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Mixed-integer linear programming solver using Benders decomposition
assisted by a neutral-atom quantum processor
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This paper presents a hybrid classical-quantum approach to solve mixed-integer linear programming (MILP)
using neutral-atom quantum computations. We apply Benders decomposition (BD) to segment MILPs into a
master problem (MP) and a subproblem, where the MP is addressed using a neutral-atom device, after being
transformed into a quadratic unconstrained binary optimization (QUBO) model, with an automatized procedure.
Our MILP to QUBO conversion tightens the upper bounds of the continuous variables involved, positively
impacting the required qubit count, and the convergence of the algorithm. To solve the QUBO, we develop
a heuristic for atom register embedding and apply a variational algorithm for pulse shaping. In addition, we
implement a proof of concept that outperforms existing solutions. We also conduct preliminary numerical results:
In a series of small MILP instances our algorithm identifies over 95% of feasible solutions of high quality,
outperforming classical BD approaches where the MP is solved using simulated annealing.
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I. INTRODUCTION

Combinatorial optimization problems are crucial in in-
dustries such as logistics, planning, telecommunications, and
resource management [1]. They offer significant economic
and strategic benefits. However, as these problems increase in
size, involving more variables and constraints, they become
computationally challenging. Consequently, finding high-
quality solutions quickly becomes a difficult task. To address
these challenges, there is ongoing development in advanced
classical optimization techniques. In particular, mixed-integer
linear programming (MILP) [2] plays a crucial role in solving
a wide range of optimization problems. It integrates integer
and continuous variables, which adds computational com-
plexity compared to pure integer linear programming (ILP)
[3]. For instance, tasks such as solution space tightening us-
ing cutting planes, i.e., linear inequalities added to eliminate
infeasible solutions, become more difficult with MILPs [4].
Benders decomposition (BD) [5] is an efficient method for
solving MILPs. The approach stands out for its applicability
to a wide range of MILPs, unlike other structure-dependent
methods such as Dantzig-Wolfe decomposition [6]. It sepa-
rates integer variables in a process called restriction [7]. This
process splits the MILP into a master problem (MP) and a
linear program (LP) subproblem (SP). While the SP is man-
ageable on classical computers, the MP, containing discrete
variables, constitutes a computational bottleneck. This work
addresses this specific bottleneck using a neutral-atom quan-
tum processor in a hybrid classical-quantum framework.

In recent years, hybrid classical-quantum approaches have
started to gain traction in addressing NP-hard problems
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[8–12]. The approach assigns the computationally hard part,
such as an ILP, to a quantum processing unit (QPU). Con-
versely, classical central processing units (CPUs) handle less
computationally demanding parts like LPs. In MILP solving
with BD, hybrid methods show promising results over classi-
cal methods [13–16]. Generally, these methods use a QPU to
solve the MP after transforming it to a quadratic unconstrained
binary optimization (QUBO) model. In neutral-atom quantum
computing, atoms, controlled by lasers, serve as qubits and
are versatile enough to encode any QUBO [17]. Known for
its scalability and precision, enabled by optical tweezers, this
method distinguishes itself among quantum technologies such
as Josephson junctions [18], trapped ions [19], and photons
[20]. In this context, the Hamiltonian governing qubit dynam-
ics can be tailored to a QUBO model in such a way that
the Hamiltonian’s ground state encodes the optimal solution
to the QUBO [21]. This elegant alignment between physics
and algorithms enables us to tackle a vast variety of opti-
mization problems. The algorithm design for neutral-atom
systems includes register embedding and pulse shaping. Reg-
ister embedding spatially arranges qubits to mirror the QUBO
matrix, which serves as the problem’s encoding method. Pulse
shaping, in contrast, adjusts laser pulses to manipulate qubit
states and cover strategies like the variational algorithms [9]
and quantum approximate optimization (inspired) algorithms
(QAOAs) [8]. While the problem encoding is based on reg-
ister embedding, pulse shaping directs the algorithm toward
finding a solution, with each component contributing to the
algorithm’s overall structure.

In this study we propose a hybrid classical-quantum BD
framework. As presented in Fig. 1, our approach begins by
splitting the MILP into a MP and a SP. The MP is reformulated
into a QUBO for quantum processing. Based on an iterative
BD algorithm, the MP is solved using a QPU and the SP on
a CPU. Register embedding and pulse shaping algorithms are
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FIG. 1. Approach overview. Shown is a representation of our
hybrid framework that merges classical computing with neutral-atom
quantum processing for solving MILP problems. The MILP is di-
vided into a MP and a SP. The MP is reformulated into a QUBO,
which is then processed by a quantum sampler. Register embedding
is applied to configure qubits for QUBO encoding, and pulse shaping
tunes the laser pulses, preparing the QPU for solution exploration.
The best quantum-derived solution, denoted by x̂, is assessed using
the SP on a CPU which determines whether a Benders cuts has to be
added to the MP. Through iterative Benders cuts, the MP is refined,
discarding “bad” solutions and guiding the process toward the most
effective MILP solution.

executed prior to solving the MP, yielding the creation of the
Hamiltonian which enables quantum sampling of various MP
binary solutions. Once the best MP solution x̂ is fixed, the SP
which uses x̂ as a parameter is solved by a classical solver like
CPLEX [22] or Gurobi [23]. The SP optimal objective value is
then used to assess the need to improve the current solution. If
necessary, a Benders cut, which is a linear inequality derived
from the SP, is integrated into the MP in the subsequent itera-
tion to eliminate infeasible solutions and guide the algorithm
toward optimality. Our iterative method is designed to achieve
an optimal or near-optimal solution for the original MILP and
is automatically adapted to various MILP scenarios.

The contributions of this study are manifold. We introduce
an automated process for converting the MP into a QUBO
model. First, we present a heuristic for register embedding.
Then we implement a variational algorithm for pulse shap-
ing, incorporating gradient descent techniques. Additionally,
we conduct a proof of concept (POC) that demonstrates su-
perior performance over a D-Wave annealer application of
BD [13]. Moreover, we perform numerical results on a large
set of MILP instances. This shows our method’s efficiency
in comparison to a classical BD approach where the MP is
solved using simulated annealing [24]. The adaptability of
BD to various MILP structures, along with the scalability
and precision of neutral atoms in solving QUBOs, forms the
foundation of our research motivation. We have been able
to utilize neutral-atom computation to develop an automated
problem-agnostic framework for solving MILPs through BD.

This paper is organized as follows. Section II provides
an overview of the developments in (hybrid) decomposition
methods. Section III presents both the physics and mathemati-
cal material used in this work. The conversion of the MP into a
QUBO model is detailed in Sec. IV. Section V presents the de-
sign of the quantum algorithm. The overall hybrid algorithm

is described in Sec. VI. Our POC and numerical results are
discussed in Sec. VII. Section VIII summarizes the paper and
discusses directions for future work.

