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Ground-state chiral excitation via periodic modulation
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In this study we engineer the z component of the Dzyaloshinskii-Moriya interaction mediated by photons
to emulate ground-state chiral excitation based on three-level atoms driven by quantum and classical fields. We
employ adiabatic elimination techniques to derive an effective Dzyaloshinskii-Moriya interaction Hamiltonian of
two-level systems in the ground-state manifold, which can ensure the desired dynamics is achieved through the
implementation of periodic modulation. Meanwhile, three-state and multistate chiral excitation can be obtained
by choosing appropriate driving frequencies and phases. The numerical simulation results clearly indicate that
our proposal can generate the comparatively perfect three-state chiral excitation and relatively reliable multistate
chiral excitation. Moreover, the influence of unfavorable factors on the chiral current is discussed in detail, and
the potential experimental feasibility further shows that our results provide possibilities for quantum state transfer
and future quantum networks.
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I. INTRODUCTION

Photon-mediated excitation exchange [1–3], as a well-
established paradigm in quantum simulations, has garnered
significant attention due to its pivotal role in testing the
fundamentals of quantum mechanics [4,5]. In particular,
spin-exchange interactions mediated by vacuum fields within
cavities have been investigated from solely scientific discov-
ery to the foundational engineering associated with the design
of multiqubit quantum systems [6–8]. Overall, the optical
manipulation of analogous interactions involves two-photon
coupling between energy levels including hyperfine and Zee-
man states. Such an approach allows for the encoding of
spin states in long-lived ground states, which can enable the
generation of remarkable coherent characteristics and a robust
exchangeable scheme [9–13]. In addition, this encoding pro-
vides an intriguing possibility for further exploration of higher
spin models [14–16] and the preparation of squeezed-state
quantum metrology [17,18].

The Dzyaloshinskii-Moriya interaction (DMI) [19,20],
originating from relativistic antisymmetric exchange interac-
tions, can induce a range of chiral phenomena, such as spin
spirals and skyrmions [21,22], which have been harnessed in
spintronics to engineer spin structures with topological chiral
conservation. Recently, the DMI has been simulated based on
Floquet engineering [23], which offers a route for exploring
quantum spin chirality. Meanwhile, spin chirality originat-
ing from antisymmetric spin-exchange interactions has been
experimentally verified in a superconducting qubit platform
[24]. Unlike spin chiral operators [25], the z component of the
DMI breaks parity symmetry (exchanging �σ j with �σk) while
preserving time-reversal symmetry (replacing �σ j by −�σ j).

*Contact author: wanggc887@nenu.edu.cn

This property enables the realization of both the chiral spin
current and two opposing directions of spin-excited chiral
evolution while reversing the initial states of all spins [24].
It is worth mentioning that the phenomenon is similar to the
quantum spin Hall effect [26–29], where electrons traveling
in opposite directions along the edges of a material possess
opposing spins. Up to now, spin chirality [30] has been suc-
cessfully implemented on various platforms, such as hybrid
cavity-magnon systems [31], synthetic magnetic fields [32],
superconducting circuits [33], Rydberg atoms [34–36], circuit
QED [37–39], and ion clusters [40]. Due to its favorable
properties, it holds promise in the preparation of entangled
states [24], the quantum Hall effect [41], chiral spin liq-
uids [42,43], quantum state transfer [44], chiral separation
[45], and stabilization of skyrmions [46,47]. Nevertheless,
these previous studies have demonstrated perfect chiral cur-
rent in a triangular three-node network and failed to work in
larger networks. The existence of flawless chiral current in
multinode networks remains an open question, which is cru-
cial for advancing applications in lattices with nontriangular
structure.

In parallel, periodic modulation [48–52] stands as a pivotal
technique across signal processing, communications, and con-
trol systems, characterized by the transmission of information
through systematic alterations in specific signal parameters.
This methodology encompasses a spectrum of techniques
such as amplitude modulation [53], frequency modulation
[54], and phase modulation [55], among others. These ap-
proaches significantly enhance the controllability of quantum
systems and pave the way for the development of more robust
schemes. An intriguing question arises: Can the incorporation
of periodic modulation into ground-state chiral current yield
analogous beneficial outcomes? This question motivates us to
delve into the exploration of chiral current through periodic
modulation.
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In this paper we propose a theoretical scheme for real-
izing the DMI within the hyperfine ground-state manifold
of three-level atoms by applying periodic modulation, which
gives rise to the generation of chiral current in three-level
atomic chains. Specifically, the effective Hamiltonian can be
derived by employing the technique of adiabatic elimination
and perturbative expansion. Furthermore, we investigate how
to generate three- and multistate chiral currents within vari-
ous Dzyaloshinskii-Moriya-type interactions. The description
of numerical simulation results reveals that our scheme can
achieve extremely reliable chiral current in the ground state.
Additionally, we give a thorough explanation of the effective
conditions of the model and experimental scheme.

The remainder of this paper is organized as follows. In
Sec. II we present a detailed process for the derivation of the
effective Hamiltonian and discuss the dynamics of three- and
multistate chiral currents by adjusting the phase and driving
frequencies. In Sec. III the effective master equation involving
only the ground-state manifold is obtained by combining the
theory of the density operator and adiabatic elimination of
the excited states, and the simulation results show that our
scheme can generate the desired ground-state chiral current.
Furthermore, we provide a detailed explanation for the effec-
tive conditions of the model and its experimental operability.
We give a comprehensive summary of the entire paper and
provide an outlook for chiral current research in Sec. IV.

II. EFFECTIVE DMI AND CHIRALITY

A. Derivation of the effective Hamiltonian

We consider the simulation of the DMI and chiral current
by trapping cold atoms in an intracavity lattice [56–58]. In our
proposed scheme, the common single-mode cavity mediates
the interactions between atoms at different lattice sites. In
Fig. 1 we adopt a three-level system in a � configuration,
consisting of two lower-energy states |s〉 and |g〉, along with
an excited state |e〉. The pump beam and the cavity mode
separately couple two legs of the configuration while applying
the periodic driving field at the atomic ground-state transition
frequency. The Hamiltonian is initially written under the ro-
tating wave approximation as (hereafter we set h̄ = 1)

Ĥ (t ) = ĤC + ĤA(t ) + ĤLM + ĤP(t ), (1)

where

ĤC = ωcâ†â, (2a)

ĤA(t ) =
∑

k

ωeσ̂
ee
k + ω

g
k (t )σ̂ gg

k , (2b)

ĤLM =
∑

k

gâσ̂
eg
k + H.c., (2c)

ĤP(t ) =
∑

k

�k

2
σ̂ se

k eiωL
k t + H.c. (2d)

