
PHYSICAL REVIEW A 110, 012437 (2024)

Almost-optimal computational-basis-state transpositions

Steven Herbert,* Julien Sorci ,† and Yao Tang ‡

Quantinuum, Terrington House, 13-15 Hills Road, Cambridge CB2 1NL, United Kingdom

(Received 16 January 2024; revised 14 May 2024; accepted 16 May 2024; published 12 July 2024)

We give an explicit construction to perform any n-qubit computational-basis-state transposition using �(n)
gates. This nearly coincides with the lower bound �[n/ log(nd)] on worst-case and average-case gate complex-
ities to perform transpositions using a d-element gate set, which we also prove.

DOI: 10.1103/PhysRevA.110.012437

I. INTRODUCTION

Quantum circuits that permute computational basis states
are widely found in quantum computing: the X , CNOT, and
Toffoli gates do exactly this, and blocks of {X , CNOT, Tof-
foli} are found, for example, every time an oracle is invoked
to compute a classical function. Indeed, owing to the quan-
tum computational universality of the gate set {H, Toffoli}
[1], every quantum circuit can be replaced by a function-
ally equivalent version represented as alternating blocks of
permutations and Hadamard gates. Furthermore, it has been
observed that many of the most powerful quantum circuits
amount to no more than a computational-basis-state permu-
tation conjugated by a transform, such as the Fourier or
Schur transform [2]. Some notable instances featuring permu-
tation circuits are Shor’s factoring algorithm, which employs
a permutation circuit for modular exponentiation, and the
discrete-time quantum walk operator, which acts as a diffusion
operator followed by a conditional shift, the latter of which is
a permutation circuit [3,4].

Owing to the general importance of permutations in
quantum circuits, we explore bounds on performing arbi-
trary computational-basis-state transpositions. Specifically,
we consider an n-qubit circuit with computational basis states
{ |x〉 : x ∈ {0, 1}n}, and we are interested in the gate complex-
ity of the operation

|x〉 �→

⎧⎪⎨
⎪⎩

|x〉 , if x /∈ {a, b},
|b〉 , if x = a,

|a〉 , if x = b,
(1)

for fixed but arbitrary a, b ∈ {0, 1}n.
As a concrete example of an important quantum circuit

primitive where computational basis transpositions mani-
fest, consider a quantum oracle which evaluates a classical
function f : {0, 1}n → {0, 1}m. This acts on the computa-
tional basis states as the mapping |x, y〉 �→ |x, y ⊕ f (x)〉

*Also at Department of Computer Science and Technology,
University of Cambridge, Cambridge, United Kingdom;
steven.herbert@quantinuum.com

†julien.sorci@quantinuum.com
‡yao.tang@quantinuum.com

for x ∈ {0, 1}n and y ∈ {0, 1}m, where ⊕ denotes bitwise
addition. Such a mapping can be compiled as a product
of computational-basis-state transpositions which transpose
|x, y〉 with |x, y ⊕ f (x)〉, one for each y ∈ {0, 1}m and x ∈
{0, 1}n such that f (x) is nonzero. Compiling this circuit as
a product of transpositions is particularly advantageous for
functions with low support.

Previous work on the compilation of permutation circuits
largely focused on the complexity of compiling an arbitrary
computational-basis-state permutation. The worst-case gate
complexity was shown to be �[n2n/ log(n)] (all logarithms
used in the paper have insignificant bases) in Ref. [5], and
constructions which nearly meet this worst-case lower bound
were proposed in Refs. [6,7]. On the other hand, there ap-
pears to be little in the literature on the compilation of a
computational-basis-state transposition. Noting that the set of
transpositions generates the full group of permutations, trans-
positions constitute an important building block for quantum
circuits in general.

The organization of this paper is as follows. In Sec. II we
prove a lower bound on the worst-case gate complexity to
compile a unitary from a given family of unitary matrices
and show that the same asymptotic lower bound holds for
the average gate complexity, independent of the number of
ancilla qubits present. We specialize these results to the case
of computational-basis-state transpositions. In Sec. III we give
a construction for a circuit that performs any transposition
with �(n) gates and either two or n − 1 clean ancillas, which
nearly achieves the lower bound of �[n/ log(nd)] for a d-
element gate set proved in the preceding section. In Sec. IV
we present numerical results demonstrating the performance
of our proposed method of performing a computational-basis-
state transposition in terms of CNOT- and T -gate counts. Last,
in Sec. V we conclude the paper with some final remarks.

II. A LOWER BOUND ON THE GATE COMPLEXITY OF
COMPUTATIONAL-BASIS-STATE TRANSPOSITIONS

In this section we prove a lower bound on the worst-case
and average-case gate complexities of a computational-basis-
state transposition for any finite gate set. We begin by proving
a worst-case lower bound for an arbitrary set of operators and
then specialize to transpositions. For the remainder of this

2469-9926/2024/110(1)/012437(9) 012437-1 ©2024 American Physical Society

https://orcid.org/0000-0001-8062-6553
https://orcid.org/0009-0006-4023-8701
https://ror.org/013meh722
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.012437&domain=pdf&date_stamp=2024-07-12
https://doi.org/10.1103/PhysRevA.110.012437

STEVEN HERBERT, JULIEN SORCI, AND YAO TANG PHYSICAL REVIEW A 110, 012437 (2024)

section we will let G denote a finite gate set consisting of
d gates with each gate acting on at most c qubits for some
constant c.

