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Quantum Bayes classifiers and their application in image classification
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Bayesian networks are powerful tools for probabilistic analysis and have been widely used in machine
learning and data science. Unlike the time-consuming parameter training process of neural networks, Bayes
classifiers constructed on Bayesian networks can make decisions based solely on statistical data from samples.
In this paper we focus on constructing quantum Bayes classifiers (QBCs). We design both a naïve QBC and
three seminaïve QBCs (SN-QBCs). These QBCs are then applied to image classification tasks. To reduce
computational complexity, we design a local feature sampling method to extract a limited number of feature
attributes from an image. These attributes serve as nodes of the Bayesian networks to generate the QBCs.
We simulate these QBCs on the MindQuantum platform and evaluate their performance on the MNIST and
Fashion-MNIST data sets. Our results demonstrate that these QBCs achieve good classification accuracies even
with a limited number of attributes. The classification accuracies of QBCs on the MNIST data set surpass
those of classical Bayesian networks and quantum neural networks that utilize all available feature attributes.
Additionally, we simulate these QBCs in a quantum noise environment.
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I. INTRODUCTION

As a powerful tool for studying causal relationships be-
tween variables and inferring the impact of variable states
on outcomes, Bayesian networks are widely used in machine
learning and data science, including Monte Carlo analysis [1],
reliability and risk analysis [2], health monitoring [3], health
care [4], biomedical systems [5], etc. The size of a Bayesian
network depends on the number of nodes and their depen-
dencies [6]. Learning and inference in complex networks
can be challenging, especially when dealing with large-scale
Bayesian networks, which have been proven to be an NP-hard
problem [7]. The emergence of quantum computing offers a
new solution to this challenge.

In recent years, many quantum algorithms have demon-
strated quantum supremacy for achieving certain accelerations
over their classical counterparts. For example, Shor’s algo-
rithm [8] achieves exponential acceleration in solving the
large number factorization problem. Grover’s algorithm [9]
achieves quadratic acceleration in searching the unstructured
data. In addition, quantum algorithms based on classical ma-
chine learning, such as quantum support vector machine [10]
and quantum K-nearest neighbor [11], have also demonstrated
quantum accelerations. Image classification is a fundamen-
tal problem in computer vision. With the advancement of
quantum machine learning, several quantum classifiers have
been developed for image classification, including quantum
convolutional neural networks [12–15], quantum K-nearest-
neighbor algorithm [11], quantum ensemble methods [16–20],
quantum capsule networks [21], quantum decision trees
[22,23], etc. Recent progress of quantum classifiers could be
found in [24].
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Quantum Bayesian networks (QBNs) were introduced in
1995 as a simulation of classical ones [25,26]. In 2013, Ozols
et al. proposed a quantum version of the rejection sampling
algorithm called quantum rejection sampling for Bayesian
inference [27]. In 2014 Low et al. studied quantum circuit
representations of Bayesian networks with discrete nodes
and designed the circuit for implementing quantum rejec-
tion sampling [28]. In 2015 Wiebe and Granade addressed
a semiclassical algorithm of learning for quantum Bayesian
inference and showed that the algorithm is polynomially
faster than its classical anolog [29]. In 2016 Moreira and
Wichert proposed a quantum-like Bayesian network that uses
amplitudes to represent marginal and conditional probabili-
ties [30]. In 2019 Woerner and Egger developed a quantum
algorithm [31] for risk analysis using the principles of am-
plitude amplification and estimation. Their algorithm can
provide a quadratic speed-up compared to classical Monte
Carlo methods. In 2023 Escrig et al. proposed a quantum
algorithm based on quantum walks for quantum Bayesian
estimation of gravitational waves parameters from black
holes [32]. Recently, Borujeni et al. proposed a quantum
circuit representation of Bayesian networks [33]. They de-
signed quantum Bayesian networks for specific problems,
such as stock prediction and liquidity risk assessment. Fathal-
lah et al. further proposed an optimized version of quantum
circuit for improving the quantum representation of Bayesian
networks [34].

Currently, there is a lack of research on quantum Bayes
classifiers (QBCs) building on Bayesian networks for solving
image classification problems. Different from the parame-
ters learning mode of neural networks, a Bayes classifier
makes classification decisions based only on sample fea-
tures, without the tedious training process, resulting in lower
computational complexity, faster speed, and less resource
consumption.
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In this paper we study the construction of QBCs for solving
image classification problems. Specifically, we design a naïve
[35,36] QBC and three seminaïve QBCs (SN-QBCs), i.e.,
the SN-QBC based on an SPODE network [37,38] with the
attribute node in the center of an image as the superfather,
the SN-QBC based on TAN network [37,38], and the SN-
QBC based on symmetric relationship of attribute nodes in
an image. These QBCs are then applied to image classification
tasks. We simulate these QBCs on the MindQuantum platform
[39] and evaluate their performance on the MNIST [40] and
Fashion-MNIST [41] data sets.

The main contributions of this paper are as follows:
(1) Designing a naïve-QBC and three SN-QBCs for solv-

ing image classification problems.
(2) Introducing a local sample method to extract a small

number of binary attribute nodes, simplifying the construction
of quantum circuits for QBCs.

(3) Conducting noise analysis on QBCs for image classi-
fication, considering four common types of noise encountered
in practice.

This paper is organized as follows. Section 2 introduces
the basic concepts of Bayes classifiers. Section 3 discusses
the constructions of QBCs. Section 4 presents the image clas-
sification algorithm based on QBCs. Section 5 demonstrates
the simulation results of QBCs for image classification on
the MNIST and Fashion-MNIST data sets. Section 6 analyzes
the computation complex of QBCs, explores the impact of
sampling block size on QBCs’ performance, and simulates
QBCs under four common types of noise. Section 7 further
discusses and concludes the paper.

