
PHYSICAL REVIEW A 110, 012436 (2024)

Generation of flying logical qubits using generalized photon subtraction
with adaptive Gaussian operations

Kan Takase,1,2,* Fumiya Hanamura ,1 Hironari Nagayoshi ,1 J. Eli Bourassa,3 Rafael N. Alexander,3 Akito Kawasaki ,1

Warit Asavanant ,1,2 Mamoru Endo ,1,2 and Akira Furusawa1,2,†

1Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2Optical Quantum Computing Research Team, RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako, Tokyo 351-0198, Japan

3Xanadu, 777 Bay Street, Toronto, Ontario, Canada M5G 2C8

(Received 16 January 2024; accepted 21 June 2024; published 12 July 2024)

The generation of a logical qubit called the Gottesman-Kitaev-Preskill (GKP) qubit in an optical traveling
wave is a major challenge for realizing large-scale universal fault-tolerant optical quantum computers. Recently,
probabilistic generation of elementary GKP qubits has been demonstrated using photon number measurements
and homodyne measurements. However, the generation rate is only a few Hz, and it will be difficult to generate
fault-tolerant GKP qubits at a practical rate unless success probability is significantly improved. Here, we
propose a method to efficiently synthesize GKP qubits from several quantum states by adaptive Gaussian
operations. In the initial-state preparation that utilizes photon number measurements, an adaptive operation
allows any measurement outcome above a certain threshold to be considered as a success. This threshold is
lowered by utilizing the generalized photon subtraction method. The initial states are synthesized into a GKP
qubit by homodyne measurements and a subsequent adaptive operation. As a result, the single-shot success
probability of generating fault-tolerant GKP qubits in a realistic scale system exceeds 10%, which is 1 × 106

times better than previous methods. This proposal will become a powerful tool for advancing optical quantum
computers from the proof-of-principle stage to practical application.
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I. INTRODUCTION

Quantum computers are expected to demonstrate superior
information processing capabilities compared to conventional
computers by incorporating quantum phenomena such as
superposition and entanglement. Applications of quantum
computers include factoring, discrete optimization, quantum
simulation, and machine learning, and are anticipated to be
used in fields such as finance, drug discovery, materials, and
logistics [1]. Quantum computers that use optical traveling
waves [2,3] can operate at room temperature and atmospheric
pressure, achieving a clock frequency exceeding THz [4,5].
In addition to the quantum applications mentioned above,
quantum computers based on optical traveling waves are well
suited for communication technology [6,7].

So, how far has the development of optical quantum
computers progressed, and what are the challenges? First, a
scalable and programmable processor capable of performing
measurement-based quantum gates has been experimentally
demonstrated [8–10]. An advantage of the optical approach
is that these processors can address scalability, which is a
major challenge in other physical systems. While the clock
frequency of the processors demonstrated so far is at most
on the order of 10 MHz [11], there is a prospect of im-
provement to the order of 10 GHz through noiseless optical
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amplification technology [12]. However, the quantum advan-
tage in information processing using these processors has not
yet been demonstrated. A promising way to achieve practical
quantum computation with universality and fault tolerance is
via Gottesman-Kitaev-Preskill (GKP) qubits [13]. Once GKP
Pauli eigenstates and magic states are prepared, only passive
linear optics and homodyne measurement are needed [13–17].
Making such advanced optical quantum states available is an
urgent challenge for optical quantum computers.

GKP qubits belong to a class of states called non-Gaussian
states. There are two typical methods for generating non-
Gaussian states in propagating light. One is a method that
utilizes the nonlinear interaction of light with matter [18,19]
or with light [20,21]. The other is a method that utilizes quan-
tum entanglement and measurements, known as the heralding
method [17,22–34]. In particular, one can prepare multi-
mode entangled Gaussian states deterministically and employ
non-Gaussian measurements such as photon number measure-
ments on a subset of modes to herald non-Gaussian states
on the remaining modes. In the former method, there is a
problem that the nonlinearity of the optical traveling wave
is inherently weak. Although methods like cavity quantum
electrodynamics and quantum dots have achieved the gener-
ation of single photons [18] or Schrödinger cat states [19],
more advanced matter-light coupling and control are required
for generating more complex states. Another challenging but
interesting direction is converting non-Gaussian states gen-
erated in harmonic oscillators in other physical platforms
such as trapped ions [35] and superconducting circuits [36],
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where strong nonlinearity is easy to use, into optical traveling
waves [37,38]. However, methods that use matter tend to slow
down the generation protocol, and they are not suitable for
the high clock frequencies of optical quantum computers.
In this regard, methods using light-light coupling have an
advantage [20,21], but whether practical nonlinearities can
be achieved awaits experimental demonstration. On the other
hand, the heralding method is more feasible and widely used
for generating non-Gaussian states. The heralding method
is a nonunitary process conditioned by a measurement on a
subsystem of entangled quantum light. Strong nonlinearity
can be replaced with photon number measurements, enabling
the generation of Schrödinger cat states [22–28], arbitrary
photon-number superposition states [26,29,30], and even el-
ementary GKP qubits [17,26,31–34]. These states can be
generated in short pulses that are suitable for processors with
a high clock frequency. However, a challenge of the heralding
method is that the success of state generation is probabilistic,
leading to low state generation rate. In the case of GKP qubits,
the generation rate is only a few Hz even for the approximated
GKP qubits with a low mean photon number [31]. The most
straightforward solution for circumventing this problem is to
parallelize the state generation systems, but the number of
parallel systems would likely become immense for quaside-
terministic state generation.

