 , k = 0, . . . , i|nsch| − 1. Further, from (25) and (30), we

may roughly see as follows why factory preparation may im-
prove the preparation rate compared to preparation in [9]. As
noted before, preparation in [9] corresponds to nsch = {n}, for
which we get pnsch

fact ≈ ps
0→n from (30). Further from (25), for

ps
0→n, we need to consider component failures in the set C0→n

for error detection, while for
∏i|nsch |−1

k=0 ps
ik→ik+1

corresponding
to a nsch = {i1, . . . , ik, . . . , i|nsch|} ⊃ {n}, we need to consider
component failures in the smaller set C0→i1 ∪ · · · ∪ Cik−1→ik ∪
Cik→ik+1 · · · ∪ Ci|nsch |−1→i|nsch | ⊂ C0→n.

D. Preparation error probabilities of the factory preparation

The remaining error on the final prepared state is due to the
smooth errors in B0→n, hence given by the quantum channel
W0→n as in Lemma 4. The action of W0→n on each qubit q ∈
S0→ j corresponds to the Pauli channel, with the X,Y , and Z
error probabilities p0→n

x , p0→n
y , and p0→n

x according to (20),
(21), and (22), respectively. Therefore, the preparation X and
Z error probabilities in (10) and (11), respectively, are given
by

pprep
X = p0→n

x + p0→n
y , (31)

pprep
Z = p0→n

y + p0→n
z . (32)

V. NUMERICAL RESULTS

In this section, we present our numerical results regarding
the factory preparation rate and logical error rates, using our
theoretical estimates in Sec. IV as well as a Monte Carlo
simulation, considering the circuit level depolarizing noise
model from Sec. II B 2.

A. Preparation rate

For the Monte Carlo simulation of the preparation rate, we
proceed as follows. We simulate R times the factory prepara-
tion according to Procedure 2, for a factory size T . Let ti be the
number of successfully prepared states for the ith instance of
the factory preparation, 1 � i � R. Then, we determine pT,nsch

fact
as follows:

pT,nsch
fact = 1

RT

R∑
i=1

ti. (33)

We obtain the value of pT,nsch
fact for T values 1, 21, . . . , 210. For

the fixed physical error rate p = 10−3, the factory preparation
rate pT,nsch

fact , with respect to T , is shown in Fig. 7(a) for Q1(N =
64, i = 23) and Q1(N = 256, i = 91), with scheduling sets
nsch = {2, 4, 6} and nsch = {2, 4, 6, 8}, respectively. The infor-
mation positions are chosen according to [[9], Table II] for
ignoring correlations.

We observe that pT,nsch
fact increases with respect to T in the be-

ginning, and then it saturates. The saturated value corresponds
to the preparation rate with respect to T → ∞, i.e., pnsch

fact from
(9). We take the saturated value to be the value of pT,nsch

fact for
T = 210.

The difference between the saturated value and the value of
pprep from (6) (i.e., pT,nsch

fact for T = 1) is quite significant, espe-
cially for N = 256. In particular, for N = 64, 256, the value
of pprep is around 47%, 2%, respectively, while the saturated
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FIG. 7. Factory preparation rate: We consider codes Q1(N = 64, i = 23) and Q1(N = 256, i = 91), and scheduling sets nsch = {2, 4, 6}
and nsch = {2, 4, 6, 8}, respectively, for the factory preparation according to Procedure 2. Panel (a) shows factory preparation rate with respect
to the size of the factory T for a fixed value of physical error rate p = 10−3, obtained using a Monte Carlo simulation. Panel (b) shows factory
preparation rate with respect to the physical error rate p for a fixed value of the factory size T = 1024, obtained using a Monte Carlo (MC)
simulation and also using theoretical (TH) estimates from Sec. IV C.

value is around 70%, 27%. Therefore, the factory preparation
provides significant improvement in the preparation rate com-
pared to [[9], Procedure 2]. Further, the saturation happens
rather quickly, for example the value of pT,nsch

fact for T = 8 is
already quite close to its value for T = 1024 for both N =
64, 256. This means that we do not need a large factory size to
get the increased preparation rate of the factory preparation.2

We further obtain the value of pnsch
fact using our theoretical

estimate in (25) and (30). In Fig. 7(b), we present both the
Monte Carlo and theoretical values of pnsch

fact with respect to
the physical error rate p. We observe that the curves corre-
sponding to Monte Carlo simulation and theoretical estimates
are very close, thus validating that our method of theoretical
estimation is a good approximation of reality.