Theorem 1. Let G be a finite gate set consisting of d gates.
Then for any set of unitary matrices U , there is an element of
U with gate complexity

�[log(|U |)/ log(nd)]. (2)

Moreover, if |U | ∈ O(nn), then this holds even if we permit an
arbitrary number of ancilla qubits.

Proof. We first show that the claimed gate complexity
holds if no ancillas are present. Consider an n-qubit circuit
that is compiled by k gates of G. Since each gate in G acts on
at most c qubits, then there are at most (n!/(n − c)!)d ways
of applying a gate from G to the circuit, and therefore, there
are at most [(n!/(n − c)!)d]k possible operations that can be
achieved by a circuit with k gates. If every element of U can
be compiled by such a circuit, then k must be large enough
that

|U | � [n!/(n − c)!d]k,

or, equivalently,

k � log(|U |)/ log [(n!/(n − c)!)d]. (3)

Therefore, there is some element in U that requires at least

log (|U |)/ log((n!/(n − c)!)d) gates of G to be compiled. For
any positive integers n and c with c � n we have the upper
bound (n!/(n − c)!) � nc, from which it directly follows that
log((n!/(n − c)!)) ∈ �[log(n)]. Thus, the resulting element
of U has gate complexity �[log(|U |)/ log(nd)], as claimed.

Next, we consider the case where m additional ancillas are
available. In particular, we ask whether the lower bound on the
gate complexity can be reduced from that in (2). First, by the
premise, we are concerned with only the case where the lower
bound has been reduced from log (|U |)/ log((n!/(n − c)!)d),
and so as each gate operates on at most c qubits, this means
that at most some

n′ � c
log(|U |)

log((n!/(n − c)!)d)

qubits can be involved in the circuit. The assumption that
|U | ∈ O(nn) implies that log(|U |) ∈ O[n log(n)], and thus,
n′ ∈ O(n). Therefore, even if an arbitrary number of ancillas
are available, we can effectively upper bound the total number
of qubits by n′ (as the ancillas are identical). It follows that
we can substitute n′ into the denominator of the expression
in (2); however, as n′ ∈ O(n), the asymptotic expression does
not change. �

We note that a similar version of Theorem 1 appeared in
[5] as Lemma 8. However, our more general statement will be
important for the results which follow it. We now show that
the same gate complexity in Theorem 1 holds on average.

Theorem 2. Let G be a finite gate set consisting of d gates.
Then for any set of unitary matrices U , the average gate
complexity of the elements of U is

�[log(|U |)/ log(nd)].

Moreover, if |U | ∈ O(nn), then this holds even if we permit an
arbitrary number of ancilla qubits.

Proof. If we now adapt Theorem 1 to consider a k̃ that is
large enough that half of the elements of U can be compiled,
then we obtain

k̃ � log(|U |/2)/ log((n!/(n − c)!)d).

To lower bound the average gate complexity of compiling the
elements of U we now lower bound the following:

(1) The at most half of the elements of U that have been
compiled within log(|U |/2)/ log((n!/(n − c)!)d) operations
have consumed at least zero operations in their compilation.

(2) The at least half of the elements of U that have not been
compiled within log (|U |/2)/ log((n!/(n − c)!)d) operations
have each consumed at least log (|U |/2)/ log((n!/(n − c)!)d)
to compile.

From this we can easily obtain a lower bound on the aver-
age gate complexity:

kave � 0.5×0 + 0.5× log(|U |/2)/ log((n!/(n − c)!)d).

The claim that the average complexity holds even with an ar-
bitrary number of ancilla qubits follows by the same reasoning
presented in the proof of Theorem 1. �

We now specialize Theorems 1 and 2 to deduce the worst-
case and average gate complexities of a computational-basis-
state transposition.

Corollary 1. Let G be a finite gate set consisting of d gates.
Then, for any n-bit computational basis state |a〉 there exists
another n-bit computational basis state |b〉 such that the gate
complexity required to compile a transposition of |a〉 and |b〉
using the gate set G is �[n/ log(nd)]. In addition, the average
complexity of such a transposition is �[n/ log(nd)]. Both of
these lower bounds hold even if we permit an arbitrary number
of ancilla qubits.

Proof. This follows directly from Theorems 1 and 2 by
taking U to be the set of transpositions with |a〉. This set has
2n − 1 elements since there are 2n − 1 distinct transpositions
of |a〉 with another computational basis state. �

III. ACHIEVING NEARLY OPTIMAL GATE COMPLEXITY
FOR A COMPUTATIONAL-BASIS-STATE TRANSPOSITION

In this section we present a quantum circuit construc-
tion to compile an arbitrary transposition. Our construction
makes use of the CnX gate, so we first provide several state-
ments on its decomposition into elementary gates. The main
ideas behind these CnX decompositions can be traced back
to [8]. In the following, we will refer to an ancilla qubit
as a borrowed ancilla if it can be in any initial state and
its output state is unchanged. Similarly, we will refer to an
ancilla qubit as a clean ancilla if its initial and final states are
both |0〉.

