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Theory of versatile fidelity estimation with confidence
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Estimating the fidelity with a target state is important in quantum information tasks. Many fidelity-estimation
techniques present a suitable measurement scheme to perform the estimation. In contrast, we present techniques
that allow the experimentalist to choose a convenient measurement setting. Our primary focus lies on a method
that constructs an estimator with nearly minimax optimal confidence intervals for any specified measurement
setting. We demonstrate, through a combination of theoretical and numerical results, various desirable properties
of the method: robustness against experimental imperfections, competitive sample complexity, and accurate
estimates in practice. We compare this method with maximum likelihood estimation and the associated profile
likelihood method, a semi-definite programming based approach, direct fidelity estimation, quantum state
verification, and classical shadows. Our method can also be used for estimating the expectation value of any
observable with the same guarantees.
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I. INTRODUCTION

Quantum information, though a relatively nascent branch
of research, has pervaded into many areas of physics and even
other subjects like computer science. This prevalence is owed
in large part to the wide range of applications that benefit from
a quantum approach, such as computation [1], simulation [2],
communication [3], and metrology and sensing [4,5]. All of
these applications require us to accurately and reliably prepare
a desired quantum state. Yet verifying that the experimentally
prepared state is indeed what we intended is a nontrivial
task. A commonly used metric to judge the success of state
preparation is the fidelity between the target state ρ and the
prepared state σ . When the target state is pure, the fidelity
is simply given as F (ρ, σ ) = Tr(ρσ ) [6]. While we focus on
fidelity estimation here, our method can be used to estimate
the expectation value of any observable.

A common way to estimate the fidelity is to first recon-
struct the experimentally prepared quantum state and then
compute the fidelity between the reconstruction and the target
state. Quantum state tomography is an active area of research,
and several methods have been proposed to reconstruct the
quantum state [7–11]. However, these methods suffer from an
exponential resource requirement as the Hilbert space grows,

making them infeasible for all but the smallest systems. Par-
ticularly, when the task is merely to estimate the fidelity, a
method known as direct fidelity estimation (DFE) [12,13]
has been shown to achieve the task with exponentially fewer
resources. DFE and more recent approaches like classical
shadows [14] estimate the fidelity directly from measure-
ment outcomes without going through the intermediate step
of reconstructing the state. A related, but slightly different
approach, is quantum state verification [15], where one tests
whether the fidelity is larger than a given threshold. These
methods specify measurement protocols, typically involving
sampling measurement settings randomly that one needs to
follow to estimate the fidelity or perform state verification.
In practice, however, experimenters tend to use a fixed set
of measurement settings instead of randomly sampling them,
which would result in a loss of theoretical guarantees. Further-
more, there can be cases where it is preferable to implement
a different measurement scheme than the ones prescribed by
these approaches. This is particularly true if one wishes to the
estimate the expectation value of a single observable, where
performing measurements tailored to that observable can give
exponential improvements over a method like classical shad-
ows that performs random measurements independent of the
observable to be estimated.
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However, methods like maximum likelihood estimation
(MLE) work for arbitrary measurement schemes, yet, in ad-
dition to the need for a costly reconstruction of the quantum
state, they do not provide any guarantees on the estimate.
Rigorous confidence intervals for estimated fidelities are cru-
cial for applications from quantum error correction [16] to
quantum key distribution, where the security of a protocol
rests on proving the presence of entanglement [17,18]. En-
tanglement verification, in turn, is typically achieved using
an entanglement witness [19,20], which is intimately tied
to fidelity estimation [20], again, highlighting the need for
rigorous confidence intervals. Even in cases where state re-
construction with a good confidence interval is possible, such
as a bound in trace distance as given in Ref. [21], the number
of measurements needed for tomography can be much larger
than what is needed for fidelity estimation [12]. One can also
use quantum algorithms to estimate the fidelity, for example,
Refs. [22,23], which work with a different premise than what
we consider in our study. To summarize, we identified two
concerns with standard approaches for fidelity estimation:
most do not allow for arbitrary measurement settings and/or
do not provide rigorous confidence intervals.

Here, we address both of these concerns. We provide a
versatile approach for estimating the fidelity directly from raw
data for any measurement scheme, without the need for state
reconstruction. More precisely, given any target state, mea-
surement scheme, and desired confidence level, our method
constructs an estimator for the fidelity that takes raw data and
gives a fidelity estimate almost instantaneously. Furthermore,
the estimator comes equipped with a rigorous confidence in-
terval that is guaranteed to be close to minimax optimal.1

Turning this around, for a target confidence level 1 − δ, our
method achieves a confidence interval of size 2ε∗, where ε∗
is called the risk (or additive error) of the estimate, with
a sample complexity of ≈ ln(2/δ)/(2ε2

∗ ) independent of the
target state ρ when measuring in the basis defined by ρ (see
Sec. II D). While such a measurement scheme may often be
impractical, we will introduce an alternative scheme using
Pauli measurements that achieves a similar sample complexity
for stabilizer states. This finding demonstrates that our method
can give a scalable sample complexity with a judicious choice
of measurement protocol.

We will begin by describing the theory behind our ap-
proach in Sec. II A. Then, we compute the sample complexity
of the method in Sec. II D and describe a Pauli measurement
scheme similar to DFE (in procedure and sample complexity)
in Sec. II F. In Sec. II G, we demonstrate the robustness of
the estimator generated by our method against noise. Finally,
we compare our method with DFE, MLE, profile likelihood, a
semi-definite programming approach, quantum state verifica-
tion, and classical shadows in Sec. III.

II. MINIMAX METHOD

Our approach is based on recent results in statistics by
Juditsky and Nemirovski [24–26], who described the esti-

1Larger, at most, by a factor of order 1 for sufficiently large confi-
dence levels; see Sec. II A.

mation of linear functionals in a general setting. The risk
associated with the estimate is nearly minimax optimal, and
so we call it the minimax method. Roughly speaking, a mini-
max optimal estimator gives the smallest possible symmetric
confidence interval in the worst possible scenario (this will be
made precise later).

In Sec, II A, we elaborate on the main ideas involved in
estimating fidelity using the minimax method. An abstract
version of the method with the theoretical details is given in
Appendix A, while an application-oriented presentation of the
key results is given in the accompanying Ref. [27].

A. Fidelity estimation using the minimax method

Suppose that we are working with a quantum system that
has a d-dimensional Hilbert space over C, d ∈ N. The states
of this system can be described by density matrices, which are
d × d positive-semi-definite (complex-valued) matrices with
unit trace. We denote the set of density matrices by X . Our
goal is to estimate the fidelity between the state σ ∈ X pre-
pared in the laboratory and a pure target state ρ ∈ X , where
pure means that ρ is a rank-one matrix. In this case, the fidelity
between ρ and σ is given as F (ρ, σ ) = Tr(ρσ ), which is a
linear function of σ for a fixed ρ.

In practice, one needs to estimate the fidelity from partial
information about the state obtained through measurements.
Any quantum measurement can be described by a positive
operator-valued measure (POVM), which comprises a set of
positive-semi-definite matrices that sum to the identity. We
consider the case where an experimenter uses L different
measurement settings, where the POVM for the lth setting
(l = 1, . . . , L), is described by {E (l )

1 , . . . , E (l )
Nl

}. The experi-
menter performs Rl repetitions (shots) of the lth POVM. The
probability p(l )

σ (k) that a particular outcome k ∈ {1, . . . , Nl} is
obtained upon measuring the lth POVM when the state of the
system is σ is given by Born’s rule as p(l )

σ (k) = Tr(E (l )
k σ ).

Note that Born’s rule can give zero probabilities for some
of the outcomes depending on the state and the POVM. How-
ever, a technical requirement of Juditsky and Nemirovski’s
method [24] is that all outcome probabilities are nonzero. For
this reason, we include a small positive parameter ε◦ � 1 to
make the outcome probabilities positive, i.e.,

p(l )
σ (k) = Tr

(
E (l )

k σ
) + ε◦/Nl

1 + ε◦
.

We choose ε◦ = 10−5 in the numerical simulations so that the
Born probabilities are practically unaffected. Because ε◦ is
small with respect to typical experimental imperfections, we
will usually drop terms proportional to ε◦ in the theoretical
calculations.

Our goal is to construct an estimator F̂ for the fidelity
F (ρ, σ ) between the experimental state σ and the target state
ρ, using the observed outcomes corresponding to the chosen
measurement settings. By an estimator, we mean any func-
tion that takes the observed outcomes as input and gives an
estimate for the fidelity as an output. Constructing a good
estimator first requires a measure of error to judge the per-
formance of the estimator. For this purpose, we use the δ risk
defined by Juditsky and Nemirovski [24]. Intuitively speaking,
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having an δ risk of ε means that the error in the estimation is
at most ε with a probability larger than 1 − δ. Therefore, the δ

risk defines a symmetric confidence interval for a confidence
level of 1 − δ. More precisely, given a fidelity estimator F̂ and
a confidence level 1 − δ, the δ risk of F̂ is given by

R(F̂ ; δ) = inf

{
ε′ ∣∣ sup

χ∈X

Prob
outcomes ∼ pχ

[|F̂ (outcomes) −|, Tr(ρχ )| >ε′] < δ

}
.

(1)

Here, “outcomes ∼ pχ” means that the outcomes for the lth
measurement are given by the (ε◦-modified) Born rule proba-
bilities p(l )

χ for a state χ , for all l = 1, . . . , L. The definition of
the δ risk says that R(F̂ ; δ) is the smallest number such that
the probability that the estimator F̂ has an error larger than
R(F̂ ; δ) is less than δ, irrespective of the underlying state of
the system.

Importantly, the δ risk for any given estimator F̂ can be
precomputed, even before performing a measurement. This
is possible because it depends only on the target state, the
confidence level, and the chosen measurement settings, while
implicitly accounting for all possible measurement outcomes
in all possible states. We can thus construct estimators that
nearly achieve the minimum possible risk before taking any
data.

This minimum possible risk R∗(δ) for a chosen confidence
level is called the minimax optimal risk, and is obtained
by minimizing R(F̂ ; δ) over all possible estimators F̂ , i.e.,
R∗(δ) = inf F̂ R(F ; δ). Therefore, the minimax optimal risk
gives the smallest possible error by minimizing over all the
estimators F̂ , while maximizing over all the states χ ∈ X [see
Eq. (1)].

In practice, however, it is computationally very difficult to
sift through all possible estimators and choose the optimal
one. For this purpose, Juditsky and Nemirovski [24] restricted
their attention to a subset F of possible estimators called
affine estimators. Any affine estimator φ ∈ F is of the form
φ = ∑L

l=1 φ(l ), where φ(l ) is an estimator for the lth measure-
ment setting. That is, φ(l ) takes an outcome of the lth POVM
as input and returns a number as the output. Remarkably,
Juditsky and Nemirovski [24] showed how to construct an
affine estimator that achieved nearly minimax optimal perfor-
mance, and therefore restricting attention to affine estimators
was not a problem. Specifically, if F̂∗ ∈ F is the near-optimal
affine estimator constructed by Juditsky and Nemirovski’s
procedure, then the risk ε∗(δ) of F̂∗ computed by their pro-
cedure satisfies

R(F̂∗; δ) � ε∗(δ) � ϑ (δ)R∗(δ), (2)

ϑ (δ) = 2 ln(2/δ)

ln[1/(4δ)]
= 2 + ln(64)

ln(0.25/δ)
(3)

for δ ∈ (0, 0.25). We restrict δ to the interval (0, 0.25) (or
equivalently, to confidence levels greater than 75%) so that
ϑ (δ) is well defined. From Eq. (2), we see that the risk
ε∗(δ) computed by Juditsky and Nemirovski’s procedure is
actually an upper bound on the (unknown) δ-risk R(F̂∗, δ) of

TABLE I. Different types of risk considered in this study. In each
case, the true state is unknown, the measurement settings are fixed,
and all measurement outcomes consistent with the state and mea-
surement settings are allowed. F̂∗ is the near-optimal affine estimator
constructed by Juditsky and Nemirovski’s [24] procedure.

R∗(δ) Minimax optimal risk, which is the minimum possible
additive error with a confidence level of 1 − δ,
accounting for all possible states, measurement
outcomes, and all possible estimators.

R(F̂∗; δ) δ risk of the estimator F̂∗ as defined in Eq. (1). This is
the smallest possible additive error for the estimator
F̂∗ with a confidence level of 1 − δ, accounting for
all possible states and measurement outcomes.

ε∗(δ) Risk (or additive error) of the estimator F̂∗ for a
confidence level of 1 − δ that is computed by
Juditsky and Nemirovski’s procedure. This is an
upper bound on the δ-risk R(F̂∗; δ) and it is nearly
minimax optimal in the sense of Eq. (2).

the near-optimal affine estimator F̂∗. Since the probability that
the estimator F̂∗ fails by an error more than R(F̂∗, δ) is less
than δ, and because R(F̂∗, δ) � ε∗(δ) we can conclude that
the probability that F̂∗ fails by more than ε∗(δ) is also less
than δ. Therefore, the risk ε∗(δ) defines a confidence interval
corresponding to the chosen confidence level 1 − δ.

Equation (2) guarantees that the confidence interval de-
fined by ε∗(δ) is nearly minimax optimal. This is because the
risk ε∗(δ) of the near-optimal affine estimator F̂∗ computed by
Juditsky and Nemirovski’s procedure is, at most, a constant
times the minimax optimal risk, where the constant factor
ϑ (δ) depends only on the chosen confidence level. Note that
ϑ (0.1) < 6.54 and that ϑ (δ) is a decreasing function of δ,
converging to 2 as δ → 0. Therefore, for confidence levels
greater than 90%, ε∗ is guaranteed to be close to the minimax
optimal risk by a factor less than 6.5. In practice, the estimator
typically performs better than the theoretically guaranteed
bound of Eq. (2). We use the star symbol as a subscript in
ε∗(δ) to emphasize that it is nearly minimax optimal.

In the remainder of this study, we omit the argument δ

when writing ε∗ for the sake of notational simplicity. A short
summary of the different types of risk mentioned in this sec-
tion can be found in Table I.

A practically implementable version [28] of the procedure
outlined by Juditsky and Nemirovski [24] for constructing the
near-optimal affine estimator F̂∗ and its associated risk ε∗ is as
follows.

(1) Find the saddle-point value of the function 
 : (X ×
X ) × (F × R+) → R defined as


(χ1, χ2; φ, α)

= Tr(ρχ1) − Tr(ρχ2) + 2α ln(2/δ)

+ α

L∑
l=1

Rl

[
ln

(
Nl∑

k=1

e−φ
(l )
k /α

Tr
(
E (l )

k χ1
) + ε◦/Nl

1 + ε◦

)

+ ln

(
Nl∑

k=1

eφ
(l )
k /α

Tr
(
E (l )

k χ2
) + ε◦/Nl

1 + ε◦

)]
(4)
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to a given precision, where ρ is the target state; χ1, χ2 ∈ X
are density matrices; φ ∈ F is an affine estimator; and α > 0
is a positive number. The number α as such has no intuitive
meaning, and enters the function 
 for mathematical reasons.
The function 
 is itself a mathematical device designed by
Juditsky and Nemirovski to compute the near-optimal affine
estimator and the associated risk.

Recall that any affine estimator φ ∈ F can be written as
φ = ∑L

l=1 φ(l ). Here, φ(l ) is a function taking outcomes of the
lth POVM as input, and giving a real number as an output. The
lth POVM has Nl measurement outcomes, and φ

(l )
k denotes

the output of φ(l ) for the kth measurement outcome, for each
k = 1, . . . , Nl .

Juditsky and Nemirvoski [24] proved that the function

 has a well-defined saddle-point value (see Appendix A
for more details). We present an algorithm to compute the
saddle-point value of 
 to a given precision using convex
optimization in Appendix B.

(2) We denote the saddle-point value of 
 by 2ε∗, i.e.,

ε∗ = 1
2 sup

χ1,χ2∈X
inf

φ∈F ,α>0

(χ1, χ2; φ, α)

= 1
2 inf

φ∈F ,α>0
max

χ1,χ2∈X

(χ1, χ2; φ, α). (5)

Suppose that the saddle-point value is attained at χ∗
1 , χ∗

2 ∈ X ,
φ∗ ∈ F , and α∗ > 0 to within the given precision. Since φ∗ ∈
F is an affine estimator, we can write φ∗ = ∑L

l=1 φ
(l )
∗ . Sup-

pose that independent and identically distributed outcomes
{o(l )

1 , . . . , o(l )
Rl

} are observed upon measurement of the lth
POVM. Then, the optimal estimator F̂∗ ∈ F for estimating the
fidelity of the state prepared in the laboratory with the target

state is given as

F̂∗
({

o(l )
1 , . . . ,o(l )

Rl

}L

l=1

) =
L∑

l=1

Rl∑
r=1

φ(l )
∗
(
o(l )

r

) + c, (6)

where the constant c is

c = 1
2 [Tr(ρχ∗

1 ) + Tr(ρχ∗
2 )]. (7)

The procedure outputs F̂∗ and ε∗, such that R(F̂∗; δ) �
ε∗. Then, from Eq. (1), we can infer that |F̂∗(outcomes) −
Tr(ρσ )| � ε∗ with probability greater than or equal to 1 − δ,
where σ is the actual state prepared in the laboratory. The
guarantees given by Eqs. (2) and (3) apply.