II. BAYES CLASSIFIER

A Bayes classifier is a statistical classifier based on Bayes’
theorem. It considers selecting the optimal category label
based on probabilities and misclassification losses, assuming
that all relevant probabilities are known. Suppose the fea-
ture of a sample data is X = {x1, x2, . . . , xi, . . . , xn} where
xi is an attribute of X , and the set of class labels is Y =
{y1, y2, . . . , yi, . . . , yN }. Based on the posterior probability
P(yi|X ), the expected loss of classifying the sample with
feature X as yi is defined as [38]

R(yi|X ) =
N∑

j=1

λi jP(y j |X ), (1)

where λi j is the misclassification loss. The Bayes classifier
attempts to correctly classify new samples with minimal mis-
classification loss based on the distribution pattern of existing
samples. The optimal Bayes classifier can be denoted as

D(X ) = arg min
y∈Y

R(y|X ). (2)

For a specific problem to minimize the misclassification
rate, λi j can be written as

λi j =
{

0, if i = j;
1, otherwise. (3)

Therefore, the optimal Bayes classifier can be rewritten as

D(X ) = arg max
y∈Y

P(y|X ). (4)

That is, the optimal Bayes classifier selects the class that
maximizes the posterior probability P(y|X ) given the sample
with feature X .

Obtaining an accurate posterior probability P(y|X ) is crit-
ical for a Bayes classifier, but this is often challenging in
reality. In the probability framework, the posterior probability
P(y|X ) can be estimated based on a finite number of train-
ing sample. According to Bayes’ theorem [38], the posterior
probability P(y|X ) can be written as

P(y|X ) = P(X |y)P(y)

P(X )
, (5)

where P(X ) is the evidence factor used for normalization,
P(y) is the class-prior probability, and P(X |y) is the class-
conditional probability of the sample X with respect to y.
According to the law of large numbers [42], when there are a
sufficient number of independently and identically distributed
samples, P(y) can be estimated by the frequency of each class
that appears in the training set. As for the class-conditional
probability P(X |y), it involves combinations of all attributes
in X . Assuming each attribute xi has d possible values, P(X |y)
will have N × dn possible values.

A. Naïve Bayes classifier

Clearly, it is difficult to obtain the class-conditional prob-
abilities directly from a limited number of training sample,
as it will result in the problem of combinatorial explosion in
calculation, which becomes more severe with the increase of
attributes. The naïve Bayes classifier [35,36] is based on the
assumption of “independence,” which assumes that each at-
tribute independently affects the classification result, as shown
in Fig. 1(a). In this case, Eq. (5) can be rewritten as

P(y|X ) = P(y)
∏n

i P(xi|y)

P(X )
, (6)

where xi is the ith attribute of X . Since all P(X ) are the same,
the naïve Bayes classifier can be represented as

Dnb = arg max
y∈Y

P(y)
n∏
i

P(xi|y). (7)

B. Seminaïve Bayes classifier

The premise of the naïve Bayes classifier is that all at-
tributes satisfy the assumption of independence, but this is
often not the case in practical applications. Therefore, the
learning method of the seminaïve Bayes classifier [37,38]
has emerged, which considers stronger dependencies between
attributes while it avoids the problem of combinatorial explo-
sion caused by considering the joint probability distribution of
all attributes. The one-dependent estimator (ODE) is the most
common strategy for the seminaïve Bayes classifier, which
assumes that each attribute depends on only at most one other
attribute besides the label y,

P(y|X ) ∝ P(y)
n∏
i

P(xi|y, pai ), (8)
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FIG. 1. Bayesian networks with different attributes dependencies: (a) naïve, (b) SPODE, (c) TAN.

where pai is the dependent attribute (or parent attribute) of xi.
The key problem of the seminaïve Bayes classifier is how to
determine the parent attribute of xi.

A typical approach is to assume that all attributes de-
pend on a single attribute, referred to as the Super-Parent
ODE (SPODE), whose dependency relationship is illustrated
in Fig. 1(b). An alternative method is the Tree Augmented
Naïve Bayes (TAN), which calculates the conditional mutual
information between any pair of attributes and constructs a
maximum weighted tree [38,43] based on the attribute depen-
dencies, as depicted in Fig. 1(c).

III. QUANTUM BAYES CLASSIFIERS

Unlike classical bits that can represent only either 0 or 1, a
quantum bit (qubit) can represent both 0 and 1 simultaneously,
i.e., quantum superposition. A single-qubit state can be repre-
sented as |ϕ〉 = α|0〉 + β|1〉, where |0〉 and |1〉 are the basis
states of the single qubit, and α and β are the amplitudes that
satisfy the normalization condition |α|2 + |β|2 = 1. When |ϕ〉
is measured in the computational basis {|0〉, |1〉}, the state will
collapse into basis states |0〉 or |1〉 with the probability |α|2 or
|β|2, respectively. In the quantum gate computing model [44],
quantum gates are used to represent unitary operations acting
on qubits. Quantum gates can be divided into single-qubit
gates and multiqubit gates, and any multiqubit gate can be
decomposed into a set of universal quantum gates [44].

In this paper a quantum circuit for a QBC is constructed
using single-qubit gates Ry and X , and multiqubit controlled
gates CnRy. The X -gate is a flip gate that flips |0〉 to |1〉 or |1〉
to |0〉. Its matrix form is

X =
(

1 0
0 1

)
. (9)

Ry is a single-qubit rotation gate which has the form

Ry(θ ) =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
, (10)

where θ is the rotation angle. When acting on |0〉, the Ry gate
generates the following superposition state:

Ry(θ )|0〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉.

CnRy is a multiqubit controlled rotation gate, where n repre-
sents the number of control qubits. When the control qubits
are all in |1〉, the Ry rotation operation is performed on the
target qubit. The two-qubit controlled rotation gate CRy with

n = 1 is represented as

CRy(θ ) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos θ
2 − sin θ

2

0 0 sin θ
2 cos θ

2

⎞
⎟⎟⎟⎟⎠. (11)

The target qubit |ϕ〉 will undergo a Ry(θ ) rotation if control
qubits are all in |1〉,

CnRy(θ )|1〉⊗n
c |ϕ〉t = |1〉⊗n

c Ry(θ )|ϕ〉t ,

where the subscript c represents the control qubits and t stands
for the target qubit.

A. Naïve-QBC

A QBC uses Bayes’ rule to perform classification tasks
within the framework of quantum computing. A single-qubit
can be used to represent a two-state node in a Bayesian net-
work, and then a superposition quantum state can be used
to represent the probability of different label values under
various combinations of attributes in the Bayesian network,
i.e., P(y|X ).