B. Logical error rate

In this section, we estimate the logical error rates of Q1

codes, using the Steane error correction, which uses the ancilla
code states (logical |0〉 and |+〉 states), prepared by the factory
preparation according to Procedure 2.

To do so, we use the density evolution technique as in [[9],
Appendix E.4]. Precisely, using the X and Z error probabilities
on the prepared states, given by (31) and (32), we first estimate
the input error probability for the two decoders used within the
Steane error correction procedure, as described in [[9], Ap-
pendices E.3 and E.4] [see also Eqs. (E10) and (E11) therein].
Then, we use density evolution to estimate the output error
probability of the two decoders, from which we determine the

2Note that the inverse of the preparation rate contributes to the qubit
overhead of the preparation, hence, the factory preparation reduces
significantly the qubit overhead of Q1 code-state preparation. In
particular, for N = 256, p = 10−3, it reduces the qubit overhead by
a factor of around 13.

X and Z logical error rates, PL
X and PL

Z [[9], Eq. (E12)], and
then the (total) logical error rate PL

e = PL
X + PL

Z − PL
X PL

Z .
In Fig. 8, we present the logical error rate versus physical

error rate curves for N = 64, 256. For N = 64, we include the
density evolution based curves as well as the Monte Carlo
simulation based curves from [[9], Fig. 4]. We observe that
the density evolution curves virtually superimpose the Monte
Carlo curves, therefore, substantiating our theoretical method
of estimating preparation error probabilities.

For N = 256, we only include the density evolution curves,
as the logical error rates are very small to be simulated
using the Monte Carlo simulation, and also the preparation
rates are comparatively smaller. As expected, the Q1 codes
perform much better than the Shor-Q1 codes. Note that the

FIG. 8. Logical error rates of codes Q1(N = 64, i = 23) and
Q1(N = 256, i = 91), using Steane error correction, where ancilla
code states are prepared using the factory preparation in Procedure
2. The curves are obtained either based on a Monte Carlo (MC)
simulation or a density evolution (DE) method.
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TABLE I. Preparation and logical error rates for N = 1024.

p 0.001 0.0004 0.0002 0.0001

pnsch
fact 0.5% 12% 35% 59%

PL
e 4.08 × 10−22 2.04 × 10−28 3.23 × 10−33 2.69 × 10−38

performance of the Q1 code for N = 64 is better than the
performance of the Shor-Q1 code for N = 256, down to a
physical error rate p = 10−3. Remarkably, the Q1 code for
N = 256 achieves logical error rates around 10−11 and 10−15

for physical error rates 10−3 and 3 × 10−4, respectively, which
is very promising for the practical large-scale fault-tolerant
quantum computation [12].

Finally, for N = 1024, our numerical results are given in
Table I. For a practically interesting range of physical error
rates p ∈ [10−4, 10−3], we observe that Q1 code of length
N = 256 is the best choice due to good preparation rate and
sufficiently low logical error rates. Increasing the code length
may be useful for physical error rates above 10−3, however, in
this case the N = 1024 code is penalized by its poor prepara-
tion rate.

C. Comparison with the surface code

In Fig. 9, we compare the error correction performance
of Q1 and Shor Q1 codes of length N = 256 and minimum
distance d = 16, with that of a surface code with minimum
distance d = 15, assuming a circuit level depolarizing noise
model. For the surface code, the simulation results are taken
from [12]. Note that taking d = 16 for the surface code only
increases the code length N , but not the error correction per-
formance. For d = 15, the code length reported in [12] is N =
421, however, it can be reduced to N = 225, by considering
a rotated variant of the surface code. The logical error rate
of the surface code is simulated in [12] down to a physical
error rate p = 5 × 10−3. We extrapolated the logical error
rate for lower physical error rates using PL

e = c(p/pth)
d+1

2 , as

FIG. 9. Comparison of logical error rates of Q1(N = 256, i =
16) and Q1(N = 256, i = 91), with that of the surface code, with
code length N = 225, and minimum distance d = 15 from [12].

proposed in [12], where pth = 0.0057 is the reported surface
code threshold.