II. RELATED WORK

Classical decomposition strategies, including methods
such as Dantzig-Wolfe decomposition [6] and column gener-
ation [25], efficiently address NP-hard optimization problems
by subdividing them into smaller manageable parts. In recent
advancements, diverse approaches are explored to address
complex problems through classical-quantum decomposition
methods. One instance, as presented in [26], focuses on apply-
ing these methods to an internet of things use case, specifically
for edge server placement and workload allocation opti-
mization. This study employs a hybrid quantum-classical
framework, partitioning the problem into a QUBO MP and
an LP SP. Using the IBM quantum computing software devel-
opment kit QISKIT [27], the authors proposes a QAOA, within
the framework of the alternating direction method of multi-
pliers (ADMM) [28], an optimization technique that divides
complex problems into smaller manageable SPs for iterative
solving.

Benders decomposition stands out among existing decom-
position strategies for its applicability across a variety of
MILP problems. It addresses both integer and continuous
variables while being adapted to any constraint structure.
Nonetheless, classical BD encounters several challenges. Its
main limitations include slow convergence to an optimal
solution and time-consuming iterations. These issues often
arise due to suboptimal initial solutions, weak Benders cuts,
and the presence of multiple equivalent solutions. Addressing
these issues, significant enhancements have been made to the
classical BD algorithm [29–33]. These include the develop-
ment of advanced stabilization methods, which enhance the
algorithm’s resilience against quality fluctuations of the so-
lution, consequently accelerating convergence. Additionally,
the implementation of techniques to generate multiple solu-
tions and cuts in each iteration has been investigated and has
demonstrated effectiveness in reducing the BD algorithm’s
time to solution [34].

Recently, hybrid classical-quantum BD approaches have
started to show potential in tackling these MILPs complexi-
ties. Addressing the computational difficulty of the MP, Zhao
et al. [13] developed a hybrid quantum BD approach. This
method involves transforming the MILP model of the MP into
a QUBO model, which is then solved using quantum anneal-
ing, on D-Wave machines. Similarly, Gao et al. [14] tackle a
unit commitment problem using a hybrid quantum-classical
generalized BD algorithm. This approach also involves con-
verting the MP into a QUBO and solving it via quantum
annealing on the D-Wave machine, showing improved perfor-
mance over the method of ADMM.

Further research by Chang et al. [15] explores the hybrid
BD on noisy intermediate-scale quantum processors, demon-
strating efficiency in small-scale scenarios, particularly in
power-system-specific MILP. Their algorithm is tested on a
D-Wave 2000Q QPU. Furthermore, Fan and Han [16] investi-
gated the application of BD in network resource optimization
areas like network function virtualization and multiaccess

012434-2



MIXED-INTEGER LINEAR PROGRAMMING SOLVER USING … PHYSICAL REVIEW A 110, 012434 (2024)

edge computing. Franco et al. [35] demonstrate that while
BD applies to a wider range of MILP problems, potentially
requiring more qubits in extreme cases, Dantzig-Wolfe de-
composition is more qubit efficient but limited to structurally
constrained problems. On the quantum side, the authors use
the D-Wave system.

While significant progress has been made in hybrid BD
using annealing and gate-based quantum computing methods,
we believe the exploration of neutral-atom quantum comput-
ing within this framework remains largely unexplored, which
is the purpose of our present research.

III. BACKGROUND

This section presents the technical tools used in
our research, including a brief introduction to quantum
computing with neutral atoms and the foundations of
classical BD.

A. Neutral-atom QPUs and optimization problems

Neutral-atom QPUs utilize state transitions in valence elec-
trons of atoms like rubidium to establish qubit states. These
states include the stable ground state |g〉 or |0〉 and an en-
ergized Rydberg state |r〉 or |1〉. In these QPUs, the atoms
arranged in a specific spatial configuration, the so-called reg-
ister, contribute in defining an effective Hamiltonian H (t ),
which governs the dynamics of the quantum system. The
Hamiltonian is given by

H (t ) = �(t )
|V |∑
u=1

σ̂ x
u − �(t )

|V |∑
u=1

n̂u +
|V |∑

u<v=1

Uuv n̂un̂v. (1)

Here �(t ) denotes the Rabi frequency amplitude that controls
the rate of state transitions of qubits, �(t ) represents the laser
detuning which affects the probability of atom excitation, and
Uuv is the interaction strength between atoms u and v. The
terms σ̂ x

u and n̂u correspond to the Pauli X operator and n̂u =
(I + σ̂ z

u )/2, respectively. Finally, V represents the set of atoms
in the register.

Neutral-atom QPUs naturally solve the maximum indepen-
dent set (MIS) problem [36] in unit disk graphs [37]. The MIS
problem, which involves finding the largest set of nonadjacent
vertices (atoms), is optimally addressed by these QPUs, due
to the Rydberg blockade mechanism. This mechanism uses
the principle that two atoms within a certain distance cannot
both be in an excited state simultaneously. In the context
of encoding unit disk graphs, an edge between two vertices
exists if they are close enough for the Rydberg blockade to
take effect; essentially, if the atoms are within the blockade
radius, they are considered adjacent in the graph. This spatial
encoding reflects the edges and vertices of the unit disk graph
directly into the quantum system, facilitating a native solution
of the MIS.

More generally, neutral-atom QPUs are capable of solving
any optimization problems that can be encoded into a QUBO
format, as demonstrated by studies such as [17,38]. Here the
Rydberg blockade mechanism offers a method for the encod-
ing of optimization problems into a QUBO format. Each pair
of adjacent atoms, within the blockade radius, can be seen as

a product of two binary variables multiplied by the interaction
of the atoms. Solving a QUBO problem with neutral-atom
devices entails the following two major phases.

1. Problem encoding via register embedding

In this initial phase, called register embedding, the problem
is embedded into the QPU register by spatially arranging the
atoms. The spatial configuration of the atoms is designed in
such a way that their interactions Uuv in Eq. (1) represent the
off-diagonal terms of the QUBO instance. This setup is crucial
as the quality of the solution for the input QUBO instance is
highly dependent on how well the resulting interactions Uuv

mimic the off-diagonal QUBO coefficients.

2. Problem solving via pulse shaping

The second phase includes the design and execution of
specific pulse sequences to guide the system toward a good
solution to the original QUBO. Pulse design, a process known
as pulse shaping, is essential for finalizing the Hamiltonian
construction. It involves setting parameters such as pulse du-
ration T , laser detuning �(t ), and Rabi frequency �(t ). The
choice and the effectiveness of pulse shaping in solving the
problem using a neutral-atom QPU depends on the encoding
phase.

(a) Pulse shaping under exact encoding. If the problem is
encoded exactly during the encoding phase, adiabatic pulses
can be designed. These pulses leverage the adiabatic theorem
[39] to ensure the system smoothly transitions toward its
ground state, which is ideal for problems like the MIS in unit
disk graphs [36]. In such cases, careful adjustments of �(t )
and �(t ) over time guide the system adiabatically from its
initial state to the desired final state, maintaining the system
in its ground state throughout and leading to high-quality
solutions.