In this paper, we focus on the generation of GKP qubits
and reduce the inherent probabilistic nature of the heralding
method. Specifically, we introduce adaptive quantum opera-
tions into the Gaussian breeding protocol [32]. The Gaussian
breeding protocol entangles Gaussian states in a simple, it-
erative sequence of beam splitters and measures all but one
mode with photon number measurements to “breed” the
non-Gaussian measurement outcomes into approximate GKP
qubits in the unmeasured mode. Gaussian breeding can gener-
ate GKP qubits with minimal resources and has a much higher
success probability than the cat breeding protocol [39,40] used
in Ref. [31]. Similarly to the Gaussian breeding protocol, the
cat breeding protocol employs a simple, iterative sequence
of beam splitters and measurements to combine input states
into approximate GKP qubits; however, the input states are
non-Gaussian (cat states), and the measurements are Gaussian
(homodyne). We first reevaluate the advantages of Gaussian
breeding and explicitly show the target wave function of state
generation. This clear and concise explanation demonstrates
why GKP qubits can be synthesized from photon number
measurements, enabling efficient GKP qubit generation. The
desired wave function can be synthesized by using general-
ized photon subtraction (GPS) [25]. Furthermore, instead of
considering only one measurement outcome as a success as in
conventional heralding methods, our approach accepts mul-
tiple measurement outcomes and synthesizes desired states
by performing adaptive operations based on the measurement
outcomes. As a result, it is possible to generate fault-tolerant
GKP qubits over a 10% probability by parallelizing only
20 GPS units, which contain 40 squeezed light sources and
20 photon-number-resolving detectors in total. Here, each
squeezer needs to emit up to 18-dB squeezed vacuum states
and each detector needs to resolve up to 20 photons. Com-
pared to the original Gaussian breeding protocol with a system
of similar size, the success probability is more than 1 × 106

times better in the proposed protocol. This proposal will en-
able the generation of fault-tolerant GKP qubits at a practical
rate in a realistic system, accelerating the realization of optical
quantum computers.

II. METHOD

A. Target state

To achieve fault tolerance in quantum computing, quantum
information must be robustly encoded as discrete variable
states, such as qubits [41]. In conventional qubit quantum
error correction, many physical qubits are entangled to form
a logical qubit [42]. On the other hand, a harmonic oscillator
can encode one logical qubit into one quantum mode [43]. The
GKP qubit is considered a promising logical qubit in harmonic
oscillators. Once a GKP qubit is available, fault-tolerant uni-
versal quantum computations can be performed using only
linear transformations of position and momentum operators,
which are called Gaussian operations [13–16].

Here we review basics of GKP qubits. Suppose that po-
sition and momentum operators of a harmonic oscillator
satisfy the commutation relation [x̂, p̂] = i. An ideal GKP
qubit is defined as a superposition of equally spaced position
eigenstates. In this paper, we consider states with

√
2π spac-

ing. Such a GKP qubit is also called a qunaught state [44]
or sensor state [45]. Such states can create Bell pairs with a
beam splitter [44]. The ideal GKP qubit is a nonphysical state
with infinite energy, so what we aim to generate is a state with
the following wave function:
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(x) is a series of Gaussian functions of width �x and

separation
√

2π embedded in a Gaussian envelope of width
1/�p. When �x,�p → 0, this state becomes an ideal GKP
qubit. In order to perform fault-tolerant quantum computa-
tion, it is sufficient to achieve �x < 0.316 (10-dB squeezing)
[17,46]. Suppose we have a GKP-like state with a density
operator ρ̂. The performance of this state as a GKP qubit
is often evaluated by the effective squeezing [45] of x, p
given by

�̃x =
√−1

π
ln |Tr ei

√
2π x̂ρ̂|2, �̃p =

√−1

π
ln |Tr e−i

√
2π p̂ρ̂|2.

(2)

In the case of Eq. (1), we get �̃x = �x, �̃p = �p. In this
paper, we evaluate GKP-qubit generation using effective
squeezing.