We can see that the Q1 code outperforms the surface
code by about three orders of magnitude. For example, for
practically interesting physical error rates p = 10−3 and p =
5 × 10−4, the corresponding logical error rates for the surface
code are around 10−8 and 5 × 10−11, while for Q1 codes are
around 10−11 and 5 × 10−14. This is an encouraging result for
Q1 codes and shows that they are of independent interest in
the context of fault tolerant quantum computing.

However, we should consider the above comparison care-
fully, as error correction procedures are different for Q1 and
surface codes. While Steane error correction is natural for
Q1 codes, generator measurement-based error correction is
natural for surface codes due to their small weight generators.
On the one hand, Steane error correction is advantageous in
the sense that one round of syndrome extraction is enough for
error correction, while for generator measurement-based error
correction, several rounds of syndrome extraction are needed.
Therefore, error correction for polar codes can be faster than
for surface codes. On the other hand, generator measurement-
based error correction is advantageous in the sense that ancilla
qubits can be intercalated between data qubits and are directly
reusable after each round of syndrome extraction. However,
Steane error correction needs a separate ancilla factory run-
ning, to produce ancilla states needed for error correction.
Ancilla qubits used in a round of error correction will be
moved back to the factory so that they are reused.

Finally, we note that the factory preparation (see also
Fig. 5) requires distant CNOT gates, i.e., interaction between
nonneighboring qubits, as opposed to the surface codes.
Although distant CNOT gate is possible on some potential
quantum systems such as ion traps [13,14], there are ways
to circumvent this for quantum systems with local interaction
constraint such as by applying swap gates [15,16] or physi-
cally moving qubits around [17–21].

Recently, quantum error correcting codes such as small
surface and color codes, as well as three-dimensional codes,
have been implemented on a reconfigurable quantum archi-
tecture (based on Rydberg atoms), with storage, entangling,
and readout zones [17,18]. Qubits therein are moved around
within a zone or between zones to achieve long-range
connectivity. Moreover, it is worth noticing that the three-
dimensional [[8,3,2]] code implemented in [17] is actually
very similar to a length-8 polar code, both codes using hyper-
cube connectivity. As Q1 codes provide better error correction
performance exploiting distant operations, they are naturally
suited to this kind of architecture. Moreover, the reconfig-
urable quantum architecture allows to move blocks of qubits
in parallel, realizing transversal CNOT gate on two code blocks
in parallel. As our preparation is based on recursively applying
transversal measurements between two blocks of qubits, it
may be implemented in a similar way.

VI. DISCUSSION

We proposed a factory preparation of Q1 code states,
which is shown to be an useful extension of the measurement
based preparation in [9], providing much better preparation
rates comparatively. Its better preparation rate is owed to a
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FIG. 10. Propagation of initialization errors through Pauli Z ⊗ Z
and X ⊗ X measurement.

scheduling step, which makes clever use of the Q1 code states
prepared at the intermediate levels of recursion. Thanks to
the factory preparation, we are able to prepare code states
of lengths N = 256, 1024, with reasonably high preparation
rates for a practically interesting physical error rate range
10−4 − 10−3. Further, it is shown that for N = 256, 1024 and
a physical error rate in the range 10−4 − 10−3, the Q1 code
achieves a logical error rate below 10−15, which is currently
estimated to be the required logical error rate for large-scale
fault-tolerant quantum computation [12]. Due to a higher
preparation rate, smaller number of qubits, and also achieving
a sufficiently low logical error rate, the code length N = 256
is the best Q1 code in this physical error range.

To estimate the preparation rate and logical error rates of
Q1 codes, we used a theoretical framework based on the new
notions of smooth and rough errors. It is shown that estimates
based on our theoretical framework fit well the estimates
obtained using Monte Carlo simulations, therefore substanti-
ating the accuracy of the theoretical framework. We note that
our notions of smooth and rough errors are not particular to Q1

codes, and therefore, as a natural future direction, it would be
interesting to analyze other fault-tolerant protocols using these
notions, especially the ones based on error detection [22,23].
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APPENDIX: PROOFS OF LEMMAS 1, 2, 3, AND 4

1. Proof of Lemma 1

Lemma 1 follows from the fact that the initialization at the
zeroth level of recursion produces an X error, which flips the
outcome of a Pauli Z ⊗ Z , while it does not have any effect on
Pauli X ⊗ X measurement as shown in Fig. 10.