Lemma 1. For all n � 3, a CnX gate can be compiled using
n − 2 borrowed ancilla qubits and at most 4n − 8 Toffoli
gates.

The compilation and its proof are deferred to the
Appendix, but we give the general construction now. We write
Tof(i, j, k) to denote a Toffoli controlled on qubits i and j

012437-2

ALMOST-OPTIMAL COMPUTATIONAL-BASIS-STATE … PHYSICAL REVIEW A 110, 012437 (2024)

and targeted on qubit k and assume that a CnX is controlled on qubits x1, . . . , xn, targeting qubit xn+1, and a1, . . . , an−2 are
borrowed ancillas. The sequence of Toffoli gates which implements the desired CnX operation is

Tof(an−2, xn, xn+1) × [Tof(an−3, xn−1, an−2)Tof(an−4, xn−2, an−3) · · · Tof(a1, x3, a2)]

×[Tof(x1, x2, a1)Tof(a1, x3, a2) · · · Tof(an−4, xn−2, an−3)] × Tof(an−3, xn−1, an−2), (4)

which is all repeated once more. The reader is directed to the
Appendix for an explicitly worked out example of the above
decomposition. The compilation of Lemma 1 uses a large
number of ancilla qubits. However, this construction can be
used for an alternative compilation with the same asymptotic
gate complexity which, however, uses only a single clean
ancilla.

Lemma 2. For all n � 3, a CnX gate can be compiled using
one clean ancilla qubit and at most (a) 3 Toffoli gates when
n = 3 and (b) 6n − 18 Toffoli gates for all n � 4.

Proof. Let n0 =�n/2	 and n1 =
n/2� (thus, n0 + n1 =n).
We show that for all n � 3 the circuit

n0

n1

|x〉
|y〉
|z〉

|0〉

acts as a CnX gate controlled on the first two registers and tar-
geting the third, with the fourth register being a clean ancilla
(where a control on a bundle of qubits represents a control
on each qubit in the bundle). We prove this by showing that it
implements the mapping which sends the basis state |x, y, z, 0〉
to

|x, y, z ⊕ (x1 ∧ · · · ∧ xn0) ∧ (y1 ∧ · · · ∧ yn1), 0〉
for all x= (x1, . . . , xn0) ∈ {0, 1}n0 , y= (y1, . . . , yn1) ∈ {0, 1}n1 ,
and z ∈ {0, 1}, where ⊕ denotes bitwise addition and ∧ de-
notes the logical “and.”

Considering the action of each operator in the circuit on an
arbitrary initial state |x, y, z, 0〉, the basis state is mapped as

�→ ∣∣x, y, z, x1 ∧ x2 ∧ · · · ∧ xn0

〉

�→ ∣∣x, y, z ⊕ (
x1 ∧ x2 ∧ · · · ∧ xn0

) ∧ (
y1 ∧ · · · ∧ yn1

)
,

x1 ∧ x2 ∧ · · · ∧ xn0

〉

�→ ∣∣x, y, z ⊕ (
x1 ∧ x2 ∧ · · · ∧ xn0

) ∧ (
y1 ∧ · · · ∧ yn1

)
, 0

〉
,

which shows the circuit implements the claimed operation.
Last, we count the number of Toffoli gates used. The circuit

is composed of two Cn0 X gates and one Cn1+1X gate. We
compute the resulting Toffoli gate count by cases.

When n = 3, then n0 = 2, and n1 = 1, so in this case we
have used three Toffoli gates and only the one clean ancilla
shown. This completes the proof of Lemma 2(a).

For Lemma 2(b) we first consider the case of n = 4, where
n0 = 2 and n1 = 2. In this case we may apply Lemma 1 to
compile the Cn1+1X gate using one borrowed ancilla and four
Toffoli gates. There are two qubits that are neither the target

nor the control of the Cn1+1X gate, and either may be used as
a borrowed ancilla for its compilation. Therefore, in this case
we have used a total of six Toffoli gates and only one clean
ancilla, as claimed in Lemma 2(b), i.e., noting 6×4−18 = 6
Toffoli gates for n = 4.

Finally, when n � 5, both n0 and n1 + 1 are at least 3, so
we may compile the Cn0 X and Cn1+1X gates using Lemma 1.
By Lemma 1, a Cn0 X gate can be compiled using n0 − 2 bor-
rowed ancilla qubits. Since n0 − 2 � n1 + 1, the n1 + 1 qubits
that are neither the target nor control of the Cn0 X gates may
be used as borrowed ancillas for their compilation. Similarly,
a Cn1+1X gate can be compiled using n1 − 1 borrowed ancilla
qubits, and since n1 − 1 � n0, the n0 qubits that are neither the
target nor control of the Cn1+1X gate may be used as borrowed
ancillas to compile it. Therefore, no additional ancilla qubits
are required. Counting Toffoli gates, we obtain a total of

2(4n0 − 8) + 4(n1 + 1) − 8 = 4n + 4n0 − 20

� 4n + 2n + 2 − 20

= 6n − 18

gates, where the first equality follows since n0 + n1 = n and
the inequality follows since 4n0 � 2n + 2 (which holds be-
cause n is an integer). Thus, we have used the claimed number
of Toffoli gates in Lemma 2(b). This completes the proof in
all cases. �

The final CnX compilation that we present uses a larger
number of ancilla qubits but reduces the number of Toffoli
gates by a multiplicative constant.