In a naïve Bayesian network, all attributes are independent
of each other, and they depend only on the label node. Let n
attribute nodes be x1, x2, . . . , xi, . . . , xn, and each attribute
depends only on the label y, with y, xi ∈ {0, 1}. The quan-
tum circuit of the naïve-QBC is composed of n + 1 qubits,
corresponding to the label y and n attribute nodes x1 to xn,
with each qubit represents a two-state node. The naïve-QBC
is constructed as follows:

(1) All n + 1 qubits are initialized to |0〉.
(2) For the label node y, the class-prior probability P(y =

0) can be obtained by statistically counting the training set.
After that, one can encode the class-prior probabilities by
Ry(·) operation. Here arccos() is used for encoding. That is,

FIG. 2. Quantum circuit for y → x1, i.e., the naïve-QBC with
only one attribute (n = 1).
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FIG. 3. Quantum circuit of the naïve-QBC with three attributes.

let

cos2 θ

2
:= P(y = 0). (12)

One can obtain

θ = 2 arccos
√

P(y = 0). (13)

This achieves quantum encoding of the class-prior probabili-
ties. Note that the encoding function is equivalent to arctan()
used in Ref. [33]. To simplify the representation in the follow-
ing content, let

f (P) := 2 arccos
√

P. (14)

(3) For each attribute node xi, one can get the class-
conditional probabilities by statistically calculating P(xi =
0|y = 1) and P(xi = 0|y = 0). Then these probabilities are en-
coded by CRy(·), where the controlled rotation angles are set
as θi+1 = f (P(xi = 0|y = 1)) and θi+n+1 = f (P(xi = 0|y =
0)), respectively.

Take the naïve Bayesian network in Fig. 1(a) as an exam-
ple. Suppose that these are one label node y and one attribute
node x1 (n = 1), and each node has only two values, either
0 or 1. By statistically counting the class-prior probabil-
ity P(y = 0) and the class-conditional probabilities P(x1 =
0|y = 1) and P(x1 = 0|y = 0), one can construct a quantum
circuit as depicted in Fig. 2. In this case the output of the
circuit is ∑

i, j={0,1}

√
P(y = i)

√
P(x1 = j|y = i)|i j〉. (15)

Note that the probabilities of different label values and at-
tribute values are encoded in the amplitude of the output state,
which has the same form as Eq. (7). That is, the quantum
circuit implements the naïve-QBC for features with only one
attribute.

By continuously adding new attribute nodes to the quan-
tum circuit and establishing controlled rotations between
parent nodes and child nodes, one can construct QBCs
based on different dependency relationships. Another ex-
ample is a Bayesian network with multiple attributes.
That is, the naïve QBC with n = 3 attributes is shown
in Fig. 3.

In the prediction stage, for a given feature value X ∗,
one needs only to obtain the probabilities of the basis state
|y = i, X = X ∗〉 by measuring the output state of the naïve
QBC. For a binary classification problem, one obtains the val-
ues of P(y = 0, X = X ∗) and P(y = 1, X = X ∗), and chooses
the y value with a higher probability as the classification
outcome of the QBC.

B. SPODE-QBC

For the SPODE Bayesian network, n attribute nodes are
x1, x2, . . . , xn. Without loss of generality, assume that x1

is the super-parent node, as shown in Fig. 1(b). The quan-
tum circuit of the SN-QBC based on the SPODE structure
(SPODE-QBC) consists of n + 1 qubits, corresponding to y
and x1 to xn. The construction of SPODE-QBC is as follows:

(1) All n + 1 qubits are initialized to |0〉.
(2) For the label node y, the class-prior probability P(y =

0) is counted and encoded by Ry(·), where the rotation angle
is set as θ1 = f (P(y = 0)).

(3) For the super-parent x1, one needs to count the class-
conditional probabilities P(x1 = 0|y = 0) and P(x1 = 0|y =
1) and encode these probabilities by using X and CRy(·), with
the controlled rotation angles set as θ2 = f (P(x1 = 0|y = 1))
and θ3 = f (P(x1 = 0|y = 0)), respectively.

(4) For the remaining attributes x2 to xn, since each node
has two parent nodes, four C2Ry(·) are used to encode the
corresponding class-conditional probabilities P(x j = 0|y, x1),
where the controlled rotation angles are set as f (P(x j =
0|y, x1)) given the values of y and x1. That is, when the control
bits are yx1 = 00, 01, 10, 11, the corresponding controlled ro-
tation angles are set as f (P(x j = 0|y = 0, x1 = 0)), f (P(x j =
0|y = 0, x1 = 1)), f (P(x j = 0|y = 1, x1 = 0)), and f (P(x j =
0|y = 1, x1 = 1)), respectively.

For example, for a SPODE-structured Bayesian network
with three attributes shown in Fig. 1(b), the quantum circuit
of the SPODE-QBC is depicted in Fig. 4. Specifically, the
class-conditional probabilities of x2, x3, and x4 are encoded as
θ4 = f (P(x2 = 0|yx1 = 11)), θ5 = f (P(x3 = 0|yx1 = 11)),
θ6 = f (P(x2 = 0|yx1 = 10)), θ7 = f (P(x3 = 0|yx1 = 10)),
θ8 = f (P(x2 = 0|yx1 = 00)), θ9 = f (P(x3 = 0|yx1 = 00)),
θ10 = f (P(x2 = 0|yx1 = 01)), θ11 = f (P(x3 = 0|yx1 = 01)).
The output of the SPODE circuit is

∑
i, j,k,l={0,1}

√
P(y = i)P(x1 = j|y = i)P(x2 = k|y = i, x1 = j)P(x3 = l|y = i, x1 = j)|i jkl〉. (16)

C. TAN-QBC

For a SN-QBC based on the TAN structure, one needs to
obtain the TAN structure Bayesian network first. The TAN

structure Bayes classifier is generated based on the maximum-
weighted spanning tree algorithm [38,43], which includes the
following steps [38]:
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FIG. 4. Quantum circuit of the SPODE-QBC with three attributes and x1 as the superparent node.