Finally, we introduce a function that approximates Eq. (1).
We denote the wave function of n-photon states by φn(x) ∝
Hn(x)e− 1

2 x2
, where Hn(x) = (−1)nex2 dn

dxn e−x2
. Then, the fol-

lowing relation is obtained:

eis(
√

π
2 x+π�n/2�)

∅
(t )
�x,�p

(x) ∝∼χc,n,N (x) ≡ φc
0(knx)φN

n (knx), (3)

where c ∈ R>0, N ∈ Z>0, φν
i (x) ≡ [φi(x)]ν, kn =√

π
4n+2 , s = N mod 2, and t = n mod 2. The derivation of
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FIG. 1. Breeding protocol in a wave-function picture. (a) Expla-
nation in x basis. The wave function of a squeezed vacuum state is the
envelope, and the oscillation of φn(knx) creates the comb structure.
(b) Explanation in p basis. By convolving φ̃n to a Gaussian function
iteratively, the number of superposed Gaussians increases.

Eq. (3) is shown in Appendix A. Intuitively, this relation stems
from the periodicity of φn(x). The Wentzel-Kramers-Brillouin
approximation [47] shows that φn(x) has cosine (or sine)
oscillation with an angular wave number

√
2n + 1 when

|x| � √
2n + 1. Thus, φN

n (knx) has a comb structure with a
spacing

√
2π . The term φc

0(knx) applies a Gaussian envelope
extracting only the comb structure. As a result, χc,n,N (x)

closely approximates ∅
(t )
�x,�p

(x) as shown in Fig. 1(a). The

larger N is, the smaller �̃x becomes because the comb
structure becomes sharper. The larger n is and the smaller c is,
the smaller �̃p becomes because a wider range of the comb
structure can be utilized. Considering this wave function in
p basis, GKP qubits can be approximated by convolution
of the wave function of photon number states. Here, note
that φn and its Fourier counterpart φ̃n are the same function.
The p picture is shown in Fig. 1(b). The convolution of a
Gaussian with appropriate width (c ≈ 1) and a wave function
of n photons approximates a superposed Gaussian [25].
By repeating convolution, a comb-shaped wave function is
obtained. A similar principle is used in Gaussian breeding
[32]. Equation (3) can be considered as a concise expression
of Gaussian breeding protocol.

B. Inverted Gaussian breeding

We will introduce three methods to realize the wave
function χc,n,N (x) using the heralding scheme. The first
is Gaussian breeding. If we set �2 = 0, g = 1,�3 = 1 in
Ref. [32], the desired wave function can be achieved with
the setup shown in Fig. 2(a). The input states are a squeezed
vacuum state φc

0(x′), x′ = x/
√

N + 1 and infinitely squeezed
vacuum states δ(x). The photon number measurements

FIG. 2. How to realize the wave function χc,n,N (x). (a) Gaussian breeding. Photon number measurements are performed on multimode
Gaussian states. δ(x) represents the infinitely squeezed state. (b) Inverted Gaussian breeding. Homodyne measurements are performed on Fock
states. (c) A different form of the inverted Gaussian breeding. The input state N

√
χc,n,N (x′′′) = φ

c/N
0 (knx′′′)φn(knx′′′) is an intermediate state of

a Schrödinger cat state and a Fock state. (d) Generalized photon subtraction (GPS) to generate the state N
√

χc,n,N (x′′′). Adaptive squeezing
is needed to incorporate a GPS circuit into the whole setup shown in (f). (e) Matching of the oscillation of different photon number states.
(f) Proposed system for GKP-qubit generation. A squeezing operation is performed on the output of GPS to generate an input state. M GPS units
are parallelized such that N events that satisfy nmin � n � nmax are selected. By inputting them to a breeding circuit, the desired wave function
is realized. In the output, a Gaussian operation is performed according to the measured outcomes. Here, we show a case of M = 20, N = 5
which is discussed in the simulation.
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contribute to the φN
n (x) component of χn,N,c(x). On the other

hand, the system in Fig. 2(b), which looks like a time-reversed
version of Fig. 2(a), similarly yields the output χc,n,N (x).
Since homodyne conditioning has the effect of multiplying
input wave functions with squeezing, χc,n,N (x) can be syn-
thesized by inputting a squeezed vacuum state φc

0(x′′) and N
squeezed n-photon states φn(x′′), where x′′ = √

N + 1x. As
a variant of Fig. 2(b), the desired wave function can also
be obtained with Fig. 2(c), in which χc,n,N (x) is distributed
evenly to each input as N

√
χc,n,N (x′′′) = φ

c/N
0 (knx′′′)φn(knx′′′),

where x′′′ = √
Nx. The derivations of the output states of these

circuits are shown in Appendix B.
Figures 2(b) and 2(c) are similar to the cat breeding pro-

tocol [39,40] in that homodyne conditioning is performed
on non-Gaussian states. In fact, if we input Schrödinger cat
states in the circuit of Figs. 2(b) and 2(c), we can realize cat
breeding. However, if we compare the number of photons
one needs to detect to prepare approximate cat states with
GPS so that those states can be employed in the cat breeding
protocol, with the number of photons one needs to detect in
the Gaussian breeding protocol, we find that the Gaussian
breeding protocol requires fewer photon detections to prepare
an equivalent quality state, and hence makes better use of
the non-Gaussian resources. In a similar vein, we find that
the systems in Figs. 2(b) and 2(c) require fewer photons to be
detected than the cat breeding protocol with GPS-produced
cats. Compare these methods from the perspective of wave
functions. From Ref. [25], the wave function of the cat state
can be well approximated by φ0(knx)φn(knx). Using this cat
state, cat breeding outputs the wave function χc=N,n,N (x) =
φN