Lemma 3. For all n � 3, a CnX gate can be compiled using
n − 2 clean ancilla qubits and 2n − 3 Toffoli gates.

Proof. We provide a proof for the case n = 4 for concrete-
ness. The general case follows by an analogous argument on a
circuit with the same pyramidlike shape that we present now.
Consider the circuit

|x1〉
|x2〉
|0〉

|x3〉
|0〉

|x4〉
|x5〉

We will show that this circuit acts as a C4X gate which is
controlled on the first, second, fourth, and sixth qubits and
targets the final qubit and that the remaining qubits are clean

012437-3

STEVEN HERBERT, JULIEN SORCI, AND YAO TANG PHYSICAL REVIEW A 110, 012437 (2024)

FIG. 1. The circuit of Theorem 3, which acts as a computational-
basis-state transposition.

ancillas. Applying the gates one at a time to an arbitrary initial
computational basis state |x1, x2, 0, x3, 0, x4, x5〉, it is mapped
as

�→ |x1, x2, x1 ∧ x2, x3, 0, x4, x5〉
�→ |x1, x2, x1 ∧ x2, x3, x1 ∧ x2 ∧ x3, x4, x5〉
�→ |x1, x2, x1 ∧ x2, x3, x1 ∧ x2 ∧ x3, x4,

x5 ⊕ (x1 ∧ x2 ∧ x3 ∧ x4)〉
�→ |x1, x2, x1 ∧ x2, x3, 0, x4, x5 ⊕ (x1 ∧ x2 ∧ x3 ∧ x4)〉
�→ |x1, x2, 0, x3, 0, x4, x5 ⊕ (x1 ∧ x2 ∧ x3 ∧ x4)〉 ,

which shows that the circuit implements the claimed opera-
tion. The number of Toffoli gates and clean ancillas follows
by directly counting. �

We can now give the main result of this section. To that end,
let |a〉 and |b〉 be an arbitrary pair of n-qubit computational
basis states that are to be transposed; further, let �a and �b be
projectors onto these basis states. Our construction will make
use of the (n + 1)-qubit operators:

�a ⊗ X + (I − �a) ⊗ I, (5)

�b ⊗ X + (I − �b) ⊗ I. (6)

In circuit diagrams, these are represented as a block de-
noted �a or �b controlling a “⊕” on the target qubit.
As the projectors in question are onto computational basis
states, these gates may be realized by a CnX gate where
the control is “sandwiched” between a pair of X gates when
conditioned on zero for the relevant qubit. In this way, the
gate “picks out” a single computational basis state which
controls a bit flip on the target qubit. We also define the
n-qubit operator:

Ua,b := U1 ⊗ U2 ⊗ · · · ⊗ Un,

where Ui = X if a and b differ in the ith bit and Ui = I
otherwise. Note that Ua,b acts on |a〉 and |b〉 as Ua,b |a〉 = |b〉
and Ua,b |b〉 = |a〉.

Theorem 3. The circuit in Fig. 1 acts as a transposition of
the computational basis states |a〉 and |b〉 for all n. For n = 1,
n = 2, and n = 3 the circuit requires at most (i) 2 Hadamard
gates, 4 X gates, 4 CNOT gates, and 1 clean ancilla; (ii) 2
Hadamard gates, 8 X gates, 4 CNOT gates, 2 Toffoli gates, and
1 clean ancilla; (iii) 2 Hadamard gates, 12 X gates, 6 CNOT

gates, 6 Toffoli gates, and 2 clean ancillas, respectively, and
for all n � 4 the circuit requires at most either (a) 2 Hadamard
gates, 4n X gates, 2n CNOT gates, 12n − 36 Toffoli gates, and
2 clean ancillas or (b) 2 Hadamard gates, 4n X gates, 2n CNOT

gates, 4n − 6 Toffoli gates, and n − 1 clean ancillas. Thus, in
all cases the overall gate complexity is �(n), nearly achieving
the lower bound of Corollary 1.

Proof. First, we show that the circuit acts as the mapping
defined in (1) for an arbitrary input |x〉 |0〉:

(1) For |x〉 |0〉 with x /∈ {a, b}, the first Hadamard gate
maps |x〉 |0〉 to |x〉 |+〉. As Ua,b is a permutation which sends
|a〉 to |b〉 and |b〉 to |a〉, it follows that Ua,b must send |x〉
to some computational basis state |y〉, where y is not equal
to a or b. Therefore, the controlled Ua,b sends |x〉 |+〉 to

1√
2
|x〉 |0〉 + 1√

2
|y〉 |1〉. Following this, none of the conditions

of the next two controlled operations are met, so the state
remains unchanged. The state is then mapped by the last con-
trolled Ua,b to 1√

2
|x〉 |0〉 + 1√

2
|x〉 |1〉, and the final Hadamard

gate maps this to |x〉 |0〉. Therefore, the overall operation in
this case is to map |x〉 |0〉 to |x〉 |0〉.