The denotation â (â†) is the annihilation (creation) operator
of the cavity field with frequency ωc. The denotation ωe

represents the assisted excited state |e〉 of the atomic energy
and the two internal atomic states {|s〉, |g〉} in the hyperfine
manifold denote the pseudospin- 1

2 state with the energy-
level splitting ω

g
k (t ), where σ̂ ab

k = |a〉k〈b| corresponds to three

Adiabatic

elimination

Ω

Δ Δ

∆′ ≫

Δ ≫ Ω

energy shift

Δ − Δ

(a)

Time-dependent detuning ∆ ( )
∆ +

∆

0 8 16

Time  (1/ )

∆ −

(b)

4 12

FIG. 1. (a) Schematic diagram of the �-type three-level atom.
Here {|s〉, |g〉, |e〉} depicts three atomic energy levels with energies
{0, ωg, ωe}, respectively. The pump laser with Rabi frequency �k

and frequency ωL
k induces a σ transition between atomic ground

|s〉 and excited state |e〉. A photon mode with coupling strength
g and frequency ωc induces a π transition between |g〉 and |e〉.
Under the condition of large detuning i.e., |�k | � �k and |�̄′| � g,
the transitions between the two ground states |s〉 and |g〉 with the
effective coupling strength geff ∼ �kg/�k and the effective detuning
�k − �′

k (t ) can be mediated by adiabatic elimination. (b) Time-
dependent detuning �′

k (t ) as a function of evolution time t . Here
�̄′ ± εk represent the maximum and minimum detuning, with �̄′ the
average detuning.

atomic energy levels a, b = {s, g, e} and k marks the position.
The time-dependent frequency takes the form ω

g
k (t ) = ωg +

εk cos(νkt − φk ), with the amplitude εk , frequency νk , and
phase φk acting on the kth atom [59–62]. Such a frequency-
modulated term can be induced by a time-dependent Stark
shift [63,64]. The g denotes the coupling strength between
atoms and the cavity. The transition between |s〉 and |e〉 is
driven by an external local pump field with frequency ωL

k
and Rabi frequency �k . Moving to the rotation frame defined
by Û (t ) = exp[−i

∑
k (ωL

k σ̂ ee
k + ωgσ̂

gg
k )t]e−iωcâ†ât , the trans-

formed Hamiltonian can be expressed as

ˆ̃H (t ) = Û †(t )[Ĥ (t ) − i∂t ]Û (t )

= ˆ̃HA(t ) + ˆ̃HLM (t ) + ˆ̃HP, (3)

where
ˆ̃HA(t ) =

∑
k

�k σ̂
ee
k + εk cos(νkt − φk )σ̂ gg

k , (4a)

ˆ̃HLM (t ) =
∑

k

gâσ̂
eg
k ei(�̄′−�k )t + H.c., (4b)

ˆ̃HP =
∑

k

�k

2
σ̂ se

k + H.c. (4c)

Here �k = ωe − ωL
k and �̄′ = ωe − ωg − ωc, with �′

k (t ) =
ωe − ω

g
k (t ) − ωc. In the large-detuning framework, the fre-

quencies of both the cavity mode and Raman fields are far
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detuned to the atomic transition, i.e., |�k| � �k and |�̄′| �
g. Assuming a �-type system characterized by a significant
detuning between atoms and driving fields, the technique of
adiabatic elimination [65–67] can be employed to derive an
effective Hamiltonian. For the system considered in this work,
we can introduce two orthogonal projection operators P̂ =∑

k (σ̂ gg
k + σ̂ ss

k ) and Q̂ = ∑
k σ̂ ee

k . The effective Hamiltonian
can be recast as

Ĥ ′(t ) = P̂ ˆ̃H (t )P̂ − P̂ ˆ̃H (t )Q̂
1

Q̂ ˆ̃H (t )Q̂
Q̂ ˆ̃H (t )P̂

= Ĥ ′
0(t ) + Ĥ ′

int (t ), (5)

where

Ĥ ′
0(t ) =

∑
k

(
ω

g
k (t ) − ωg − g2

�k
â†â

)
σ̂

gg
k −

∑
k

�2
k

4�k
σ̂ ss

k , (6a)

Ĥ ′
int (t ) = −

∑
k

(
�kg

2�k
â†σ̂

gs
k e−i(�̄′−�k )t + H.c.

)
. (6b)

Following the adiabatic elimination of the excited state, each
atom can be considered as a gg-type qubit. Due to the large
detuning in frequency between the photon mode and the atom,
it is obvious that the excitation process cannot be achieved
through photon-atom interaction and the mode a will not be
excited [68]. Therefore, the term

∑
k (g2/�k )â†âσ̂

gg
k , which

scales with the average photon number, can be safely ne-
glected.

For the sake of facilitating the discussion, the Hamiltonian
is converted into the interaction picture with respect to the
time-dependent unitary operator

Û0(t ) = exp

(
−i

∫ t

0
dt ′Ĥ ′

0(t ′)
)

= exp

[
−i

∑
k

( ε

ν
sin(νt − φk ) + βk

)
σ̂

gg
k

+ i
∑

k

�2
k

4�k
σ̂ ss

k t

]
, (7)

where βk = (ε/ν) sin φk . For convenience, we assume here a
uniform amplitude εk = ε and frequency νk = ν. We obtain
the interaction between photons and qubits with δk = �̄′ −
�k − �2

k/4�k and the transformed Hamiltonian

ĤI (t ) = Û †
0 (t )[Ĥ ′(t ) − i∂t ]Û0(t ) = −

∑
k

�kg

2�k
âσ̂

sg
k

× exp
{

i
[
δkt −

( ε

ν
sin(νt − φk ) + βk

)]}
+ H.c.