0 (knx)φN
n (knx). As c becomes larger, the Gaussian envelope

φc
0(knx) becomes sharper in Fig. 1(a), so the non-Gaussianity

of φN
n (knx) is further impaired. Since N is usually greater

than 4, it is difficult to effectively utilize non-Gaussianity in
cat breeding. On the other hand, the value of c can be set
freely in Figs. 2(a)–2(c), and thus non-Gaussianity can be
used efficiently. As an example, let us assume n = 20, N = 5.
When c = 1, the effective squeezings are �̃x = 0.34 (9.3 dB)
and �̃p = 0.19 (14.3 dB). In cat breeding, we get �̃x = 0.34
(9.4 dB) and �̃p = 0.33 (7.2 dB).

From the above discussion, Gaussian breeding and cat
breeding can be uniformly explained using the wave function
of Eq. (3). It is known that Gaussian breeding can efficiently
synthesize GKP qubits, and the essence of this is that c can be
set freely. It is expected that the system shown in Figs. 2(b)
and 2(c) will also be able to synthesize GKP qubits using
a comparable number of photons detected as the Gaussian
breeding protocol.

C. Generalized photon subtraction

The non-Gaussian input states of Figs. 2(b) and 2(c) can
be generated by a heralding method called GPS [25]. GPS is
originally a method of generating Schrödinger cat states in
a two-mode Gaussian boson sampling setup [48]. The major
difference between GPS and other similar approaches [26,33]
is that it introduces a wave-function representation to express
state generation analytically and comprehensively. Although
we mainly discussed the generation of cat states expressed

by (φ0 ∗ φn)(x) ∝ xne−x2/4 in Ref. [25], GPS can generate
various other states. Figure 2(d) is a setup of GPS. For now, ig-
nore the squeeze operation in the output port of Fig. 2(d). For
simplicity, we assume the wave functions of input squeezed
vacuum states are given by φ0(e−rx) and φ0(erx). When
the transmittance of the beam splitter is T = 0.5, we get a
Einstein-Podolsky-Rosen state. By detecting n photons, we
get the n-photon state [φn(x)]. In the general case, the output
state heralded by n-photon detection is given by

ψn(x) ∝ φ0(x/
√

a)
(
φa

0 ∗ φn
)
(bx/a) (4)

∝∼φ
e−2r/T
0 (

√
T/Rx)φn(

√
T/Rx) (e2r � 1), (5)

where ( f ∗ g)(x) denotes the convolution of f (x) and
g(x), a = Te−2r + Re2r, b = √

RT (e−2r − e2r ), and R = 1 −
T [25]. Therefore, we can get φn(knx′) or N

√
χc,n,N (x′′′) by

squeezing the output of GPS depending on n.

D. Incorporating adaptive elements

The circuits in Figs. 2(a)–2(c) are all heralding schemes,
and the success probability with a single shot is p � 1.
Therefore, when considering practical application, it will be
necessary to add adaptive elements to these circuits so that the
desired output can be obtained with higher probability. The
simplest way is to parallelize the state generation system and
exploit only successful events using a selector such as optical
switches. A more advanced example is performing quantum
operations in the output states depending on the heralding
measurements. An example is the use of adaptive displace-
ment in cat breeding to make the homodyne conditioning
deterministic [40].

If adaptive elements are not taken into consideration,
Fig. 2(a) would have the highest success probability and the
highest feasibility among Figs. 2(a)–2(c) because it requires
minimal conditioning processes. As discussed in Ref. [32],
Gaussian breeding shown in Fig. 2(a) has the advantage of
minimal resource requirements and relatively high success
probability, and is capable of generating meaningful states
even at the current technological level. The resource re-
quirements of Figs. 2(b) and 2(c) are higher than Fig. 2(a).
When the input non-Gaussian states are generated using the
heralding method, the cost just for generating the input states
will be equal to or higher than Gaussian breeding. In addi-
tion, Figs. 2(b) and 2(c) require conditioning by homodyne
measurement, which further reduces the success probability.
Strictly speaking, the probability of ideal conditioning with
xm = 0 is zero.

So, which of Figs. 2(a)–2(c) is the most efficient when
considering adaptive elements? Our conclusion is Fig. 2(c).
The method in Fig. 2(c) is more compatible with adaptive
elements than other methods for three reasons.