(1) Calculate the conditional mutual information between
every two nodes xi and x j using the following equation:

I (xi, x j |y) :=
∑

xi,x j ,c∈Y

P(xi, x j |c) log2
P(xi, x j |c)

P(xi|c)P(x j |c)
. (17)

(2) Build a complete graph among nodes and set I (xi, x j |y)
as the weight between xi and x j .

(3) Construct the maximum-weighted spanning tree of the
complete graph and set the direction of each edge outward
from the root.

(4) Add the label node y and directed edges from y to each
node.

For a Bayesian network with a TAN structure, the quantum
circuit of the TAN-QBC consists of n + 1 qubits, correspond-
ing to y and x1 to xn. The construction of TAN-QBC is as
follows:

(1) All qubits are initialized to |0〉.
(2) The class-prior probability P(y = 0) is encoded by

Ry( f (P(y = 0))).

(3) Starting from the root node of the feature spanning
tree, the class-conditional probabilities of each node are en-
coded layer by layer. For attribute x j , it has at most two parent
nodes, y and xparent j

, where xparent j
is the parent node of x j

on the upper layer (note that the root node of the feature
spanning tree has only one parent y). The class-conditional
probabilities P(x j |y, xparent j

) are encoded into the circuit as the
rotation angles of four C2Ry(·) gates.

A simple example of a Bayesian network with a TAN
structure is given on the left side of Fig. 5. The circuit of
the TAN-QBC based on the TAN structure is presented on
the right side of Fig. 5. The rotation angles of the label
node y and the root node x1 of the spanning tree are set as
the naïve-QBC shown in Sec. III A. The rotation angles of
C2Ry gates acting on x3 are set as θ4 = f (P(x3 = 0|yx1 =
11)), θ5 = f (P(x3 = 0|yx1 = 10)), θ6 = f (P(x3 = 0|yx1 =
00)), and θ7 = f (P(x3 = 0|yx1 = 01)), respectively. The ro-
tation angles of C2Ry gates acting on x2 are set as θ8 =
f (P(x2 = 0|yx3 = 01)), θ9 = f (P(x2 = 0|yx3 = 00)), θ10 =
f (P(x2 = 0|yx3 = 10)), and θ11 = f (P(x2 = 0|yx3 = 11)),
respectively. The output of the TAN structure SN-QBC is

∑
i, j,k,l={0,1}

√
P(y = i)P(x1 = j|y = i)P(x3 = k|y = i, x1 = j)P(x2 = l|y = i, x3 = k)|i jkl〉. (18)

D. SN-QBC based on the symmetric relationship
of image attributes

Both the naïve Bayes classifier and the seminaïve Bayes
classifier consider only the dependencies between a small
number of attribute nodes. Note that there are symmetric
relationships among the sampled feature attributes in some
images, such as the digits “6” and “9” shown in Fig. 6, where
there exist symmetric relationships between attributes x2 and
x5, and x3 and x4. These symmetric relationships of image

attributes can be used to build Bayesian networks, which
can then be used to establish corresponding SN-QBCs. The
method for constructing a Bayesian network based on the
symmetric relationships of image attributes is as follows:

(1) Establish a naïve Bayesian network as shown in
Fig. 1(a).

(2) Consider the symmetric relationship of attributes in the
sample images and add a directed edge between each pair of
attributes that are symmetrical to each other.

FIG. 5. Quantum circuit of the TAN-QBC based on the TAN structure Bayesian network.
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FIG. 6. Bayesian network based on symmetric relationships of
feature’s attributes.

For example, for an image data set of digits “6” and “9,” a
Bayesian network can be established as shown in Fig. 6.

For the Bayesian network with symmetric relationships be-
tween attributes, in the case of not considering the label node
y, the network will consist of several independent trees. In this
case, one can construct the corresponding symmetric-QBC
using the method for the TAN-QBC in Sec. III C; that is,

(1) Each node is initialized to |0〉.
(2) The class-prior probability P(y = 0) is encoded

by Ry(·).
(3) Each independent tree is considered separately. For

each tree, starting from the root node, the class-conditional
probability of each node is encoded layer by layer, respec-
tively. That is, the class-conditional probability p(xrooti |y)
of the root node is encoded by CRy(·), while the class-
conditional probability p(x j |y, xparent j

) of each child node is
encoded by C2Ry(·).

IV. IMAGE CLASSIFICATION BASED ON QBCs

The key to the accuracy of a Bayes classifier lies in feature
selection and the structure of Bayesian networks. In this paper
we propose an image classification framework based on QBCs
and local feature sampling, as illustrated in Fig. 7. First, some
local areas are selected in an image for feature sampling. Then
the sampled pixels are pooled and binarized to obtain local

binary attributes of features. Finally, a QBC is constructed
based on a Bayesian network model with local attributes as
nodes for image classification.

A. Local feature sampling

For image classifications using a naïve QBC, if each pixel
of the image is taken as a node of a Bayesian network, the
network will be very complex. For example, a 28 × 28 image
requires 784 nodes to represent the network with each node
having an integer value from 0 to 255. Although n qubits can
form a feature space with a dimension of 2n, the resources
required for the quantum Bayesian networks are still relatively
large. In addition, considering the complex relationship of
interdependence among featuress attributes, the complexity of
Bayesian networks will continue to increase, which hinders
the implementation of QBCs on current noisy intermediate-
scale quantum (NISQ) devices.

Since a single-qubit can represent a two-state node of a
Bayesian network, the value of attribute nodes needs to be
binarized. To reduce computational complexity and utilize
features effectively for classification, we propose the local
feature sampling method. This method aims to obtain a small
number of binary local key attributes from an image. Besides,
background pixels shared by some images might not provide
useful information for accurate classification by Bayes clas-
sifiers, which means they can be ignored to further reduce
the attribute number. The local feature sampling method can
reduce the number of attribute nodes in Bayesian networks,
decrease the scale and computational complexity of QBCs,
and diminish the influence of quantum noise, which is benefi-
cial for the experimental implementation of quantum circuits.