Observe that F̂∗ is a function of the outcomes [see Eq. (6)],
while, the risk ε∗ of the estimator is a function of the mea-
surement protocol. We thus know how well the constructed
estimator does even before performing an experiment,
which can be used for benchmarking different measurement
protocols.

It is not apparent from the above procedure how finding the
saddle point of the function 
 defined in Eq. (4) leads to con-
structing the fidelity estimator F̂∗ with error ε∗. Fortunately,
we can get some mathematical intuition on how this algorithm
works by rewriting the function 
 in Eq. (4), following the
proof of Juditsky and Nemirovski [24]. For simplicity, we
restrict our attention to the case where we record a single
outcome of a single POVM (i.e., L = 1 and R1 = 1), and
the more general case can be handled similarly. Denoting the
outcome probability as p(1)

k (χ ) = [Tr(E (1)
k χ ) + ε◦]/(1 + ε◦),

we can rearrange terms in Eq. (4) to obtain


(χ1, χ2; φ∗, α∗) − 2ε∗
α∗

=
[

ln

(
N1∑

k=1

exp
([

Tr(ρχ1) − (
φ

(1)
∗k + c

) − ε∗
]
/α∗

)
pk (χ1)

)
+ ln(2/δ)

]

+
[

ln

(
N1∑

k=1

exp
([−Tr(ρχ2) + (

φ
(1)
∗k + c

) − ε∗
]/

α∗
)
pk (χ2)

)
+ ln(2/δ)

]
.

Since maxχ1,χ2 
(χ1, χ2; φ∗, α∗) = 2ε∗ to within some pre-
cision, we have 
(χ1, χ2; φ∗, α∗) − 2ε∗ � 0 for all χ1, χ2.
Then, noting that F̂∗(k) = φ

(1)
∗k + c (for one measurement set-

ting), the choice of c in Eq. (7) ensures that both the terms in
square brackets above are less than or equal to zero [24]. In
other words, for all χ1, χ2, we have

N1∑
k=1

exp([Tr(ρχ1) − F̂∗(k) − ε∗]/α∗)pk (χ1) � δ/2,

N1∑
k=1

exp([−Tr(ρχ2) + F̂∗(k) − ε∗]/α∗)pk (χ2) � δ/2,

where by F̂∗(k) we mean F̂∗ evaluated on the kth outcome.
However, since ex � 1 for x � 0 and δ ∈ (0, 0.25), for the
above inequalities to be true, we must have Tr(ρχ ) − F̂∗ −
ε∗ � 0 and −Tr(ρχ ) + F̂∗ − ε∗ � 0 with high probability for
any state χ . This is equivalent to saying |Tr(ρχ ) − F̂∗| � ε∗
with high probability for all states χ . Note that this idea

can be formalized using Markov’s inequality. Therefore, F̂∗
gives a valid estimate for the fidelity Tr(ρχ ) within error
ε∗ with high probability, no matter what the underlying state
χ is.

Although the formal procedure above is rather abstract, in
Sec. II C, we show that the estimator F̂∗ can be understood as
an appropriately weighted sum of the observed frequencies,
where the weights depend on the target state and measurement
scheme. In Sec. II D, we show that the risk ε∗ can be written in
terms of classical fidelities determined by the POVMs in the
measurement protocol. This is helpful in performing theoret-
ical calculations involving the risk, and potentially useful for
benchmarking measurement protocols.

Importantly, the above procedure cannot only be used to
construct an estimator for the fidelity, but for the expectation
value of any observable. This can be achieved by replacing
the target state ρ in the above equations with the Hermitian
operator O corresponding to the observable whose expecta-
tion value we wish to estimate.
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We discuss the theoretical underpinnings of the minimax
method in Appendix A, starting with a brief overview of
Juditsky and Nemirovski’s general setup [24], followed by de-
tails on adapting their method to estimating fidelity and expec-
tation values. Subsequently, details regarding the numerical
implementation of the minimax method are given in Ap-
pendix B. In particular, we outline a convex optimization algo-
rithm for constructing the optimal estimator F̂∗ and the asso-
ciated risk ε∗ given any target state and measurement settings.

B. Toy problem: One-qubit target state

We explain in detail a simple setting where it is possible
to understand the estimator that is constructed by the pro-
cedure described above. Let the target state be ρ = |1〉〈1|,
where {|0〉, |1〉} are the eigenstates of Pauli Z . Suppose that
our experiment consists of performing Pauli Z measurements,
and we want to estimate the fidelity of the laboratory state σ

with the target state ρ. This problem is essentially classical:
given the quantum state σ , we can write it in the com-
putational basis as σ = (1 − p)|0〉〈0| + q|0〉〈1| + q∗|1〉〈0| +
p|1〉〈1|. Since we measure Z , we will obtain the outcome |0〉
with a probability of 1 − p and |1〉 with a probability of p, and
the problem is to estimate the fidelity Tr(ρσ ) = p. This is the
same as having a Bernoulli random variable with parameter
p, which we want to estimate. Note that the parameter p
corresponds to the probability of observing the outcome 1 for
the Bernoulli random variable.

To numerically compute the fidelity estimator, we choose
a confidence level of 95% and R = 100 repetitions of Pauli
Z measurement. Since we measure only one POVM, the esti-
mator given in Eq. (6) can be written as F̂∗({o1, . . . , oR}) =∑R

i=1 φ∗(oi ) + c, where o1, . . . , oR ∈ {0, 1} are the mea-
surement outcomes. Here, φ∗ ∈ F is an affine estimator
corresponding to the saddle point of the function 
 [see
Eq. (4)] that accepts a measurement outcome (0 or 1) as
input and gives a number as an output, while the constant c
is as given in Eq. (7). Numerically, we find that the affine
estimator φ∗ gives the values φ∗(0) ≈ −0.476 × 10−2 and
φ∗(1) ≈ 0.476 × 10−2 for the measurement outcomes 0 and
1, respectively. The value of the constant c computed numeri-
cally is c = 0.5.

Now we show that the estimator F̂∗ constructed by the
minimax method is essentially the sample mean estimator for
a Bernoulli random variable, but with a small additive con-
stant that pushes the estimate away from the boundary of the
parameter space. Note that the sample mean estimator is also
the maximum likelihood estimator for estimating the param-
eter of a Bernoulli random variable. Recall that our estimator
for fidelity is given as F̂∗({o1, . . . , oR}) = ∑R

i=1 φ∗(oi ) + c
for a given set of outcomes {oi}R

i=1. We can then write the
affine estimator φ∗ as φ∗(x) = [φ∗(1) − φ∗(0)]x + φ∗(0) for
any outcome x ∈ {0, 1}. Therefore,

F̂∗
({oi}R

i=1

) =
R∑

i=1

{[φ∗(1) − φ∗(0)]oi + φ∗(0)} + c

= [φ∗(1) − φ∗(0)]
R∑

i=1

oi + [Rφ∗(0) + c],

where oi ∈ {0, 1}. Using the values obtained numerically, we
find that

F̂∗
({oi}100

i=1

) = 0.952

100

100∑
i=1

oi + 0.024.

Thus, we can interpret F̂∗ as (approximately) the mean of
the sample o1, . . . , o100, but with a small additive constant
of 0.024. For finite sample sizes the constant term is justified
because, even upon observing all 0 outcomes, we cannot be
certain that the probability p of observing outcome 1 is p = 0.
For a similar reason, we have 0.952/100 as the coefficient for
the sum instead of 1/100. We observe numerically that this
coefficient approaches 1/R and the additive constant goes to 0
as R increases.

What if we decide to measure Pauli X (measurement 2) in
addition to Pauli Z (measurement 1)? In this case, the estima-
tor F̂∗ can be written as F̂∗({o1, . . . , oR}) = ∑R

i=1 φ
(1)
∗ (oi ) +∑R

i=1 φ
(2)
∗ (oi ) + c. Here, φ

(1)
∗ is the affine estimator at the

saddle point corresponding to the Pauli Z measurement, while
φ

(2)
∗ is the affine estimator at the saddle point corresponding to

the Pauli X measurement. In such a scenario, we find that the
saddle-point value corresponding to the Pauli Z measurement
is unchanged. That is, φ

(1)
∗ (0) ≈ −0.476 × 10−2, φ

(1)
∗ (1) ≈

0.476 × 10−2, and the constant c = 0.5 is also the same as
before. However, the saddle-point value corresponding to
Pauli X measurement is φ

(2)
∗ (0) = φ

(2)
∗ (1) = 0. Therefore, the

outcomes from the Z measurement are weighted as before,
but those from X measurement are discarded. The reason is
simple: for estimating the fidelity with ρ = |1〉〈1|, measure-
ment of Pauli X gives no useful information, irrespective of
what the actual state σ is. Indeed, upon measuring X , we get
|+〉 with probability 1/2 + Re(q) and |−〉 with probability
1/2 − Re(q), both of which are independent of Tr(ρσ ) = p
that we want to estimate. Thus, our method properly incor-
porates the available measurements to give an estimator for
fidelity.

C. Affine estimator for fidelity

An affine function is a linear function plus a constant term.
In the previous section, we saw that the estimator for the one-
qubit toy problem can be expressed as an affine function of
the sample mean. In this section, we show that such a result
holds more generally. Our estimator can be written as an affine
function of the observed frequencies.

To begin, recall that the outcomes of the lth measurement
setting is described by the set �(l ) = {1, . . . , Nl}, where the
index k corresponds to the POVM element E (l )

k . Correspond-
ing to each outcome k ∈ �(l ), we associate a canonical basis
element e(l )

k ∈ RNl . From Eq. (6), we know that the fidelity
estimator is given as

F̂∗
({

o(l )
1 , . . . , o(l )

Rl

}Rl

l=1

) =
L∑

l=1

Rl∑
r=1

φ(l )
∗
(
o(l )

r

) + c,

where {o(l )
1 , . . . , o(l )

Rl
} are the outcomes corresponding to the

lth measurement setting, and the constant c is given by
Eq. (7). In the form written above, φ

(l )
∗ ∈ F (l ) are real-

valued functions defined on the set �(l ). Regarding φ
(l )
∗ as an
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Nl -dimensional real vector with “coefficient” vector

a(l ) = (
φ

(l )
∗ (1), . . . , φ(l )

∗ (Nl )
) ∈ RNl ,

we can write φ
(l )
∗ (k) = 〈a(l ), e(l )

k 〉 for k ∈ �(l ). Then, the esti-
mator can be written as

F̂∗
({

o(l )
1 , . . . , o(l )

Rl

}Rl

l=1

) =
L∑

l=1

Rl∑
r=1

〈
a(l ), e(l )

o(l )
r

〉
+ c,

which is affine in e(l )

o(l )
r

. However, in the above equation, F̂∗ is

not an affine function of the input. To remedy this, we define
the vector of experimentally observed frequencies f (l ) ∈ RNl ,
obtained by binning the outcomes o(l )

1 , . . . , o(l )
Rl

, such that f (l )
k

denotes the relative frequency of the outcome k ∈ �(l ) ob-
served in the experiment for the lth measurement setting. We
can then write

f (l ) = 1

Rl

Rl∑
r=1

e(l )

o(l )
r
.

We can then express the fidelity estimator in a way that is
indeed affine in the observed frequencies as

F̂∗( f (1), . . . , f (L) ) =
L∑

l=1

Rl〈a(l ), f (l )〉 + c. (8)

Equation (8) gives an intuitive understanding of the estimator
constructed by the minimax method(it is simply an appro-
priate weighting of the relative frequencies observed in the
experiment). The weights are obtained from the saddle point
of the function 
 defined in Eq. (4).

D. Risk and the best sample complexity

We now learned about the estimator, but what about the
risk? We found that the risk ε∗ given by Eq. (5) is half the
saddle-point value of the function 
. However, in this form,
it is difficult to infer what this quantity is. In Appendix A,
we show that one can write the risk ε∗ given by the minimax
method in a form that is more amenable to interpretation as

ε∗ = max
χ1,χ2∈X

1

2
[Tr(ρχ1) − Tr(ρχ2)]

s.t.
L∏

l=1

[
FC
(
χ1, χ2,

{
E (l )

k

})]Rl /2 � δ

2
, (9)

where

FC
(
χ1, χ2,

{
E (l )

k

}) =
(

Nl∑
k=1

√
Tr
(
E (l )

k χ1
)
Tr
(
E (l )

k χ2
))2

(10)

denotes the classical fidelity between the probabilities de-
termined by states χ1 and χ2 corresponding to the POVM
measurement {E (l )

k }. Here, the measurement protocol chosen
by the experimenter corresponds to measuring L different
POVMs, where the lth POVM {E (l )

1 , . . . , E (l )
Nl

} is measured Rl

times, for l = 1, . . . , L. Thus, the risk ε∗ can be intuitively
interpreted as half the largest deviation F (ρ, χ1) − F (ρ, χ2)
of the fidelity of the target state ρ with the states χ1, χ2 com-
patible with the measurement protocol and confidence level.
The factor of half comes from the fact that we are looking for
a symmetric confidence interval.

FIG. 1. Variation of the risk with the number of Pauli measure-
ments L and number of repetitions RL of each Pauli measurement for
a four-qubit random target state. All the computed risks correspond
to a 95% confidence level.

Note that the fidelity between any two quantum states must
lie between 0 and 1, and thus, 0 � Tr(ρχ ) � 1 for any density
matrix χ . Then, we can infer from Eq. (9) that the maximum
possible value of risk is 0.5. Indeed, an uncertainty of ±0.5
gives a confidence interval of length 1, which is also the size
of the interval for fidelity.

However, it can be shown from Eq. (9) that the risk de-
creases when the number of measurement settings or the
number of shots for any measurement setting is increased.
To that end, note that FC ranges between 0 and 1, so raising
it to a larger power makes it smaller. Thus, increasing the
number of shots Rl makes it harder to satisfy the constraint
that

∏
l F Rl /2

C must be larger than δ/2. Similarly, if we in-
clude another measurement setting (in effect, increasing L),
we have one more fraction FC multiplying the left-hand side
of the constraint, thereby making the constraint tighter. Since
a tighter constraint implies a more restricted search space for
maximization, we can infer that the risk will become smaller
(or stay the same) in either case. This also shows that the
risk is dependent on the chosen measurement protocol, and
protocols that make the constraint tighter will have a smaller
risk in estimating the fidelity.

We numerically quantify the variation of the risk with the
number of measurement settings and the number of repetitions
for a four-qubit randomly chosen target state. We apply 10%
depolarizing noise to obtain the actual state and perform Pauli
measurements. We see from Fig. 1 that the risk decreases with
the number of Pauli measurements as well as the number of
repetitions.

A natural question that arises is how low the risk can be.
To find a lower bound, recall that we can write the fidelity
between any two states as a minimization of the classical
fidelity over all POVMs [29]

F (χ1, χ2) = min
POVM {Fi}

FC (χ1, χ2, {Fi}).

In particular, we have F (χ1, χ2) � FC (χ1, χ2, {E (l )
k }) for ev-

ery POVM {E (l )
k } that we are using. Thus, we obtain the

following lower bound on our risk:

ε∗ � max
χ1,χ2∈X

1

2
[Tr(ρχ1) − Tr(ρχ2)]

s.t. F (χ1, χ2) �
(

δ

2

) 2
R

,
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where R = ∑L
l=1 Rl is the total number of shots. Evaluating

the right-hand side of the above equation, we obtain a lower
bound for the risk. This result is summarized in the following
theorem.

Theorem II.1. Let ρ be any pure target state. Suppose that
ε∗ is the risk associated with the fidelity estimator given by the
minimax method corresponding to a confidence level of 1 −
δ ∈ (0.75, 1) and any measurement scheme. Then, the risk is
bounded below as

ε∗ � 1

2

√
1 −

(
δ

2

)2/R

, (11)

where R is the total number of measurement outcomes (all
measurement settings combined) to be supplied to the esti-
mator. This lower bound can be achieved by measuring in
the basis defined by ρ. That is, R repetitions of the POVM
{ρ, I − ρ} achieves the risk ε∗.

Stated differently, the best sample complexity that can be
obtained using the minimax method corresponding to a risk of
ε∗ ∈ (0, 0.5) and confidence level 1 − δ is given by

R � 2 ln(2/δ)

|ln(1 − 4ε2∗ )|

≈ ln(2/δ)

2ε2∗
when ε2

∗ � 1. (12)

Proof. See Appendix C. �
Note that sample complexity refers to the smallest number

of measurements outcomes required for achieving the desired
risk for the chosen confidence level.