(b) Pulse shaping under approximate encoding. When
exact encoding is not feasible, variational algorithms are em-
ployed to design pulses that still aim to steer the system
toward effective solutions. Although these pulses may not
be adiabatic, they are crafted to achieve satisfactory results
by approximating the desired Hamiltonian dynamics, thus
navigating the system toward good solutions for the input
QUBO instance under constrained or imperfect encoding
conditions.

Note that neutral-atom QPUs are resilient to noise, which
helps in the efficient solving of combinatorial optimization
problems. As highlighted in [40], errors in digital quantum
computing can propagate from one gate to another, potentially
compounding as the computation progresses. In contrast, the
analog evolution in neutral-atom quantum computing inher-
ently reduces error propagation. This robustness is due to the
direct correspondence between the state of the computational
basis in which the qubits are measured and the solution to the
optimization problem. In some cases, noise can even enhance
performance by helping the system explore a broader solution
space, as suggested in [41].

For an in-depth understanding of neutral-atom-based quan-
tum computing, one may refer to [42].
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B. Benders decomposition for MILPs

Benders decomposition works by separating a MILP
known as the original problem (OP) into a MP, which deals
with discrete variables, and a SP, which focuses on the re-
maining variables, often continuous. To perform BD, the OP
is reformulated into an equivalent MILP. This reformulation
relies on the principles of polyhedral and duality theory in
linear optimization [43]. Consider real matrices A of dimen-
sions m1 × n, G of dimensions m1 × p, and B of dimensions
m2 × n. Let c, h, b, and b′ be vectors with dimensions n, p,
m1, and m2, respectively. The OP is initially expressed as

max
x,y

cT x + hT y (2)

s.t. Ax + Gy � b, (3)

Bx � b′, (4)

x ∈ {0, 1}n, (5)

y ∈ Rp
+. (6)

The constraints (5) are integrality constraints; they introduce
binary decision variables x. The constraints (6) introduce
non-negative continuous decision variables y. The objective
function (2) consists in maximizing a linear function of x and
y. The constraints (3) associate the binary variables with the
continuous ones, while the constraints (4) exclusively involve
the binary variables.

Following the principles of standard BD, the constraints (3)
are included in the SP, with the objective function hT y. On the
other hand, the constraints (4) are incorporated into the MP.

For a fixed solution x̂ from the MP, the LP version of the
SP is

max
y

hT y (7)

s.t. Ax̂ + Gy � b, (8)

y ∈ Rp
+. (9)

Its dual, denoted by SPD, is

min
μ

f (x̂) = (b − Ax̂)T μ (10)

s.t. GT μ � h, (11)

μ ∈ Rm
+. (12)

Let x∗ be the optimal solution of the SP and y∗ be the
optimal solution of the SPD. By strong duality theory [44],
the optimal objective value of the SP is equal to the optimal
objective value of the SPD. We have that

f (x∗) = hT y∗.

In linear programming, the set of all feasible solutions de-
fined by linear constraints forms a polyhedron. For a bounded
polyhedron, the vertices, known as extreme points, are key to
finding potential optimal solutions. According to the corner-
point theorem, also known as the fundamental theorem of
linear programming [45], if an optimal solution exists in a
bounded linear program, it will be located at one of these

vertices. In contrast, unbounded linear programs may still
have extreme points, but they are not guaranteed to provide
bounded optimal solutions. Instead, these unbounded prob-
lems can exhibit directions along which the objective function
can increase indefinitely without violating the constraints.
These directions are characterized by vectors known as ex-
treme rays, emerging from the polyhedron and indicating
where the objective function can grow indefinitely while still
satisfying all the constraints.

The feasible solution space of an LP problem is well known
to be characterized by a combination of its extreme points and
extreme rays, as established by Minkowski’s theorem [46]. In
the context of BD, applying this theorem to the SPD enables
the reformulation of the OP into an equivalent MILP model as
follows:

max
x,�

cT x + φ (13)

s.t. (b − Ax)T μo � φ ∀ o ∈ O, (14)

(b − Ax)T r f � 0 ∀ f ∈ F , (15)

Bx � b′, (16)

x ∈ {0, 1}n, (17)

φ ∈ R. (18)

In this reformulated OP, only one continuous variable φ is
used. The remaining variables are the binary variables x. Con-
straints (14) and (15) represent the Benders optimality cuts
and feasibility cuts, respectively. Here the sets O and F are the
extreme points and extreme rays of the SPD, respectively, and
the vectors μo for extreme points and r f for extreme rays are
used to construct Benders cuts. They can be obtained through
conventional solvers, such as ILOG CPLEX [22]. Note that
sets O and F can be exponential in number. However, BD
often efficiently finds an optimal solution using a selected
subset of these sets.

C. Principle of the Benders decomposition algorithm

The approach begins with a restricted version of the MP
(13)–(18), initially setting both optimality and feasibility cut
sets O and F to empty (O = F = ∅). As the algorithm pro-
gresses, it iteratively adds optimality and feasibility cuts to the
MP. At each iteration, the MP is solved to derive an optimal
solution, which is then used as a parameter to solve the SP.

If the SP is feasible, an optimality cut is generated, guiding
future MP solutions toward the OP’s optimal solution. This
process uses the real variable φ in the formulation (13)–(18).
The optimal objective value of the SP (b − Ax)T μo is com-
pared to φ, and if (b − Ax)T μo � φ, the optimality cut (14),
constraining φ to not exceed the objective value of the actual
extreme point of the SPD, is added. On the other hand, as the
OP maximizes φ, at optimality, φ will necessarily be equal
the objective value of the SPD and thereby equal the optimal
objective value of the SP (according to the strong duality
theorem). Conversely, if the SP is infeasible, a feasibility cut
is produced to eliminate infeasible solutions from the MP’s
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ALGORITHM 1. Classical Benders decomposition.

Input: Problem parameters c, h, A, G, b, B, b′

Input: φmax � Initial upper bound for φ

1: Initialize O ← ∅,F ← ∅
2: φ ← φmax

3: convergence ← False
4: while not convergence do
5: Solve the MP with current cuts
6: x, φ ← solution of MP
7: Solve the SP using x to find y
8: if the SP is feasible then
9: μo ← dual variables from the SP
10: cut_value ← (b − Ax)T μo

11: if cut_value < φ then
12: Add optimality cut to O: φ � cut_value
13: else
14: convergence ← True
15: end if
16: else
17: Generate a feasibility cut based on SP infeasibility
18: Add this cut to F
19: end if
20: end while
21: return Optimal solution x, φ, y

solution space. These cuts act as a filter, maintaining consis-
tency within the solutions of the OP.

The algorithm operates as follows. The MP tries to max-
imize the value of φ, yielding an upper bound of the latter,
while the SP, upon finding a feasible solution, generates an
optimality cut that decreases this upper bound. This iter-
ative process of maximizing and constraining φ continues
until the optimality cut from the SP can no longer decrease
the value of φ. At this point, we have that (b − Ax)T μo � φ

and the algorithm terminates, indicating that the MP and SP
have converged to an optimal solution for the OP. Algorithm 1
outlines the implementation of the classical Benders decom-
position method.