(8)

It is worth mentioning that the site-dependent phase factor
βk can be gauged away from the Hamiltonian by performing
the unitary transformation R̂ = ∏N

k=1 eiβk σ̂
z
k /2 on the Hamil-

tonian in Eq. (8). Then we can tune ωL
k so that δk = 0,

i.e., �̄′ = �k + �2
k/4�k . Using the Jacobi-Anger identity

eiz sin θ = ∑∞
n=−∞ Jn(z)einθ , where Jn(z) represents the nth-

order Bessel function of the first kind, the Hamiltonian in

Eq. (8) can be rewritten as

ĤI (t ) = −
∑

k

∞∑
n=−∞

�kg

2�k
Jn

(
− ε

ν

)
ein(νt−φk )âσ̂

sg
k + H.c. (9)

The above Hamiltonian can be rewritten in the Fourier form

ĤI (t ) =
∞∑

n=−∞
Ĥneinνt ,

where

Ĥn = −
∑

k

�kg

2�k
Jn

( ε

ν

)
e−inφk

[
(−1)nâσ̂

sg
k + â†σ̂

gs
k

]
. (10)

We consider the condition where the external driving fre-
quency is significantly high and far exceeds the characteristic
energy inside the system, i.e., ν � �kg/|�k|. As a result,
introducing the Pauli operators σ̂ x

k = σ̂
gs
k + σ̂

sg
k and σ̂

y
k =

i(σ̂ sg
k − σ̂

gs
k ), we can employ perturbative expansion tech-

niques [48] to derive an approximate effective Hamiltonian
by truncating to powers of 1/ν as

Ĥeff = Ĥ0 +
∞∑

n=1

1

nν
[Ĥn, Ĥ−n]

= −
∑

k

�kg

2�k
J0

( ε

ν

)(
âσ̂

sg
k + â†σ̂

gs
k

)

+
∑
k>l

∞∑
n=1

�l�kg2

4nν�l�k
J 2

n

( ε

ν

)
sin(nφlk )

(
σ̂ x

l σ̂
y
k − σ̂

y
l σ̂ x

k

)
,

(11)

where Ĥ−n and Ĥn satisfy the relation Ĥ−n = Ĥ∗
n and φlk =

φl − φk . Third-order and even higher-order terms are analyz-
able using the James effective Hamiltonian method [69]. For
the dispersion region of concern in this study, these terms
have minimal impact on the results and can be safely omitted.
By adjusting the appropriate ratio of the driving intensity ε

and frequency ν, specifically setting ε/ν = 2.4048, the first
term vanishes and the effective Hamiltonian in Eq. (11) can
be recast in the form

Ĥeff =
∑
k>l

∞∑
n=1

�l�kg2

4nν�l�k
J 2

n

( ε

ν

)
sin(nφlk )

(
σ̂ x

l σ̂
y
k − σ̂

y
l σ̂ x

k

)
.

(12)
Thus, we obtain an effective tunable DMI Hamiltonian with
a z component. In contrast, recent studies have utilized Flo-
quet engineering to design the pulse sequence [70–74], which
could give rise to the simulation of the complete DMI as
much as possible under the more accurate multiorder Trotter-
Suzuki expansion [75,76]. This approach can enable us to
perform operations that are unattainable through conventional
methods, thereby enhancing the efficiency and reliability of
quantum computing and quantum information processing. In
short, such a complex process effectively allows us to derive
two other components of the DMI by introducing the obtained
z component and thus realize the desired chiral dynamics [77].
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B. Three-state chiral current

With controllable parameters to implement the desired dy-
namics, we now present some examples of three-state chiral
current.

1. Three-atom case

We first begin by examining the scenario for N = 3 atoms,
as this case is crucial for comprehending the chiral dynamics
within the system under consideration. We perform the dy-
namical analysis by choosing proper site-dependent phases
with φk = 2kπ/3 (k = 1, 2, 3). The effective Hamiltonian
containing the z component of the DMI can be obtained as

Ĥ (3)
eff = −κ

3∑
k=1

(
σ̂ x

k σ̂
y
k+1 − σ̂

y
k σ̂ x

k+1

)
. (13)

Note that if k = 3, then k + 1 ≡ 1, and the effective coupling
strength is

κ = �2g2

4�2ν

∞∑
n=1

J 2
n

( ε

ν

)
sin

(
2nπ

3

)/
n, (14)

where �k = �, ωL
k = ωL, and �k = �. Then we can rep-

resent the above effective Hamiltonian in its ground-state
subspace spanned by {|gss〉, |sgs〉, |ssg〉} as

Ĥ (3)
sub = 2iκ

⎛
⎝ 0 −1 1

1 0 −1
−1 1 0

⎞
⎠. (15)

The eigenvalues for Ĥ (3)
sub are {0,±ω} with ω = 2

√
3κ .

Therefore, the corresponding time-evolution operator can be
written as

Û (t ) =
⎛
⎝x1(t ) x3(t ) x2(t )

x2(t ) x1(t ) x3(t )
x3(t ) x2(t ) x1(t )

⎞
⎠, (16)

where

x1(t ) = 1
3 [1 + 2 cos(ωt )],

x2(t ) = 1
3

[
1 + 2 cos

(
ωt − 2

3π
)]

,

x3(t ) = 1
3

[
1 + 2 cos

(
ωt − 4

3π
)]

. (17)

Initialing the initial state as |ψ (0)〉 = |gss〉 and acting the
evolution operator Û (t ) on the initial state, we can obtain the
time-evolution state

|ψ (t )〉 = x1(t )|gss〉 + x2(t )|sgs〉 + x3(t )|ssg〉. (18)

It can be easily verified that

|ψ (t )〉 =

⎧⎪⎨
⎪⎩

|gss〉, t = 2nπ/2
√

3κ

|sgs〉, t = (2π/3 + 2nπ )/2
√

3κ

|ssg〉, t = (4π/3 + 2nπ )/2
√

3κ.

(19)

Here n is an integer. Thus the state |g〉 traverses the ring sites
in a counterclockwise manner, i.e., 1 → 2 → 3 → 1 → · · · .

Similarly, the time-evolution operator in the corresponding
ground-state subspace spanned by {|sgg〉, |gsg〉, |ggs〉} can be

represented as Û †(t ). If we set the initial state as |ψ (0)〉 =
|sgg〉, the evolution state is

|ψ (t )〉 = x1(t )|sgg〉 + x3(t )|gsg〉 + x2(t )|ggs〉.
We can obtain

|ψ (t )〉 =

⎧⎪⎨
⎪⎩

|sgg〉, t = 2nπ/2
√

3κ

|ggs〉, t = (2π/3 + 2nπ )/2
√

3κ

|gsg〉, t = (4π/3 + 2nπ )/2
√

3κ.

(20)

The state |s〉 traverses the ring sites in a clockwise manner,
i.e., 1 → 3 → 2 → 1 → · · · .

For the case of more than three atoms, three-state chiral
current can be investigated by introducing composite spins.
Compared with Ref. [24], we can tune the Rabi frequencies
and the phases to obtain perfect chiral current.

2. Four-atom case

For the case of four atoms, the second and third effective
spins can be grouped as a composite spin with s = 1. Here
we choose the initial conditions φ1 = 2π/3, φ2 = φ3 = 4π/3,
φ4 = 2π , �1 = �4 = �, and �2 = �3 = �/

√
2. The corre-

sponding effective Hamiltonian can be written as

Ĥ (4)
eff = −κ�ez ·

(
1√
2

�σ1× ��23 + �σ4 × �σ1 + 1√
2

��23 × �σ4

)
,

(21)
where the composite operator ��23 = �σ2 + �σ3 with spin 1.
Here we can consider �k to be approximately equal to �.
In this situation, we adopt the triplet form to describe the
chiral evolution concisely, and the quantum states can be
expressed as

|T−〉 = |ss〉, |T0〉 = 1√
2

(|gs〉 + |sg〉), |T+〉 = |gg〉.