The first is that various photon detection patterns can be
considered as a success. In Fig. 2(a), the ideal event would be
for N photon detectors to detect the same number of photons.
As discussed in Ref. [32], multiple photon detection patterns
such as (n, n, n + 2) or (n − 2, n, n + 4) can also be consid-
ered as success, where a desired photon detection pattern is
(n, n, n). However, it is necessary that the number of detected
photons does not differ too much and that the parity is the
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same. Also in Figs. 2(b) and 2(c), the basic success pattern
is for N GPS units to detect the same number of photons. In
reality, this requirement can be significantly relaxed relative to
Fig. 2(a) by introducing adaptive elements. In our approach,
to synthesize the wave function χc,n,N (x), it is essential to
approximate the comb structure of GKP qubits with the oscil-
lation of φn(x). Since the period and the phase of oscillation
depend on n, squeezing and displacing the output state of
GPS depending on n helps to approximate φN

n (knx) efficiently.
Explicitly, this relation is given by

φc
0(knx)φN

n (knx) ∝∼φc
0(knx)

N∏
s=1

φns [kns (x − ds)], (6)

n, ns � nmin, ds =
{

0 (ns is even)√
π
2 (ns is odd)

. (7)

That is, in a region above a certain threshold nmin, any photon
detection event can be considered a success. This relation is
visualized in Fig. 2(e). Importantly, such dynamic manipu-
lation using different n is possible in Figs. 2(b) and 2(c),
but not in Fig. 2(a). Furthermore, only a squeezing operation
needs to be performed as a dynamic operation for the input
non-Gaussian states because the displacement operation can
be imposed on the subsequent homodyne conditioning. This
is related to the advantage of optical GKP qubits: after gen-
eration, fault-tolerant quantum computation can be achieved
by entangling GKP qubits into a cluster state that is only
measured with homodyne detection [17,49–51].

Second, the requirement for simultaneity of photon detec-
tion events is reduced. In Fig. 2(a), the probability to detect n
photons in one mode is at most a few percent. Since this rare
event needs to succeed N times simultaneously, the overall
success probability becomes quite low. In Figs. 2(b) and 2(c),
it is necessary to generate N non-Gaussian states by GPS, so
the success probability of input state preparation would be
about the same as Fig. 2(a). In Figs. 2(b) and 2(c), however,
it is possible to utilize M(> N ) GPS units and select only
N successful events among them. There is no such way in
Fig. 2(a) to avoid the simultaneous success of rare events. As
M increases, the probability of successful preparation of the
input states improves dramatically.

Third, the strict homodyne conditioning with xm = 0
shown in Fig. 2(c) is not actually necessary. In addition to
the ideal case of obtaining xm = 0 in all homodyne measure-
ments, it is also possible to obtain a wave function close to
χc,n,N (x) by performing adaptive Gaussian operations depend-
ing on the measurement results. This would be based on the
same principle as the method of making homodyne condi-
tioning deterministic in cat breeding [40], because the input
state N

√
χc,n,N (x′′′) = φ

c/N
0 (knx′′′)φn(knx′′′) is an intermediate

state between a cat state φ0(knx′′′)φn(knx′′′) [25] and a photon
number state φn(knx′′′). On the other hand, the same method is
not very effective in Fig. 2(b). A representative sample of the
homodyne distribution in Fig. 2(b) originates from the side
peaks of φn(knx) that are not essential in the concept shown
in Fig. 1(a). Because the side peaks are suppressed by the
term φ

c/N
0 (knx) in Fig. 2(c), there are many more homodyne

outcomes that prepare comparable states to that created by
homodyne outcome zero.

Based on the above discussion, we propose Fig. 2(f),
which is an adaptive version of Fig. 2(c), as a GKP qubit
generation system. The input state φ

c/N
0 (knx′′′)φn(knx′′′) is

generated by GPS. The output of GPS is squeezed according
to the measured photon number. State preparation with GPS
is considered as a success when the measured photon num-
ber is nmin � n � nmax. Note that we set a maximum photon
detection number nmax to simulate the actual experimental
requirement. M GPS units are spatially parallelized, and a
selector consisting of optical switches selects N successful
events and inputs them into a breeding circuit. An adaptive
Gaussian operation is performed on the output state of the
breeding circuit according to the measurement results. In the
next section, we will simulate GKP qubit generation in this
system and evaluate its performance.