(2) Turning to the case where x = a, the first Hadamard
gate sends |a〉 |0〉 �→ 1√

2
|a〉 |0〉 + 1√

2
|a〉 |1〉; the controlled-

Ua,b operation then sends this to 1√
2
|a〉 |0〉 + 1√

2
|b〉 |1〉.

The third and fourth circuit blocks together send this to
1√
2
|a〉 |1〉 + 1√

2
|b〉 |0〉; the second controlled-Ua,b operation

then sends this to 1√
2
|b〉 |1〉 + 1√

2
|b〉 |0〉, and the remaining

Hadamard gate maps this to |b〉 |0〉. Thus, the overall operation
is to send |a〉 |0〉 �→ |b〉 |0〉. The case where x = b follows by
a completely analogous argument.

By the above case analysis, we have shown that the circuit
performs the claimed transposition.

Now that we have shown that the circuit has the required
operation, it remains to count gates and qubits. There are two
uses of the controlled-Ua,b operator. Each requires at most n
CNOT gates, giving at most 2n CNOT gates. Continuing, there
are two uses of the operators defined in (5) and (6). Each
of these operators consists of a CnX gate and at most 2n
additional X gates. Thus, for any n � 1 the total number of
operations required is 2 Hadamard gates, 4n X gates, 2n CNOT

gates, and 2 CnX gates. For the cases n = 1 and n = 2 this
results in the bounds claimed in Theorem 3, parts (i) and (ii).
For n � 3, we may apply either Lemma 2 or 3 to compile each
CnX (and it turns out that for the case of n = 3 the resources
are identical). Using the compilation provided by Lemma 2,
each CnX can be compiled with a clean ancilla qubit and 3
Toffoli gates when n = 3 or 6n − 18 Toffoli gates when n �
4. Since the required ancilla qubit is a clean ancilla, we may
reuse the same one for each of these operations. Therefore, in
this case we have used a total of 2 clean ancillas (one explicitly
shown and one required by Lemma 2), 6 Toffoli gates for
n = 3 and 12n − 36 Toffoli gates for n � 4, 2n CNOT gates,
2 Hadamard gates, and at most 4n X gates. This completes the
proof of Theorem 3, part (a). For Theorem 3, part (b), suppose
we instead apply the CnX compilation of Lemma 3. In this
case each CnX can be compiled using n − 2 clean ancillas and
2n − 3 Toffoli gates. Since the ancillas are clean, they may be
reused for each of these operations. Therefore, the total gate
complexity in this case is n − 1 clean ancillas (one explicitly
shown and n − 2 required by Lemma 3), 4n − 6 Toffoli gates,
2n CNOT gates, 2 Hadamard gates, and at most 4n X gates,
completing the proof of Theorem 3, part (b). �

Remark 1. The number of X gates can be reduced to 3n by
noticing that for any qubit controlled on the 0 state for both the
�a- and �b-controlled X gates, a pair of X gates will cancel.
That is, owing to the fact that these gates occur consecutively,

012437-4

ALMOST-OPTIMAL COMPUTATIONAL-BASIS-STATE … PHYSICAL REVIEW A 110, 012437 (2024)

FIG. 2. The standard decomposition of the Toffoli gate (top) and
its inverse (bottom) into single-qubit and CNOT gates (see Fig. 4.9
in [10]).

there will be three rather than four (partially filled) banks of X
gates when the trivial simplification XX = I is applied to the
compilation. We also note the similarity of the circuit structure
in Fig. 1 to that of the Hadamard test, which may be useful for
further generalizations in future work.

IV. NUMERICAL RESULTS

We now present some numerical results to demonstrate
the performance of our proposed method of transposing com-
putational basis states. The numerical results fall into two
categories. First, we compile a range of transpositions using
the approach described in Theorem 3, parts (a) and (b), and
compare the CNOT- and Toffoli-gate counts of the resulting
circuits to the theoretical bounds described therein. Second,
we compare the CNOT- and T -gate counts from our method
to several state-of-the-art approaches for compiling permuta-
tional circuits, namely, the TWEEDLEDUM-based construction
presented in [9] and the ToffoliBox of PYTKET. In each case,
the Toffoli gates are compiled according to Fig. 2, such that
the final circuits consist only of CNOT and single-qubit gates.
The choice to compare CNOT- and T -gate counts is motivated
by the fact that typically, CNOT gates are the most expensive
gates when running circuits with physical qubits and T gates
are the most expensive gates to perform fault tolerantly. All
of the resulting circuits were compiled using PYTKET version
1.18.0 [11], and only mild optimization passes were used to
simplify gate redundancies.