As a preprocessing of data, the local feature sampling
method is illustrated in Fig. 7, which is performed as follows:

(1) Local sampling and average pooling. Selects n points
on an image as centers of n sampling blocks. By using a
convolution operation on each sampling block, an image is

FIG. 7. Framework of image classifications based on QBCs.
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(a) (b)

FIG. 8. Two Gaussian functions with intersections: (a) one intersection; (b) two intersections.

locally sampled according to a specified block size (convolu-
tion kernel size). Next, the average pooling [45] is applied on
each block to obtain x′

i ∈ [0, 255] of the attribute node xi in
the Bayesian network.

(2) Feature binarization. In a classical Bayes classifier,
assume that the probability p(xi|y) is continuously distributed
and satisfies p(xi|y) ∼ N (μy,i, σ

2
y,i ), where μy,i and σ 2

y,i are the
mean and variance of the attribute xi on the yth class. One can
obtain the class-prior probability by calculating the probabil-
ity density function. However, it is challenging to replicate
this process for a QBC. In this case, binarization is used to

transform xi into either 0 or 1 such that it can be represented
by a single qubit.

Here we use the maximum likelihood estimation (MLE)
[46,47] method adopted in classical Bayes classifiers for
obtaining class-conditional probabilities of continuous vari-
ables. For the binary classification problem, this method
runs as follows. Assume that p(xi|y0) ∼ N (μy0,i, σ

2
y0,i ) and

p(xi|y1) ∼ N (μy1,i, σ
2
y1,i ). When two Gaussian functions have

only one intersection, which is denoted as xins, as shown in
Fig. 8(a), the attribute value is set as

xi =
{

0, if x′
i � xins and μy0,i � μy1,i, or x′

i > xins and μy0,i > μy1,i,

1, otherwise,
(19)

where x′
i is generated by the average pooling process. If there are two intersections xins1 and xins2 with xins1 � xins2, as shown in

Fig. 8(b), in cases where μy0,i � μy1,i, the attribute value is set as

xi =
{

0, if x′
i � xins1, or xins1 � x′

i � xins2 and |xins1 − x′
i| � |xins2 − x′

i|,
1, otherwise.

(20)

Conversely, when μy0,i > μy1,i, the attribute value is set as

xi =
{

1, if x′
i � xins1, or xins1 � x′

i � xins2 and |xins1 − x′
i| � |xins2 − x′

i|;
0, otherwise.

(21)

By utilizing the aforementioned method, one can obtain a
limited number of binary local attributes of features. These
local attributes serve as nodes of Bayesian networks for the
constructions of QBCs.

B. Image classification algorithm based on QBCs

The image classification algorithm based on QBCs and lo-
cal feature sampling is shown in Fig. 7. The algorithm consists
of two stages, namely, the image preprocessing stage and the
Bayesian networks and QBCs construction stage. In the image
preprocessing stage, n local areas are chosen for sampling.
After that, the sampled attributes are pooled, and the Gaussian

binarization method is applied. This preprocessing converts
the value of sampled key attributes into either 0 or 1, allowing
an attribute to be represented by a single-qubit in QBCs. In the
second stage, a Bayesian network model is selected, and the
corresponding QBC is constructed with local key attributes as
nodes. The algorithm is shown in Algorithm 4, which runs as
follows:

(1) A Bayesian network is selected.
(2) Local sampling and average pooling are performed

on images from the training set, and the mean value μi and
variance σi of the corresponding attributes are calculated.
The Gaussian binarization method is executed to obtain the
binarized attributes, as described in Algorithms 1, 2, and 3.
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FIG. 9. Sampling blocks and four types of Bayesian networks used in the simulation: the naïve, SPODE, TAN, and symmetric Bayesian
networks.

(3) The QBC circuit is constructed based on the chosen
Bayesian network model using local binarized attributes as
nodes. Also see Algorithm 4.

(4) The class-prior probability and class-conditional
probability required for the Bayesian network are calculated
statistically. These values are then loaded into the QBC circuit
as controlled angles to complete the construction of the QBC.
Also see Algorithm 4.

(5) To predict the class of a new image, one needs to repeat
step (b) to obtain a new local key feature X ′ of the image, and
then measure the probabilities of states |0X ′〉 and |1X ′〉 on the
QBC circuit. The class with a higher probability will be the
classification result of the image. Also see Algorithm 4.

V. SIMULATIONS

In this paper we simulate four QBCs on the MindQuantum
[39] quantum simulation platform. The performances of these
QBCs are tested using the MNIST [40] and Fashion-MNIST
[41] data sets. Both the MNIST and Fashion-MNIST data sets
consist of a training set of 60 000 images and a test set of
10 000 images, with the size of each image is 28 × 28. In

the preprocessing stage, the local feature sampling method is
used with the sampling block size set to 7 × 7, and the average
pooling method is applied. All images are sampled according
to the sampling blocks shown in Fig. 9 to obtain n = 9 local
key attribute nodes with each node having only a binary value,
i.e., either 0 or 1.

As is shown in Fig. 9, four Bayesian network models are
used to construct four corresponding QBCs, i.e., the naïve
QBC, the SN-QBC based on the SPODE structure (SPODE-
QBC), the SN-QBC based on the TAN structure (TAN-QBC),
and the SN-QBC based on the symmetric relationships of
attributes (symmetric-QBC). For the TAN structures of the
MNIST and Fashion-MNIST data sets, the spanning trees of
the training data from two data sets are calculated according
to the maximum weighted spanning tree algorithm [38,43] in-
troduced in Sec. III C, where related TAN structure Bayesian
networks are shown in Fig. 9.