Proof of Lemma 2. Consider the circuit implementing Pauli
Z ⊗ Z measurement from Fig. 3. Note that a failure in initial-
ization on the ancilla qubit produces an X error on it, which
will flip the outcome of the next Pauli Z measurement. A
failure in Pauli Z measurement produces an X error just before
the measurement, hence it will also flip the measurement
outcome. Therefore, the measurement outcome will be flipped
with probability 1 if an initialization or an measurement error
happens on the ancilla qubit. Therefore, it follows that

pC = p, (A1)

WC = I. (A2)

Similarly, it can be proven for Pauli X ⊗ X measurement.

FIG. 11. A fault in CNOTq1→a leading to a stabilizer error.

a. Proof of Lemma 3

We prove below Lemma 3 for the CNOT gate applied at the
time step t = 2 of a recursion level in Bi→ j , with Pauli Z ⊗
Z measurements. It can be similarly seen that Lemma 3 also
holds for t = 3, and as well as for the CNOT gates applied in a
Pauli X ⊗ X measurement.

Consider a Pauli Z ⊗ Z measurement applied at some kth
recursion level corresponding to Bi→ j . We shall denote the
data qubits on which Pauli Z ⊗ Z measurement acts on by
q1, q2 and the ancilla qubit by a, as in Fig. 11. Below, we
classify the errors produced by the first cnot gate into rough
and smooth errors, as per Definition 1, and then, using the
set of rough and smooth errors, we compute pC and WC for
C = CNOTq1→a.

First, note that if a failure in C produces the error Zq1 ⊗ Za,
it propagates as Zq1 ⊗ Zq2 after the measurement, which is
a stabilizer of the quantum state corresponding to the joint
system q1q2, and hence this error can be ignored (see Fig. 11).
Further, if a failure in C produces an X or Y error on the
ancilla qubit a, it will flip the measurement outcome of the
corresponding Pauli Z ⊗ Z measurement, hence such an error
is a rough error. Precisely, the following errors produce an X
or Y error on the ancilla

Iq1 ⊗ Xa, Xq1 ⊗ Xa, Zq1 ⊗ Xa,Yq1 ⊗ Xa, Iq1 ⊗ Ya, Xq1 ⊗ Ya, Zq1

⊗ Ya,Yq1 ⊗ Ya. (A3)

The remaining errors, i.e., Xq1 ⊗ Ia,Yq1 ⊗ Ia, Zq1 ⊗
Ia, Iq1 ⊗ Za, Xq1 ⊗ Za,Yq1 ⊗ Za do not flip the outcome of
the measurement and propagate to the following errors after
the measurement (up to the stabilizer Zq1 ⊗ Zq2 , similar
to Fig. 11), Xq1 ⊗ Iq2 ,Yq1 ⊗ Iq2 , Zq1 ⊗ Iq2 , Zq1 ⊗ Iq2 ,Yq1 ⊗
Iq2 , Xq1 ⊗ Iq2 , respectively. Hence, the remaining errors only
act nontrivially on the qubit q1, and they correspond to a
depolarizing channel, with error probability 6p/15 as follows,
D(6p/15)

q1 (ρ) := (1 − 6p
15 )ρ + 2p

15 (XρX + Y ρY + ZρZ ). Some
or all of the remaining errors may also be rough errors
depending on whether they flip a measurement outcome at
one of the next recursion levels. We have the following four
cases in order.

If k is the last recursion level, i.e., k = j. In this case,
pC is simply given by the errors that flip the measurement
outcome of the corresponding Pauli Z ⊗ Z measurement at
the kth recursion level. Therefore pC = 8p/15. Further, WC

is the remaining noise channel after the kth recursion level.
Therefore, WC = ISi→ j\q1 ⊗ D(6p/15)

q1 .
If kmin

i→ j � k < j with b j = 0 (hence, only Pauli X ⊗ X
measurements after the kth recursion level.) In this case, the
remaining Z error after the kth level of recursion will flip a
Pauli X ⊗ X measurement at the (k + 1)th level of recursion,
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while the remaining X errors will not flip any measurement
outcome. This implies that the depolarizing channel D(6p/15)