A. Comparison with theoretical bounds

For our first set of results, we compare the average CNOT-
and Toffoli-gate counts across a range of random transposi-
tions to the theoretical bounds described in Theorem 3. For
each 2 � n � 20, we generate 200 random transpositions of
two n-qubit computational basis states and use the construc-
tions proposed in Theorem 3, parts (a) and (b), to compile
their corresponding circuits, resulting in circuits over the gate
set {H, X, CNOT, Toffoli}. The RemoveRedundancies pass in
PYTKET was applied to each of these circuits, and then the
average CNOT- and Toffoli-gate counts were tabulated, as pre-
sented in Table I. The results show that the average CNOT

count is typically only approximately half of the bound that
we prove in this paper, whereas the Toffoli counts saturate or
nearly saturate the bounds in all cases.

TABLE I. The average (Avg) CNOT- and Toffoli-gate counts
across 200 random transpositions. The number n is the number of
qubits required for the computational basis states that are transposed,
and “Bd” is an abbreviation for the word “bound.” The labels “(a)”
and “(b)” refer to the two settings considered in Theorem 3; note
that the bound on the number of CNOT gates is the same for both (a)
and (b).

CNOT Toffoli

n Avg (a) Avg (b) Bd n Avg (a) Bd (a) Avg (b) Bd (b)

2 2.60 2.64 4 2 2 2 2 2
3 3.52 3.35 6 3 6 6 6 6
4 4.10 4.18 8 4 12 12 10 10
5 5.13 5.15 10 5 24 24 14 14
6 6.10 6.10 12 6 32 36 18 18
7 7.12 6.95 14 7 48 48 22 22
8 8.33 8.05 16 8 56 60 26 26
9 8.87 9.00 18 9 72 72 30 30
10 10.09 10.36 20 10 80 84 34 34
11 11.14 10.75 22 11 96 96 38 38
12 11.95 12.30 24 12 104 108 42 42
13 12.66 13.09 26 13 120 120 46 46
14 14.05 14.05 28 14 128 132 50 50
15 14.78 15.02 30 15 144 144 54 54
16 15.86 15.82 32 16 152 156 58 58
17 17.03 16.55 34 17 168 168 62 62
18 18.43 17.64 36 18 176 180 66 66
19 18.39 19.24 38 19 192 192 70 70
20 20.12 20.74 40 20 200 204 74 74

B. Comparison with other approaches

For our second set of results we compare the average CNOT-
and T -gate counts of the compilation method proposed in
Theorem 3 to the TWEEDLEDUM-based compilation method of
Ref. [9] and the ToffoliBox of PYTKET. In each case either
100 transpositions of the same Hamming weight were ran-
domly generated, or in the case with fewer than 100 distinct
transpositions of the same Hamming weight the entire set was
considered. In particular, in the following cases there were
fewer than 100 possible transpositions [format is (number of
qubits, Hamming distance) total transpositions]: (4, 1) 32;
(4, 2) 48; (4, 3) 32; (4, 4) 8; (5, 1) 80; (5, 4) 80; (5, 5) 16; (6, 6)
32; and (7, 7) 64. For each Hamming weight the resulting cir-
cuits were compiled, and the average CNOT count and T -gate
counts were computed; they are presented in Figs. 3 and 4.

TWEEDLEDUM. The first compilation method that we com-
pare our method to is that of Ref. [9]. For each of the random
transpositions the circuits were compiled and simplified using
the CliffordSimp, SynthesiseTket, and RemoveRedundancies
passes in PYTKET, which resulted in circuits using CNOT, TK1,
and global phase gates. PYTKET version 1.18.0 does not con-
tain functionality for T -gate synthesis, so only the CNOT-gate
counts are recorded and presented in Fig. 3.

ToffoliBox. The second compilation method is the Toffoli-
Box of PYTKET. The compilation can use one of two strategies,
referred to as “matching” and “cycle.” For the matching strat-
egy, the resulting circuits were compiled and simplified using
the CliffordSimp, SynthesiseTket, and RemoveRedundancies

012437-5

STEVEN HERBERT, JULIEN SORCI, AND YAO TANG PHYSICAL REVIEW A 110, 012437 (2024)

FIG. 3. The average CNOT counts across 100 randomly selected transpositions (or over all transpositions, when the total is fewer than 100)
between computational basis states with a fixed Hamming distance. The plots, reading from left to right and then top to bottom, correspond to
Hamming distances 1, . . . , 6, respectively. The number of qubits is the number of qubits required for the computational basis states that are
transposed.

passes in PYTKET, resulting in circuits that use CNOT, TK1,
and global phase gates. As noted in the TWEEDLEDUM case,
PYTKET version 1.18.0 does not contain functionality for T -
gate synthesis, so only the CNOT-gate counts are recorded and
presented in Fig. 3 as “Pytket-Match.” It is worth mentioning
that compilation from a gate set including the continuously
parametrized gate TK1 to a finite gate set, such as that con-
taining the Clifford gates and T gates (or Clifford, Toffoli, and
T gates), can be done only approximately, and if very high
accuracy is required, the T -gate count becomes large. For this
reason, fault-tolerant compilation is likely to favor techniques
that require gates from a suitable finite set in the first place.