It is important to note that the resolution of the MP presents
considerable complexity, mainly attributed to the fact that the
latter integrates binary variables. This complexity becomes
more critical as the solution process progresses, particularly
with the dynamic integration of Benders cuts. Consequently,
the MP frequently becomes a computational bottleneck. To
overcome this, we study the application of neutral-atom-based
quantum computing in a complete hybrid classical-quantum
framework. In the next section we detail the reformulation
of the MP into a QUBO model, which is suited for this type
of QPU.

IV. MASTER-PROBLEM REFORMULATION TO QUBO

A QUBO problem can be formulated as minz {zT Qz | z ∈
{0, 1}t }, where Q is a symmetric matrix and z is a binary
vector. The objective of this optimization problem is to find
the binary vector z∗ that minimizes the quadratic objective
function zT Qz over all binary vectors. Before using a QPU
for optimizing the MP, we transform the latter, originally
represented as a MILP, into a QUBO model. In what follows

we detail the methodology of this reformulation, associated
with a single BD iteration. For foundational insights into the
MILP to QUBO conversion, refer to [21]. Note that similar
methodologies are discussed in [13]. Here we give a detailed
approach that further refines the upper bounds of the continu-
ous variables resulting from the conversion, which positively
impacts the required number of qubits as well as the conver-
gence of the algorithm.

A. Master-problem objective-function reformulation

The objective function in the MP, as defined in (13),
contains a linear term and a continuous variable, given by
cT x + φ. The linear component cT x, which exclusively in-
volves binary variables, is directly adaptable to a QUBO.
This is achieved by employing the diagonal matrix diag(c),
with the vector c populating its diagonal, thereby transforming
cT x into

Hc = xT diag(c)x. (19)

The continuous variable φ can be binary encoded using a
binary vector w of length L, formulated as

Hφ =
P−1∑
i=0

2iwi +
D∑

j=1

2− jwP+ j −
N∑

k=1

2k−1wP+D+k . (20)

Here P represents the number of bits for the positive-integer
part of φ. We have that P = 	log2(φmax)
 + 1, where φmax is
an upper bound of φ. For the fractional part, the number of bits
D can be obtained based on a desired precision ε, calculated as
D = 	log2(ε)
 + 1. The N denotes the number of bits for the
negative-integer part of φ, leading to a total length L = P +
D + N for the vector w. Note that careful determination of P,
D, and N is crucial, as it affects both the numerical precision
of φ and the quantum resource requirements in terms of the
number of qubits needed.

To determine φmax, we address the linear relaxation of the
formulation of the OP as given by (2)–(6), without consid-
ering cT x in the objective function. The linear relaxation is
the formulation obtained by relaxing integer constraints (5),
allowing continuous values, and is given by

max
x,y

φmax = hT y (21)

s.t. Ax + Gy � b, (22)

Bx � b′, (23)

x ∈ [0, 1]n, (24)

y ∈ Rp
+. (25)

B. Constraint reformulation

1. Master constraints

The reformulation of the MP constraints (4) involves in-
tegrating slack variables, a common technique in classical
optimization for transforming inequalities into equalities. The
inequalities Bx � b′ are first converted into the equalities
Bx + sm − b′ = 0, where sm is a vector of continuous positive
variables. Let 1 � k � m2. The kth component sk

m of the slack
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vector sm undergoes a binary encoding, yielding

sk
m =

Qk
1−1∑

i=0

2ivm,k
i +

Rk
1∑

j=1

2− jvm,k
Q1+ j .

Here vm,k denotes a binary vector with a length of Qk
1 + Rk

1,
where Qk

1 represents the number of qubits required for the
integer part of sk

m and Rk
1 corresponds to the number of qubits

for its fractional part. The value of Qk
1 can be determined

by 	log2(sk
max)
 + 1, where sk

max is the upper bound for sk
m

obtained by solving the linear program

sk
max = max

x,y
b′

k − Bkx (26)

s.t. Ax + Gy � b, (27)

Bx � b′, (28)

x ∈ [0, 1]n, (29)

y ∈ Rp
+. (30)

Let π k
1 be a positive penalty coefficient associated with the kth

MP constraint. The QUBO reformulation of the constraints (4)
is thus given by

HM =
m1∑

k=1

π k
1

(
Bkx + sk

m − bk
)2

. (31)

Minimizing the Hamiltonian HM to zero ensures that the
constraints Bx � b′ are satisfied. Otherwise, a cost on any
deviation from zero, violating the constraint, is added.

2. Optimality and feasibility cuts

Let C be the number of Benders cuts added during the
process and let 1 � k � C denote the kth Benders cut. We
denote by vo,k and v f ,k the binary vectors of lengths Qk

2 + Rk
2

and Qk
3 + Rk

3, respectively, used in reformulating the kth op-
timally and feasibility cut (14) or (15), depending on the
type of the cut added in the kth iteration. Here Qk

2 and Qk
3

denote the numbers of qubits allocated for the integer parts of
slack variables sk

o and sk
f , respectively. The terms Rk

2 and Rk
3

correspond to the number of qubits used for the fractional part
of sk

o and sk
f , respectively. These can be obtained based on the

desired precision.
Following the same steps used for the MP constraints, we

obtain

sk
o =

Qk
2−1∑

i=0

2ivi
o,k +

Rk
2∑

j=1

2− jvo,k
Q2+ j, (32)

sk
f =

Qk
3−1∑

i=0

2iv
f ,k
i +

Rk
3∑

j=1

2− jv
f ,k
Q3+ j . (33)

Let 	k
2 be a positive penalty coefficient associated with the

optimality cut and 	k
3 the one associated with the feasibility

cuts. Using (32) and (33), we obtain the Hamiltonians

HO = π k
2

[
Hφ + (

μk
o

)T
Ax + sk

o − bT μk
o

]2
, (34)

HF = π k
3

[(
rk

f

)T
Ax + sk

f − bT r f
]2

. (35)

Here μk
o represents the dual value and rk

f denotes the dual
ray, both of which are obtained by solving the kth SP. Note
that each SP has the potential to yield either a dual value, in
cases where it is feasible, or an extreme ray, if it is infeasible.
Consequently, for any given SP, only one of the Hamiltonians
(34) or (35) is applicable. The QUBO formulation of the OP
is given by the sum of the Hamiltonians

HP = Hφ + Hc + HM + HO + HF . (36)

C. Reformulation discussion

In the process of converting the MP into the QUBO model,
several algorithmic challenges arise.

1. Qubit count limitation and convergence of the algorithm

The process of quadratizing the variable φ and the con-
straints in the BD (13)–(16) necessitates the use of additional
qubits. The total number of qubits of the initial MP is
given by

t = n + P + D + N +
(

m2∑
i=1

Qi
1 + Ri

1

)
.

