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Quantum algorithm for solving the advection equation using Hamiltonian simulation

Peter Brearley * and Sylvain Laizet
Department of Aeronautics, Imperial College London, London SW7 2BX, United Kingdom

(Received 18 December 2023; revised 25 April 2024; accepted 17 June 2024; published 9 July 2024)

A quantum algorithm for solving the advection equation by embedding the discrete time-marching operator
into Hamiltonian simulations is presented. One-dimensional advection can be simulated directly since the central
finite-difference operator for first-order derivatives is anti-Hermitian. Here this is extended to industrially relevant
multidimensional flows with realistic boundary conditions and arbitrary finite-difference stencils. A single copy
of the initial quantum state is required and the circuit depth grows linearly with the required number of time
steps, the sparsity of the time-marching operator, and the inverse of the allowable error. State-vector simulations
of a scalar transported in a two-dimensional channel flow and lid-driven cavity configuration are presented as a
proof of concept of the proposed approach.
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I. INTRODUCTION

Quantum computing is expected to bring a profound shift
in our computational capability. Among the most promising
applications is solving large-scale partial differential equa-
tions (PDEs) more efficiently than classical computers. Partial
differential equations are ubiquitous across science and en-
gineering and solving them currently occupies the majority
of the world’s high-performance computing resources. The
development of efficient quantum algorithms is therefore of
immense value and has attracted a large interdisciplinary
research community, spurred on by the continuing advance-
ments in quantum hardware [1,2].

The advection equation is a foundational linear PDE span-
ning multiple industries as it describes the transport of a scalar
quantity in advection-dominated flows. It is given by

∂φ

∂t
+ u j

∂φ

∂x j
= 0, (1)

where φ represents the scalar field (e.g., temperature or con-
centration) and u j is the jth component of the advective
velocity vector, where repeated indices invoke summation
over all spatial dimensions. Applications include modeling
the vast oceanic [3], atmospheric [4], and geological flows
[5] used in climate studies, drug delivery systems in biomath-
ematics [6], and heat exchangers for cooling oil refineries,
chemical processing plants, and power stations [7]. When the
advection equation is discretized in space using the finite-
difference method, the homogeneous ordinary differential
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equation (ODE)

d �φ
dt

= M �φ (2)

is produced. The original motivation for quantum comput-
ing was to simulate quantum dynamics governed by the
Schrödinger equation [8], which can be expressed in the form
of Eq. (2) for an anti-Hermitian coefficient matrix M. The
central finite-difference operator for first-order derivatives is
anti-Hermitian, so for one-dimensional flows with periodic
boundary conditions, advection can be simulated on a quan-
tum computer using the unitary operator eMt . This implies that
one-dimensional advection can be considered equivalent to
quantum dynamics [9]. Indeed, advection in a divergence-free
velocity field is inherently a norm-preserving process, making
it well suited for simulation on a quantum computer. However,
for industrially relevant multidimensional flows with realistic
boundary conditions or noncentered finite-difference stencils,
M ceases to be anti-Hermitian, so a different approach must
be taken.

Quantum algorithms for solving PDEs can be delineated
into two categories: fully quantum algorithms that implement
quantum circuits to evolve the quantum state as described by
the PDE of interest and quantum-classical hybrid algorithms
where a quantum computer is used for a specific task in a
larger, classical computation. Fully quantum approaches gen-
erally excel at solving linear PDEs because quantum operators
act linearly on quantum superpositions, allowing algorithms
based on the finite-difference method (FDM) [10–13], the
finite-element method (FEM) [14,15], and spectral methods
[16] to be effectively represented quantum mechanically. En-
coding the solution from N = 2n grid points within the ampli-
tudes α j of an n-qubit quantum state |ψ〉 = ∑N

j=1 α j | j〉 leads
to an exponentially growing capacity to store information and
an inherent quantum parallelism when processing it. Ampli-
tude encoding does not allow for the inspection of the full
solution as with classical methods, but rather the extraction
of global statistics into the limited output space. This may

2469-9926/2024/110(1)/012430(12) 012430-1 Published by the American Physical Society

https://orcid.org/0000-0002-0910-6499
https://orcid.org/0000-0003-0346-0662
https://ror.org/041kmwe10
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.012430&domain=pdf&date_stamp=2024-07-09
https://doi.org/10.1103/PhysRevA.110.012430
https://creativecommons.org/licenses/by/4.0/


PETER BREARLEY AND SYLVAIN LAIZET PHYSICAL REVIEW A 110, 012430 (2024)

be adequate depending on the context and make previously
intractable problems tractable. Fully quantum approaches are
not limited to linear PDEs as techniques have been pro-
posed based on the derivation of the nonlinear Schrödinger
equation using mean-field techniques [17] and Carleman
linearization [18] to tackle nonlinear PDEs, but these are
generally limited to weakly nonlinear interactions. On the
other hand, variational quantum algorithms (VQAs) [19] for
solving optimization problems have been used as the basis
for hybrid algorithms that have demonstrated a greater capa-
bility of tackling nonlinear PDEs [20–22]. Kyriienko et al.
[21] used a machine learning strategy where differentiable
quantum circuits were trained to solve nonlinear differential
equations. Jaksch et al. [22] extended a quantum algorithm for
solving nonlinear problems [20] to fluid dynamics, evaluating
cost functions from matrix product state representations of the
flow [23] to obtain a polynomial upper bound on the depth
of the variational network. The VQA-based algorithms are
of interest because of their potential to operate on near-term
hardware [19], though a definitive quantum advantage is yet
to be demonstrated.