For the cycle strategy, the ToffoliBox returns a circuit
consisting of X and CnX gates. To more readily compare
these circuits to those of our proposed construction, the CnX
gates were decomposed into X , CNOT, and Toffoli gates us-
ing the same CnX decompositions used in Theorem 3, parts
(a) and (b). The Toffoli gates were then decomposed into
single-qubit gates and CNOT gates using the standard de-
composition in Fig. 2. The RemoveRedundancies pass of
PYTKET was then applied, and the CNOT- and T -gate counts
were recorded. The counts are denoted by “Pytket-Cycle
(a) and (b)” in Figs. 3 and 4, corresponding to the CnX
decomposition used.

012437-6

ALMOST-OPTIMAL COMPUTATIONAL-BASIS-STATE … PHYSICAL REVIEW A 110, 012437 (2024)

FIG. 4. The average T -gate counts across 100 randomly selected transpositions (or over all transpositions, when the total is fewer than 100)
between computational basis states with a fixed Hamming distance. The plots, reading from left to right and then top to bottom, correspond to
Hamming distances 1, . . . , 6, respectively. The number of qubits is the number of qubits required for the computational basis states that are
transposed.

Theorem 3. For the compilation method of Theorem 3 the
circuits were compiled into X , CNOT, and Toffoli gates using
the constructions described in the theorem. Following this,
the Toffoli gates in the circuits were then decomposed into
single-qubit gates and CNOT gates using the decomposition in
Fig. 2. The RemoveRedundancies pass of PYTKET was then
applied, and the CNOT- and T -gate counts were recorded. The
corresponding counts are denoted by “Thm 3 (a)” and “Thm
3 (b)” in Figs. 3 and 4.

We can see that the methods we propose in this paper are
relatively most advantageous for large numbers of qubits and
for large Hamming distances. This is to be expected, as our
methods are nearly optimal in the number of qubits and have

approximately the same performance for any transposition,
whereas other methods, such as those that use a Gray code,
suffer when the transposition is such that the Hamming dis-
tance between transposed computational basis states (written
as binary strings) is large.

V. DISCUSSION

In this paper we have shown that on average, n-qubit
computational-basis-state transpositions have a gate complex-
ity �[n/ log(nd)] for any d-element gate set, even if ancillas
are available. Since a general permutation can be expressed as
a product of at most 2n−1 transpositions, this lower bound is

012437-7

STEVEN HERBERT, JULIEN SORCI, AND YAO TANG PHYSICAL REVIEW A 110, 012437 (2024)

consistent with the �[n2n/ log(n)] worst-case lower bound of
Ref. [5] for an arbitrary permutation. We subsequently gave an
explicit construction to perform any computational-basis-state
transposition with �(n) gates and two ancillas. Conventional
wisdom is to use the Gray-code construction popularized in
Nielsen and Chuang [10] to perform any two-level unitary (in
the case of a transposition the unitary is the Pauli-X matrix),
which requires �(n2) gates in the worst case. This construc-
tion therefore represents a potentially practically useful result
for any compiler that constructs arbitrary permutations from
transpositions. This claim of potential for practical utility is
backed up by the numerical results presented, which showed
that for transpositions with large numbers of qubits and/or a
large Hamming distance, our methods outperform the stan-
dard alternatives.

It is also worth noting that the transposition construction
presented in Theorem 3 is amenable to several further circuit

optimizations during compilation. In particular, if we con-
sider the compilation of a Toffoli gate into single-qubit gates
and CNOT gates, then the standard circuit is given by Fig. 2.
However, as the Toffoli gate is equal to its inverse, we also
have that the circuit reversed, with every gate replaced by its
inverse, implements the Toffoli, as shown in Fig. 2. Therefore,
it follows that each time a pair of Toffoli gates appears as

.

(where the dotted line implies that other operations occur
there), then we can use the second Toffoli decomposi-
tion for the second Toffoli gate, such that the decomposed
circuit is

.

T T †

T † T † S S† T T

H T † T T † T H H T † T T † T H

where we can readily see that the gates inside of the region
enclosed by the dashed line cancel to the identity. So it follows
that we have implemented the two Toffoli gates using a total
of 8 CNOT gates and 12 single-qubit gates—fewer than the
12 CNOT gates and 20 single-qubit gates that are needed in
general to compile two Toffoli gates. We can further see, for
example, in (A1), that such structures are commonplace in our
construction and hence have the potential for significant CNOT

and T -gate count reductions during compilation. These sav-
ings can be readily observed in the numerical data presented
in Figs. 3 and 4, which demonstrate lower CNOT- and T -gate
counts for transpositions between computational basis states
of large Hamming distance when compared to TWEEDLEDUM

and PYTKET.

ACKNOWLEDGMENTS

The authors would like to thank S. Dilkes, A.
Krajenbrink, and T. Laakkonen for carefully reviewing
and providing useful feedback on an earlier draft of
this article. We give special thanks to T. Laakkonen for
suggesting improvements to the circuit construction given in
Theorem 3 and to S. Dilkes for providing various suggestions
for Sec. IV.