A. The accuracy of binary classification

The MNIST and Fashion-MNIST data sets are used
to verify the binary classification effects of four QBCs

ALGORITHM 1. samplingLocalFeatures()

Data: Training or test set: Imgs = {img1, img2, · · · , imgsize}, sampling points number: n;
Result: Local features: Features = {fea1, fea2, · · · , feasize} with feai = {x′

1, x
′
2, · · · , x′

n} and x′
i ∈ [0, 255];

// sampling local feature on each image

1 for j ← 1 to size do
2 feature ← 0
3 for i ← 1 to n do
4 x′

i ← avg(getBlock(imgj , i) // sampling on point i
5 feature[i] ← x′

i

6 end
7 Features[j] ← feature

8 end
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ALGORITHM 2. getIntersections()

Data: Local features of training set: Features = {fea1, fea2, · · · , feasize}; n;
Result: Intersections on n points: intersections = {intersec1, intersec2, · · · , intersecn}; means of the training set on

attributes: μ0, μ1;
// get intersections of two Gaussian functions

1 for i ← 1 to n do
2 μ0,i, μ1,i ← getMeans(Features)

3 σ2
0,i, σ

2
1,i ← getStdDev(Features)

4 intersection[i] ← getIntersection(μ0,i, μ1,i, σ
2
0,i, σ

2
1,i)

5 end

ALGORITHM 3. getBinaryFeatures()

Data: Local features: Features = {fea1, fea2, · · · , feasize}; Intersections and means on training set:
intersections, μ0, μ1; n;

Result: Binary features: biFeatures = {bifea1, bifea2, · · · , bifeasize} with bifeai = {x1, x2, · · · , xn} and xi ∈ {0, 1};
// get binary feature of each image

1 for j ← 1 to size do
2 feature ← Features[j], bifeature ← 0
3 for i ← 1 to n do
4 bifeature ← getBinary(feature[i], intersection[i], μ0,i, μ1,i)
5 end
6 biFeatures[j] ← bifeature

7 end

ALGORITHM 4. The image classification algorithm based on QBCs.

Data: Training & test set: Imgtrain = {img1, img2, · · · , imgsize1}, Imgtest = {img1, img2, · · · , imgsize2}; Training &
test labels: Labelstrain, Labelstest; QBCs type: type ∈ {“naive”, “SPODE”, “TAN”, “symmetric”}; Sampling
points number: n.

Result: Classification accuracy: acc ∈ [0, 1];
// call Algorithm1 to get local features of training set

1 features1 ← samplingLocalFeatures(Imgtrain, n)
// call Algorithm2 to get intersections of training set

2 intersections, μ0, μ1 ← getIntersections(features1)
// call Algorithm3 to get binary features of training set

3 biFeatures1 ← getBinaryFeatures(features1, intersections, μ0, μ1, n)
// Build the QBC circuit

4 circuit ← Bayesian circuit(type, n)
// Calculate the class-prior and class-conditional probabilities

5 probs ← getProbabilities(biFeatures1, type, Labelstrain)
// simulate the quantum circuit

6 final state ← Simulator(n).apply circuit(circuit, probs).get qs()
// predict test set

7 features2 ← samplingLocalFeatures(Imgtest, n) // call Algorithm1 to get features of test set

8 biFeatures2 ← getBinaryFeatures(features2, intersections, μ0, μ1, n) // call Algorithm3 to get binary features

of test set

9 for j ← 1 to size2 do
10 p0, p1 ← searchF inalStates(final state, biFeatures2[j]) // search the probabilities of |0X ′〉 and |1X ′〉
11 if p0 > p1 then
12 results[j] ← 0 // labeled as class 0

13 else
14 results[j] ← 1 // labeled as class 1

15 end

16 end
17 acc ← calculateAcc(results, Labelstest)
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FIG. 10. Classification accuracies of every two classes in the MNIST data set on the naïve QBC, SPODE-QBC, TAN-QBC, and
symmetric-QBC.

on every two image classes. Figures 10 and 11 show the
classification accuracies of four QBCs on the MNIST and

Fashion-MNIST data sets, respectively. It can be seen from
Fig. 10 and Fig. 11 that the TAN-QBC shows a better

FIG. 11. Classification accuracies of every two classes in the Fashion-MNIST data set on the naïve QBC, SPODE-QBC, TAN-QBC, and
symmetric-QBC.
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TABLE I. Overall performances of the four QBCs in two data sets, where the boldface text indicates the optimal results.

Data set Classifier acc s2
N−1 precision recall F1

MNIST Naïve-QBC 0.8767 0.00597 0.8844 0.8689 0.8762
SPODE-QBC 0.8869 0.00501 0.8929 0.8808 0.8864

TAN-QBC 0.8891 0.00482 0.8930 0.8856 0.8889
Symmetric-QBC 0.8869 0.00537 0.8930 0.8813 0.8867

Fashion-MNIST Naïve-QBC 0.8712 0.01273 0.8726 0.8748 0.8728
SPODE-QBC 0.8916 0.01167 0.8863 0.9107 0.8962

TAN-QBC 0.8972 0.01204 0.8885 0.9182 0.9019
Symmetric-QBC 0.8835 0.01233 0.8807 0.8942 0.8859

classification performance in most cases, while the
symmetric-QBC and the SPODE-QBC show similar
classification effects to TAN-QBC.

In addition, the simulation results show that there exist a
small number of classes pairs on which QBCs cannot achieve
ideal classification results, for example, 2 vs 3 and 2 vs 5 in the
MNIST data set, and 2 vs 4 and 2 vs 6 in the Fashion-MNIST
data set, for the following reasons:

(1) The attribute number n is relatively small for contain-
ing less information to significantly distinguish each class
from others. A bigger n needs to be considered.

(2) The Bayesian network used in the simulation may not
be suitable for all classes of data. Different Bayesian networks
should be considered for different data.

(3) The hyperparameters involved in the simulation, such
as the sampling block size (convolution kernel size) and the
pooling method, etc., have a significant impact on the results,
which should be selected carefully.

(4) Some attributes extracted from the local sampling and
binarization method cannot distinguish data from two classes
very well. Other sampling and binarization methods should be
considered.