Observe that the lower bound on the risk in Eq. (11) is inde-
pendent of the system dimension, the target state, and the true
state. It only depends on the confidence level and total number
of repetitions. Note that it is possible to obtain dimension-
independent sample complexity because we assume that the
target state ρ is pure. Without this assumption, the sample
complexity for fidelity estimation is expected to scale with
the dimension (see, for example, Refs. [30,31]). That said, the
assumption that the target state is pure is well motivated from
a practical standpoint as we usually seek to prepare pure states
in experiments [e.g., Bell states or Greenberger—Horne—
Zeilinger (GHZ) states]. Indeed, this is a common assumption
in many fidelity estimation studies [12–14]. Since the true
state is allowed to be mixed, our method is applicable in
practical scenarios. Assuming that the target state is pure, one
can, in principle, achieve the optimal sample complexity by
measuring in a basis defined by the target state ρ. We acknowl-
edge that, in practice, it is often impractical to implement the
POVM {ρ, I − ρ} (or an orthonormal basis containing ρ) that
achieves this sample complexity. However, next we show that
we can achieve something very close to this optimal sample
complexity for stabilizer states using a practical measurement
scheme.

E. Stabilizer states

Stabilizer states are the cornerstone of numerous applica-
tions, ranging from measurement-based quantum computing
[32] to quantum error correction [16]. An n-qubit stabilizer
state ρ is the unique +1 eigenstate of exactly n Pauli operators

that generate a stabilizer group of size d = 2n. The state ρ can
thus be written as [33]

ρ = 1

d

⎛⎝I +
∑

S∈Sn\{I}
S

⎞⎠, (13)

where Sn is the stabilizer subgroup corresponding to the sta-
bilizer state ρ.

To estimate the fidelity with a target stabilizer state effi-
ciently, we implement the minimax optimal strategy [15,33]
while restricting to Pauli measurements. The measurement
strategy is simple: uniformly sample an element from the
stabilizer subgroup (excluding the identity), and record the
eigenvalue of the outcome (whether +1 or −1) of the stabi-
lizer measurement. This strategy is very similar to DFE, with
the exception that we exclude the identity. This measurement
scheme can be implemented by an effective POVM with ele-
ments {,�} given by

 = ρ + d/2 − 1

d − 1
�ρ,

� = d/2

d − 1
�ρ, (14)

where �ρ = I − ρ. See the proof of Theorem II.2 for details
on how this is obtained (also see Refs. [15,33]). We can see
that the effective POVM is a combination of the target state ρ

and �ρ (which is orthogonal to ρ). This is similar to measur-
ing in the basis defined by the target state, so from our results
in Sec. II D, we can expect the risk to be small. Indeed, we find
that for a sufficient number of repetitions of this measurement
(independent of the dimension or the stabilizer state), the
risk of the estimator is, at most, four times the optimal risk
described in Eq. (11). We summarize this result below.

Proposition II.1. Let ρ be an n-qubit stabilizer state. Sup-
pose that we uniformly sample R elements from the stabilizer
group (with replacement) and measure them. Then, for any
risk ε∗ ∈ (0, 0.5) and confidence level 1 − δ ∈ (0.75, 1),

R � 2
ln (2/δ)∣∣∣ln (1 − (

d
d−1

)2
ε2∗
)∣∣∣ (15)

≈ 2

(
d − 1

d

)2 ln(2/δ)

ε2∗
when ε2

∗ � 1 (16)

suffices to build an estimator using the minimax method
that achieves this risk. Here, d = 2n is the dimension of the
system.

Proof. Take ξ = d in corollary C.1.2 in the Appendix. �
Since (d − 1)/d < 1, the dimension dependence actually

improves the sample complexity, and for large dimensions
one needs to measure only a constant number of stabilizers.
This sample complexity is of the same order as that obtained
using DFE.

Furthermore, following the ideas given in the proof of
Theorem C.1, we can simplify the algorithm given in
Appendix B to compute the estimator. In the simplified
algorithm, we only need to perform a two-dimensional
optimization regardless of the dimension of the system. Con-
sequently, building the estimator is both time and memory
efficient.
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TABLE II. True fidelity, the fidelity estimate, and the number
of stabilizers sampled corresponding to a risk of 0.05 and 95%
confidence level for n-qubit stabilizer states.

n

2 3 4

True fidelity F (ρ, σ ) 0.925 0.912 0.906
Estimate of fidelity F̂∗(outcomes) 0.933 0.911 0.898
Number samples R 1657 2256 2591

In the following we present simulated results for two-,
three-, and four-qubit stabilizer states, for a risk of 0.05 and
a confidence level of 95%. We implement the measurement
strategy discussed above, namely, randomly sampling R sta-
bilizers and recording the outcome eigenvalue. The estimated
fidelity in each case is summarized in Table II. Even for the
four-qubit stabilizer state, constructing the estimator and gen-
erating measurements to compute the estimate together took
only a few seconds on a personal computer.

Now, on the other extreme, we consider the case where an
insufficient number of stabilizer measurements are provided.
Specifically, we consider a measurement protocol where we
measure only n − 1 generators of an n-qubit stabilizer state.
We assume these to be subspace measurements, i.e., the mea-
surements correspond to projecting on the eigenspaces of
the generators with eigenvalue ±1. This is an insufficient
measurement protocol because the measurement of n − 1 sta-
bilizers cannot uniquely identify the stabilizer state, as there
are two orthogonal states that will be consistent with the
measurement statistics. As a consequence, any reasonable
fidelity estimation protocol should give complete uncertainty
for the estimated fidelity. Indeed, the following result shows
that the minimax method gives a risk of 0.5 (implying total
uncertainty) for this measurement protocol.

Proposition II.2. Let ρ be an n-qubit stabilizer state gen-
erated by S1, . . . , Sn. Suppose that the measurement protocol
consists of measuring the first n − 1 generators S1, . . . , Sn−1,
such that the measurements correspond to projecting on
eigenspaces of Si with eigenvalue ±1 for i = 1, . . . , n. Then,
irrespective of the number of shots, the minimax method gives
a risk of 0.5.

Proof. See the end of Appendix C. �
We remark that if we consider eigenbasis measurements

(in contrast to subspace measurements considered above),
computing the risk analytically is more complicated. By
eigenbasis measurement, we mean that the measurement of
the stabilizer S has the POVM {E1, . . . , Ed} where Ei is the
projection on ith eigenvector of S. Note that the eigenbasis
for S is not unique since S has a degenerate spectrum, and
therefore, the risk can depend on the choice of eigenbasis
used for the measurement. For example, if the target state
ρ happens to coincide with one of the eigenvectors used in
the measurement, then that measurement has sufficient in-
formation to accurately estimate the fidelity. However, when
this does not happen, one can expect the risk to be 0.5; see
Sec. III B for an example.

F. Randomized Pauli measurement scheme

In the spirit of the randomized measurement strategy for
stabilizer states we discussed above, we present a generalized
version of such a Pauli measurement scheme for arbitrary
(pure) states. The idea comes from the simple observation that
any density matrix χ can be written as

χ = I

d
+

d2−1∑
i=1

Tr(Wiχ )

d
Wi (17)

= I

d
+

d2−1∑
i=1

|Tr(Wiχ )|
d

Si, (18)

where Si = sign[Tr(Wiχ )]Wi are the Pauli operators appended
with a sign. This is, in particular, valid for the target state ρ.
Then, consider the probability distribution

pi = |Tr(Wiρ)|∑d2−1
i=1 |Tr(Wiρ)|

, i = 1, . . . , d2 − 1, (19)

where ρ is the target state. The measurement scheme is as
follows.

Scheme II.1. Pauli Measurement Scheme
(1) Sample a (nonidentity) Pauli operator Wi with proba-

bility pi (i = 1, . . . , d2 − 1) given in Eq. (19) and record the
outcome (±1) of the measurement.

(2) Flip the measurement outcome ±1 → ∓1 if
Tr(ρWi ) < 0, or else retain the original measurement
outcome.

(3) Repeat this procedure R times and feed the outcomes
into the estimator given by the minimax method.

Because we exclude the measurement of identity, i runs
from 1 to d2 − 1. We flip the outcomes because we need
to measure Si = sign[Tr(Wiρ)]Wi. In Theorem II.2, we show
how to choose the number of repetitions R so as to obtain a
desired value of the risk. Note that the Pauli measurement can
either be a projection on the subspace with eigenvalue ±1 or a
projection on the eigenvectors. For the estimator given by the
minimax method, the values +1, −1 are inconsequential; all
that matters is how many times +1 and −1 are observed.

Note that a very similar measurement scheme has been
considered for verifying the ground state of a class of
Hamiltonians [34]. Further, the random sampling scheme de-
scribed above is very similar to the measurement strategy used
in DFE, except that we sample the Pauli operators using a
different probability distribution.

For the proposed measurement strategy, the minimax
method gives the following sample complexity.

Theorem II.2. Let ρ be an n-qubit pure target state. Sup-
pose that we perform R Pauli measurements as described
in Scheme II.1. Then, for a given risk ε∗ ∈ (0, 0.5) and a
confidence level 1 − δ ∈ (0.75, 1),

R � 2
ln(2/δ)∣∣ln (1 − d2

N 2 ε2∗
)∣∣ (20)

≈ 2

(N
d

)2 ln(2/δ)

ε2∗
when ε2

∗ � 1 (21)
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measurements are sufficient to achieve the risk. Here,

N =
d2−1∑
i=1

|Tr(Wiρ)|

and for any pure target state ρ, we have

N � (d − 1)
√

d + 1.

Therefore

2

(N
d

)2 ln(2/δ)

ε2∗
� 2(d + 1)

(
1 − 1

d

)2 ln(2/δ)

ε2∗
.

Proof. See the end of Appendix C. �
Notably, the sample complexity is upper bounded by

O(d ) ln(2/δ)/ε2
∗, which is comparable to the upper bound

on (the expected value of) the sample complexity in DFE
(see Eq. (10) in Ref. [12]). We can show that the sample
complexity indeed improves when considering a subset of
well-conditioned states defined by Flammia and Liu [12]. To
that end, suppose that for any given i, the state ρ satisfies
either |Tr(ρWi )| = α or Tr(ρWi) = 0. Then, using Eqs. (21)
and (C9), we obtain the bound of

2

α2

(
d − 1

d

)2 ln(2/δ)

ε2∗
(22)

on the sample complexity. As before, this is comparable to
DFE. In addition to giving a good sample complexity, we can
obtain the estimator efficiently by reducing the optimization
to a two-dimensional problem, following the ideas in Theorem
C.1. Thus, if N can be computed efficiently, we can efficiently
construct the estimator even for large dimensions.

G. Robustness against errors

For any fidelity estimator to be useful in practice, it is
crucial for it to be robust to common types of experimental
errors. Systematic errors in the measurements will ultimately
perturb the observed outcome frequencies. Since the estimator
given by the minimax method is affine, we can ensure that
small changes in the observed frequencies only lead to small
changes in the fidelity estimate. These changes can be quanti-
fied as follows.

Let f (1), . . . , f (L) denote the “ideal” observed frequencies,
i.e., when there are no measurement errors in the measurement
settings l = 1, . . . , L. Let f̃

(1)
, . . . , f̃

(L)
denote the actual ob-

served frequencies due to the presence of measurement errors.
From Eq. (8), we know that the minimax estimator can be
written as

F̂∗( f (1), . . . , f (L) ) =
L∑

l=1

Rl〈a(l ), f (l )〉 + c.

For simplicity, denote f = ( f (1), . . . , f (l ) ) and a =
(R1a(1), . . . , RLa(L) ) a larger vector obtained by concatenating
all vectors from l = 1, . . . , L. Denote � f = f̃ − f the
deviation of the observed frequencies in the erroneous
measurement case from the observed frequencies in the ideal
measurement case. Using Hölder’s inequality, we can infer
that

|F̂∗( f ) − F̂∗( f̃ )| � ‖a‖1‖� f‖∞, (23)

where for any vector x, we have ‖x‖1 = ∑
i |xi| and ‖x‖∞ =

maxi |xi|. We obtain

‖a‖1 =
L∑

l=1

Rl

Nl∑
k=1

∣∣a(l )
k

∣∣
and

‖� f‖∞ = max
l=1,...,L

max
k=1,...,Nl

∣∣ f̃ (l )
k − f (l )

k

∣∣.
The quantity ‖a‖1 depends only on the minimax estimator and
is finite. Thus, for small-enough perturbations, we can ensure
that the fidelity estimates in the erroneous measurement case
are close to the fidelity estimates in the error-free case. This
argument qualitatively shows that the estimator given by the
minimax method is robust against perturbations.

We illustrate this property by considering a simple example
of an erroneous measurement setup that one could encounter
in practice. Suppose we wish to perform Pauli measurements,
but due to some issue with the experimental setup, each
qubit undergoes a systematic rotation at the beginning of
the measurement process, changing the POVM. The ideal
measurements correspond to measuring Pauli operators and
recording the observed eigenvalues. This procedure amounts
to choosing POVMs that project onto the ±1 eigenspace of the
respective Pauli operator (we call this subspace projection).
To simulate erroneous measurements, we suppose that each
qubit undergoes an erroneous rotation along a given axis by a
fixed angle. For the purposes of our example, we generate a
randomly chosen axis (unit vector) n j for the jth qubit. The
rotation angle θ j for the jth qubit is chosen from a normal
distribution with zero mean and standard deviation σθ that
controls the amount of noise. Thus, the unitary describing this
erroneous rotation is given by Uerror = ⊗n

j=1 exp(iθ jn j · σ ),
where σ = (X,Y, Z ) denotes the one-qubit Pauli operators.
We assume that this error is systematic, i.e., the same error
acts on all the POVM elements. In other words, if the ideal
POVMs are E (l )

k , the actual POVMs being implemented are
UerrorE

(l )
k U †

error. Since we choose E (l )
± = (I ± Pl )/2 as projec-

tions onto eigenspaces of the Pauli operator Pl , the erroneous
POVM corresponds to (I + UerrorPlU †

error)/2. This is just a
slight rotation of the Pauli observable to be measured due to
calibration issues, for example.

To study the performance of our fidelity estimation method
under such a systematic error, we consider a three-qubit GHZ
state as the target state, and the actual state is obtained by
applying 10% depolarizing noise to the target state. We mea-
sure L = 7 (nonidentity) Pauli operators that have nonzero
expectation with the target state. Each of these operators is
measured Rl = 300 times. We choose a confidence level of
95%. In Table III, we list the fidelity estimate given by our
method using ideal Pauli measurements, the fidelity estimate
due to erroneous Pauli measurements, as well as the bound
on the deviation of the estimates given by Eq. (23). We find
that the deviations in the fidelity estimate always lie within
this bound. In particular, for small rotation angles, the fidelity
estimates with and without error are nearly the same. This
substantiates our claim that our method is robust to small
amounts of measurement errors without any modifications to
the estimation procedure.
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TABLE III. Analysis of fidelity estimates given by the minimax
method under systematic measurement error. The true fidelity with
a three-qubit GHZ target state is 0.912. Ideal Pauli measurements
give a fidelity estimate of 0.915. A systematic measurement error is
present due to erroneous rotation of Pauli operators, with the size of
the rotation controlled by σθ . The calculations in the table correspond
to one randomly drawn instance of these erroneous rotations. Fidelity
estimates using erroneous measurements, the absolute value of devi-
ation of estimates from erroneous and ideal measurements, and the
bound given by Eq. (23) are listed as a function of σθ .

Estimates from

σθ erroneous measurements Deviation Bound

0.05 rad ( 2.86◦) 0.911 0.004 0.004
0.1 rad ( 5.73◦) 0.901 0.014 0.058
0.15 rad ( 8.59◦) 0.878 0.037 0.069
0.2 rad (11.45◦) 0.849 0.066 0.111

Depending on the experimental setup, the measurement
noise encountered in the system can be different from the one
we have considered above. However, even for other forms of
noise, our method is guaranteed to be robust, although the
exact dependence on the noise may vary. If one is interested
in precise quantitative bounds for a specific error model, these
can be computationally estimated following the procedure
outlined above.

III. COMPARISON WITH OTHER METHODS

We now compare the minimax method with two commonly
used techniques to estimate the fidelity: direct fidelity estima-
tion (DFE) and maximum likelihood estimation (MLE) [and a
related approach called profile likelihood (PL)]. We further
compare it with a simple semidefinite programming (SDP)
based approach.

A. Direct fidelity estimation

Flammia and Liu [12] and Silva et al. [13] constructed a fi-
delity estimator by judiciously sampling Pauli measurements.
If the target state ρ is well conditioned, i.e., |Tr(ρW )| � α or
Tr(ρW ) = 0 for each Pauli operator W and some fixed α >

0, then DFE gives a good sample complexity. Specifically,
their method used O[ln(1/δ)/α2ε2] measurement outcomes
to obtain an estimate for fidelity within an additive error of
ε and a confidence level of 1 − δ [12]. Their rigid measure-
ment scheme, however, can have disadvantages in practice,
compared to a more flexible approach that works for arbitrary
POVMs.

Consider a random four-qubit state as the target state, with
the actual state obtained by applying 10% depolarizing noise
to the target state. We choose a risk of 0.05 in DFE and a
confidence level of 95%, and obtain the Pauli measurements
that need to be performed as prescribed by DFE. However, to
perform these Pauli measurements, we choose two different
types of POVM: (1) projection on +1 and −1 eigenvalue
subspaces of the Pauli operator, and (2) projection on each
eigenstate of the Pauli operator, which is common in exper-
iments. For DFE, it does not matter much which of the two

TABLE IV. Comparison of DFE method with the minimax
method for a four-qubit random state and four-qubit GHZ state
as target states. The Pauli measurements are performed as per the
prescription of DFE, but two different types of POVMs are used:
projection on subspace with +1 and −1 eigenvalue, and projection
on each eigenstate of the Pauli operator. We find that the minimax
method has lower risk in most cases, while the estimates are compa-
rable to those of DFE method.