The representation of the Hamiltonian in Eq. (21) in the
ground-state subspace spanned by {|gT−s〉, |sT0s〉, |sT−g〉} is
identical to that in Eq. (15). Similarly, within the ground-state
subspace spanned by {|sT+g〉, |gT0g〉, |gT+s〉}, the time-
evolution operator can also be denoted by Û †(t ).

3. Five-atom case

For the case of five atoms, we set three different modula-
tion phases. The first type of phase distribution can modulate
the interaction between a site with spin 1

2 and two compos-
ite sites with spin 1. The phases are set to be φ1 = 2π/3,
φ2 = φ3 = 4π/3, φ4 = φ5 = 2π , �1 = �, and �k = �/

√
2

with k = 2, 3, 4, 5. The system evolution is governed by the
effective Hamiltonian

Ĥ (5,1)
eff

= −κ�ez ·
(

1√
2

�σ1 × ��23+ 1√
2

��45 × �σ1+1

2
��23 × ��45

)
,

(22)

where ��45 = �σ4 + �σ5. The representation of the Hamiltonian
in Eq. (22) within the ground-state subspace spanned by
{|gT−T−〉, |sT0T−〉, |sT−T0〉} coincides with that presented in
Eq. (15). Likewise, within the ground-state subspace spanned
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TABLE I. Evolution directions of the quantum states versus time.

N /t 0 π/3
√

3κ 2π/3
√

3κ π/
√

3κ

3 |gss〉 |sgs〉 |ssg〉 |gss〉
3 |sgg〉 |ggs〉 |gsg〉 |sgg〉
4 |gT−s〉 |sT0s〉 |sT−g〉 |gT−s〉
4 |sT+g〉 |gT+s〉 |gT0g〉 |sT+g〉
5 |gT−T−〉 |sT0T−〉 |sT−T0〉 |gT−T−〉
5 |sT+T+〉 |gT+T0〉 |gT0T+〉 |sT+T+〉
5 |gsQ−3/2〉 |sgQ−3/2〉 |ssQ−1/2〉 |gsQ−3/2〉
5 |sgQ3/2〉 |ggQ1/2〉 |gsQ3/2〉 |sgQ3/2〉

by {|sT+T+〉, |gT0T+〉, |gT+T0〉}, the time-evolution operator
can be equivalently recast as Û †(t ).

Similarly, the second type can be regarded as the inter-
action of spin- 3

2 particles with two spin- 1
2 particles. If we

initialize the phase to φ1 = 2π/3, φ2 = 4π/3, φ3 = φ4 =
φ5 = 2π , �1 = �2 = �, and �3 = �4 = �5 = �/

√
3, the

effective Hamiltonian can be written as

Ĥ (5,2)
eff = −κ�ez ·

(
�σ1×�σ2+ 1√

3
�σ2 × ��345+ 1√

3
��345 × �σ1

)
,

(23)
where ��345 = �σ3 + �σ4 + �σ5. For this situation, we represent
the quantum state using a quartet denotation, where

|Q−3/2〉 = |sss〉,

|Q−1/2〉 = 1√
3

(|gss〉 + |sgs〉 + |ssg〉),

|Q+1/2〉 = 1√
3

(|sgg〉 + |gsg〉 + |ggs〉),

|Q+3/2〉 = |ggg〉.
Similar to the previous discussion, the form of the Hamilto-
nian in Eq. (23) within the ground-state subspace spanned by
{|gsQ−3/2〉, |sgQ−3/2〉, |ssQ−1/2〉} is given by Eq. (15). Ad-
ditionally, the time-evolution operator in the other subspace
spanned by {|sgQ3/2〉, |gsQ3/2〉, |ggQ1/2〉} can be represented
as Û †. To summarize, the evolution directions of the three-
state chiral current are shown in Table I.

C. Multistate chiral current

In addition to the aforementioned dynamical evolution, we
also modulate the third type of phase distribution with φk =
−2kπ/5. The corresponding effective Hamiltonian reads

Ĥ (5,3)
eff = κ1ô1 + κ2ô2, (24)

where

ô1 =
5∑

k=1

�ez · (�σk × �σk+1), (25a)

ô2 =
5∑

k=1

�ez · (�σk × �σk+2). (25b)

Here we employ the periodic boundary condition, which
implies k ≡ k modN . The Hamiltonian in Eq. (24) contains

both nearest-neighbor and next-nearest-neighbor terms. In-
deed, it is necessary to satisfy the condition κ2/κ1 = √

5 −
2 ≈ 0.2361 [24]; we can obtain the perfect ground-state chiral
current in this situation. Subsequently, we will proceed with a
brief analysis of its dynamical process.

In the ground-state subspace spanned by
{|gssss〉, |sgsss〉, |ssgss〉, |sssgs〉, |ssssg〉}, the Hamiltonian
in Eq. (24) is represented as

Ĥ (5,3)
sub = i

2

⎛
⎜⎜⎜⎜⎝

0 κ1 κ2 −κ2 −κ1

−κ1 0 κ1 κ2 −κ2

−κ2 −κ1 0 κ1 κ2

κ2 −κ2 −κ1 0 κ1

κ1 κ2 −κ2 −κ1 0

⎞
⎟⎟⎟⎟⎠. (26)

The eigenvalues for Ĥ (5,3)
eff are {0,±ω,±3ω} with ω =√

5 − 2
√

5κ1/2 ≈ 0.3633κ1. Accordingly, the time-evolution
operator can be recast as

Û ′(t ) =

⎛
⎜⎜⎜⎜⎝

y1(t ) y5(t ) y4(t ) y3(t ) y2(t )
y2(t ) y1(t ) y5(t ) y4(t ) y3(t )
y3(t ) y2(t ) y1(t ) y5(t ) y4(t )
y4(t ) y3(t ) y2(t ) y1(t ) y5(t )
y5(t ) y4(t ) y3(t ) y2(t ) y1(t )

⎞
⎟⎟⎟⎟⎠, (27)

where

y1(t ) = 1
5 [1 + 4 cos(2ωt ) cos(ωt )],

y2(t ) = 1
5

[
1 + 4 cos

(
2ωt + 3

5π
)

cos
(
ωt − 1

5π
)]