As the algorithm progresses, this number can significantly
increase, primarily due to the generation of Benders cuts.
Each iteration k increases the number of qubits by Qk

2 + Rk
2

or Qk
3 + Rk

3, depending on the type of the cut. A critical
consideration in this process is the current limitations of
quantum computing hardware, particularly in terms of qubit
availability. To ensure that the computation remains feasible
on existing quantum computers, it is crucial to accurately
estimate the upper bounds of the real variable φ as well as
slack variables s. These estimations directly impact the num-
ber of qubits required. As previously established, we utilize
the linear relaxation of the OP to calculate upper bounds.

Addressing the linear relaxations defined in Eqs. (21)–(25)
and (26)–(30) tightens the upper bounds of φmax and the slack
variables sk

max compared to the method described by Zhao
et al. [13]. This improvement results from incorporating addi-
tional valid constraints (22) and (23) into the linear programs,
which also leads to tighter values for φmax and sk

max.
By providing tighter upper bounds, the algorithm reaches

the optimal solution more quickly as the bounds limit the
solution space the algorithm needs to explore, thus accelerat-
ing convergence. Additionally, solving these linear continuous
programs is generally computationally easy using classical
methods.

2. Qubit count vs numerical precision

An accurate estimation of qubit count is essential to avoid
numerical precision issues. In fact, a bad estimation of this
count can lead to significant numerical precision issues. For
instance, an underestimation of φ could stop the algorithm
before its effective end, resulting in poor-quality solutions.
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Conversely, an overestimation of φ can cause almost endless
loops, or the generation of no good Benders cuts, thus result-
ing in unfeasible solutions. Therefore, it is important to find a
balance between precision and qubit availability.

3. Penalty values and solution efficiency

Finally, the selection and tuning of penalty values in the
QUBO model are also important. These values guide the
quantum algorithm toward optimal or near-optimal solutions.
However, the process of setting static penalty weights for vari-
ous types of problems is not trivial. This is because values that
are too small will lead to infeasible solutions, while values that
are too large may lead to slower convergence. Many studies
have explored different methods of setting penalty weights
within the context of QUBO formulations [47–49]. The study
of the best penalty configuration is not within the scope of this
work. Finding the optimal penalties for the QUBO is still an
open research topic.

Future directions addressing the presented challenges will
be discussed in the Conclusion (see Sec. VIII). The next
section presents the methodology to solve the QUBO in a
neutral-atom QPU.

V. QUANTUM ALGORITHM DESIGN

The development of a quantum algorithm in a computer
based on neutral atoms includes two major steps: register
embedding and pulse shaping. In this section we present the
algorithms developed for these steps.

A. QUBO embedding strategy

The register embedding involves placing atoms at specific
locations within a register having its own distance constraints.
The aim is to find the placement aligning the interaction
matrix U , created based on the distances between the placed
atoms and a device-specific constant, as closely as possible to
the predefined QUBO matrix.

Formally, the problem can be defined as follows. Given (i)
a register defined by a set of positions P, respecting a mini-
mum distance between each pair of positions and a maximum
distance of any position from a reference point c, referred
to as the center of the register; (ii) a set V of n atoms to
be placed inside the register; (iii) an n-dimensional QUBO
matrix Q, we define P as the set of injective mappings from
V to P, with each mapping φ : V → P in P associated with a
position p ∈ P for each atom v ∈ V . The placement of atoms
on a subset of positions yields an interaction matrix Uφ , whose
components are defined by ui j = C6

r6
i j

, where C6 is a device-

dependent constant and ri j denotes the distance between the
atoms i and j induced by the placement φ.

The register embedding problem (REP) consists of select-
ing the best placement φ∗ ∈ P that minimizes the distance
between the interaction matrix U and the QUBO matrix Q:

min
φ∈P

∑
(i, j)∈V 2,i �= j

|qi j − ui j |. (37)

The REP is an NP-hard problem. To address this complexity,
we develop the heuristic presented in Algorithm 2. The algo-
rithm starts with a random selection of an atom from the set V .

ALGORITHM 2. Register embedding algorithm.

Input: V � Set of atoms.
Input: P � Set of positions.
Input: Q � QUBO matrix.
1: Randomly select an atom u from V
2: Pa ← (u, c) � Pa is the set of

atom-position pairs representing the placement of atoms.
Initially contains (u, c), which represents the placement of
the randomly chosen atom u on the center of the register c.

3: U ← 0Rn×n � initially no interactions
4: P ← P \ {c} � Remove c from P
5: V ← V \ {u} � Remove atom u, already embedded
6: while V �= ∅ do
7: Select atom u from V
8: Initialize min_sum ← ∞
9: For each atom p in P:
10: sum ← 0
11: For each position v such that there exists (v, pv ) ∈ Pa:
12: sum ← sum + |Qu,v − Up,	(v)|
13: If sum < min_sum then:
14: min_sum ← sum
15: best_position ← p
16: Pa ← Pa ∪ {u, best_position} � Place u on p
17: P ← P \ {best_position} � Position best_position no

longer available
18: V ← V \ {u} � Remove atom u, already embedded
19: end while
20: return P

The selected atom is placed at the center of the register c and
the process continues by iteratively evaluating and embedding
the remaining atoms.

At each iteration, the algorithm examines all available po-
sitions for the selected atom. It computes the total deviation
from the desired QUBO matrix. The position that yields the
lowest deviation is chosen as the best placement for that atom.
For each atom u in V , we compute, the position of the lowest
deviation is the one that minimizes the sum of absolute value
differences between the elements of the QUBO matrix Q and
the interaction matrix U . The interaction matrix U is dynam-
ically updated as each atom is placed, reflecting the current
state of interactions in the register.

Once a position is selected, it is removed from the set P
of available positions and the atom is removed from the set
V of unplaced atoms. The process is repeated until all atoms
are placed, resulting in a configuration that finds a solution
of (37), minimizing the distance between the interaction and
QUBO matrices.

It is worth noting that deviations between U and Q are
critical because they can lead to suboptimal or even infeasible
solutions for the MP. Such outcomes can result in weak or
no good Benders cuts. Specifically, weak cuts are those that
do not significantly tighten the value of φ, thereby failing to
accelerate the convergence toward the best solution. No good
cuts are invalid for the original problem, potentially rendering
the OP itself infeasible. These aspects highlight the impor-
tance of achieving an accurate register embedding method, as
they directly impact the quality and feasibility of the solution
to the OP.
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B. Variational algorithm for pulse shaping

This section presents a variational algorithm for optimizing
pulse parameters. Our objective is to identify the optimal
settings for pulse parameters for a register embedded using
the heuristic detailed in Sec. V A: the maximum amplitude
�max, the initial detuning δinit, the final detuning δfinal, and the
pulse duration T , all within predetermined bounds. Since this
procedure aims to find the optimal shape for the laser pulses
that control the quantum system, it will be referred to as pulse
shaping.