Random state

Subspace projection Eigenbasis projection

DFE Minimax DFE Minimax

True fidelity 0.906 0.906
Estimate 0.895 0.895 0.900 0.902
Risk 0.050 0.023 0.050 0.012

GHZ state

Subspace projection Eigenbasis projection

DFE Minimax DFE Minimax

True fidelity 0.906 0.906
Estimate 0.907 0.907 0.904 0.906
Risk 0.050 0.022 0.050 0.018

POVMs is implemented because the estimator there only uses
the expectation value, while the minimax method makes a
distinction between these POVMs. From Table IV, we can see
that the risk (≈0.023) for the minimax method is less than half
the DFE risk (0.05) when using projection on subspaces (1).
When projecting on each eigenbasis element (2), we obtain a
risk (≈0.012), which is even lower than before, and clearly
much better than the DFE risk. That is, we are able to use
the larger expressive power of POVM (2) compared to POVM
(1) to lower the risk. Since the minimax method has already
computed an estimator with a low risk (as per the prescription
of the DFE method), all subsequent experiments can use the
same measurement settings to estimate the fidelity. Random
sampling of Pauli measurements is not necessary.

Next, we consider a four-qubit GHZ state as the target state,
which is a well-conditioned state as per DFE. As before, we
perform measurements as prescribed by DFE by choosing a
risk of 0.05 for DFE method and a confidence level of 95%.
We summarize the estimated fidelity and risks in the second
half of Table IV. Similarly to the case of the random state,
we observe that the risk given by the minimax method for the
GHZ state is always lower than the DFE risk. Changing from
POVM (1) to POVM (2) again leads to an improvement in
the risk.

Finally, we argue that the Pauli measurement scheme pre-
scribed by DFE can be far from optimal for certain target
states. To demonstrate this, we choose a rather extreme ex-
ample of a random four-qubit target state with the following
measurement scheme: perform as many measurements and
repetitions as prescribed by DFE for achieving a risk of 0.05
at a confidence level of 95%, but instead of performing Pauli
measurements, we choose random POVMs, generated as per
Ref. [35]. In this case, we obtain a risk of ≈0.023 from
the minimax method, which is larger than the risk for Pauli
measurements using the minimax method (see Table IV), but
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still a factor of 2 lower than the DFE risk. This suggests that,
when the target state is random, performing random measure-
ments is almost as good as performing Pauli measurements.
Hence there is no real advantage in using DFE in terms of
sample complexity. If, instead, we used the optimal (though
impractical) measurement scheme described in Sec. II D, we
can obtain a risk of 0.05 using just ≈700 total measurements
(independent of the target state and dimension) as opposed
to ≈248 000 total measurements required by DFE for the
random target state. While this random state example is rather
atypical, it stands to demonstrate that there are cases where the
DFE measurement scheme is outperformed by a more tailored
scheme, which the minimax method can benefit from.

A potential disadvantage for the minimax method is that
once the dimension of the system becomes very large, depend-
ing on the measurement scheme, constructing the estimator
can become inefficient. One reason for this inefficiency is
that the algorithm we use for optimization requires projec-
tion on the set of density matrices. Because we perform
this projection through diagonalization, the projection can
cost up to O(d3) iterations, where d is the dimension of the
system. In contrast, DFE can handle large dimensions well be-
cause the classical computations involved are simple and most
of the complexity is absorbed into performing the experi-
ments. This drawback of the minimax method is alleviated
if we use the Pauli measurement scheme described in Scheme
II.1, which is similar to DFE. We have written an efficient
algorithm to construct the estimator given by the minimax
method for this measurement scheme, as noted in Sec. II F.
Moreover, the estimator can be precomputed once the mea-
surement scheme has been defined.

B. MLE and profile likelihood

Maximum likelihood estimation (MLE) is a popular ap-
proach used for quantum tomography [8]. One can think of
MLE as minimizing the Kullback-Liebler divergence between
the observed frequencies and the Born probabilities [36]. This
naturally leads to the (negative) log-likelihood function

�
({ f (l )}L

l=1

∣∣χ) = −
L∑

l=1

Rl

R

Nl∑
k=1

f (l )
k ln

[
Tr
(
E (l )

k χ
)]

, (24)

where R = ∑L
l=1 Rl . One then minimizes the function � (or

equivalently, maximizes the likelihood function) to obtain
the MLE estimate σ̂ for the experimental quantum state. We
calculate Tr(ρσ̂ ) to estimate the fidelity with a target state ρ.
While the estimates are usually good enough when a sufficient
number of measurements is used for the reconstruction, a
major disadvantage is that the method provides no confidence
intervals for the estimated fidelity.

A common approach to compute an uncertainty of the
MLE estimate is Monte Carlo (MC) resampling. Herein,
one numerically generates (artificial) outcomes based on the
observed frequencies and the expected statistical noise distri-
bution, referred to as resampling. For each set of outcomes
one reconstructs the state and estimates the fidelity as before.
This process is repeated many times to obtain a large number
of MLE fidelity estimates which can be used to calculate an
(asymmetric) interval around the median that corresponds to

the chosen confidence level. If necessary, hedging [37] can be
implemented to deal with zero probabilities. Note that the MC
approach is similar to the nonparametric bootstrap method
used for finding confidence intervals [38].

A disadvantage of such an MLE-based approach is that we
need to reconstruct the state, which can be costly. Moreover,
there are certain freedoms in the resampling and hedging
definitions, which can affect the results. We argue that the
MC approach can give overconfident uncertainty bounds. This
issue can be seen in the following example: take a two-qubit
Bell state, stabilized by XX and ZZ , as the target state. We
measure only XX with 500 repetitions, which is not enough
to uniquely determine the state. The true state is obtained by
applying 10% depolarizing noise to the Bell state, so that the
actual fidelity is 0.925. We generate 100 MLE fidelity esti-
mates (with new measurement outcomes generated at every
repetition), and we find that the average MLE fidelity estimate
is 0.44 when the measurements correspond to projection onto
an eigenbasis of XX .

The large error (an estimate of 0.44 compared to the true
value of 0.925) is expected since the measurements are chosen
poorly with respect to the state. This problem, however, is not
detected by the MC approach, where we find that the average
uncertainty corresponding to a confidence level of 95% is
(0.32, 0.38). This indicates that MC uncertainty is overcon-
fident (because 0.44 + 0.38 = 0.82 < 0.925). Indeed, this is
seen through the empirical coverage probability which turns
out to be 0, in stark contrast with the high confidence level of
95% that was chosen. By empirical coverage probability, we
mean the fraction of cases where the true fidelity lies inside
the computed confidence interval. We obtain very similar
results when using subspace measurements [average fidelity
of 0.45, average uncertainty of (0.31, 0.37), and empirical
coverage probability of 0]. Therefore, we cannot always trust
the uncertainty given by the MC approach. In contrast, the
minimax approach gives a risk of 0.5 for this example (imply-
ing total uncertainty) when insufficient number of stabilizer
measurements are provided irrespective of whether eigenbasis
or subspace measurements are used.

We note that such a problem with the MC approach is also
present in more realistic scenarios. For example, consider a
three-qubit W state as the target state, and suppose that the
true state has a fidelity of 99.1% with the target state. We
measure N = 19 Pauli operators (subspace measurements),
choosing all the nonidentity Pauli operators that have nonzero
overlap with the W state. Each Pauli measurement is repeated
100 times, and the outcomes together are used to estimate the
fidelity corresponding to a confidence level of 95%. Using a
total of 150 such estimates, we find that the MC method gives
an empirical coverage probability of 72%, which is much
smaller than the chosen confidence level of 95%. Thus, the
MC approach is overconfident and gives tighter bounds than
warranted in practical situations of interest.

In addition to the statistical problems noted above, we
remark that MC resampling is also computationally costly.
This is because MC resampling requires performing MLE for
each (artificial) fidelity estimate generated, which is costly.
Moreover, this costly computation needs to be performed after
the experimental data has been collected. In contrast, our
method only needs to compute the estimator once (potentially
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F
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F1 F2MLE

FIG. 2. A schematic of a typical profile likelihood (PL) plotted
against the parameter F (representing fidelity). The MLE estimate
(green) corresponds to the minimum of the PL curve. A cutoff for PL
(red dashed horizontal line) gives a bound [F1, F2] for the estimated
fidelity.

costly computation), and this can be done before collecting
measurement data. Once the estimator has been constructed,
it runs very efficiently on the experimental data. Thus, we
not only obtain statistical but also computational benefits over
MLE with MC resampling.

An alternate approach to obtain a bound for the MLE
estimate is calculating the PL function [39]. Given any value
F ∈ [0, 1], PL corresponds to the solution of the optimization
problem

PL(F ) = min
χ∈X

�
({ f (l )}L

l=1

∣∣χ)
s.t. Tr(ρχ ) = F. (25)

Note that we define the profile likelihood in terms of neg-
ative log-likelihood instead of the likelihood function. Our
definition of PL amounts to solving the MLE optimization
problem, except for the added constraint that the fidelity with
the target state must be equal to F . The MLE solution can be
obtained from PL by adding an additional layer of optimiza-
tion: MLE = minF∈[0,1] PL(F ). It can be shown that PL(F ) is
convex in F . The advantage of calculating PL is that given a
cutoff value, one can obtain a bound on the fidelity similar to
an error bar. To this end, we draw a horizontal line (the cutoff)
on the PL versus F plot, and the locations along the F axis
where this line intersects the curve gives a bound on estimated
fidelity. The MLE estimate lies inside this interval because
it corresponds to the minimum. A schematic of a typical PL
plot is shown in Fig. 2. A somewhat similar idea for obtaining
confidence regions was proposed by Faist and Renner [40].

Using PL is a natural way of providing a bound for MLE
since it returns an interval of fidelity estimates that correspond
to large-enough likelihood. However, it does not provide a
true confidence interval as the location of the cutoff value is
unknown. The issue is that likelihoods can be considered a
generic notion of “plausibility” but not, in the technical sense,
“uncertainty;” and that PL gives a likelihood region, which is
not the same as a coverage probability [41].

What we want is that given many MLE estimates (from ac-
tual experimental data), the true fidelity must lie 1 − δ fraction
of times inside the bound calculated from PL, where 1 − δ

is the chosen confidence level. One general heuristic that is
used to give such a cutoff for PL is based on Wilks’ theorem
[42]. However, this theorem is only valid asymptotically as the
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FIG. 3. Plot of empirical coverage probability against the aver-
age width of the bound given by the PL and SDP methods for a
three-qubit random target state and 48 Pauli measurements. It can
be seen that PL gives tighter bounds than the SDP method. For
reference, the minimax bound corresponding to a confidence level
of 95% is shown as well.

sample size becomes arbitrarily large, and furthermore, it does
not work well for quantum states, especially those that are
low rank [43,44]. Note that Scholten and Blume-Kohout [43]
gave an alternative to Wilks’ theorem for quantum states, but
like Wilks’ theorem, their alternative was only exact asymp-
totically. Furthermore, it used models different from what
we need for PL (they considered nested Hilbert spaces of
increasing dimension, while we require density matrices of
the same dimension but with an added constraint). Therefore,
as of now, we do not know how to obtain a confidence interval
using PL.

Hence, for the purpose of demonstration, we choose dif-
ferent cutoff values for the PL and compute the bounds (as
described below) on the MLE estimate corresponding to each
chosen value. We take a three-qubit random target state and
apply 10% depolarizing noise to obtain the actual state. We
measure L = 48 = 0.75 × 43 Pauli operators, chosen in the
decreasing order of weights given by DFE, repeating each
measurement 100 times. Using the knowledge of the true
state, we check in which of these bounds the true fidelity lies.
This process is repeated 103 times by generating different ob-
served frequencies using the true state, and subsequently, we
obtain the coverage probability corresponding to each value
of the cutoff. We also find the average width of the bound for
each cutoff value. We plot the coverage probability against
this average width in Fig. 3, finding that the bounds are rea-
sonably tight. Note that the true fidelity is usually not known,
so the coverage probability cannot be computed in practice.

C. An SDP-based approach

Finally, we compare with a simple semi-definite program-
ming (SDP) method to obtain a bound on fidelity. This
involves solving the following intuitive optimization problem
to obtain bounds on fidelity

Fmin = min
χ∈X

Tr(ρχ )

s.t.
L∑

i=1

Ni∑
k=1

(
Tr
(
E (i)

k χ
) − f (i)

k

)2 � εm, (26)

Fmax = max
χ∈X

Tr(ρχ )

s.t.
L∑

i=1

Ni∑
k=1

(
Tr(E (i)

k χ ) − f (i)
k

)2 � εm. (27)
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TABLE V. Comparison of different methods for estimation of fidelity: minimax method, maximum likelihood estimation (MLE) with
Monte Carlo (MC) sampling for estimating the fidelity and uncertainty, profile likelihood (PL) and semi-definite programming (SDP) methods
for calculating bounds on fidelity and the direct fidelity estimation (DFE) method.

Minimax MLE, MC PL SDP DFE

No unknown parameters required? �a � ✗ ✗ �
Provides a rigorous confidence interval (never overconfident)? � ✗ ✗b ✗b �
Risk level known before seeing the outcomes? � ✗ ✗ ✗ �
Applies to any measurement setting? � � � � ✗

No significant computation required in practice? ✗c ✗ ✗ ✗ �
aTechnically, ε◦ can be considered as a free parameter, but we fix it at ε◦ = 10−5. Since we do not have to tune ε◦, we do not list it as an
unknown parameter.
bBecause no systematic method of obtaining a confidence interval is known.
cThe computational time required for the minimax method depends on the system dimension, the target state, the measurement settings, and
the algorithm used. For the Pauli measurement scheme in Sec. II F, we have a fast algorithm irrespective of the target state or the dimension.

In essence, we find the minimum and maximum fidelity with
the target state over density matrices that satisfy the measure-
ment statistics up to an error of εm. The advantage of such an
approach is that the bounds obtained are independent of the
method used to estimate fidelity. The drawback, however, is
that the parameter εm needs to be chosen “by hand.” Since
we need to tune the parameter εm similar to the cutoff in
the PL method, we plot the coverage probability against aver-
age width of the bound as before in the Fig. 3. We use the same
state and measurement settings as for PL, and 103 estimates to
compute the coverage probability. We can see that the average
width of the bound given by SDP method is typically larger
than both PL and the minimax method.

We remark that the minimax method gives a wider con-
fidence interval than PL in Fig. 3 due to its conservative
definition. In turn, the minimax method’s confidence interval
is guaranteed to hold irrespective of what the true state of the
system is. Indeed, we can construct the fidelity estimator using
the minimax method even before taking any data. In contrast,
the PL and SDP methods compute bounds on the fidelity
after the experimental data are collected, so they can be tighter
in principle. However, the PL method requires choosing a
cutoff while the SDP method requires choosing the parameter
εm. For experimental data, we have no systematic way to
choose these quantities to ensure that the bound corresponds
to a genuine confidence interval. Therefore, we cannot use PL
and SDP methods to generate confidence intervals in practice.
In contrast, the minimax method gives rigorous confidence
intervals without free parameters.

Table V provides a quick overview of comparison of these
different methods.

D. Quantum state verification

Quantum state verification (QSV) is a procedure to certify
that the fidelity of the quantum state prepared in the laboratory
with a pure target state is greater than some prespecified
value with high probability [15,45–47]. QSV corresponds to
a hypothesis testing problem, which is related to, but differ-
ent from, our problem of estimation of fidelity. Nevertheless,
the approach adopted by Pallister et al. [15] and related and
subsequent work [45–48] shares similarities with our fidelity

estimation method, and therefore, a comparison of these meth-
ods is helpful.

Suppose that ρ = |ψ〉〈ψ | is the pure target state one wishes
to prepare, but one prepares the states σ1, σ2, . . . , σR in the
laboratory. For comparison with our method, we assume
that σi = σ are identically prepared states and that measure-
ments are independent. One is given the promise that either
F (ρ, σ ) = 1 or F (ρ, σ ) � 1 − εq for some εq ∈ (0, 1). If one
can reject the hypothesis F (ρ, σ ) � 1 − εq with probability
1 − δ, then we can infer that F (ρ, σ ) = 1 with a confidence
level of 1 − δ. The error εq denotes (a bound on) the deviation
of the true fidelity from the maximum fidelity of 1. This is dif-
ferent from the additive error ε∗ in fidelity estimation, which
bounds the deviation of the true fidelity from the estimated
fidelity.