E. Simulation

We evaluate the proposed method by Monte Carlo sim-
ulation by using MR MUSTARD, a numerical simulation and
optimization PYTHON package for quantum optics [52]. The
state generation is considered as a success when effective
squeezing �̃x, �̃p is 10 dB or more. First, we consider the case
where minimal GPS units are used (N = M). Table I shows
simulation results for various nmin and nmax when N = M = 5.
The value of c is optimized to maximize the total success
probability. The input squeezing level for GPS circuits is
chosen so that PNGS, the probability to detect photons between
nmin and nmax, is maximized. PHD is the success probability of
homodyne conditioning when N desired non-Gaussian states
are supplied. A Gaussian operation is performed to optimize
effective squeezing for each output state. The total success
probability is given by Ptotal = PN

NGSPHD.
In Table I, PNGS are all above 10%. This is a clear advantage

over previous methods, which have at most a few percent
probability to detect n photons. Our approach improves this
problem by utilizing a wide range of photon detection events,
leading to significant increase of the total success probability.
PHD is also a high value over 10%. Ptotal is about 0.01 to 0.5%.
This is a high probability as a single-shot state generation
of GKP qubits. For example, the probability for generating
equivalent states with Gaussian breeding is roughly estimated
to be (2 × 10−2)N ≈ 10−6% [25,32]. The adaptive elements
improve the probability more than 1000 times. There are
clearer improvements compared to cat breeding. As shown
later in Fig. 3(c), under the same nmin and nmax conditions,
the success probability of cat breeding is 0% in this simu-
lation. In the discussion so far, the optimal input squeezing
exceeds the world record of 15 dB [54]. The success proba-
bility of each GPS when we input 15-dB squeezed vacuum
states is shown as P′

NGS in Table I. The probability decrease
is 10% at most. Assuming that PHD does not change signif-
icantly, the order of Ptotal will not change even if only up to
15-dB squeezing is available. We express the ensemble of
the output states of the successful events by a mixed state
ρs. The effective squeezing of ρs is shown in Table I. Let
ρt be a pure sensor state with the effective squeezing �̃x, �̃p

calculated from ρs. The fidelity between ρs and ρt given by
F = (tr

√√
ρtρs

√
ρt )2 is also shown in Table I. All achieved

a high fidelity around 95%. Evaluating the impact of a fidelity
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TABLE I. Simulation results with N = M = 5. Input squeezing, squeezing level of GPS inputs; PNGS, probability to detect n photons
between nmin and nmax in each GPS unit; PHD, success probability of homodyne conditioning when N non-Gaussian inputs are prepared; Ptotal,
success probability of the whole system given by PN

NGSPHD. The values of �̃x and �̃p are calculated from ρs, which is the mix of the output
states of the successful events. The right column is the fidelity between ρs and ρt , which is a sensor state with the effective squeezing estimated
from ρs.

nmin nmax c Input squeezing (dB) PNGS (%) P′
NGS (15 dB, %) PHD (%) Ptotal (%) �̃x (dB) �̃p (dB) F

10 20 1.3 17.7 19 17 30 0.0080 −10.7 −12.0 0.952
10 30 1.4 18.7 28 22 40 0.072 −10.7 −12.1 0.955
10 40 1.4 19.4 34 24 47 0.23 −10.8 −12.5 0.954
6 20 1.3 16.6 33 32 13 0.049 −10.8 −11.5 0.950
6 30 1.4 17.7 41 36 18 0.21 −10.7 −11.7 0.954
6 40 1.4 18.5 46 38 26 0.54 −10.7 −11.9 0.956

of less than 1 on the ability of quantum error correction is a
future challenge, which would require numerical simulations
of quantum computation. Figure 3(a) shows overlayed wave
functions of the output states of successful events when the
target state is χc,n,N (x). Figure 3(b) shows a similar plot when
the target state is ∅

(0)
�x,�p

(x). Although there are differences in
peak height for each event, they all well approximate the target
states. The wave functions in Fig. 3(b) have an imaginary
component because they are obtained by displacing the wave
functions in Fig. 3(a) in p direction as shown in Eq. (1). The
ratio of the imaginary component is about 7%. Note that this
imaginary component does not appear when N is even.

Next, we compare our protocol with cat breeding.
Figure 3(c) shows �̃x, �̃p distribution of the simulation re-
sults. The red plot is the result of the method we proposed,
which yields approximately 10 dB of effective squeezing both

(a)

(c)

(b)

(d)

(%
)

//

FIG. 3. Simulation results. (a) Overlay of the wave functions
of successful events with c = 1.3, nmin = 10, nmax = 20, N = 5. The
red and blue lines are the real and imaginary components, respec-
tively. The target state (black dashed line) is χc,n=20,N (x). (b) Overlay
in the same condition with (a), where the target state is a GKP
qubit with 10-dB effective squeezing. (c) Distribution of effective
squeezing. Red: proposed protocol with c = 1.3, nmin = 10, nmax =
20, N = 5. Black: cat breeding in the same condition, that is, c =
5, nmin = 10, nmax = 20, N = 5. (d) M dependence of the total suc-
cess probability under the conditions shown in Table I. The legend in
the plot shows (nmin, nmax).

in position and momentum. The black plot is the result of cat
breeding using approximate cats produced from GPS (c = N),
which clearly results in less squeezing and does not achieve
10 dB in the p quadrature. To get 10-dB effective squeezing in
cat breeding, we need to set nmax much larger. This shows that
our method can efficiently generate GKP qubits from fewer
photon detections.