APPENDIX

We provide an explicit example of Lemma 1
when n = 4, as described by (4). The circuit in this

case is

|x1〉
|x2〉
|a1〉
|x3〉
|a2〉
|x4〉
|x5〉 (A1)

which we show implements the desired mapping. Note that
the general case follows by considering a circuit with the
same pyramid structure as above, where qubit numbers
2i + 3, with i = 0, 1, . . . , n − 3, are ancilla qubits. We con-
sider the action of the circuit in (A1) on an arbitrary input
|x1, x2, a1, x3, a2, x4, x5〉 and show that it is mapped to the
basis state:

|x1, x2, a1, x3, a2, x4, x5 ⊕ (x1 ∧ · · · ∧ x4)〉 . (A2)

Case 1. Suppose that at least one of x1 or x2 is equal to zero.
Then the two Toffoli gates that are controlled on the first two
registers will act as the identity. Consequentially, the circuit in
(A1) will have the same action as the circuit:

|x1〉
|x2〉
|a1〉
|x3〉
|a2〉
|x4〉
|x5〉 (A3)

012437-8

ALMOST-OPTIMAL COMPUTATIONAL-BASIS-STATE … PHYSICAL REVIEW A 110, 012437 (2024)

Since the Toffoli gate is equal to its inverse, the consecutive
Toffoli gates multiply to the identity, so (A3) is equivalent to

|x1〉
|x2〉
|a1〉
|x3〉
|a2〉
|x4〉
|x5〉 (A4)

which is then equivalent to the empty circuit for the same
reason. Therefore, the overall mapping is to send

|x1, x2, a1, x3, a2, x4, x5〉 �→ |x1, x2, a1, x3, a2, x4, x5〉 (A5)

in this case.
Case 2. Suppose that x3 is equal to zero. Then the four

Toffoli gates which target the fifth qubit of (A1) act as the
identity, and the circuit acts as

Again, as the Toffoli gate is equal to its inverse, the above
circuit acts as the identity, and the overall mapping in this case
is also (A5).

Case 3. Suppose that x4 is equal to zero. Then the two
Toffoli gates that are targeted on the final qubit have no effect,
and the circuit acts as

By the same reasoning as in the previous cases, the circuit
reduces to the identity.

Case 4. Last, we check the operation when x1, x2, x3, and
x4 are all equal to 1. Considering the circuit (A1) one gate at
a time, the basis state |1, 1, a1, 1, a2, 1, x5〉 is mapped to

�→ |1, 1, a1, 1, a2, 1, x5 ⊕ a2〉
�→ |1, 1, a1, 1, a2 ⊕ a1, 1, x5 ⊕ a2〉
�→ |1, 1, a1 ⊕ 1, 1, a2 ⊕ a1, 1, x5 ⊕ a2〉
�→ |1, 1, a1 ⊕ 1, 1, a2 ⊕ 1, 1, x5 ⊕ a2〉
�→ |1, 1, a1 ⊕ 1, 1, a2 ⊕ 1, 1, x5 ⊕ 1〉
�→ |1, 1, a1 ⊕ 1, 1, a2 ⊕ a1, 1, x5 ⊕ 1〉
�→ |1, 1, a1, 1, a2 ⊕ a1, 1, x5 ⊕ 1〉
�→ |1, 1, a1, 1, a2, 1, x5 ⊕ 1〉 ,

which indeed is the operation in (A2). Therefore, we checked
all cases and have shown that the circuit in (A1) implements
the mapping (A2), as claimed.

[1] D. Aharonov, A simple proof that Toffoli and Hadamard are
quantum universal, arXiv:quant-ph/0301040.

[2] V. Havlíček, S. Strelchuk, and K. Temme, A classical algorithm
for quantum SU(2) Schur sampling, Phys. Rev. A 99, 062336
(2019).

[3] P. Shor, Algorithms for quantum computation: Discrete log-
arithms and factoring, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (IEEE, New
York, 1994), pp. 124–134.

[4] J. Kempe, Quantum random walks: An introductory overview,
Contemp. Phys. 44, 307 (2003).

[5] V. Shende, A. Prasad, I. Markov, and J. Hayes, Synthesis of re-
versible logic circuits, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 22, 710 (2003).

[6] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian,
Reversible circuit synthesis using a cycle-based approach,
ACM J. Emerg. Technol. Comput. Syst. 6, 1 (2010).

[7] L. Li and X. Wu, Asymptotically optimal synthesis of reversible
circuits, arXiv:2302.06074.

[8] C. Gidney, Constructing large controlled nots (2015).
[9] M. Soeken, F. Mozafari, B. Schmitt, and G. D. Micheli, Com-

piling permutations for superconducting QPUs, in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE)
(IEEE, Piscataway, NJ, 2019), pp. 1349–1354.

[10] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th anniversary ed. (Cambridge Uni-
versity Press, Cambridge, 2010), Sec. 4.5.2.

[11] See https://cqcl.github.io/tket/pytket/api/ for PYTKET documen-
tation.

012437-9

https://arxiv.org/abs/quant-ph/0301040
https://doi.org/10.1103/PhysRevA.99.062336
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1109/TCAD.2003.811448
https://doi.org/10.1145/1877745.1877747
https://arxiv.org/abs/2302.06074
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://cqcl.github.io/tket/pytket/api/