The goal of QSV [15] is to obtain a minimax opti-
mal protocol for rejecting the hypothesis F (ρ, σ ) � 1 − εq.
Pallister et al. [15] considered random measurement strategies
to achieve this goal, and showed that one can obtain the
minimax optimal strategy by solving an optimization prob-
lem. They demonstrated their method by obtaining a minimax
optimal measurement strategy for arbitrary two-qubit states.
In particular, to reject F (ρ, σ ) � 1 − εq with a confidence
level of 1 − δ, their strategy needs

O

(
ln(1/δ)

εq

)
samples. The scaling of 1/εq is optimal for QSV under the
aforementioned assumptions. We note that quantum state cer-
tification [30] also achieves O(1/εq) scaling but using joint
measurements, which are difficult to implement with current
technology. In contrast, Pallister et al. [15] presented a local,
single-copy measurement protocol for achieving this scaling
for two-qubit states.

We show in Appendix D that by using the same measure-
ment strategy, our method can estimate fidelity to an additive
error ε∗ with a confidence level of 1 − δ by using

O

(
ln(2/δ)

ε2∗

)
samples. Note that the scaling of 1/ε2

∗ is optimal for any fi-
delity estimation protocol using only independent single-copy
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measurements [14]. Thus, we demonstrate for the two-qubit
example, that the optimal QSV measurement protocol is also
optimal for fidelity estimation using our method.

Notice, however, that the scaling of the optimal sample
complexity is different for QSV [O(1/εq)] and fidelity estima-
tion [O(1/ε2

∗ )]. Such a difference boils down to the differences
in problem setup for QSV and fidelity estimation (for exam-
ple, the different meanings of εq and ε∗) and the underlying
assumptions. For instance, if we remove the assumption of
QSV that either F (ρ, σ ) = 1 or F (ρ, σ ) � 1 − εq, as one
would in an actual experiment, the scaling of QSV can be
worse than 1/εq (see Ref. [47] and its Supplementary Mate-
rial). Despite these differences, the approach adopted in QSV
can help with designing optimal measurement protocols that
our method can benefit from for fidelity estimation, as demon-
strated by the two-qubit example above. Additional details on
QSV and how it compares with our method can be found in
Appendix D.

E. Classical shadows

Recently, a method called classical shadows was intro-
duced for the estimation of expectation values of observables
[14]. We begin by remarking that the philosophy of classical
shadows differs from our method. In classical shadows, one
seeks to find an optimal estimation procedure, assuming that
there is no a priori information about the observables whose
expectation values need to be computed. In contrast, we seek
to find the optimal estimation procedure, given apriori knowl-
edge of the observable, which is often known in practice. In
the context of fidelity estimation, we know the target state ρ

with which we wish to estimate the fidelity.
To obtain a classical shadow, one randomly selects a

unitary U from a given ensemble U according to some
probability distribution, rotates the state by U (i.e., σ →
UσU †), and performs a computational basis measurement.
If |b〉 is the computation basis element observed after one
such measurement, then in expectation, we obtain a quan-
tum channel Mc, defined by E[U †|b〉〈b|U ] = Mc(σ ), where
σ is the underlying state. If the unitary ensemble is to-
mographically complete, then the channel Mc is invertible
[14], and we call M−1

c (U †|b〉〈b|U ) a classical snapshot of
σ . After R measurements, the array of classical snapshots
{M−1

c (U †
1 |b1〉〈b1|U1), . . . ,M−1

c (U †
R |br〉〈br |UR)} (where Ui

is the randomly sampled unitary and |bi〉 is the computational
basis element observed at the ith time step) is called a classical
shadow. Then, given an observable O, an estimate of the
expectation value Tr(Oσ ) using a single classical snapshot
is given by Tr[OM−1

c (U †
1 |b1〉〈b1|U1)]. Multiple estimates

are combined using the median of means to give the final
estimate [14].

Classical shadows are minimax optimal up to a constant
factor in the worst case over all observables, and thus, are
suitable to use when the observable is not known a priori.
Our method is minimax optimal up to a constant factor for
a given observable and measurement protocol. Thus, given
the observable whose expectation needs to be estimated and
the measurement protocol being implemented, our method
can match the performance (sample complexity) of classical
shadows up to a constant factor.

Both these approaches have their respective advantages.
Since classical shadows use a fixed randomized measurement
protocol, they can simultaneously estimate N observables to a
precision of ε with O[S ln(N )/ε2] samples, where S is the
maximum shadow norm of the observables [14]. However,
since the observables are not assumed to be known before-
hand, the measurements are not tailored to the observables
being estimated. In contrast, for a given observable, we are
allowed to choose an appropriate measurement protocol to
estimate the expectation value of that observable. As a re-
sult, our method, in principle, can use exponentially fewer
samples than classical shadows for estimating the expectation
value. A simple example is estimating the expectation with a
Pauli observable acting nontrivially on all qubits. The prefac-
tor (shadow norm) S scales exponentially using randomized
global Clifford measurements as well as randomized Pauli
measurements, as was pointed out in Huang et al. [14]. As a
result, one has to take exponentially many samples to estimate
this expectation value using classical shadows. In contrast,
measuring in the eigenbasis of the given Pauli observables
only needs O(1/ε2) samples to estimate the expectation to an
error of ε.

For fidelity estimation with a pure target state ρ, we begin
by studying the case when the unitary ensemble U is the
Clifford group Cn on n qubits, and we sample uniformly at
random from Cn. It was shown [14] that classical shadows only
need O(1/ε2) measurements to estimate the fidelity with ρ to
an error of ε, which matches the optimal sample complexity
up to a constant factor. Owing to minimax optimality, our
method can match the sample complexity of classical shadows
using global Clifford measurements using O(1/ε2) measure-
ments. However, since the size of the Clifford group scales as
|Cn| = 2n2+2n

∏n
i=1(4i − 1) with the number of qubits n [49],

it is computationally challenging to compute our estimate
for global Clifford measurements by directly optimizing over
POVM elements. To circumvent this problem, we need to
simplify the optimization problem involved in computing our
estimator analytically, as done, for example, for the random-
ized Pauli measurement scheme described in Sec. II F. We
leave the problem of simplifying the optimization to a future
study.

We remark that the computational difficulty with comput-
ing estimates is not specific to our method, but also shared by
classical shadows. For Clifford measurements, the classical
shadow stores the stabilizer states U †

i |bk〉〈bk|Ui, which can be
done efficiently. However, the target state (or more generally,
the observable O) with which the expectation needs to be
computed need not be a stabilizer state (or Clifford unitary).
For efficient computation of the estimate Tr(OU †

i |bk〉〈bk|Ui ),
one needs to be able to write the observable as a linear com-
bination of polynomially many Cliffords (or stabilizer states).
If this is not possible, there may be no efficient way of storing
the observable in memory or computing the estimate. Thus,
for many observables and target states of interest, even clas-
sical shadows suffers from exponential classical computation
time, albeit in a different manner than our method. We remark
that for stabilizer states, we have an efficient algorithm to
compute our estimator that also achieves optimal sample com-
plexity as described in Sec. II E. We conjecture this algorithm
can be generalized to states that can expressed as a linear
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combinations of polynomially many stabilizer states, with, at
most, a polynomial overhead.

Note, however, that Clifford measurements can be con-
sidered as an exceptional case, especially in the near term.
Not only does the size of the Clifford group grow extremely
quickly with qubit number, even the experimental complexity
for realizing n-qubit Clifford gates grows rapidly, making
this a rather impractical approach. In practice, experiments
almost always rely on local measurements, such as Pauli
measurements.

For fidelity estimation using Pauli measurements, we can
get an exponential advantage over classical shadows. A sim-
ple example is estimating the fidelity with the target state
|0 . . . 0〉 (computational basis state with all zeros). Since the
shadow norm using Pauli measurements scales exponentially
with the locality of the observable [14], and because |0 . . . 0〉
has a nontrivial support on all n qubits, classical shadows
need exponentially many samples to estimate the fidelity with
this state using random Pauli measurements. In contrast, our
method (and even DFE [12]) can estimate the fidelity with
|0 . . . 0〉, using computational basis measurements that does
not scale with the number of qubits. This is because the
measurement protocol is tailored to the target state, which is
known a priori.

IV. CONCLUDING REMARKS AND FUTURE RESEARCH

The minimax method can be used to obtain an estimator
for the fidelity with a pure target state for any measure-
ment scheme. For a given setting, the estimator only needs
to be computed once, and can subsequently be evaluated on
raw measurement outcomes instantaneously. This gives our
method a practical advantage over other estimation protocols
which require random sampling of measurement settings.

Crucially, the minimax method not only constructs an esti-
mator but also provides rigorous confidence intervals that are
nearly minimax optimal. We showed that this property trans-
lates to practical sample complexity when the measurement
scheme is carefully chosen. Notably, the risk is a property
of the chosen measurement scheme (including the number
of repetitions) and target state and is thus computed before
seeing any data. Because the risk is precomputed, it is taken to
be symmetric around the fidelity estimate. As a consequence,
it might be suboptimal in practice, as the confidence interval
might include unphysical values when the estimate is close to
0 or 1.

However, the fact that the risk is known beforehand allows
us to use the method for benchmarking experimental protocols
without having to take any data. This can, therefore, be useful
in guiding the design of experiments. Further, when extending
the method to quantum channels using the Choi-Jamiołkowski
isomorphism [50–52], such benchmarking can also be done
for protocols that estimate gate fidelity.

The computation involved in finding the fidelity estimator
is practical for relatively small dimensions, but can become
computationally intensive for larger systems because interme-
diate steps in our algorithm need O(d3) iterations. Therefore,
finding more efficient ways to do the optimization needed
to find the estimator would prove very useful in practice.
We show that this is possible for a specific measurement

protocol involving Pauli measurements (see Sec. II F), where
the optimization is reduced to two dimensions irrespective of
the dimension of the system. The only challenge is efficiently
computing the Pauli weights for the measurement protocol,
but that is not a drawback of the algorithm itself. For ex-
ample, when these weights can be efficiently computed, as
is possible for well-conditioned states, the estimator can be
efficiently computed in very large dimensions. It would be
interesting to extend such an approach to more general mea-
surement settings to efficiently compute the fidelity estimator.
Similarly, approaches to compute the estimator efficiently for
randomized Clifford measurements need to be investigated.
This problem essentially reduces to efficiently computing the
classical fidelity between two probability distributions deter-
mined by randomized Clifford measurements on two different
states. Furthermore, it would be interesting to see if using
conjugate gradient methods for the initial descent and then
using accelerated projected gradient methods like Nesterov’s
method [53] can give significant improvements in performing
the optimization for target states and measurement settings.
Such an approach was proposed by the authors of Ref. [54] to
give a fast algorithm for MLE.

An obvious advantage of the minimax method over to-
mographic methods like MLE is that the state need not be
reconstructed. We showed that the uncertainty given by the
Monte Carlo method (for MLE), although typically tighter,
need not correspond to a genuine confidence interval as it
can be overconfident. PL also gives tighter bounds than the
minimax method because it is computed after seeing the data,
but we are not aware of any systematic method to obtain
a confidence interval using PL. Finding an approach to ob-
tain confidence intervals from PL and similarly for the SDP
approach outlined above are interesting directions for future
research. Finally, the confidence intervals from the minimax
method, though guaranteed to be correct, are often not as
tight as they could be. This could potentially be improved by
generalizing to an asymmetric risk or by computing the risk
after seeing the data, or both.

An open source implementation of the minimax method
can be found in Ref. [55].
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APPENDIX A: MINIMAX METHOD: THEORY

We discuss here the theory surrounding the minimax
method for fidelity estimation. We begin by giving a short
overview of Juditsky and Nemirovski’s framework [24] in
Appendix A 1. Then, in Appendix A 2, we describe how we
adapt their general method for the purpose of fidelity estima-
tion so as to obtain the procedure described in Sec. II A.

1. Juditsky and Nemirovski’s premise

Suppose we are given a set of “states” X ⊆ Rd that is a
compact and convex subset of Rd . We wish to estimate the
linear functional 〈g, x〉, where g ∈ Rd is some fixed vector,
while the state x ∈ X of the system is unknown to us. We
do not have direct access to the state x. However, we have
access to a single measurement outcome determined by the
state x. Measurements are modeled using random variables
that assign probabilities to the possible outcomes depending
on the state.

To that end, Juditsky and Nemirovski [24] consider a fam-
ily of random variables Zμ parametrized by μ ∈ M, where
M ⊆ Rm is some set of parameters. These random variables
take values in a Polish space2 (�,�) equipped with a σ -finite
Borel measure P [24]. We assume that Zμ has a probability
density pμ with respect to this reference measure P . The state
x ∈ X determines the random variable ZA(x) through an affine
function A : X → M, and we are given one outcome of this
random variable for the purpose of estimation. Looking ahead
to the specialization of this framework to the quantum setting,
one can think of the set of observations � as a finite set,
Borel measurable functions on � as functions on �, and the
integrals

∫
�

f (ω)dP as the finite sum
∑

ω∈� f (ω).
Our goal is to construct an estimator for 〈g, x〉 that uses

an outcome of the random variable ZA(x) to give an estimate.
An estimator is a real-valued Borel measurable function on
�. The set of estimators F we are allowed to work with is
any finite-dimensional vector space comprised of real-valued
Borel measurable functions on � as long as it contains con-
stant functions [24]. The mapping D(μ) = pμ between the
parameter μ and the corresponding probability density pμ is
called a parametric density family [24]. To be able to choose
an appropriate estimator from F given that the probability
density of the random variable is pA(x), we want that the set
of estimators F and the parametric density family D interact
well with each other. This gives rise to the notion of a good
pair defined by Juditsky and Nemirovski [24].

2A Polish space is a topological space that is homeomorphic to a
separable complete metric space. We endow this with the Borel σ

algebra.

Definition A.1 (Good pair). We call a given pair (D,F ) of
parametric density family D and finite-dimensional space F
of Borel functions on � a good pair if the following conditions
hold.

(1) M is a relatively open convex set in Rm. By rel-
atively open, we mean M = relint(M) ≡ {x ∈ M | ∃r >

0 with B(x, r) ∩ aff(M) ⊆ M}, where aff(M) is the affine
hull of M.

(2) Whenever μ ∈ M, we have pμ(ω) > 0 for all ω ∈ �.
(3) Whenever μ, ν ∈ M, φ(ω) = ln[pμ(ω)/pν (ω)] ∈ F .
(4) Whenever φ ∈ F , the function

Fφ (μ) = ln

(∫
�

exp [φ(ω)]pμ(ω)dP

)
is well defined and concave in μ ∈ M.

Any estimator in ĝ ∈ F is called an affine estimator (note,
however, that ĝ need not be an affine function).

To judge the performance of an arbitrary estimator ĝ, we
define the δ risk as follows [24].

Definition A.2 (δ risk). Given a confidence level 1 − δ ∈
(0, 1), we define the δ risk associated with an estimator ĝ as

R(̂g; δ) = inf
{
ε : sup

x∈X
Probω∼pA(x){ω : |̂g(ω) − 〈g, x〉| > ε} <δ

}
,

where ω ∼ pA(x) means that ω is sampled according to pA(x).
The corresponding minimax optimal risk is defined as

R∗(δ) = inf
ĝ
R(̂g; δ),

where the infimum is taken over all Borel functions ĝ on
�. Restricting to just the affine estimators, the affine risk is
defined as

Raff(δ) = inf
ĝ∈F

R(̂g; δ).

It turns out that we do not lose much by restricting our at-
tention to affine estimators. Indeed, Juditsky and Nemirovski
[24] proved that if (D,F ) is a good pair, there is an estimator
F̂∗ ∈ F with δ risk at most ε∗, such that

Raff(δ) � ε∗ � ϑ (δ)R∗(δ),

ϑ (δ) = 2 + ln(64)

ln(0.25/δ)
,

for δ ∈ (0, 0.25).
The estimator F̂∗ and the risk ε∗ are constructed as follows

[24,28].
(1) Find the saddle-point value of the function 
 : (X ×

X ) × (F × R+) → R defined as


(x, y; φ, α) = 〈g, x〉 − 〈g, y〉 + 2α ln(2/δ)

+ α

[
ln

(∫
�

exp(−φ(ω)/α)pA(x)(ω)dP

)

+ ln

(∫
�

exp(φ(ω)/α)pA(y)(ω)dP

)]
(A1)

to a given precision. Juditsky and Nemirovski [24] showed
that 
 has the following properties. 
 is concave in (x, y)

012431-16



THEORY OF VERSATILE FIDELITY ESTIMATION WITH … PHYSICAL REVIEW A 110, 012431 (2024)

and convex in (φ, α), and also 
 � 0. Further, 
 has a well-
defined saddle point. See Ref. [24] for other properties and a
more general treatment of the problem.

(2) Denote the saddle-point value of 
 by 2ε∗:

ε∗ = 1
2 sup

x,y∈X
inf

φ∈F ,α>0

(x, y; φ, α)

= 1
2 inf

φ∈F ,α>0
max
x,y∈X


(x, y; φ, α). (A2)

Say the saddle-point value is achieved at some points x∗, y∗ ∈
X , φ∗ ∈ F , and α∗ > 0 to a precision ε > 0. Suppose that an
outcome ω ∈ � is observed upon measurement of the random
variable ZA(x). Then, the estimator F̂∗ ∈ F is given as

F̂∗(ω) = φ∗(ω) + c,

where the affine estimator φ∗ is given by

φ∗
α∗

= 1

2
ln

(
pA(x∗ )

pA(y∗ )

)
, (A3)

and the constant c is

c = 1
2 (〈g, x∗〉 + 〈g, y∗〉). (A4)

The δ risk associated with this estimator satisfies R(F̂∗; δ) �
ε∗ + ε, so the final output of the procedure is F̂∗(ω) ± (ε∗ +
ε). See Refs. [24,28] for details.