B. Overall performance of QBCs

To evaluate the overall performance of each QBC, the
average classification accuracy, variance, average precision,
average recall, and average F1 score [48,49] are calculated.
The average classification accuracy of a binary classifier for
two classes in the MNIST and Fashion-MNIST data sets is
defined as

acc = 1

45

8∑
i=0

9∑
j=i+1

acci j, (22)

where acci j represents the accuracy of binary classification of
classes i and j. The variance is defined as [50,51]

s2
N−1 = 1

(45 − 1)

8∑
i=0

9∑
j=i+1

× (acc − acci j )
2, (23)

while the average precision, average recall, and average F1

score are defined as

prec = 1

45

8∑
i=0

9∑
j=i+1

T Pi j

T Pi j + FPi j
,

recall = 1

45

8∑
i=0

9∑
j=i+1

T Pi j

T Pi j + FNi j
,

F1 = 2 × prec × recall

prec + recall
, (24)

where TP means the number of true positive, FP means false
positive, and FN means false negative. Table I shows the
overall performance of the four QBCs mentioned above for all
binary classification pairs in the MNIST and Fashion-MNIST
data sets. As is shown in Table I, the TAN-QBC, the SPODE-
QBC, and the symmetric-QBC demonstrate strong classifi-
cation accuracies on both the MNIST and Fashion-MNIST
data sets, while the naïve-QBC also shows relatively good
classification performance. Overall, the TAN-QBC performs
the best on both the MNIST and Fashion-MNIST data sets.

C. Comparison with other classifiers

Table II shows the comparison of classification perfor-
mance of the classical Gaussian naïve Bayes classifier [52],
the quantum convolutional neural network (QCNN) [14], and
four QBCs for classes 0 and 1 in the MNIST and Fashion-
MNIST data sets. The results show that QBCs performs
better than the classical Bayes classifier and the QCNN on

TABLE II. Comparison of classification accuracy of classes 0
and 1 in two data sets by different classifiers, where the boldface
text indicates the optimal results.

Classifier MNIST 0 vs 1

Fashion-MNIST
0 (t-shirt) vs 1

(trouser)

Classical naïve Bayes [52] 0.985 0.897
QCNN [14] 0.987 0.941
Naïve-QBC 0.994 0.844
SPODE-QBC 0.993 0.866
TAN-QBC 0.993 0.878
Symmetric-QBC 0.994 0.861
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TABLE III. Gate numbers used in our QBCs for image
classification.

Classifier #Ry(·) #X #CRy(·) #C2Ry(·)
Naïve-QBC 1 2 18 0
SPODE-QBC 1 6 2 32
TAN-QBC 1 12‡ (16§)a 2 32
Symmetric-QBC 1 12 10 16

a‡ and § represent gate numbers for the MNIST and Fashion-MNIST
data sets, respectively.

the MNIST data set, while the QCNN performs best on the
Fashion-MNIST data set. It is important to note that the classi-
cal Bayes classifier and the QCNN use all 786 features, while
the four QBCs in this paper use only nine binary features.

VI. ANALYSIS

A. Computation complexity

The numbers of quantum gates used in our four QBCs are
summarized in Table III. The single-qubit Ry(·) gate is used
to encode the class-prior probability P(y = 0). The two-qubit
CRy(·) gate is used to encode the class-conditional proba-
bilities P(xi = 0|y = 0) and P(xi = 0|y = 0), with xi having
only one parent node y. The three-qubit C2Ry(·) gate is used
to encode the class-conditional probabilities P(xi = 0|y, x j ),
with xi having two parent nodes y and x j . The X gate is used
to set the state of control qubits y, or y and x j . As shown in
Fig. 9, each node in the Bayesian networks of our four QBCs
contains at most two parents, which means the C2Ry(·) is the
most complex gate in our QBCs.

For a Bayesian network with n attribute nodes, suppose
there are n1 nodes, each of which has only one parent y,
and n − n1 nodes, each of which has two parents. The gate
numbers required for the construction of QBCs are as follows:

#Ry(·) = 1,

#CRy(·) = 2n1,

#C2Ry(·) = 4(n − n1),

#X = [2 + 4, 2 + 2(n − n1) + 2]. (25)

Note that the number of X gate varies depending on the
structure of the Bayesian network. But in the worst case,
4 + 2(n − n1) is enough for the construction of QBCs.

Besides, the number of the class-prior probability and
class-conditional probabilities calculated from the binary fea-
tures of the training set are equivalent to #Ry(·) and #CRy(·) +
#C2Ry(·).

It is interesting to compare the complexity of a QBC with
a QCNN. The complexity of our QBCs contains two parts.
The first one is the classical part containing the local feature
sampling and the probabilities calculations. The second one
is the quantum part executing the QBCs’ circuits. The com-
plexity of quantum part is denoted as O(Q1), and the classical
part is as O(C1). The complexity of our QBCs algorithms is
O(Q1) + O(C1).

The training of a QCNN contains a series of itera-
tive procedures, where each procedure includes a forward

TABLE IV. Average classification accuracies (acc) of four QBCs
on the MNIST data set by using different block sizes, where the
boldface text indicates the optimal results.

Block size

Classifier 1 × 1 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

Naïve-QBC 0.8376 0.8651 0.8820 0.8767 0.8622 0.8250
SPODE-QBC 0.8399 0.8672 0.8840 0.8869 0.8729 0.8464
TAN-QBC 0.8439 0.8717 0.8874 0.8891 0.8799 0.8527
Symmetric-QBC 0.8431 0.8715 0.8868 0.8869 0.8740 0.8456

propagation performing on the quantum circuit and a back-
ward propagation of the gradient descent algorithm running
on classical computers. The complexity of the quantum part
is denoted as O(Q2), the gradient descent algorithm is O(C2),
and the epoch of QCNN is N . The complexity of the QCNN
is O(N × Q2) + O(N × C2). Note that O(Q1) ≈ O(Q2) and
O(C1) � O(C2), which means QBCs are at least N times
faster than QCNN in both the quantum and classical parts.

B. Sample block size

In our image classification algorithm, the local feature sam-
pling method (Sec. IV A) is used to extract a small number of
binary key features from an image to reduce the computation
complexity. Here a 7 × 7 size image block is applied with one
of the nine sample points as its center. Similar to the kernel
size of classical convolutional neural networks, the block size
determines the receptive field of each sampling operation.
Smaller block sizes capture more local information, while
larger block sizes capture more global information.