Finally, let us consider increasing M. The total probability
is given by

Ptotal = PHD

M∑
j=N

MC jP
j

NGS(1 − PNGS)M− j . (8)

As shown in Fig. 3(d), as M increases, Ptotal increases rapidly
and eventually approaches PHD. The optimal value for nmin

also changes depending on how large M can be. From
Table I, the smaller nmin is, the larger PNGS becomes, but the
smaller PHD becomes. Therefore, if M is small, it is advan-
tageous to make nmin small. Let us set Ptotal = 10% as one
goal. In this case, it can be realized by (nmin, nmax, M ) =
(10, 20, 20), (10, 30, 13), (10, 40, 10). The system with M =
20, N = 5 is shown in Fig. 2(f). Therefore, if we can use
18- to 20-dB squeezed vacuum states, photon number re-
solving capability from 20 to 40, and adaptive operations, it
is possible to generate practical GKP qubits with a realis-
tic system scale. If the squeezing level is limited to 15 dB,
the parameters to achieve Ptotal = 10% are (nmin, nmax, M ) =
(10, 20, 23), (10, 30, 16), (10, 40, 14), where we used the
values of PHD in Table I. In this example, we can see that the
requirement for squeezing can be much reduced by increasing
M slightly. Assuming that 20 photon-number-resolving detec-
tors are available, let us estimate the success probability of
Gaussian breeding. Since N = 5, four circuits of Fig. 2(a) can
be parallelized. The probability to obtain at least one GKP
qubit out of the four circuits is about 4 × 10−6% < 10−5%.
Therefore, our protocol can improve the total success proba-
bility more than 1 × 106 times compared to previous methods.

III. DISCUSSION

We discussed how to mitigate the probabilistic nature of
heralding methods using adaptive elements, focusing on the
GKP qubit. Our proposal will be a powerful technique for
generating GKP qubits at a practical rate. In order to realize
our protocol, the following four points will be important.
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First, it is necessary to verify how much photon loss dete-
riorates the generated states. In Ref. [32], the robustness of
Gaussian breeding against photon loss has been discussed.
The performance of our protocol in the presence of photon
loss is the subject of future work [53]. Additionally, we should
attempt to reduce both nmax and the input squeezing level,
as the impact of loss becomes more pronounced when deal-
ing with many photons. Introducing displacements before the
photon number measurement might lower the squeezing re-
quirement below the current world record of 15 dB [54]. From
a completely opposite perspective, considering the limit where
nmax and input squeezing level become infinite while ignoring
loss can also provide important insights. We obtain PNGS = 1
under this condition because the probability of detecting less
than nmin photons at each photon detector is zero. Given that
homodyne conditioning for the cat breeding protocol can be
deterministic, PHD = 1 can also be achieved by setting nmin

and c appropriately. In other words, the proposed method can
be deterministic in principle and overcomes the probabilistic
nature of heralding methods. Performing a rigorous proof of
this nature would overturn the common sense of heralding
methods.

The second aspect involves the development of adaptive
quantum operations. Both linear [55] and nonlinear [56] feed-
forward operations, depending on homodyne measurements,
have already been demonstrated as core technologies for
optical quantum information processors. However, adaptive
operations based on photon number measurements have not
yet been realized and need further development. Also, it is
necessary to consider which adaptive operations are suitable
to implement the proposed method. For example, instead of
squeezing the GPS outputs, the reflectance of beam splitters
in the breeding circuit can be adaptively changed [53].

The third aspect is improvements of architecture. While it
may be straightforward to use ordinary optical switches as
the selector, it is also promising to explore mode selection
through quantum teleportation [57]. For the preparation of
input states, leveraging timing synchronization via quantum
memories has proven to be powerful [58]. This can be in-
terpreted as multiplexing of GPS units in the time domain.
Additionally, frequency domain multiplexing [59], taking ad-
vantage of the broadband nature of light, is a viable option.
Through the use of such multiplexing, apart from spatial par-
allelization, the proposed method can be implemented more
efficiently. Concerning the overall system architecture, alter-
natives such as two-dimensional cluster states [8–10] or a
loop-based quantum processor [60,61] can be considered in-
stead of the interferometer configuration shown in Fig. 2(f). In
other words, an optical quantum computer, which is a general-
purpose quantum manipulation platform, is also useful as a
quantum state synthesizer.

Finally, it is important to develop heralding state generation
using multiphoton detection. In heralding methods, quantum
non-Gaussianity could have been confirmed using up to three-
photon detection [29,62,63]. However, to realize the proposed
method, it is essential to generate quantum states using photon
detection with more than ten photons. Bridging this significant
technological gap requires the development of various tech-
niques, such as high-performance photon-number-resolving
detectors capable of detecting more than ten photons [64], a

mode-selective heralding method [65], domain engineering in
parametric down-conversion sources [66], and low-loss state
evaluation using noiseless optical amplification [12].