An iterative optimization procedure is established, pro-
gressively refining these parameters to enhance the pulse’s
efficiency. Initially, the average value of the parameters is
used to construct a pulse, with a chosen shape (such as an
interpolated waveform). This pulse is then executed on the
register, which is initialized in the Rydberg state |ψ0〉. The
evolution of the quantum state under the influence of the pulse
is described by an effective Hamiltonian Heff, as expressed
in Eq. (1). This effective Hamiltonian governs the dynamics
of the system and is not necessarily unitary. The final state
|ψ f (δinit, δfinal, T )〉 after applying the pulse, during a time T ,
is given by

|ψ f (δinit, δfinal, T )〉 = Heff|ψ0〉.
If the system consists of M atoms, the final state will typically
be a normalized superposition of basis states, each uniquely
corresponding to a binary bit string of length M,

|ψ f 〉 =
2M∑
i=1

ai|bi〉,

where
∑

i |ai|2 = 1 and

|bi〉 = ∣∣b1
i

〉 ⊗ · · · ⊗ ∣∣bM
i

〉
, bj

i = |0〉 or |1〉.
Achieving perfect knowledge of the quantum state |ψ f 〉

(and thus the coefficients ai) would require an exponential
number of resources as the system scales. Therefore, the
state is usually only approximately known through repeated
measurements. Each measurement of the state |ψ f 〉 results
in the extraction of one of the bit strings bi with probability
|ai|2. Collecting N samples of the state yields a set of pairs
{(bi,w

(N )
i )}i=1,...,2M , where w

(N )
i denotes the number of times

the bit string bi was measured out of N tries.
To each bit string bi, a cost C(bi ) = HP(bi ) can be assigned

according to the objective value of the QUBO HP (36) for bi.
The effectiveness of the optimization is evaluated by calculat-
ing the expectation value of the problem Hamiltonian HP over
all samples. Specifically, the average cost from all the samples
is computed as

〈C〉 = 1

N

∑
i

wiC(bi ).

Gradient boosted regression trees (GBRTs) [50], a refined
numerical optimization technique, are then applied to identify
the parameter set that minimizes the cost function, thereby
finding the optimal parameters that achieve the minimum av-
erage cost. This sampling and optimization cycle is executed
repeatedly, a total of p times. The parameters and sample
collection that yield the most favorable cost will be selected.

ALGORITHM 3. Pulse optimization algorithm.

Input: �bounds, δbounds, Tbounds � Parameter intervals for Rabi
frequency, detuning, and pulse duration.

Input: Register, HP, p � Quantum register, problem
Hamiltonian, number of iterations p.

1: Initialize params as the initial solution (the average of
parameter bounds).

2: for i = 1 to p do
3: cost, samples ← EvaluateSequence(params)
4: if cost < best cost found so far then
5: Update best_params and best_samples with current params

and samples.
6: end if
7: end for
8: params ← Generate new parameters based on GBRT

optimization or initial parameters for the first iteration.
9: return best_params, bestsamples.
10: function EVALUATESEQUENCE(params)
11: Generate the pulse sequence with params.
12: Apply the sequence to the quantum system.
13: Measure the outcome to collect samples.
14: Calculate the average cost 〈C〉.
15: return the average cost 〈C〉, samples.
16: end Function

The choice of p is important, as it affects both the solution’s
quality and the overall cost of the iterative process; an op-
timal iteration count controls the balance between achieving
a satisfactory solution and maintaining reasonable computa-
tional resources. The algorithm’s pseudocode is delineated in
Algorithm 3.

Figure 2 shows an example of an optimized pulse corre-
sponding to a gradual parameter evolution over an extended
duration T . This is particularly used by the quantum adiabatic
algorithm [51], which emerges as a potent strategy for effi-
ciently addressing the optimization problem.

VI. HYBRID QUANTUM-CLASSICAL BENDERS
ALGORITHM

This section presents the overall BD hybrid quantum-
classical algorithm, which uses elements discussed in Sec. III
and the study from Secs. IV and V. The algorithm combines
quantum and classical computing resources to address MILP
problems using the BD algorithm. The sequence of operations

FIG. 2. Shape of an optimized pulse. The change in Rabi fre-
quency � and global detuning δ during the pulse T is demonstrated.
The � exhibits a peak at �max while δ varies linearly from δinit to
δfinal.
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FIG. 3. Hybrid BD quantum-classical algorithm flowchart,
showing the sequence of steps in our hybrid quantum-classical al-
gorithm. Starting with the reformulation of the MP into a QUBO, the
process employs register embedding to spatially arrange atoms for
QUBO encoding. This is followed by the application of the varia-
tional algorithm, where pulse parameters are optimized for quantum
sampling. The QPU then samples solutions, with the best candidate
x̂ selected based on the costs. If the SP is infeasible, a feasibility cut
is introduced into the MP. If feasible, an optimality cut is applied if
necessary [ f (x̂) < φ)]. The process iterates between these steps until
the best solution is found, resulting in the final values of x and y.

and decision-making processes involved in this algorithm is
represented in the flowchart of Fig. 3.

The algorithm uses the decomposition of the OP, as in-
troduced in (2)–(6), into a MP and a SP. Initially, the
MP (13)–(18) is reformulated into a QUBO model (36).
Subsequently, the register embedding heuristic, detailed in
Algorithm 2, is employed. This heuristic arranges atoms in a
spatial configuration that closely aligns the interaction matrix
with the QUBO.

Following the register embedding, the variational
algorithm is applied. In this step, pulse parameters are tuned
according to the established register configuration. Next
the QPU is used as a sampler. Multiple measurements are
performed on the final quantum states. These measurements
yield various potential solutions for the OP, each with an
associated probability of occurrence and cost. The solution x̂,
which yields the lowest cost, is selected for further processing.

The next phase involves classical computing methods to
solve the SP (7)–(9). The feasibility of its solution is assessed.
If the SP is infeasible, a feasibility Benders cut (15) is gen-
erated and added into the MP, redirecting the process to the
QUBO reformulation. Conversely, if the solution is feasible,
a subsequent check is conducted to compare the optimal ob-
jective value of the SP f (x̂) with the value of the variable φ.
In case f (x̂) is lower, an optimality cut (14) is added to the
MP and the algorithm revisits the QUBO reformulation step.
If not, the process stops, outputting the latest values of x and
y as the solution obtained by the hybrid BD algorithm.

VII. NUMERICAL EXPERIMENTS

In this section we present our numerical experiments. The
primary objective is to provide a POC. Moreover, on a set
of arbitrary MILP small instances, we conduct a comparative
study between our hybrid BD solver and classical BD, with
the MP solved using simulated annealing.