Importantly, the estimator F̂∗ is a function that can accept
any outcome ω ∈ �. In other words, the estimate is provided
depending on the outcome, but the risk ε∗ is computed before
seeing any outcome.

So far we described the one-shot scenario, i.e., producing
an estimate for 〈g, x〉 from one outcome of a single random
variable ZA(x). In practice, we will need to consider outcomes
of different random variables ZA(l ) (x), which corresponds to
l = 1, . . . , L different measurement settings. More precisely,
we are given Polish spaces (�(l ), �(l ) ) equipped with a
σ -finite Borel measure P (l ) for l = 1, . . . , L. We are also
given a set of parameters M(l ) for l = 1, . . . , L. For each l =
1, . . . , L, we are given a family of random variables Zμl taking
values in �(l ), where μl ∈ M(l ). The random variable Zμl has
a probability density p(l )

μl
with respect to the reference measure

P (l ). As before, we are given affine mappings A(l ) : X →
M(l ) for l = 1, . . . , L that map the state x ∈ X of the system
to a corresponding parameter. For each l = 1, . . . , L, we can
choose estimators for the lth measurement from the set F (l ),
which is a finite-dimensional vector space of real-valued Borel
measurable functions on �(l ) that contains constant functions.
To incorporate the outcomes of these different random vari-
ables, Juditsky and Nemirovski [24] defined the direct product
of good pairs, which essentially constructed one large good
pair from many smaller ones.

Definition A.3 (Direct product of good pairs). Consider-
ing the following quantities for l = 1, . . . , L. Let (�(l ), �(l ) )
be a Polish space endowed with a Borel σ -finite measure
P (l ). Let D(l )(μl ) = p(l )

μl
be the parametric density family for

μl ∈ M(l ). Let F (l ) be a finite-dimensional linear space of
Borel functions on �(l ) containing constants, such that the
pair (D(l ),F (l ) ) is good. Then the direct product of these good
pairs (D,F ) = ⊗L

l=1(D(l ),F (l ) ) is defined as follows.

TABLE VI. A dictionary specifying the meaning of each quan-
tity appearing in the text for the purpose of fidelity estimation. The
index l varies from 1 to L, where L denotes the number of mea-
surement settings. The lth measurement setting is described by the
POVM {E (l )

1 , . . . , E (l )
Nl

}.

X Set of density matrices

�(l ) Measurement outcomes {1, . . . , Nl}
P (l ) Counting measure on (�(l ), � (l ) ) with � (l ) = 2�(l )

M(l ) Relatively open simplex {x ∈ RNl | xi > 0,
∑

i xi = 1}
pμ pμ = (μ1, . . . , μNl ), μ ∈ M(l )

A(l ) A(l )(χ )k = Tr(E (l )
k χ )+ε◦/Nl

1+ε◦ , k = 1, . . . , Nl , ε◦ > 0
F (l ) Set of estimators: real-valued functions on �(l )

g Pure target state ρ

(1) The large space is � = �(1) × · · · × �(L) endowed
with the product measure P = P (1) × · · · × P (L).

(2) The set of parameters is M = M(1) × · · · × M(L),
and the associated parametric density family is D(μ) = pμ ≡∏L

l=1 p(l )
μl

for μ = (μ1, . . . , μL ) ∈ M.
(3) The linear space F comprises of all functions φ

defined as φ(ω1, ω2, . . . , ωL ) = ∑L
l=1 φ(l )(ωl ), where φ(l ) ∈

F (l ) and ωl ∈ �(l ) for l = 1, . . . , L.
It can be verified that the direct product of good pairs is a

good pair [24]. Therefore, we can apply the above procedure
for constructing an optimal estimator to the direct product of
good pairs to obtain an optimal estimator that accounts for all
the given measurement outcomes.

We now note a simplification of the risk ε∗ obtained us-
ing results of Juditsky and Nemirovski [24]. Recall that we
defined the risk ε∗ as half the saddle-point value of the func-
tion 
 [see Eq. (A2)]. However, this definition is not very
amenable to theoretical calculations. Therefore, we note an
alternate expression for the risk, given by Proposition 3.1 of
Juditsky and Nemirovski [24]

ε∗ = 1

2
max
x,y∈X

{
〈g, x〉 − 〈g, y〉 | AffH[A(x), A(y)] � δ

2

}
.

(A5)

Juditsky and Nemirovski [24] referred to the quantity

AffH(μ, ν) =
∫

�

√
pμ pνdP (A6)

as the Hellinger affinity (this quantity is sometimes referred
to as the Bhattacharyya coefficient in the discrete case; see,
for example, Ref. [56]). Juditsky and Nemirovski [24] proved
that the Hellinger affinity is continuous and log-concave in
(μ, ν) ∈ M × M when (D,F ) is a good pair.

2. Fidelity estimation

Now we give the details on how we adapt Juditsky and
Nemirovski’s general framework to fidelity estimation. In
Table VI, we provide a dictionary relating the general quan-
tities defined in Appendix A 1 to our scenario of fidelity
estimation. We assume that the quantum system has a d-
dimensional Hilbert space over C, d ∈ N. The set of d × d
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complex-valued Hermitian matrices forms a real-vector space
that is isomorphic to Rd2

, and thus, we can write X ⊆ Rd2
,

where X is the set of density matrices. Note that X is a
compact and convex set. For the lth measurement setting,
we consider the positive operator-valued measure (POVM)
{E (l )

1 , . . . , E (l )
Nl

}, where l = 1, . . . , L. Since the definition of
a good pair requires that the probability of each outcome is
nonzero, we add a small parameter 0 < ε◦ � 1 to make the
outcome probabilities positive, as noted in Sec. II A. These
outcome probabilities are represented by the affine map A(l ) :
X → M(l ) given in Table VI.

Note that the set of outcomes �(l ) is a finite set for each
l = 1, . . . , L. We consider the discrete topology �(l ) = 2�(l )

on �(l ), so that (�(l ), �(l ) ) forms a Polish space. The Borel
σ algebra coincides with the topology, so we use the same
symbol for both. Because �(l ) is discrete, any real-valued
function on �(l ) is Borel measurable, and therefore, we omit
the phrase “Borel measurable” when talking about functions
(or estimators) on �(l ). Furthermore, since each �(l ) is a finite
set, real-valued functions defined on it can be considered as
|�(l )| = Nl -dimensional real vectors. Thus, we treat elements
of F (l ) as vectors.

Using these facts, we show that D(l ) and F (l ) as defined
in Table VI form a good pair. By definition of M(l ) and pμ

in Table VI, it is easy to see the first and second conditions
for a good pair given in Definition A.1 hold. We check that

the last two conditions given in Definition A.1 hold. Since
F (l ) contains all functions on �(l ), it contains ln(pμ/pν ) in
particular. Next, we see that for φ(l ) ∈ F (l ), we can write

Fφ(l ) (μ) = ln

(
Nl∑

k=1

exp
(
φ

(l )
k

)
μk

)
because P (l ) is the counting measure. As noted above, we
consider φ(l ) ∈ F (l ) as an Nl -dimensional real vector. Then,

since ∇2
μFφ(l ) = −eeT /(〈e, μ〉)2, where e = (eφ

(l )
1 , . . . , eφ

(l )
Nl ),

Fφ(l ) is concave in μ. Thus, (D(l ),F (l ) ) forms a good pair.
Now suppose that we perform Rl repetitions (shots)

of the lth measurement setting. Then, the space to be
considered for all measurement settings put together is
� = (�(1) )R1 × · · · × (�(L) )RL , the parameter space for
probability distributions is M = (M(1) )R1 × · · · × (M(L) )RL ,
and the set of estimators F ⊆ (F (1) )R1 × · · · × (F (L) )Rl

is chosen as per Definition A.3. The mapping A :
X → M is given by A(χ ) = ⊕L

l=1

⊕Rl
r=1 A(l )(χ ) ≡

(A(1)(χ ), A(1)(χ ), . . . , A(L)(χ ), A(L)(χ )), where A(l )(χ ) is
repeated Rl times. Then, we can use the direct product of
good pairs (Definition A.3) to compute the function 
 defined
in Eq. (A1) when all the measurement settings are considered
together.

Note that φ ∈ F ⊆ (F (1) )R1 × · · · × (F (L) )RL implies φ =∑L
l=1

∑Rl
r=1 φ(l,r), where φ(l,r) belongs to the rth copy of F (l ).

Then, using Eq. (A1), we obtain


(χ1, χ2; φ, α) = Tr(ρχ1) − Tr(ρχ2) + 2α ln(2/δ)

+ α

L∑
l=1

Rl∑
r=1

[
ln

(
Nl∑

k=1

e−φ
(l,r)
k /α

Tr
(
E (l )

k χ1
) + ε◦/Nl

1 + ε◦

)
+ ln

(
Nl∑

k=1

eφ
(l,r)
k /α

Tr
(
E (l )

k χ2
) + ε◦/Nl

1 + ε◦

)]
,

where we use the fact that exp(
∑

l,r φ(l,r) ) = ∏
l,r exp(φ(l,r) ),

pμ = ∏
l,r p(l )

μl,r
, A(χ ) = ⊕

l,r A(l )(χ ), and that P =
(P (1) )R1 × · · · × (P (L) )RL is a product measure. By Remark
3.2 of Juditsky and Nemirovski [24], we can just use Rl

copies of φ(l ) instead of φ(l,r) in finding the saddle point of
the above function, and thus we obtain Eq. (4).

Suppose that the (χ1, χ2) and the α components of the
saddle point of the function 
 are attained at χ∗

1 , χ∗
2 ∈ X ,

and α∗ > 0, respectively, to a given precision. Then, from
Eq. (A3), dDefinition A.3, and the preceding remarks, we
can infer that the φ component of the saddle point can be
described by the function φ∗ = ∑L

l=1

∑Rl
r=1 φ

(l )
∗ , where for

l = 1, . . . , L, we have

φ(l )
∗ = α∗

2
ln

(
pA(l ) (χ∗

1 )

pA(l ) (χ∗
2 )

)
. (A7)

Note that replacing g = ρ with g = O for any Hermitian
operator (observable) O, we can obtain an estimator for the
expectation value of that observable.

Finally, to adapt the simplified expression for risk given
in Eq. (A5) to the quantum case, we compute the Hellinger
affinity [see Eq. (A6)]. The Hellinger affinity for the quantum

case is given as

AffH[A(χ1), A(χ2)] =
L∏

l=1

[
Nl∑

k=1

(
Tr
(
E (l )

k χ1
) + ε◦/Nl

1 + ε◦

)1/2

×
(

Tr
(
E (l )

k χ2
) + ε◦/Nl

1 + ε◦

)1/2]Rl

≈
L∏

l=1

[
FC
(
χ1, χ2;

{
E (l )

k

})]Rl /2
, (A8)

where, in the last step, we neglect ε◦ � 1 to simplify the equa-
tions (we include ε◦ in the numerical simulations). Here FC is
the classical fidelity defined in Eq. (10). Then substituting the
expression for the Hellinger affinity in Eq. (A5), we obtain
Eq. (9).

APPENDIX B: MINIMAX METHOD: NUMERICAL
IMPLEMENTATION

We outline the procedure followed to find the saddle point
of the function 
 defined in Eq. (4), from which we can
compute the fidelity estimator.
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We present two algorithms to compute the saddle point.
The first algorithm is based on Nesterov’s method (accelerated
projected gradient), and the second algorithm uses standard
CVXPY software. The implementation based on Nesterov’s
method is more memory efficient, whereas the implemen-
tation based on CVXPY is faster in practice. A detailed
comparison of the computation time required by each method
can be found in the accompanying Ref. [27]. We now describe
both our algorithms and show that they converge to the saddle
point.

1. Implementation using Nesterov’s method

This is done in two steps: find the χ∗
1 , χ∗

2 ∈ X , and α∗ > 0
components of the saddle point and then compute φ∗/α∗ to
obtain the φ∗ ∈ F component of the saddle point.

To execute the first step, we resort to the following expres-
sion for the saddle-point value noted in Ref. [28], which is
obtained by appropriately rewriting the expression given by
Juditsky and Nemirovski [24]

2ε∗ = inf
α>0

{
2α ln(2/δ) + max

χ1,χ2∈X
[〈ρ, χ1〉 − 〈ρ, χ2〉

+ 2α ln{AffH[A(χ1), A(χ2)]}]}, (B1)

where the Hellinger affinity AffH[A(χ1), A(χ2)] is given in
Eq. (A8).

Now we note that, as per the definitions used in
Table VI, the function AffH(μ, ν) = ∏L

l=1[
∑Nl

i=1

√
μ

(l )
i ν

(l )
i ]Rl

is smooth on its domain because μ, ν > 0 (component-
wise) for each μ, ν ∈ M. Since AffH(μ, ν) > 0, the function
ln[AffH(μ, ν)] is well defined and smooth on its domain.
Further, since A : X → M is affine, ln{AffH[A(χ1), A(χ2)]}
is smooth on X × X . In particular, the derivatives of
ln{AffH[A(χ1), A(χ2)]} are continuous. Since X × X is com-
pact, the Hessian of ln{AffH[A(χ1), A(χ2)]} is bounded, and
therefore, the gradient of ln{AffH[A(χ1), A(χ2)]} is Lipschitz
continuous. Moreover, ln{AffH[A(χ1), A(χ2)]} is a jointly
concave function of the density matrices (see Appendix A 1).

With this in mind, we use the following procedure to find a
saddle point of the function 
 defined in Eq. (4) to any given
precision.

(1) For any fixed α > 0, we solve the “inner” convex op-
timization problem in Eq. (B1)

max
χ1,χ2∈X

[
Tr(ρχ1) − Tr(ρχ2) + 2α ln{AffH[A(χ1), A(χ2)]}︸ ︷︷ ︸

f (χ1,χ2 )

]
= max

χ∈X
f (χ ),

by using the version of Nesterov’s second method [53] given
in Ref. [57]. For the second equation above, we define χ =
(χ1, χ2) and X = X × X . Nesterov’s second method is suited
to problems where the objective f is a convex function3

with a Lipschitz continuous gradient (see Theorem 1(c) in
Ref. [57] for the convergence guarantee). In such scenarios,
Nesterov’s second method gives an accelerated version of
projected gradient ascent or descent, such that each iterate lies

3Or a concave function in the case of maximization.

in the domain X . This is a useful method to optimize convex
functions of density matrices. When the Lipschitz constant is
not known, a backtracking scheme can be used [57].

(2) We perform the “outer” convex optimization over α

in Eq. (B1) using SCIPY’s MINIMIZE_SCALAR routine. Through
this optimization, we obtain the χ∗

1 , χ∗
2 ∈ X , and α∗ > 0 com-

ponents of the saddle point.
(3) Using the so-obtained χ∗

1 , χ∗
2 ∈ X , and α∗ > 0, we

find φ∗ ∈ F using Eq. (A7).
Once we have a saddle point, the estimator can be easily

computed using Eqs. (6) and (7).
Note that we embed the Hermitian matrices into a real

vector space before performing the above optimizations. This
is possible because an isometric isomorphism exists between
the set of Hermitian operators of a fixed size and a real vector
space. We use ε◦ = 10−5 in the numerical implementation.

2. Implementation with CVXPY

The optimal risk ε∗ as defined by the constrained optimiza-
tion problem in Eq. (A5) can be evaluated directly by using
the CVXPY PYTHON library, provided we take a logarithm
of the constraint to make the problem convex and multiply
it by 2 to match the theory of Ref. [24]. This approach is
faster than the above saddle-point algorithm, at the cost of
increased memory usage. A CVXPY implementation with a
more balanced trade-off for larger-dimensional problems is
possible in the case of Pauli measurements by applying each
POVM with a matrix-free algorithm.

Regardless of such implementation details, however, one
needs access to the optimal α∗ from the saddle-point problem
in Eq. (4) to construct the estimator F̂∗. To do this without
solving the saddle-point problem directly, we show that the
parameter α of the saddle-point problem is actually the dual
variable associated with our constraint. The optimal value of
this dual variable is automatically returned by CVXPY along-
side the optimal primal variables χ∗

1 and χ∗
2 as a consequence

of the primal-dual algorithm with which it solves the problem.
Written in a standard form, Eq. (A5) becomes

minimize
χ1,χ2 ∈X

〈ρ, χ2 − χ1〉,

subject to 2 ln(ε/2) − 2 ln{AffH[A(χ1), A(χ2)]} � 0,

(B2)

where the primal optimal value p∗ is related to the risk ε∗ by
− 1

2 p∗ = ε∗. Introducing α̃ as a dual variable, the Lagrangian
for our nonlinear programming problem is given by

L(χ1, χ2; α̃) = 〈ρ, χ2 − χ1〉 + α̃(2 ln(ε/2)

− 2 ln{AffH[A(χ1), A(χ2)]}).