q1

transforms into a bit-flip channel, denoted by B(2p/15)
q1 , acting

on q1 with error probability 2p/15. Therefore, pC = 12p/15
and WC = ISi→ j\q1 ⊗ B(2p/15)

q1 .
If kmin

i→ j � k < j with b j = 1 (hence, only Pauli Z ⊗ Z
measurements after the kth recursion level.) In this case, the
remaining X error after the kth level of recursion, will flip a
Pauli Z ⊗ Z measurement at the (k + 1)th level of recursion,
while the remaining Z errors will not flip any measurement
outcome. This implies that the depolarizing channel D(6p/15)

q1

transforms into a phase-flip channel, denoted by P (2p/15)
q1 ,

acting on q1 with error probability 2p/15. Therefore, pC =
12p/15 and WC = ISi→ j\q1 ⊗ P (2p/15)

q1 .
If k < kmin

i→ j . In this case, we have both Pauli Z ⊗ Z and
X ⊗ X measurements afterwards, hence both the remaining X
and Z errors after the kth recursion level will be detected in
one of the next recursion levels. Therefore, the depolarizing
channel D(6p/15)

q1 transforms into the identity channel. Hence,
pC = 14p/15 and WC = ISi→ j\q1 ⊗ Iq1 .

In summary, we have the following for pC and WC :

pC =

⎧⎪⎪⎨⎪⎪⎩
8p/15, if k = j,

4p/5, if kmin
i→ j � k < j,

14p/15, otherwise.

(A4)

Further, WC = ISi→ j\q ⊗ Wq, where Wq is a quantum channel
acting on q as follows:

Wq =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D(6p/15)
q , if k = j,

B(2p/15)
q , if kmin

i→ j � k < j, with b j = 0,

P (2p/15)
q , if kmin

i→ j � k < j, with b j = 1,

Iq, otherwise.

(A5)

b. Proof of Lemma 4

From Lemma 1, the smooth error channel corresponding
to initialization at the zeroth level of recursion (with respect
to kmin

0→i) is the identity, except when
∑i

t=1 bt = 0 (it implies
that kmin

0→i = 1), it is a bit-flip channel on the corresponding
qubit at the output of B0→i, as in (14). Further, from Lemma
2, the smooth error channel corresponding to initialization
and measurement of the ancilla qubit is always the identity.
Furthermore, from Lemma 3, the smooth error channel corre-
sponding to CNOT gates for recursion levels k < kmin

0→i is also
the identity. For k � kmin

0→i, it is either a depolarizing, bit or
phase-flip channel as given in (18), acting on the data qubit
on which the CNOT gate acts. Hence, from (14) and (18), and
noting that one CNOT gate acts on a data qubit q ∈ Si→ j at each
recursion level (see Fig. 5), it follows that the total smooth
channel on each qubit q ∈ S0→i is an (i.i.d.) Pauli channel as
follows:

Wq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B(p)

q ◦ (
B(2p/15)

q ◦ i· · · ◦B(2p/15)
q

) ◦ D(6p/15)
q , if

∑i
t=1 bt = 0,(

B(2p/15)
q ◦ i−kmin

0→i· · · ◦B(2p/15)
q

) ◦ D(6p/15)
q , if

∑i
t=1 bt �= 0 and bi = 0,(

P (2p/15)
q ◦ i−kmin

0→i· · · ◦P (2p/15)
q

) ◦ D(6p/15)
q , if bi = 1.

(A6)

By simplifying (A6), we can see that Wq is a Pauli channel, whose X , Y , and Z error probabilities are, respectively, upper
bounded by p0→i

x , p0→i
y , and p0→i

z , which are given by

p0→i
x =

⎧⎪⎪⎨⎪⎪⎩
1 − (1 − p)(1 − 2p/15)i, if

∑i
t=1 bt = 0,

1 − (1 − 2p/15)(i−kmin
0→i )+1, if

∑i
t=1 bt �= 0 and bi = 0,

2p/15, if bi = 1.

(A7)

p0→i
y = 2p/15, (A8)

p0→i
z =

{
2p/15, if bi = 0,

1 − (1 − 2p/15)(i−kmin
0→i )+1, if bi = 1.

(A9)

We note that p0→i
y is equal to the Y error probability. Furthermore, p0→i

x is equal to the X error probability for bi = 1, and p0→i
z

is equal to the Z error probability, when bi = 0.
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