A. Proof of concept

For the POC, we use the same example presented in
[13]. The MILP associated with the problem uses two binary
variables x1, x2 ∈ {0, 1} and four non-negative continuous
variables y1, y2, y3, y4 � 0. The matrix description of the
MILP is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

−1 0
−1 0
0 −1
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B = [−1 − 1], b′ = [−1],

cT = [−15 − 10], hT = [8 9 5 6],

In the presented use case, we set the penalty coefficients
to the penalty of the master objective function πobj = 1 and
penalties of the constraints of the master constraints as well
as optimality and feasibility Benders constraints, respectively,
to π1 = π2 = π3 = 100. Table I outlines the execution state of
the BD algorithm applied to the example described above. The
table includes MP QUBO, the literal expression of the initial
MP; MP solution, the solutions obtained from the quantum
sampler, i.e., values of variables x, s, and φ and the objective-
function value, denoted by obj; SP solution, the solution to
the SP, i.e., the objective value, values of variable y solution,
and its dual μ; generated penalty, the literal expression of the
penalty (if any); and type of penalty, the type of the penalty
(if any).

Solving the use case using the hybrid BD algorithm, the
final objective value is equal to the optimal solution optimal
objective value determined by CPLEX. Moreover, as shown
in Table I, our hybrid BD algorithm with neutral atoms con-
cludes within two iterations, which marks an improvement
compared to the five iterations required by the hybrid Benders
algorithm presented in [13], using D-Wave. This faster conver-
gence can be attributed to the fact that our quantum sampler
helps in providing stronger Benders cuts. The neutral-atom
QPU generates better MP solutions. Using these solutions, the
SP yields tighter values of the left-hand side of optimality cuts
(14). Consequently, the variable φ converges more rapidly,
allowing us to confirm optimality in fewer iterations.

The distinctive advantages of using neutral atoms in our
BD algorithm are primarily grounded in the superior prob-
lem encoding capabilities of neutral-atom QPUs. In D-Wave
systems, the embedding procedure involves linking chains of
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TABLE I. Trace of the BD algorithm solving process on the MILP.

Iteration 1 Iteration 2

MP QUBO −(15x2
1 + 10x2

2 ) + 100(−x2
1 − x2

2 + 20sm_1_1 + 1)2

+(24w2
1 + 23w2

2 + 22w2
3 + 21w2

4 + 20w2
5 )

MP(it1)+ generated penalty

MP solution � : 31.5
obj : 21.5x1 : 0,

x2 : 1, sm_1_1 : 0

� : 17.0
obj : 2.0 x1 : 1,

x2 : 0, sm_1_1 : 0,

s1_1 : 0
SP solution Objective value: 11.0

y1 : 0.0, y2 : 0.0, y3 : 1.0, y4 : 1.0
μ1 : 5.0, μ2 : 0.0, μ3 : 0.0, μ4 : 6.0,

μ5 : −3.0, μ6 : −3.0, μ7 : 0.0, μ8 : 0.0

Objective value: 17.0
y1 : 1.0, y2 : 1.0, y3 : 0.0, y4 : 0.0
μ1 : 8.0, μ2 : 0.0, μ3 : 0.0, μ4 : 9.0,

μ5 : 0.0, μ6 : 0.0, μ7 : 0.0, μ8 : 0.0
Generated penalty 100[24w1 + 23w2 + 22w3

+21w4 + 20w5 + 3.0(−x1) + 3.0(−x2)
+20s1_1 − (5.0 + 6.0)]2

Type of penalty Optimality

qubits with a strongly ferromagnetic coupling (K = −2) to
simulate a single logical variable. Additionally, these logical
variables are then coupled with Qi j , which is constrained
within the narrow range [−1, 1] (for D-Wave, Qi j = Ji j) [52].
This restrictive range necessitates rescaling all couplings to fit
within it, which can compromise the fidelity of the problem
representation.

By contrast, our approach with neutral atoms leverages
long-range Rydberg interactions, allowing for a much more
faithful embedding. The Rydberg dipole-dipole interactions,
characterized by C6/r6, provide a mechanism to fine-tune
the interaction distances. This ability enables a versatile ad-
justment of interaction strengths over a broad spectrum due
to the power-law decay, offering significant advantages in
problem encoding. For our nine-variable all-to-all connected
QUBO, this means we can handle the MILP problem’s ex-
tensively varying coupling values without the need to rescale
them, thus preserving the fidelity of the problem represen-
tation. This is particularly beneficial as our QUBO model
features an exponentially broad range of coupling values,
which poses a challenge in D-Wave systems where lower
Ji j values can be drowned in thermal noise. Furthermore,
the architecture of neutral atoms facilitates coherent an-
nealing processes, where the dephasing and depolarizing
timescales exceed the annealing period. This ensures that the
system’s evolution is predominantly isolated from the ther-
mal environment, enhancing computational performance and
stability.

The enhanced performance of our algorithm is not only
attributable to the quantum hardware employed but also sig-
nificantly influenced by our preprocessing strategy, which
optimizes algorithm convergence. As detailed in Sec. IV, by
solving linear relaxations and integrating the OP valid con-
straints, our strategy tightens the upper bounds of φmax and the
slack variables sk

max. By providing a tighter upper bound, we
help the algorithm reach the optimal solution more quickly be-
cause the tighter bounds limit the solution space the algorithm
needs to explore, thus accelerating convergence. Additionally,
this approach reduces the quantum resource requirements by
decreasing the number of qubits needed for encoding, thereby
enhancing resource utilization.

This use case demonstrates the potential of neutral-atom
QPUs when integrated into a hybrid BD algorithm; it con-
firms the feasibility of applying such quantum computational
resources and shows their ability to enhance performance,
outperforming current state-of-the-art solutions.

B. Numerical results

We examine now the efficiency of the hybrid BD algorithm
on several MILPs instances.

1. Description of MILP and implementation features

The instance generation process of our experimentation
covers 450 MILPs randomly generated. We vary the number
of variables and constraints, as well as the structure and coef-
ficients of the constraint matrices, as follows.

(a) Variables x and y. The number of binary variables x
ranges from 2 to 5, while the number of continuous vari-
ables y varies from 2 to 10. This setting is motivated by the
exploration of different problem scales while respecting the
capacity of the simulation in terms of the number of qubits.

(b) Constraint matrices A and G and vector b. Matrix A
is populated with nonpositive random values and matrix G
with non-negative values. This setting is chosen to yield pos-
itive slack variables, thereby reducing the number of required
qubits needed in converting optimality and feasibility cuts to
the QUBO formulation. The vector b is randomly generated
with non-negative random values. These parameters define the
set of constraints (3), whose number varies from 5 to 14.

(c) Matrix B and vector b′. Matrix B consists of a single
row filled with 1′s and vector b′ is a random positive number
strictly less than the size of x. This imposes a special con-
straint that interdicts choosing the solution where all the x
variables are equal to 1. These parameters are related to the
constraints (4). Only one constraint of this type is considered.

(d) Coefficients c and h. These are randomly generated
vectors with non-negative random values, contributing to the
variability in the objective function.

The randomness in these parameters generates various in-
stances. We group the results based on the number of qubits
used during the whole process and average the output for each
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FIG. 4. Percentage of feasible solutions per number of qubits.

qubit count. The evaluation of the algorithm performance is
based on three key metrics.

(i) Percentage of feasible instances. This metric evaluates
the algorithm’s ability to find feasible solutions for the tested
instances.