This defines a concave Lagrange dual function g : R → R
defined by

g(̃α) = min
χ1,χ2∈X

L(χ1, χ2; α̃).

Let d∗ denote the maximum value of the function g. Because
our original problem in Eq. (A5) is convex and Slater’s condi-
tion holds (as strict feasibility is achieved whenever χ1 = χ2),
we have strong duality between the two problems. This means
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that p∗ = d∗, and it follows that

2ε∗ = −p∗ = −d∗ = − max
α̃�0

g(̃α)

= min
α̃�0

max
χ1,χ2∈X

−L(χ1, χ2; α̃)

= min
α̃�0

max
χ1,χ1∈X

{〈ρ, χ1 − χ2〉

+ 2α̃[ln{AffH[A(χ1), A(χ2)]} − ln(ε/2)]}
= inf

α̃>0

{
2α̃ ln(2/ε) + max

χ1,χ2∈X
[〈ρ, χ1〉 − 〈ρ, χ2〉

+ 2α̃ ln{AffH[A(χ1), A(χ2)]}]}.
With α̃ = α, this is exactly the expression in Eq. (B1), show-
ing the equivalence of the two values. Importantly, this means
that the estimator found by solving the saddle-point problem
in Eq. (B1) can be equivalently constructed by finding both
the primal and dual optima of Eq. (B2), which we compute
using CVXPY.

APPENDIX C: MINIMAX METHOD:
SAMPLE COMPLEXITY

We begin by computing the best sample complexity that
can be achieved by the minimax method. A detailed statement
of this result is given in Theorem II.1. Below, we present a
proof of this result.

Proof of Theorem II.1. From Eq. (9), we know that the risk
can be written as

ε∗ = 1

2
max

χ1,χ2∈X

{
Tr(ρχ1) − Tr(ρχ2)

∣∣∣∣
L∏

l=1

[
FC
(
χ1, χ2,

{
E (l )

k

})]Rl /2 � δ

2

}
,

where

FC (χ1, χ2, {E (l )
k }) =

(
Nl∑

k=1

√
Tr
(
E (l )

k χ1
)
Tr
(
E (l )

k χ2
))2

is the classical fidelity between χ1 and χ2 determined by the
POVM {E (l )

k }. As noted in Sec. II D, we can write the fidelity
between any two states as follows [29]:

F (χ1, χ2) = min
POVM {Fi}

FC (χ1, χ2, {Fi}).

In particular, we have F (χ1, χ2) � FC (χ1, χ2, {E (l )
k }) for ev-

ery POVM {E (l )
k } that we are using. Thus, we obtain the

following lower bound on our risk:

ε∗ � 1

2
max

χ1,χ2∈X

{
Tr(ρχ1) − Tr(ρχ2)

∣∣∣∣
F (χ1, χ2) �

(
δ

2

) 2
R
}
,

where R = ∑L
l=1 Rl is the total number of shots. We now

proceed to evaluating the lower bound. For convenience,
we denote γ = (δ/2)2/R so that the constraint becomes

F (χ1, χ2) � γ . Next we note that, for a pure state ρ and pos-
sibly mixed states χ1 and χ2, we have the following inequality
for the fidelity in terms of the trace distance (see Chap. 9 in
Ref. [58]):

Tr(ρχ1) � Tr(ρχ2) + 1
2‖χ1 − χ2‖1, (C1)

where ‖χ‖1 is the Schatten 1-norm of χ . Then, us-
ing the Fuchs–van de Graaf inequality (1/2)‖χ1 − χ2‖1 �√

1 − F (χ1, χ2) [56], we can write

Tr(ρχ1) − Tr(ρχ2) �
√

1 − F (χ1, χ2)

�
√

1 − γ , (C2)

where the second line holds when F (χ1, χ2) � γ .
We show that the upper bound in Eq. (C2) can be achieved

by explicitly constructing the density matrices χ∗
1 and χ∗

2
achieving the maximum. For this purpose, we define �ρ =
I − ρ, and suppose that the dimension of the system is d (i.e.,
ρ is an d × d matrix). Then, let

χ∗
1 = 1 + √

1 − γ

2
ρ + 1 − √

1 − γ

2

�ρ

d − 1
,

χ∗
2 = 1 − √

1 − γ

2
ρ + 1 + √

1 − γ

2

�ρ

d − 1
.

Since ρ is pure, there is some (normalized) vector |v1〉 such
that ρ = |v1〉〈v1|. Let {|v2〉, . . . , |vd〉} be any orthonormal ba-
sis for the orthogonal complement of the subspace spanned
by |v1〉. Then, we can write �ρ = ∑d

i=2 |vi〉〈vi| using the res-
olution of identity. Therefore, in the basis {|v1〉, . . . , |vd〉}, the
matrices χ∗

1 and χ∗
2 are diagonal. Since γ < 1, the diagonal

entries of these matrices are real (and positive), and it is easy
to check that they sum to 1, showing that χ∗

1 and χ∗
2 are den-

sity matrices. Since they are diagonal, it is easy to compute the
fidelity between them. We find that F (χ∗

1 , χ∗
2 ) = γ , and there-

fore, these density matrices satisfy the constraint F (χ∗
1 , χ∗

2 ) �
γ . Further, we can see that these density matrices saturate the
upper bound in Eq. (C2), i.e., Tr(ρχ∗

1 ) − Tr(ρχ∗
2 ) = √

1 − γ .
Thus, we find that the lower bound on the risk is

ε∗ � 1

2

√
1 −

(
δ

2

)2/R

,

where we use γ = (δ/2)2/R.
The inequality given in the above equation is tight: the

POVM defined by {ρ,�ρ} achieves the lower bound (see
Corollary C.1.1). Thus, the best sample complexity given by
the minimax method corresponding to a risk of ε∗ < 0.5 and
confidence level 1 − δ ∈ (0.75, 1) is

R � 2 ln(2/δ)

|ln(1 − 4ε2∗ )|

≈ ln(2/δ)

2ε2∗
when ε2

∗ � 1,

as noted. �
We now consider a family of two-outcome POVM mea-

surements, and show that the risk given by the minimax
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method can be obtained by solving a one-dimensional opti-
mization problem. Using this, we obtain a simple formula for
an upper bound on the risk, and consequently, also a good
bound on the sample complexity. In particular, this provides
an upper bound on the sample complexity for the randomized
Pauli measurement scheme given in Scheme II.1.

Theorem C.1. Suppose we are given a pure target state ρ,
and we perform R repetitions of the POVM {,�} defined
as

 = ω1ρ + ω2�ρ,

� = (1 − ω1)ρ + (1 − ω2)�ρ,

where �ρ = I − ρ and ω1, ω2 ∈ [0, 1] are parameters satisfy-
ing ω1 > ω2. Also, define

γ =
(

δ

2

)2/R

,

and

Ro = ln(2/δ)

| ln(
√

ω1ω2 + √
(1 − ω1)(1 − ω2))| .

Then, if R > Ro, the risk of the estimator given by the mini-
max method can be obtained by solving the one-dimensional
optimization problem

ε∗ =
√

1 − γ

2(ω1 − ω2)
max
a∈Aa

√
1 − (2a − 1)2γ , (C3)

where the set of allowed values for a is given as

Aa = [0, 1] ∩ ((−∞, a(1)
− ] ∪ [a(1)

+ ,∞))

∩ ((−∞, a(2)
− ] ∪ [a(2)

+ ,∞)),

with

a(1)
± = ω1 ±

√
ω1(1 − ω1)

(1 − γ )

γ
,

a(2)
± = ω2 ±

√
ω2(1 − ω2)

(1 − γ )

γ
.

For R � Ro, the risk is ε∗ = 0.5.
In particular, for any risk ε∗ ∈ (0, 0.5),

R � 2
ln (2/δ)

|ln (1 − 4(ω1 − ω2)2ε2∗ )|

≈ 1

2(ω1 − ω2)2

ln(2/δ)

ε2∗
(C4)

repetitions of the measurement are sufficient to achieve that
risk with a confidence level of 1 − δ ∈ (3/4, 1).

Proof. For the case that we have R repetitions of a single
POVM {,�}, the risk can be written as (see Appendix A)

ε∗ = 1
2 max

χ1,χ2∈X
{Tr(ρχ1) − Tr(ρχ2)|

AffH[A(χ1), A(χ2)] � √
γ },

where A(χ ) = ([Tr(χ ) + ε◦/2]/(1 + ε◦), [Tr(�χ ) +
ε◦/2]/(1 + ε◦)). To begin with, we simplify this to a
two-dimensional optimization problem. For this purpose,
we write the density matrices χ1, χ2 as a convex combination
of the target state ρ and some other trace-one Hermitian
operator in the orthogonal complement of the subspace
generated by ρ:

χ1 = α1ρ + (1 − α1)ρ⊥
1 ,

χ2 = α2ρ + (1 − α2)ρ⊥
2 ,

with Tr(ρρ⊥
1 ) = Tr(ρρ⊥

2 ) = 0 and 0 � α1, α2 � 1. Using
this, the Hellinger affinity can be written as

AffH(α1, α2) = 1

1 + ε◦

(
ω1α1 + ω2(1 − α1) + ε◦

2

)1/2(
ω1α2 + ω2(1 − α2) + ε◦

2

)1/2

+ 1

1 + ε◦

(
(1 − ω1)α1 + (1 − ω2)(1 − α1) + ε◦

2

)1/2(
(1 − ω1)α2 + (1 − ω2)(1 − α2) + ε◦

2

)1/2

≈
√

(ω2 + (ω1 − ω2)α1)(ω2 + (ω1 − ω2)α2) +
√

[(1 − ω2) + (ω2 − ω1)α1][(1 − ω2) + (ω2 − ω1)α2]. (C5)

Note that because of the parameter ε◦ > 0, the Hellinger affin-
ity is differentiable. Since ε◦ � 1, we neglect it in Eq. (C5) to
prevent the equations from becoming cumbersome later. We
can write the risk as

2ε∗ = max
α1,α2∈[0,1]

(α1 − α2)

s.t. − ln[AffH(α1, α2)] � − ln(
√

γ ). (C6)

We take a logarithm to make the optimization problem convex
(see Proposition 3.1 in Ref. [24]).

Now, consider the case R > Ro, where Ro is as defined
in the statement of the theorem. Then, we argue that at
the optimum, AffH = √

γ . To see this, we first convert the
above maximization to a minimization problem, and write its

Lagrangian as

L = −α1 + α2 − λ ln[AffH(α1, α2)] + λ ln(
√

γ )

− ν1
0α1 + ν1

1 (α1 − 1) − ν2
0α2 + ν2

1 (α2 − 1),

where λ, ν1
0 , ν1

1 , ν2
0 , ν2

1 are dual variables. At the optimum,
the Karush-Kuhn-Tucker (KKT) conditions must be satisfied
[59], which we list below for convenience.

(1) (Primal feasibility) The “primal” variables α1, α2 must
lie in the domain [0, 1].

(2) (Dual feasibility) The dual variables (corresponding to
inequality constraints) λ, ν1

0 , ν1
1 , ν2

0 , ν2
1 must be nonnegative.
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(3) (Complementary slackness) Either the dual variable
must vanish or the constraint must be tight.

(4) (Stationarity) The gradient of the Lagrangian with re-
spect to the primal variables must vanish.

Since the gradient of L with respect to α1 and α2 must
vanish at the optimum, we have

∂L
∂α1

= −1 − λ
∂ ln(AffH)

∂α1
− ν1

0 + ν1
1 = 0,

∂L
∂α2

= 1 − λ
∂ ln(AffH)

∂α2
− ν2

0 + ν2
1 = 0.

Dual feasibility implies λ, ν1
0 , ν1

1 , ν2
0 , ν2

1 � 0 at the optimum.
If λ = 0 at the optimum, we must have ν1

1 = 1 + ν1
0 > 0 and

ν2
0 = 1 + ν2

1 > 0. Then complementary slackness implies that
AffH � √

γ , α1 = 1 and α2 = 0 at the optimum. However, for
R > Ro, we have

AffH(α1 = 1, α2 = 0) = √
ω1ω2 +

√
(1 − ω1)(1 − ω2)

<
√

γ ,

contradicting with the constraint. Thus, we must have λ > 0,
implying that AffH = √

γ as claimed. Using this, we can
reduce the problem to a one-dimensional problem that will
eventually help perform the optimization. We do this by ap-
propriately parametrizing each term in AffH:

√
[ω2 + (ω1 − ω2)α1][ω2 + (ω1 − ω2)α2] ≡ a

√
γ ,√

[(1 − ω2) + (ω2 − ω1)α1][(1 − ω2) + (ω2 − ω1)α2] ≡ b
√

γ .

Then, AffH = √
γ implies

a + b = 1,

where a, b � 0. From the above equations, we can deduce that

α1 + α2 = (a2 − b2)

ω1 − ω2
γ + (1 − 2ω2)

ω1 − ω2
,

α1α2 = [(1 − ω2)a2 + ω2b2]

(ω1 − ω2)2
γ − ω2(1 − ω2)

(ω1 − ω2)2
.

These equations are well defined because ω1 > ω2. Solving
these simultaneous equations and applying the constraint a +
b = 1, we obtain

α1 = (2a − 1)γ + (1 − 2ω2)

2(ω1 − ω2)

+
√

1 − γ

2(ω1 − ω2)

√
1 − (2a − 1)2γ ,

α2 = (2a − 1)γ + (1 − 2ω2)

2(ω1 − ω2)

−
√

1 − γ

2(ω1 − ω2)

√
1 − (2a − 1)2γ .

Since a ∈ [0, 1], (2a − 1)2 ∈ [0, 1], and γ ∈ (0, 1), the term
in the square-root is nonnegative, so α1, α2 are real. Further-
more, we use the fact that α1 � α2 at the optimum because the
risk involves maximization of α1 − α2; see Eq. (C6).

Next, we need to impose the constraints α1, α2 ∈ [0, 1].
Requiring α2 � 0 (and thus α1 � 0) gives

(a − a(2)
+ )(a − a(2)

− ) � 0,

a(2)
± = ω2 ±

√
ω2(1 − ω2)

(1 − γ )

γ
,

which means a must lie in the region (−∞, a(2)
− ] ∪ [a(2)

+ ,∞).
Similarly, requiring α1 � 1 (and thus α2 � 1) gives

(a − a(1)
+ )(a − a(1)

− ) � 0,

a(1)
± = ω1 ±

√
ω1(1 − ω1)

(1 − γ )

γ
,

which implies that a must lie in the region (−∞, a(1)
− ] ∪

[a(2)
+ ,∞). Therefore, the allowed values of a are

Aa = [0, 1] ∩ ((−∞, a(2)
− ] ∪ [a(2)

+ ,∞))

∩ ((−∞, a(1)
− ] ∪ [a(1)

+ ,∞)).

Note that the optimization problem defined by Eq. (C6) has a
solution for all R > 0 [i.e., γ ∈ (0, 1)] because any α1, α2 ∈
[0, 1] with α1 = α2 satisfies the constraints. Therefore, we
must have Aa �= ∅.

Thus, the risk is given as

ε∗ = max
a∈Aa

1

2
(α1 − α2)

=
√

1 − γ

2(ω1 − ω2)
max
a∈Aa

√
1 − (2a − 1)2γ .

Now, for the case when R � Ro, we have
√

γ �√
ω1ω2 + √

(1 − ω1)(1 − ω2) = AffH(α1 = 1, α2 = 0).
Therefore, α1 = 1 and α2 = 0 satisfy the constraint of the
optimization in Eq. (C6), giving ε∗ = 0.5.

The last part of the statement of the theorem follows from
the observation that Eq. (C4) implies R > Ro when ε∗ <

0.5, and for R > Ro, we have the inequality ε∗ � √
1 − γ /

[2(ω1 − ω2)].
Note that there is no loss of generality in requiring that

ω1 > ω2, for if ω2 < ω1, we can simply swap  and �.
When ω1 = ω2, we have  = � = I/2, which means we
learn nothing about the state. Indeed Ro → ∞ as ω1 → ω2,
alluding to this fact. However, the best we can do is when
ω1 and ω2 are farthest from each other, and this leads to the
following result.

Corollary C.1.1. Let ρ be any pure target state, and �ρ =
I − ρ. Then, for R repetitions of the POVM {ρ,�ρ}, the
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estimator given by minimax method achieves the risk

ε∗ = 1

2

√
1 −

(
δ

2

)2/R

.

Proof. We have ω1 = 1 and ω2 = 0. Substituting this in
Theorem C.1, we can see that a(1)

± = 1 and a(2)
± = 0. There-

fore, the allowed values of a are Aa = [0, 1]. Subsequently,
the risk is given as

ε∗ =
√

1 − γ

2
max

a∈[0,1]

√
1 − (2a − 1)2γ

=
√

1 − γ

2
,

as claimed.
We also consider a more restricted family of POVMs

that are relevant to the stabilizer measurements described in
Sec. II E.

Corollary C.1.2. Suppose we are given a pure target state
ρ, and we perform R repetitions of the POVM {,�} de-
fined as

 = ρ + ξ/2 − 1

ξ − 1
�ρ,

� = ξ/2

ξ − 1
�ρ,

where �ρ = I − ρ and ξ � 2 is a parameter. Also, define

Ro = 2
ln(2/δ)

ln
(

ξ−1
ξ/2−1

) .