,

y3(t ) = 1
5

[
1 + 4 cos

(
2ωt + 1

5π
)

cos
(
ωt + 3

5π
)]

,

y4(t ) = 1
5

[
1 + 4 cos

(
2ωt + 4

5π
)

cos
(
ωt + 2

5π
)]

,

y5(t ) = 1
5

[
1 + 4 cos

(
2ωt + 7

5π
)

cos
(
ωt + 1

5π
)]

. (28)

When the initial state is |gssss〉, the evolution state reads

|ψ (t )〉 = y1(t )|gssss〉 + y2(t )|sgsss〉 + y3(t )|ssgss〉
+ y4(t )|sssgs〉 + y5(t )|ssssg〉. (29)

When the evolution time t = 0, 2π/5ω, 4π/5ω,

6π/5ω, 8π/5ω, 2π/ω, the evolution state |ψ (t )〉 =
|gssss〉, |ssgss〉, |ssssg〉, |sgsss〉, |sssgs〉, |gssss〉, respectively.
The ground state |g〉 traverses the ring sites in the direction
of 1 → 3 → 5 → 2 → 4 → 1 → · · · within one period
of T = 2π/ω. In the ground-state subspace spanned by
{|sgggg〉, |gsggg〉, |ggsgg〉, |gggsg〉, |ggggs〉}, the time-evolution
operator, denoted by Û ′†(t ), gives rise to the opposite
evolution direction, i.e., 1 → 4 → 2 → 5 → 3 → 1 → · · · .

For the case ε/ν = 2.4048, the effective coupling constants
in the Hamiltonian in Eq. (24) can be reduced to

κ1 = �2g2

4�2ν

∞∑
n=1

J 2
n

( ε

ν

)
sin

(
2nπ

5

)/
n,

κ2 = �2g2

4�2ν

∞∑
n=1

J 2
n

( ε

ν

)
sin

(
4nπ

5

)/
n,

(30)

with �k = � and �k = �. Unfortunately, the ratio of the
coupling constant κ2/κ1 for such a specific case is 0.2702, so
we can obtain the imperfect ground-state chirality, which will
be illustrated numerically in Sec. III B.
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III. NUMERICAL SIMULATION OF GROUND-STATE
CHIRAL CURRENT, RANGE OF APPLICABILITY, AND

POTENTIAL EXPERIMENTAL POSSIBILITY

In this section we provide the effective master equation in-
volving only the ground-state manifold, and the numerical
simulation results continue to show that ground-state chiral
current can be reliably achieved. Subsequently, we also pro-
vide a detailed explanation for the effective conditions of our
model and its potential experimental possibility.

A. Effective master equation

For weakly driven atoms, the evolution and decay of the
excited states occur on a timescale that is significantly faster
than any other timescale in the system. The separation of the
Hilbert space into rapidly and slowly evolving ground and
excited states has been explored by non-Hermitian Hamilto-
nians. Specifically, for a coupling of the ground to the excited
states much weaker than the evolution inside the subspaces,
a formalism for effective processes can be established by
extending the Feshbach projection-operator approach [78,79].
By combining perturbation theory of the density operator
and adiabatic elimination of the excited states, we reduce
the dynamics to an effective master equation involving only
the ground-state manifold (more details are reported in
the Appendix)

d ρ̂

dt
= −i[Ĥeff (t ), ρ̂] + γ1âρ̂â† − γ1

2
{â†â, ρ̂}

+
∑

k

L̂eff
k,gs(t )ρ̂

[
L̂eff

k,gs(t )
]† − 1

2

{[
L̂eff

k,gs(t )
]†L̂eff

k,gs(t ), ρ̂
}

+
∑

k

L̂eff
k,sg(t )ρ̂

[
L̂eff

k,sg(t )
]† − 1

2

{[
L̂eff

k,sg(t )
]†L̂eff

k,sg(t ), ρ̂
}
.

(31)

Here {Â, B̂} ≡ ÂB̂ + B̂Â represents the anticommutator of op-
erators Â and B̂ and the effective Hamiltonian is given by

Ĥeff (t ) = Ĥ ′
0(t ) + Ĥ ′

int (t ), (32)

where

Ĥ ′
0(t ) =

∑
k

(
εk cos(νkt − φk ) − 4g2�k

4�2
k + γ 2

2

â†â

)
σ̂

gg
k

− �k�
2
k

4�2
k + γ 2

2

σ̂ ss
k ,

Ĥ ′
int (t ) = −

∑
k

2g�k�kei(�̄′−�k )t

4�2
k + γ 2

2

âσ̂
sg
k + H.c. (33)

Despite the presence of complex terms in the effective Hamil-
tonian, it contains two Stark shift terms and an effective
two-photon transition between the two ground states. In
the absence of dissipative processes (γ2 = 0), this effective
Hamiltonian can be degenerated into Eq. (6). Furthermore, we
derive the effective Lindblad operators

L̂eff
k,gs(t ) =

√
γ2

2

(
�k

2�̃k
σ̂

gs
k + gei(�̄′−�k )t

�̃k
âσ̂

gg
k

)
,

FIG. 2. Schematic and population diagrams illustrating the evo-
lution of chirality versus time generated from the states |gss〉 and
|sgg〉 along the counterclockwise and the clockwise directions, re-
spectively. The dynamics is governed by the Hamiltonian in Eq. (31)
and the other parameters are �k = 1.2g, νk = g, εk = 2.4048g, �̄′ =
50g, �k = �̄′ − �2

k/4�̄′, and γ1 = γ2 = 0.01g.

L̂eff
k,sg(t ) =

√
γ2

2

(
�k

2�̃k
σ̂ ss

k + gei(�̄′−�k )t

�̃k
âσ̂

sg
k

)
, (34)

with �̃k = �k − iγ2/2. In addition to featuring a loop-term
corresponding to each ground state within this configuration,
these operators incorporate effective decays from one ground
state to the other. Thus, we note that, depending on the rela-
tive strength of the effective quantities, the resulting effective
dynamics will be governed by either coherent or decoherent
behavior, which will be illustrated specifically in Sec. III C.