Note that other sizes are also possible to choose. Since a
pixel is used as the sampling center, the possible block size is
2r + 1 with r ∈ {0, 1, 2, . . .}. We have tested our four QBCs
on the MNIST data set by using six different block sizes:
1 × 1, 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11. As is shown
in Table IV, the average classification accuracy of a QBC
increases with the increase of block size started from 1 × 1,
but the accuracy begins to decrease when the size exceeds
a certain value. The best block size for the SPODE-QBC,
the TAN-QBC, and the symmetric-QBC is 7 × 7, and for the
naïve-QBC is 5 × 5.

C. Noise simulation

In the practical implementation of quantum computing,
quantum noise emerges as a critical factor, especially in to-
day’s NISQ era. We analyze four common types of noise
in practice, i.e., the bit-flip, the phase-flip, the amplitude
damping, and the depolarizing noise [44], where their Kraus
operators are shown in Table V. In our noise simulation,
the noise model is set as follows. A noise channel with the
error probability (or noise parameter) p is added after each
quantum gate of the QBCs’ circuit. For example, the circuit
of the naïve-QBC in the bit-flip noise with p = 1/50 is shown
in Fig. 12.

Our simulation results of QBCs with four types of noise for
binary classification of digits 0 and 1 in the MNIST data set
are shown in Fig. 13. The noise parameter p is set from 0 to
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FIG. 12. Quantum circuit of the naïve-QBC in the bit-flip noise with p = 1/50, where q0 denotes y, q1 denotes x9, q2 denotes x8, . . ., and
q9 denotes x1.

FIG. 13. Binary classification accuracies of QBCs with four types of noise for classification of digits 0 and 1 in the MNIST data set: (a) the
naïve-QBC; (b) SPODE-QBC; (c) TAN-QBC; (d) Symmetric-QBC.
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TABLE V. Kraus operators of four types of noise, where 0 � p � 1 is the error probability and I , σx , σy, and σz are the Pauli matrices.

Noise Kraus operators

Bit-flip E0 = √
1 − p I, E1 = √

pσx

Phase-flip E0 = √
1 − p I, E1 = √

pσz

Amplitude damping E0 =
(

1 0

0
√

1 − p

)
, E1 =

(
0

√
p

0 0

)

Depolarizing E0 = √
1 − pI, E1 =

√
p
3 σx, E2 =

√
p
3 σz, E3 =

√
p
3 σy

0.1 with step 0.002. As is shown, the classification accuracy
acc decreases with the increases of the noise parameter p in
the bit-flip, amplitude-damping, and depolarizing noise, while
the phase-flip has no effect on the accuracies of all four QBCs.

Besides, even in the presence of noise, the QBCs can
still obtain relatively high classification accuracy as long as
the noise parameter p is lower than a certain threshold. For
example, the naïve-QBC can achieve a classification accuracy
higher than 0.9 as long as the noise parameter satisfies p <

0.014 in the bit-flip noise, p < 0.03 in the amplitude damping
noise, and p < 0.022 in the depolarizing noise.

VII. DISCUSSION AND CONCLUSIONS

In this paper we study the constructions of QBCs us-
ing Bayesian networks. Based on four kinds of Bayesian
networks, four QBCs are implemented, that is, the naïve-
QBC, SPODE-QBC, TAN-QBC, and symmetric-QBC. We
apply these QBCs to image classification and propose the
QBC-based image classification algorithm. To reduce the
computational complexity, the local feature sampling method
is designed to extract a small number of binary attributes
from a huge number of image pixels. By retaining essential
attributes, this method achieves high classification accuracies
with reduced feature size. Fine-tuning the sampling block size
and experimenting with various convolution kernels could
enhance the accuracy of QBCs.

The classification effects of QBCs are verified on the
MindQuantum platform for the MNIST and Fashion-MNIST
data sets, respectively. The simulation results show that
QBCs perform well for image classification. The TAN-QBC
achieves the highest average accuracies on both the MNIST
and Fashion-MNIST data sets. While the SPODE-QBC and
the symmetric-QBC also show good classification effects.
Compared with the naïve-QBC with the simplest feature
dependencies among attributes, three seminaïve QBCs with
additional dependencies can further improve the classification
accuracy at the cost of the increase of a certain computation
complexity. This suggests that considering more complex fea-
ture dependencies among attributes in Bayesian networks can
improve the accuracy of related QBCs.

We also compare QBCs with the classical Bayes classi-
fier and QCNN that use a much larger size of features. The
results show that QBCs using a fewer size of features still
have advantages in some cases. Our QBCs are the quantum
implementations of classical Bayes classifiers, which make
use of quantum superposition to compute multiple different

states simultaneously. The classification accuracies of QBCs
on some data are higher than that of classical Bayes classifier.
The reason is that the local feature sampling method (data
preprocessing) used in our QBCs can extract more effective
features from these data. Unlike QCNN classifiers [12,14],
QBCs do not require a time-consuming training process.
They only require to calculate the corresponding parameters
statistically and load them into quantum circuits, while the
classification decision can be made by measuring quantum
circuits, which is faster, lower in computational complexity,
and less resource-consuming than QCNN. The analysis shows
that four QBCs are at least N times faster than QCNN in both
the quantum and classical parts.

In our simulations, the QBCs used for image classification
considered Bayesian networks with two-state nodes. Each
node in the network is represented by a single-qubit in the
related QBC circuit. These QBCs can be extended to more
complex images or data sets, but several factors require careful
consideration:

(1) Attribute (node) number n: Choosing an appropriate
n directly impacts the amount of information extracted from
raw data, the scale of the quantum circuit, and data processing
complexity.

(2) Feature sampling method: An effective feature sam-
pling method can obtain high-quality binary or multivalued
attributes. Besides, the selections of the sampling point loca-
tions and block sizes also affect the sampling effectiveness.

(3) Nodes with multiple states: Nodes with multiple states
carry more information for handling complex data sets. As
is stated in Ref. [33], a node with m states can be represented
by log2 m� qubits. Consequently, the corresponding quantum
circuits will also be more complex.

(4) Nodes dependency: Selecting dependencies among
attribute nodes is crucial for constructing effective QBCs.
Exploring diverse variants of Bayesian networks to develop
QBCs that perform effectively across various data sets is an
intriguing research direction.

The code that support the findings of this study is available
at [53].
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