Then, if R > Ro, the risk of the estimator given by the mini-
max method is

ε∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ξ−1
ξ

)√
1 − γ , b− � 1,(

ξ−1
ξ

)
(1 − γ )

√
1 + b−(2 − b−)

(
γ

1−γ

)
, b− < 1,

|b− − 1| � |b+ − 1|,(
ξ−1
ξ

)
(1 − γ )

√
1 + b+(2 − b+)

(
γ

1−γ

)
b− < 1,

|b− − 1| > |b+ − 1|,
(C7)

where

γ =
(

δ

2

)2/R

,

and

b± =
(

ξ

ξ − 1

)⎡⎣1 ±
√(

1 − γ

γ

)(
ξ − 2

ξ

)⎤⎦.

For R � Ro, the risk is ε∗ = 0.5.
In particular, for any risk ε∗ ∈ (0, 0.5),

R � 2
ln(2/δ)∣∣ ln

(
1 − (

ξ

ξ−1

)2
ε2∗
)∣∣

≈ 2

(
ξ − 1

ξ

)2 ln(2/δ)

ε2∗
(C8)

repetitions of the measurement are sufficient to achieve that
risk with a confidence level of 1 − δ ∈ (3/4, 1).

Proof. In the context of Theorem C.1, we have

ω1 = 1 and ω2 = ξ/2 − 1

ξ − 1
.

This implies a(1)
± = 1, and also

a(2)
± = ξ/2 − 1

ξ − 1
± ξ/2

ξ − 1

√
(1 − γ )

γ

ξ − 2

ξ
.

For convenience, we perform the change of variables b =
2(1 − a), and define

b± ≡ 2(1 − a(2)
∓ )

=
(

ξ

ξ − 1

)⎡⎣1 ±
√(

1 − γ

γ

)(
ξ − 2

ξ

)⎤⎦.

Clearly, b− � b+. Note that R > Ro implies b− > 0,
which means a+ < 1. Thus, we have that Aa = [0, 1] ∩
[(−∞, a(2)

− ] ∪ [a(2)
+ ,∞)] = [0, a(2)

− ] ∪ [a(2)
+ , 1] is nonempty.

With respect to the variable b, these allowed values can
be expressed as Ab = [0, b−] ∪ [b+, 2]. The risk is then
given as

ε∗ =
(

ξ − 1

ξ

)√
1 − γ max

b∈Ab

√
1 − (1 − b)2γ

=
(

ξ − 1

ξ

)
(1 − γ ) max

b∈Ab

√
1 + b(2 − b)

(
γ

1 − γ

)
.

Since the objective of maximization is symmetric about b = 1
and the maximum is achieved at b = 1, the allowed value
of b closest to 1 achieves the maximum. Noting that b+ >

1, we obtain the expression given in the statement of the
corollary. �

Finally, we obtain a bound on the sample complexity of the
randomized Pauli measurement scheme described in Scheme
II.1. The statement is given in Theorem II.2, so we simply give
a proof.

Proof of Theorem II.2. For convenience, we reproduce be-
low the measurement strategy given in Scheme II.1. Given a
target state ρ, do the following:

(1) Sample a (nonidentity) Pauli operator Wi with proba-
bility

pi = |Tr(Wiρ)|∑d2−1
i=1 |Tr(Wiρ)|

, i = 1, . . . , d2 − 1,

and record the outcome (±1) of the measurement.
(2) Flip the measurement outcome (i.e., ±1 → ∓1) if

Tr(ρWi ) < 0, or else retain the original measurement out-
come.

(3) Repeat this procedure R times.
Note that measuring the Pauli Wi and flipping the mea-

surement outcome is equivalent to measuring the operator
Si = sign[Tr(Wiρ)]Wi.

We can describe the above measurement strategy using the
effective POVM described below, which we obtain by finding
a positive-semi-definite operator that reproduces the measure-
ment statistics. The probability of obtaining +1 outcome can
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be written as

Pr(+1) =
d2−1∑
i=1

(Pr. choosing Si )

(Pr. outcome 1 upon measuring Si )

≡ Tr(σ ),

 =
d2−1∑
i=1

piP
+
i ,

P+
i = I + Si

2
,

where Si = sign[Tr(Wiρ)]Wi. Substituting for pi and a simple
rearrangement of terms gives

 = I

2
+ d

2N

d2−1∑
i=1

|Tr(Wiρ)|
d

Si

= [d + (N − 1)]

2N ρ + (N − 1)

2N �ρ.

� = I −  is given as

� = [(N + 1) − d]

2N ρ + (N + 1)

2N �ρ.

The effective POVM is then {,�}. Substituting

ω1 = [d + (N − 1)]

2N and ω2 = (N − 1)

2N
in Theorem C.1, we obtain Eq. (20).

Now, note that for any pure state ρ, we have Tr(ρ2) = 1
and this gives us

d2−1∑
i=1

[Tr(Wiρ)]2 = d − 1. (C9)

Therefore, to obtain an upper bound on N , we solve the
following optimization problem. Let M be a positive integer
and β > 0 be any real number such that M > β. We solve

max
M∑

i=1

xi

s.t. xi ∈ [0, 1] ∀i = 1, . . . , M

M∑
i=1

x2
i � β.

The above problem gives a bound for the special case of
xi = |Tr(Wiρ)|, M = d2 − 1 and β = d − 1, while saving the
trouble of optimizing over all density matrices. Note that we
consider the relaxation

∑M
i=1 x2

i � β, instead of the original
equality constraint

∑M
i=1 x2

i = β because quadratic equality
constraints do not define a convex set in general. Such a
relaxation is inconsequential because equality is attained at
the optimum. It can be shown using the KKT conditions that

the optimum corresponds to

xi =
√

β

M
∀i ∈ {1, . . . , M}

⇒
M∑

i=1

xi =
√

Mβ.

Returning to the problem of Pauli weights, since M =
d2 − 1 and β = d − 1, we obtain N �

√
(d2 − 1)(d − 1) =√

d + 1(d − 1) as claimed. Substituting in the expression for
sample complexity gives the desired upper bound.

In contrast to the above result, which shows that a good
sample complexity can be obtained for the randomized Pauli
measurement scheme, we consider the case of a bad mea-
surement protocol. Namely, we are given an n-qubit stabilizer
state and we measure n − 1 of its generators, where the
measurements are subspace measurements. Then, as noted in
Proposition II.2, the minimax method gives a risk of 0.5. Here,
we present a proof for this statement.

Proof of Proposotion II.2. Let ρ be an n-qubit stabilizer
state generated by S1, . . . , Sn. The measurement protocol
corresponds to measuring only the first n − 1 genera-
tors S1, . . . , Sn−1. The measurement of Sl has the POVM
{E (l )

1 , E (l )
2 } where E (l )

1 is the projection on the +1 eigenspace
of Sl while E (l )

2 is the projection on −1 eigenspace of Sl ,
for l = 1, . . . , n − 1. Suppose that the lth measurement is
repeated Rl times.

From Eq. (9), we know that the risk of the minimax method
can be written as

ε∗ = 1

2
max

χ1,χ2∈X

{
Tr(ρχ1) − Tr(ρχ2)

∣∣∣∣
n−1∏
l=1

[
FC
(
χ1, χ2,

{
E (l )

k

})]Rl /2 � δ

2

}
,

where

FC
(
χ1, χ2,

{
E (l )

k

}) =
(

2∑
k=1

√
Tr
(
E (l )

k χ1
)
Tr
(
E (l )

k χ2
))2

is the classical fidelity corresponding to the POVM {E (l )
1 , E (l )

2 }
for l = 1, . . . , n − 1. Our strategy is to construct two density
matrices χ1 and χ2 that satisfy the constraints of the optimiza-
tion defining the risk, such that the value of the risk is 0.5.

To that end, let ρ̃ be the stabilizer state generated by
S1, . . . ,−Sn, where, the last generator of ρ̃ differs from that of
ρ by a negative sign. Note that the states ρ and ρ̃ are orthog-
onal to each other. Observe that the classical fidelity between
the states ρ and ρ̃ corresponding to the POVM {E (l )

1 , E (l )
2 }

is FC (ρ, ρ̃, {E (l )
1 , E (l )

2 }) = 1 for all measured stabilizers since
Tr(E (l )

1 ρ) = Tr(E (l )
1 ρ̃) = 1 while Tr(E (l )

2 ρ) = Tr(E (l )
2 ρ̃ ) = 0

for all l = 1, . . . , n − 1.
Thus, taking χ1 = ρ and χ2 = ρ̃, we find that the risk

is ε∗ = 0.5, which is the maximum possible value for the
risk. In other words, when an insufficient number of stabilizer
measurements are provided, the minimax method infers that
the fidelity cannot be estimated accurately. �
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APPENDIX D: COMPARISON WITH QSV

We begin by giving a brief overview of the measure-
ment strategy used in QSV [15]. QSV assumes that either
F (ρ, σ ) = 1 or F (ρ, σ ) � 1 − εq holds for a fixed εq ∈
(0, 1). The goal is to reject the hypothesis F (ρ, σ ) � 1 − εq.
To that end, QSV protocol assumes that we have access to a
set of operators S = {P1, . . . , PL} with 0 � Pi � I describing
two-outcome POVM {Pi, I − Pi}. Pallister et al. [15] assumed
in addition that Tr(Piρ) = 1 for all i. The protocol proceeds
by randomly sampling the operator Pi with probability μi

and measuring the POVM {Pi, I − Pi}. If the outcome corre-
sponding to Pi is observed, then one repeats this procedure.
However, if one observes the outcome corresponding to I −
Pi, then one stops the procedure and declares “fail.” If, after
many repetitions of this procedure the protocols does not fail,
one can conclude with high probability that Tr(ρσ ) = 1.

The above measurement protocol can be described by the
effective POVM {�, I − �} with � = ∑L

i=1 μiPi which satis-
fies Tr(�ρ) = 1. QSV searches for an optimal measurement
strategy � by minimizing the probability of wrongly declaring
“pass” in the worst-case scenario:

min
�

max
σ

F (ρ,σ )�1−εq

Tr(�σ )
.

.= 1 − �εq . (D1)

Consequently, when running the protocol with R states, the
false acceptance probability for such an optimal � is bounded
above by (1 − �εq )R. Since the probability of wrongly declar-
ing “fail” is zero by the assumption that Tr(ρ�) = 1, we can
conclude

R � ln(1/δ)∣∣ln (1 − �εq

)∣∣ ≈ ln(1/δ)

�εq

(D2)

measurement outcomes are sufficient to certify that F (ρ, σ ) >

1 − εq with probability 1 − δ. Note that such a measurement
protocol is minimax optimal in the sense that one finds the
best measurement strategy � for the worst-possible state σ

satisfying F (ρ, σ ) � 1 − εq, under the POVM options S and
the QSV assumption that F (ρ, σ ) �∈ (1 − εq, 1).

The above description shows that the minimax approach
of QSV bears similarities with our approach towards fidelity
estimation. Below, we discuss two differences between QSV
and our method (in addition to those already pointed out in
Sec. III D).

First, we note that the assumption that the state σ prepared
in the laboratory either satisfies F (ρ, σ ) = 1 or F (ρ, σ ) �
1 − εq might be too stringent in practice. For example, if we
reject F (ρ, σ ) � 1 − εq, we cannot automatically conclude
that the fidelity is 1. Our study makes no such assumption,
which makes it more practically amenable. As mentioned
earlier, some studies on QSV have relaxed this assumption,
but at the cost of increasing the sample complexity compared
to the original QSV guarantees [47].

Second, the assumption that the measurement operators Pi

satisfy Tr(�Pi ) = 1 can be restrictive in practice, even though
they allow for designing optimal measurement protocols in
theory. For example, this assumption does not hold if one
wishes to estimate (or certify) the fidelity of a W state using
Pauli measurements. This is a practically relevant problem
which can be tackled using our approach [27]. Moreover,

our fidelity estimation method is not restricted to protocols
involving random sampling of measurement settings, which
is again important for practical applications. That said, when
one presents an optimal protocol involving random sampling,
we can usually adjust the sampling probabilities so that our
fidelity estimation method provides similar optimality results.
This was shown, for example, in Sec. II F, which matches the
performance guarantees of DFE.

We show that a similar result can be obtained with our
method for estimating the fidelity of two-qubit states using
the measurement protocol given by Pallister et al. [15] without
changing the sampling probabilities. Using the equivalence of
states under rotation by local unitaries, any two-qubit state can
be expressed in the form |ψ〉 = sin(θ )|00〉 + cos(θ )|11〉 for
θ ∈ [0, π/2] [15]. Then, the optimal measurement strategy for
QSV can be expressed as sampling the projectors {P1, . . . , P4}
with probability μ1 = α(θ ), μ2 = μ3 = μ4 = [1 − α(θ )]/3
[θ ∈ (0, π/2) \ {π/4}] and measuring them [15]. The pro-
jectors are given by P1 = |00〉〈00| + |11〉〈11| and Pi = I −
|φi〉〈φi| for i = 2, 3, 4, where the states |φi〉 and the number
α(θ ) are given in Eq. (D4). Pallister et al. [15] showed that

R ≈ [2 + sin(θ ) cos(θ )]
ln(1/δ)

εq
(D3)

measurements of the operator � = ∑4
i=1 μiPi suffice to reject

F (ρ, σ ) � 1 − εq with a confidence level of 1 − δ. The fol-
lowing result shows that by using this measurement protocol,
our method performs fidelity estimation in an optimal manner.

Proposition D.1. Let |ψ〉 = sin(θ )|00〉 + cos(θ )|11〉,
where θ ∈ (0, π/2), θ �= π/4, denote any two-qubit state
up to rotation by local unitaries. Consider the measurement
protocol where the projectors P1, P2, P3, P4 are sampled as per
probability μ1 = α(θ ), μ2 = μ3 = μ4 = [1 − α(θ )]/3 and
their outcomes are recorded. Here, P1 = |00〉〈00| + |11〉〈11|,
Pi = I − |φi〉〈φi| for i = 2, 3, 4, with

|φ1〉 =
(

1√
1 + tan θ

|0〉 + e
2π i
3√

1 + cot θ
|1〉

)

⊗
(

1√
1 + tan θ

|0〉 + e
π i
3√

1 + cot θ
|1〉

)
,

|φ2〉 =
(

1√
1 + tan θ

|0〉 + e
4π i
3√

1 + cot θ
|1〉

)

⊗
(

1√
1 + tan θ

|0〉 + e
5π i
3√

1 + cot θ
|1〉

)
,

|φ3〉 =
(

1√
1 + tan θ

|0〉 + 1√
1 + cot θ

|1〉
)

⊗
(

1√
1 + tan θ

|0〉 − 1√
1 + cot θ

|1〉
)

, and

α(θ ) = 2 − sin(2θ )

4 + sin(2θ )
. (D4)
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Then,

R � 2
ln(2/δ)∣∣ ln

(
1 − 4

(2+sin(θ ) cos(θ ))2 ε2∗
)∣∣

≈ (2 + sin(θ ) cos(θ ))2

2

ln(2/δ)

ε2∗
when ε∗ � 1 (D5)

repetitions of the measurement protocol is sufficient to reach
attain a risk of ε∗ with a confidence level of 1 − δ ∈ (0.75, 1).

Proof. The effective measurement operator is given
by [15]

� = αP1 + (1 − α)

3

4∑
i=2

Pi

= αP1 + (1 − α)�3,

where

�3 = I − 1

(1 + t )2

⎛⎜⎜⎝
1 0 0 −t
0 t 0 0
0 0 t 0
−t 0 0 t2

⎞⎟⎟⎠
and t = tan(θ ). By diagonalizing �, we find that

� = ρ + 2 + sin(2θ )

4 + sin(2θ )
(I − ρ).

Then, from Theorem C.1, Eq. (D5) follows. We remark that
our risk is invariant under unitary rotations of the target
state ρ → UρU † and the POVM Ek → UEkU † as seen from
Eq. (9). Therefore, the above result essentially holds for any
two-qubit state. �

We exclude the points θ = 0, π/4, π/2 in the above result
as either tan(θ ) or cot(θ ) become undefined at these points.
For θ = 0, π/2, we obtain a product state, and therefore, one
can directly measure Pauli ZZ . For θ = π/4, we obtain a
stabilizer state, for which we have an optimal measurement
strategy (see Sec. II E). These observations were also made by
Pallister et al. [15].

Note that the number of measurements given in Eq. (D5)
required by our method is similar to Eq. (D3), except for a
prefactor of order 1 and scaling of 1/ε2

∗ with the risk ε∗. This
scaling is essentially optimal, as seen from Theorem. II.1, and
thus, we can use their measurement protocol along with our
fidelity estimation method to optimally estimate the fidelity
of two-qubit states. This reinforces the expectation that good
measurement schemes lead to good sample complexity using
our method. Conversely, if our method cannot give a good
sample complexity for some measurement protocol, then ow-
ing to the definition of minimax optimal risk and Eq. (2), we
can infer that no estimation method can give a good sample
complexity for that measurement protocol under the same
assumptions as our method.
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