By addressing the above points, we can eliminate the bot-
tleneck in the development of optical quantum computers.
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APPENDIX A: DERIVATION OF EQ. (3)

In the Wentzel-Kramers-Brillouin approximation [47],
φn(x) between the turning points x = ±√

2n + 1 is given by

φn(x) ∝∼ (1 − z2)−
1
4 cos

[
2n + 1

2
(z

√
1 − z2 + sin−1 z) − nπ

2

]
,

(A1)

where z = x/
√

2n + 1. When |x| � √
2n + 1,

φn(x) ∝∼ cos

[
(2n + 1)z − nπ

2

]
= cos

[√
2n + 1x − nπ

2

]
.

(A2)

As n increases, this approximation becomes precise except
around the turning points. Using this property, it can be shown
that φN

n (x) is approximated by a sum of Gaussian functions.
In an interval of |x| � π

2

√
N ,

lim
N→∞

cosN

(
x√
N

)
= lim

N→∞

(
1 − x2

2N
+ O

(
N− 3

2

))N

= e− 1
2 x2

. (A3)

By similarly applying this procedure to other intervals |x −
π

√
N j| � π

2

√
N, j = ±1,±2, . . . , we obtain

φN
n (knx) ∝∼

∞∑
j=−∞

(−1)N ( j+�n/2�)e− Nπ
4 (x−( j+t/2)

√
2π )2

,

|x| � √
2n + 1, (A4)
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FIG. 4. How to realize the wave function χc,n,N (x). (a) Transfor-
mation rule with an infinitely squeezed input state. (b) An equivalent
circuit to Fig. 2(a). (c) Transformation rule with a homodyne out-
come x2 = 0.

where t = n mod 2. Then, when n, N � 1, we obtain

χc,n,N (x) ∝∼ e− cπ
4(2n+1) x2

∞∑
j=−∞

(−1)N ( j+�n/2�)e− Nπ
4 [x−( j+t/2)

√
2π ]2

≈ eis(
√

π
2 x+π�n/2�)

∞∑
j=−∞

e− cπ
4(2n+1) [( j+t/2)

√
2π ]2

× e− Nπ
4 [x−( j+t/2)

√
2π ]2

= eis(
√

π
2 x+π�n/2�)

∅
(t )
�x,�p

(x), (A5)

where s = N mod 2,�x =
√

2
Nπ

,�p =
√

cπ
2(2n+1) . As men-

tioned in the main text, we can see that N affects �x, and n
and c affect �p.

APPENDIX B: OUTPUT STATES OF FIG. 2

Here, we show the output states of the circuits in
Figs. 2(a)–2(c). Regarding Fig. 2(a), it is useful to utilize the

transformation rule in Fig. 4(a). We assume an input state with
a wave function ψin(x1) interferes with an infinitely squeezed
vacuum state, and the output states are projected onto wave
functions ψmes1(x1) and ψmes2(x2). This process is expressed
as follows:∫∫

dx1dx2 ψin(
√

Rx1 +
√

T x2)δ(−
√

T x1 +
√

Rx2)

× ψ∗
mes1(x1)ψ∗

mes2(x2)

=
∫

dx1ψin(x1)ψ∗
mes1(

√
Rx1)ψ∗

mes2(
√

T x1). (B1)

It shows that this process is equivalent to a projection of the
input state onto a wave function ψmes1(

√
Rx1)ψmes2(

√
T x1).

This rule also holds for mixed input states. By repeatedly
applying this rule, Fig. 2(a) is simplified as Fig. 4(b). The
output state is

∫
dx2 φc

0

(
1

N + 1
x1 +

√
N

N + 1
x2

)

× δ

(
−

√
N

N + 1
x1 +

√
1

N + 1
x2

)
φN

n

(√
1

N
x2

)

∝ χc,n,N (x1/kn). (B2)

Thus, it is possible to obtain χc,n,N (x) up to squeezing using
the circuit in Fig. 2(a). The unnecessary squeezing factor can
be corrected at the output of the circuit, or the squeezing at the
output can be absorbed by the change of the input squeezing
level and the transmittance of the beam splitter through Bloch-
Messiah decomposition [67].

The transformation rule in Fig. 4(c) is useful to analyze
Figs. 2(b) and 2(c). When two inputs ψin1(x1) and ψin2(x2)
interfere at a beam splitter and one output is projected onto
δ(x2), the remaining state is∫

dx2 ψin1(
√

Rx1 +
√

T x2)ψin2(−
√

T x1 +
√

Rx2)δ(x2)

= ψin1(
√

Rx1)ψin2(−
√

T x1). (B3)

This projection is realized by a homodyne measurement with
an outcome x2 = 0. By repeatedly applying this rule, the out-
put states of Figs. 2(b) and 2(c) become χc,n,N (x).
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