B. Numerical simulation of three-state and multistate chirality

Floquet engineering is a typical strategy for controlling
long-term system dynamics, characterized by periodically
modulating the system frequency to synthesize the target
Hamiltonian [48]. Theoretical studies have demonstrated that
Floquet modulation can be employed to generate arbitrary
two-body spin interactions [80,81]. By periodically adjusting
the system parameters, we have successfully synthesized the z
component of the DMI. Moving forward, we conduct numer-
ical simulations to investigate the chiral dynamics involving
three, four, and five atoms. In what follows, we first present an
example of three atoms arranged in a triangular loop to discuss
the chiral current with initial state |gss〉. We provide numerical
simulations based on the Hamiltonian (31) and present the
chiral dynamics depicted in Figs. 2(a) and 2(b). The results
reveal an interesting dynamical pattern: The state |g〉 injected
into one of the sites flows counterclockwise through the three-
atom sites. Such a phenomenon totally aligns with previous
theoretical prediction. Furthermore, when considering |sgg〉
as the initial state, the transfer of the state |s〉 follows the
clockwise rotation 1 → 3 → 2 → 1 → · · · in Figs. 2(c) and
2(d). More remarkably, the initial-state flip causes the oppo-
site direction of chiral evolution, which can be attributed to the
preservation of time-reversal symmetry by the z component
of DMI. The abundance of phases affords us the opportu-
nity to witness a diverse range of chiral dynamics across
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3

2

1 4

3

2

1 4

(b)

(d)

(a)

(c)

FIG. 3. Schematic and population diagrams illustrating the evo-
lution of chirality versus time generated from the states |gT−s〉 and
|sT+g〉, respectively. The dynamics is governed by the Hamiltonian
in Eq. (31) and the other parameters are νk = g, εk = 2.4048g,
�1,4 = 1.2g, �2,3 = 1.2g/

√
2, �̄′ = 50g, �k = �̄′ − �2

k/4�̄′, and
γ1 = γ2 = 0.01g.

multiple atoms. In Fig. 3 we illustrate the population transfer
of four atoms. Obviously, the numerical results for the initial
states |gT−s〉 and |sT+g〉 exhibit the opposite chirality. In other
words, when the initial state is |gT−s〉, the evolutionary path
of the state |g〉 follows a sequence of 1 → {2, 3} → 4 →
1 → · · · . Otherwise, the state |s〉 circulates along the route
1 → 4 → {2, 3} → 1 → · · · in the scenario of flipping the
initial state.

For the case of five atoms, three distinct phase distribu-
tions were selected in Sec. II. The first one closely resembles
the previous distribution, and the corresponding evolutionary
outcomes are illustrated in Fig. 4. It can be perceived that the
state |g〉 traverses the sites in a counterclockwise manner. In
other words, the site 1 advances to the superposition of sites
2 and 3, then progresses to the superposition of sites 4 and 5,
and ultimately goes back to site 1. For another scenario, the

5

34

2

1

5

34

2

1

(b)

(d)

(a)

(c)

FIG. 4. Schematic and population diagrams illustrating the evo-
lution of chirality versus time generated from the states |gT−T−〉 and
|sT+T+〉, respectively. The dynamics is governed by the Hamilto-
nian in Eq. (31) and the other parameters are νk = g, εk = 2.4048g,
�1 = 1.2g, �2,3,4,5 = 1.2g/

√
2, �̄′ = 50g, �k = �̄′ − �2

k/4�̄′, and
γ1 = γ2 = 0.01g.

1

3

4
5

2

1

3

4
5

2

(a) (b)

(d)(c)

FIG. 5. Schematic and population diagrams illustrating the evo-
lution of chirality versus time generated from the states |gsQ−3/2〉
and |sgQ3/2〉, respectively. The dynamics is governed by the Hamil-
tonian in Eq. (31) and the other parameters are �1,2 = 1.2g, �3,4,5 =
1.2g/

√
3, νk = g, εk = 2.4048g, �̄′ = 50g, �k = �̄′ − �2

k/4�̄′, and
γ1 = γ2 = 0.01g.

state |s〉 follows the opposite trajectory. It commences from
site 1, then passes through the superposition of sites 4 and 5,
transfers to the superposition of sites 2 and 3, and eventually
returns to site 1. As mentioned earlier, the second type of
phase modulation follows a similar principle, which can be
clearly seen from Fig. 5. When the system is initialized to
the state |gsQ−3/2〉, the chiral current evolves along a specific
path 1 → 2 → {3, 4, 5} → 1 → · · · . In another situation, the
direction of evolution changes as 1 → {3, 4, 5} → 2 → 1 →
· · · . The above are the numerical simulation results for the
three-state chiral current, where it is clearly shown that the
chirality emerges from the 2π/3 phase shift between the three
different populations oscillations. Consequently, summarizing
the results from the analysis above, our scheme is reasonable
to open up exciting possibilities for arbitrary atom numbers N
and shows that the transfer period remains exactly indepen-
dent of the choice of N . Nevertheless, the third kind of phase
modulation exhibits a consistent phase difference between
adjacent lattice sites in Fig. 6. The dynamics is driven by
the Hamiltonian in Eq. (31), and the state |g〉 traverses the
sites in the direction of 1 → 3 → 5 → 2 → 4 → 1 → · · · .
Significantly, the maximum population approaches 1, which
explains the coupling strength between the nearest-neighbor
and next-nearest-neighbor items not being absolutely propor-
tional. Accordingly, combined with the other initial state, the
propagation direction of the chiral current will be reversed.
Our finding reveals that the spin dynamics driven by the z
component of DMI exhibits a chiral evolution phenomenon.
As a result, multiple instances of chiral motions are realized
within various atomic configurations. In particular, reversing
the initial state of all sites, the chiral evolution is in the oppo-
site direction, yet this does not affect the time for completing
a full cycle.

C. Range of applicability and potential experimental possibility

Building upon the preceding content, we have obtained
the effective master equation by eliminating the high-energy
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1
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34

5

1
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34
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(b)

(d)

(a)

(c)

FIG. 6. Schematic and population diagrams illustrating the evo-
lution of chirality versus time generated from the states |gssss〉 and
|sgggg〉, respectively. The dynamics is governed by the Hamiltonian
in Eq. (31) and the other parameters are �k = 1.2g, νk = g, εk =
2.4048g, �̄′ = 50g, �k = �̄′ − �2

k/4�̄′, and γ1 = γ2 = 0.01g.

level. It is crucial to emphasize that our model and approach
are applicable within a specific range. In this section we pro-
vide a detailed explanation for the effective conditions of the
model and its potential experimental possibility.