(ii) Gap to optimality. This metric indicates the quality of
the solution obtained by the algorithm. It is defined as gap =
obj(algo)−obj(opt)

obj(opt) , where obj is the objective-function value. The
gap represents the distance of the solution provided by the
algorithm from the optimal solution. The optimal solution
is computed considering the OP in its compact formulation
before being reformulated for a BD.

(iii) Number of iterations. This metric serves as an indicator
of the time and energy consumption of the algorithm.

For the computational implementation and analysis of the
generated MILP instances, the programming is conducted in
PYTHON. The quantum pulses are simulated using Pulser [53],
which is used for designing and emulating quantum protocols
on neutral-atom devices. The variational algorithm resolution
is conducted by SCIKIT-OPTIMIZE [54], a PYTHON library for
optimization that is well suited for quantum algorithm pa-
rameter tuning. Finally, the compact formulation of the OP
was solved to optimality using the CPLEX solver [22], a
high-performance mathematical programming solver.

2. Results

We benchmark our algorithm with a fully classical BD
where we solve the MP using simulated annealing. It is im-
portant to note that our test limits the number of qubits to
11, which is a threshold set by the simulation constraints of
current quantum simulator capabilities.

The graphic in Fig. 4 illustrates the comparative perfor-
mance of our hybrid BD with the variational algorithm and
classical BD using simulated annealing, in terms of the cu-
mulative percentage of feasible solutions, with respect to the
number of qubits. It is evident that the variational algorithm
surpasses simulated annealing consistently throughout the ob-
served qubit range. Our variational algorithm demonstrates a
pronounced increase in the cumulative percentage of feasible
solutions, as the qubit count increases, achieving more than

FIG. 5. Average gap per number of qubits.

95% with 11 qubits. In contrast, simulated annealing shows a
more moderate progression.

Figure 5 shows the average gap to optimality (and the stan-
dard deviation with 95% confidence interval) for both hybrid
BD with the variational algorithm and fully classical BD with
simulated annealing as a function of the number of qubits.
The gap to optimality serves as a crucial measure of solution
quality. A smaller gap is indicative of a solution that is closer
to the optimal one. The results presented here were conducted
on MILPs where both methods, variational algorithm and
simulated annealing, provided feasible solutions (thus, on the
45% of feasible MILPs given by simulated annealing). This
ensures the fact that the gap is defined for both the varia-
tional algorithm and simulated annealing. It can be seen that,
overall, both methods deliver solutions of good quality. The
maximum average gap is attributed to simulated annealing
and is equal to 2.3%. Nonetheless, observations indicate that
the variational algorithm maintains a relatively stable average
gap, suggesting a robust ability to generate solutions close to
optimal across different qubit counts. Conversely, simulated
annealing exhibits a comparable performance at lower qubit
counts but deteriorates as the count becomes greater than 10.
This performance degradation shows the potential scalability
issues with simulated annealing when faced with increased
problem complexity, represented by higher qubit counts, and
consequently the potential ability of our algorithm to produce
a high-quality solution when scaling up.

Figure 6 presents the average number of iterations (and
the standard deviation with 95% confidence interval) for the
hybrid BD with variational algorithm and the fully classical
BD with simulated annealing as a function of the number
of qubits. Iterations reflect the computational effort and, by
extension, time and energy expenditure of the algorithms.
Both algorithms show an increase in iterations with more
qubits. This is explained by the complexity generated by the
number of qubits. The simulated annealing count increases
at ten qubits, indicating possible inefficiencies at this problem
size. In contrast, the variational algorithm displays a moderate
increase, showing a more stable scaling performance. This
is particularly remarkable at 11 qubits where the number of
iterations decreases.

In conclusion, the numerical results on this type of MILP
show the efficiency of our hybrid BD approach in comparison
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FIG. 6. Average number of BD iterations per number of qubits.

to the fully classical Benders method with simulated anneal-
ing. The results affirm that the hybrid BD generates a higher
percentage of feasible solutions for various qubit counts and
maintains a closer distance to optimal solutions. Moreover,
the hybrid BD algorithm shows a more stable performance
with respect to the number of iterations, especially with a
larger number of qubits. These results show the potential of
the hybrid BD algorithm with neutral atoms to efficiently
handle larger and more complex problems, even within the
current limitations of quantum computational resources. Fu-
ture work should aim to extend these investigations beyond
the 11-qubit threshold as advancements in quantum comput-
ing technology become available. It is also important to note
that extending these preliminary tests to more complex MILP
scenarios may reveal instances where the classical BD with
simulated annealing outperforms the hybrid BD with the vari-
ational algorithm, due to qubit limitations and/or algorithmic
convergence issues. In such cases, further research would be
conducted. This will be discussed in Sec. VIII.

VIII. CONCLUSION

In this study we assisted classical BD with neutral-atom
computation, to address MILP problems. To this end, we
designed a hybrid classical-quantum algorithm. We developed
an automated procedure to transform the MP into a QUBO
formulation. We also presented a heuristic for register em-
bedding. In addition, we implemented a variational algorithm
for pulse shaping. A POC has shown our method applica-
bility, and preliminary numerical results have demonstrated
the efficiency of our hybrid framework, which outperforms

fully classical BD techniques. While this research shows the
potential of hybrid quantum-classical BD algorithms, sup-
ported by neutral-atom computation, in addressing MILPs, it
opens new avenues for future advancements in this area. It
should be noted that while the results presented in this paper
are encouraging, they apply only to a specific set of small
instances. Expanding these findings and extending the scale
of application are not included in the scope of this initial POC
work.

Looking to the future, our objective is to scale and diversify
our instances. We are aware of the potential challenges of
this step, especially in terms of qubit resource limitations
and algorithmic convergence. In case we encounter resource
limitations in terms of the number of qubits, one promising
avenue is to set a maximum number of qubits as a computa-
tional threshold and implement an iterative process that aims
to guarantee the quality of the solution while respecting the
qubit count limitation. More precisely, within each iteration,
one can evaluate the current penalty terms and their contribu-
tion to the solution quality. Any penalty term not significantly
influencing the solution can be removed to free up compu-
tational resources. This allows for the introduction of new
penalty terms that may further refine the solution. This process
should be repeated until the solution converges. By managing
the number of qubits in this manner, we hope to achieve a
balance between qubit utilization and solution quality. This
prospective approach has the potential to enable us to solve
complex problems within a limited quantum environment.

In order to address the potential convergence issues of the
algorithm, we can consider multiple MP solutions in each iter-
ation. To this end, we can build on the interesting work of [55],
which is based on the concepts of multicuts introduced in [34].
This method involves generating multiple solutions for the
MP and then selecting a specific subset of Benders cuts to not
surcharge the MP. By solving a set covering problem, we can
identify the minimal set of constraints necessary to exclude
all suboptimal or infeasible MP solutions. This approach can
speed up the algorithm convergence and at the same time
reduce the number of qubits needed. Moreover, the task of
identifying the optimal subset of constraints is equivalent to
solving a MIS problem, making it well suited for execution
on a neutral-atom QPU.
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