1. Decoherence and spontaneous emission

Our model seeks to analyze the transmission process of
spin chirality currents in driven three-level �-configuration
atoms. The precision of effective results may give rise to
optimization under conditions of low spontaneous emission
rates. While such a model exhibits significant capabilities
for specialized systems, it still possesses certain limitations.
One limitation is that a high atomic spontaneous emission
could wash out the effective coupling, thereby the effective
Hamiltonian no longer accurately reporting the dynamical
evolution. In Figs. 7(a), 7(c), and 7(e) we employ compara-
tive realistic spontaneous emission to simulate chiral current,
which indicates that the process of perfect quantum state
transfer becomes impractical over time. In order to evaluate
the atomic spontaneous emission, we introduce the corre-
sponding population of the subspace as Psub = P|gss〉 + P|sgs〉 +
P|ssg〉. In particular, once inserted with its actual experimen-
tal linewidth, 87Rb, satisfying γ2 ≈ g/20, is not applied to
achieve optimal chiral dynamics. Actually, the atomic sponta-
neous radiation disrupts the conserved layout of atoms within
the corresponding subspace and eventually transforms back
into the ground state based on the effective dissipation op-
erator from Eq. (34). This situation reveals that introducing
atoms or ions with longer excited lifetimes could improve the
efficiency of the quantum information process. On the other
hand, the tolerance for cavity losses is indeed a critical aspect
to consider, especially the discussion of the impact of spon-
taneous emission on the proposed effect. To assess whether
the current technology meets the acceptable level of cavity
losses, further analysis and experimentation are necessary to
determine the practical feasibility of achieving the desired

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 7. Evolution of chirality versus time generated from the
states |gss〉 under the conditions of (a), (c), and (e) a fixed cavity
decay rate γ1 = 0.01g and varying spontaneous emission rates and
(b), (d), and (f) a fixed dissipative rates γ1 = γ2 = 0.01g and varying
heterogeneous detunings. The dynamics is governed by the Hamil-
tonian in Eq. (31) and the other parameters are �k = 1.2g, νk = g,
εk = 2.4048g, �̄′ = 50g, �k = �̄′ − �2

k/4�̄′, and �̃ = (�1 + �2 +
�3)/3.

cavity performance within existing technological constraints
[82,83]. Combining stable cavity photons or low dissipative
rate, the average photons are introduced to examine the im-
pact of cavity losses on the chiral current [84]. We conclude
that the average photon number throughout the evolution is
approximately 10−4, which exerts minimal influence on the
dynamics compared to the distributed probabilities of other
configurations.

2. Ensemble nonuniformity

In the preceding section we assumed that the frequency of
each atomic excitation remains identical. However, the atoms
may possess diverse levels in the ensemble, which leads to
a discrepancy in the corresponding detuning. In other words,
the uncertainty in the ensemble and parameters diminishes the
impact of the effective coupling. In order to illustrate the effect
of ensemble nonuniformities, we regard three different atoms
as an example to show the evolution of chiral current un-
der the condition of relatively heterogeneous detuning, where
such heterogeneity is denoted by (�1 + δinh,�2,�3 − δinh ).
In Figs. 7(b), 7(d), and 7(f) we readily observe that a rise in
relative nonuniform deviations triggers strong oscillations in
the dynamical evolution within the subspace, thus disrupting
the chiral current to a certain degree. Such a phenomenon
implies that signatures of the chiral current can be observed
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even for realistic 87Rb parameters. On the other hand, similar
to the aforementioned uneven detuning, we also consider the
systematic errors raised by the nonequal coupling strengths,
namely, g + δg, g, and g − δg, where δg represents the mag-
nitude of the error. Since the effective strength relies on the
coupling g, its lack of uniformity triggers significant oscilla-
tory effects on the corresponding chiral current. Consequently,
it is to be expected that the fidelity of the chiral current will
diminish as the deviation of the coupling strength increases.
Given these factors, maximizing the uniformity of the ensem-
ble can enhance the reliability of our scheme to the greatest
extent possible.

3. Potential experimental possibility

Based on previous work [31–34,85,86], we investigate
the spin dynamics of trapped 87Rb atoms in a single-mode
optical resonator. The conduit for mediating interactions
from the |S1/2〉 → |P3/2〉 transitions is a 780.02-nm cav-
ity mode at detuning as high as several tens of gigahertz
[58]. The energy-level splitting of the hyperfine structure
between levels |S1/2, F = 2〉 and |S1/2, F = 1〉 is approx-
imately 6834.68 MHz, i.e., ωg/2π ≈ 6834.68 MHz. The
carrier frequency ωL

k is roughly equal to 384.225 THz [56].
As a result, the other corresponding parameters could uni-
formly be chosen as ωe/2π ≈ 384.23 THz, ωc/2π ≈ 384.22
THz, �k/2π ≈ 5000 MHz, �k/2π ≈ 120 MHz, g/2π ≈
100 MHz, and νk/2π ≈ 100 MHz. The decay rates of the
cavity are γ1/2π ≈ 1 MHz [84] and γ2/2π ≈ 6.1 MHz. Thus,
all the necessary conditions for achieving effective dynamics
have been successfully satisfied. However, it is worth men-
tioning that similar to Fig. 7(e), the curve generated with
the aforementioned experimental parameters can indeed ex-
hibit the characteristics of chiral current, yet it falls short
of achieving a perfect quantum state transfer process. To
optimize this process, it is necessary to select atoms with
longer lifetimes. We may consider several nitrogen-vacancy
(NV) centers coupled to a common superconducting coplanar
waveguide resonator with the hyperfine ground state, with
the distance between NV centers placed in close proxim-
ity, which could feasibly facilitate the coupling between the
quantum field and atoms. On the other hand, the NV centers
exhibit extended coherence times and remarkable quantum
controllability [87–89], e.g., the spin relaxation time under
room-temperature conditions satisfies our criteria [90] and
extends even longer at lower temperatures [91], while the
electron-spin relaxation time for a NV center could reach
up to 10 ms (γ2 = 0.01 MHz) at low temperature under
an appropriately chosen magnetic field for our system [92].
Once the condition of the parameter could be fulfilled, the
large-detuning regime and high-frequency expansion approx-
imation ensure the relatively perfect chiral current. Certainly,
we also consider the Rydberg atoms to achieve the desired dy-
namics. Perhaps the Rydberg state could serve as the excited
state. However, we must ensure the restriction of the distance
between atoms beyond the blockade radius to safely omit
the interaction between atoms. Under the condition where
the driving frequency is significantly lower than the strength
of the blockade interaction, only one atom can be excited
to the Rydberg state within a system of N driven Rydberg

atoms. Such a situation enables us to label the excited atom
as occupying the first position, with any atoms in the ground
state occupying the second position. Naturally, we can regard
the remaining atoms as a collective Rydberg superatom [93],
thereby facilitating the realization of triangular chiral current
in diverse directions. Even in cases where interactions exist
among Rydberg atoms, it is crucial to highlight in the litera-
ture that effective master equations could be derived with the
adiabatic elimination of the excited states and second-order
perturbation theory. Fortunately, owing to the comparatively
extended lifetime of Rydberg levels, a low dissipation rate
guarantees the chiral evolution within a secure zone, ulti-
mately facilitating the achievement of the desired dynamics.

IV. CONCLUSION

To summarize, we simulated the DMI and chiral current in
atomic manifolds via periodic modulation. Utilizing a three-
level system in a � configuration, we derived an effective
Hamiltonian for the ground-state subspace via adiabatic elimi-
nation. By simultaneously modulating the driving frequencies
and initial phases, we achieved various configurations of the
DMI for different ground-state chiral dynamics, including
three-state and multistate chiral currents. The numerical sim-
ulation results further confirmed that the proposed method is
capable of generating the ground-state chiral current. Further-
more, we discussed in detail the effects of adverse factors on
the chiral current. We found that the experimental operabil-
ity opens up possibilities for reliable quantum state transfer.
Our proposal of three-state chiral current can be extended
to arbitrary atom numbers, and it is possible to realize the
perfect multistate chiral current by considering a more tunable
interaction between further neighbors. On the other hand,
we have recognized that nonuniformity disrupts the effect
of chiral current. However, the deeper dynamics underlying
this scenario and strategies to mitigate the oscillation effect
remain thought-provoking questions for future research in
chiral dynamics. Additionally, the phenomena of chiral cur-
rent occurring in curved spaces and nonflat manifolds may
give rise to new quantum effects resembling the Berry phase
and anomalous Hall effect, which are crucial for understand-
ing the fundamental principles of quantum mechanics and
driving the development of advanced quantum devices. By
harnessing the behavior of spin chiral current on manifolds
with varying geometric structures, we can design and im-
plement more sophisticated and diverse quantum information
processing devices, ultimately boosting the efficiency and
fault tolerance of quantum information processing.
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APPENDIX: EFFECTIVE OPERATOR FORMALISM
FOR MASTER EQUATION

When incorporating decoherence into the system, non-
Hermitian Hamiltonians are frequently utilized to characterize
the dynamics of open systems, which can be formulated more
rigorously through the so-called quantum jump theory or
Monte Carlo wave-function method. Open systems also ex-
hibit distinct timescales associated with different effects such
that the Hilbert space can be divided into two parts, one for
the rapidly decaying (excited) states and another for the rela-
tively stable (ground) states. Next we show how to obtain an
effective master-equation formalism between ground-ground
states by introducing adiabatic elimination. For our system,
we consider the effects of atomic spontaneous emission by
assuming that the excited state |e〉 decays into the ground
states |g〉 and |s〉 with the same spontaneous emission rate.
Therefore, the dynamics of the system can be described by
the Markovian master equation

d ρ̂

dt
= −i[ ˆ̃H (t ), ρ̂] + γ1âρ̂â† − γ1

2
{â†â, ρ̂}

+
∑

k

L̂(k)
gs ρ̂

[
L̂(k)

gs

]† − 1
2

{[
L̂(k)

gs

]†L̂(k)
gs , ρ̂

}

+
∑

k

L̂(k)
sg ρ̂

[
L̂(k)

sg

]† − 1
2

{[
L̂(k)

sg

]†L̂(k)
sg , ρ̂

}
, (A1)

where the dissipative operators are given as

L̂(k)
gs =

√
γ2/2|gk〉〈ek|, L̂(k)

sg =
√

γ2/2|sk〉〈ek|.
In order to distinguish the non-Hermitian Hamiltonian of the
excited states, we introduce ĤNH to Eq. (A1) and obtain a
reduced master equation

d ρ̂

dt
= −i{(ĤNH + Ĥg + V̂ )ρ̂ − ρ̂([ĤNH]† + Ĥg + V̂ )}

+
∑

k

L̂(k)
gs ρ̂

[
L̂(k)

gs

]† + L̂(k)
sg ρ̂

[
L̂(k)

sg

]†

+ γ1âρ̂â† − γ1

2
{â†â, ρ̂}, (A2)

where V̂ ≡ V̂ + + V̂ −. The V̂ + and V̂ − denote the perturbative
excitations and deexcitations, respectively, of the system with
(V̂ +)† = V̂ −, and Ĥg(t ) is the ground-state Hamiltonian. In

addition, ĤNH = Ĥe − i/2
∑

k (L̂(k)
gs )†L̂(k)

gs + (L̂(k)
sg )†L̂(k)

sg repre-
sents the non-Hermitian Hamiltonian of the quantum jump
formalism within Ĥe = ∑

k �k σ̂
ee
k , which is the Hamiltonian

in the excited-state manifold. Considering our specific condi-
tion, the corresponding operations can be recast as

V̂ +(t ) =
∑

k

�k

2
σ̂ es

k + gâei(�̄′−�k )t σ̂
eg
k ,

Ĥg(t ) =
∑

k

εk cos(νkt − φk )σ̂ gg
k ,

ĤNH = Ĥe − i

2

∑
k

(
L̂(k)

gs

)†L̂(k)
gs + (

L̂(k)
sg

)†L̂(k)
sg . (A3)

According to the work in Ref. [79], adiabatically eliminating
the excited state |e〉 results in the effective Hamiltonian and
Lindblad operator in the ground-state subspace

Ĥeff (t ) = − 1
2V̂ −(t )([ĤNH]−1 + H.c.)V̂ +(t ) + Ĥg(t ),

L̂eff
k,gs(t ) = L̂(k)

gs [ĤNH]−1V̂ +(t ),

L̂eff
k,sg(t ) = L̂(k)

sg [ĤNH]−1V̂ +(t ). (A4)

Taking our specific system into account and substituting
the previous resonance condition �̄′ = �k + �2

k/4�k into
Eq. (A4), we can derive the specific forms of the effective
Hamiltonian and Lindblad operator as

Ĥeff (t ) = Ĥ ′
0(t ) + Ĥ ′

int (t ), (A5)

where

Ĥ ′
0(t ) =

∑
k

(
εk cos(νkt − φk ) − 4g2�k

4�2
k + γ 2

2

â†â

)
σ̂

gg
k

− �k�
2
k

4�2
k + γ 2

2

σ̂ ss
k ,

Ĥ ′
int (t ) = −

∑
k

2g�k�kei(�̄′−�k )t

4�2
k + γ 2

2

âσ̂
sg
k + H.c.

and

L̂eff
k,gs(t ) =

√
γ2

2

(
�k

2�̃k
σ̂

gs
k + gei(�̄′−�k )t

�̃k
âσ̂

gg
k

)
,

L̂eff
k,sg(t ) =

√
γ2

2

(
�k

2�̃k
σ̂ ss

k + gei(�̄′−�k )t

�̃k
âσ̂

sg
k

)
.

Thus, we obtain the effective master equation (31) in the main
text.
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