Most quantum algorithms for solving linear PDEs have
a quantum linear systems algorithm (QLSA) at their core
[10,12–16,24–28] such as the Harrow-Hassidim-Lloyd (HHL)
algorithm [29] or further optimizations thereof [30,31]. Clader
et al. [14] developed a quantum algorithm using a QLSA to
implement the FEM for solving Maxwell’s equations, and
this was further clarified and developed by Montanaro and
Pallister [15]. Cao et al. [10], Wang et al. [12], and Childs
et al. [13], in their respective studies, optimized a quantum
algorithm based on the FDM to solve the Poisson equation by
expressing the PDE as a system of linear equations and then
solving with a QLSA. Algorithms for solving homogeneous
time-independent ODEs [24,25,27,28] in the form of Eq. (2)
can be applied to the spatially discretized advection equation.
Berry [24] proposed an algorithm using a QLSA with a linear
multistep method, where the error per time step is a high
power of the time-step size. A different approach was later
taken by Berry et al. [25] by encoding a truncated Taylor series
expansion of eMt in a linear system of equations, achieving an
exponentially improved dependence on precision. This work
was later extended by Krovi [27] to nondiagonalizable and
singular matrices while also achieving an exponential im-
provement over Berry et al. [25] for diagonalizable matrices
with a bounded value of ‖eMt‖. Berry and Costa [28] proposed
encoding a truncated Dyson series into a system of linear
equations, achieving a scaling that is linear in the evolution
time T and the norm ‖M‖ and polylogarithmic in the al-
lowable error ε. The primary disadvantage of algorithms that
employ a QLSA is that they require a large number of state
initialization queries that grow linearly with the condition
number of the matrix [29], which itself grows linearly with
the desired simulation time [32]. This introduces a potentially
prohibitive computational overhead given the challenges of
state preparation. In addition, the runtime of the HHL al-
gorithm has a dependence on 1/ε arising from the quantum
phase estimation (QPE) step, which may become prohibitive
for algorithms requiring repeated applications. Subsequent
works [30,31] have improved the ε dependence by applying
the inverse of the matrix as a linear combination of unitaries

(LCU) [30] or by the quantum adiabatic theorem [31], though
with significantly more involved implementations.

Quantum algorithms for solving PDEs that do not de-
pend on a QLSA have also been developed. Costa et al.
[11] put forward a quantum algorithm that evolves a quan-
tum state according to the wave equation using Hamiltonian
simulation without the need for a QLSA, aside from in
the proposed generation of the initial conditions. A prac-
tical implementation of this algorithm was then developed
and analyzed by Suau et al. [33], confirming that the gate
requirements agreed with the theoretical complexity. In a
different study, Budinski [34] proposed a quantum algorithm
for the advection-diffusion equation centered around the lat-
tice Boltzmann method (LBM) that tracks the evolution of
particle distribution functions on a grid. The main challenge
of implementing the nonunitary collision step of the LBM
was achieved with the LCU method. Simulating ODEs in
the form of Eq. (2) as Hamiltonian simulations has received
much recent attention [32,35–38]. An et al. [38] expressed
the evolution as a linear combination of Hamiltonian simu-
lation (LCHS) problems, which is a special case of the LCU
method. The algorithm was later improved upon [32] by fur-
ther generalizing the method and leading to the discovery of
faster-decaying coefficients in the weighted sum, improving
the ε dependence. Jin et al. [35–37] provided an alternative
viewpoint on this problem by introducing a Schrödingeriza-
tion method that maps linear PDEs to a higher-dimensional
system of Schrödinger equations and then solving with Hamil-
tonian simulation. Both the Schrödingerization [35–37] and
the LCHS [32,38] algorithms assume the Hermitian part of
M to be negative semidefinite, applicable to problems and
numerical schemes that maintain or dampen the solution, but
do not amplify it. This applies to upwind and central finite-
difference schemes for discretizing the advection equation,
but not downwind schemes. A time-marching algorithm for
the ODE problem was proposed by Fang et al. [39] by explic-
itly integrating the PDE over short time steps, as is a common
practice in the classical numerical solution of differential
equations. This operator is not unitary and so has a probability
of failure in a block-encoding strategy, ordinarily leading to an
exponentially decaying success probability in the simulation
time T . This was overcome by applying a uniform singular
value amplification at each time step, resulting in a runtime
with a quadratic dependence on T . The absence of a QLSA in
these methods generally leads to improved state preparation
costs [32] and favorable polylogarithmic scaling in the allow-
able error per time step using sparse Hamiltonian simulation
[40] or LCU [30] algorithms. Other methods of quantum ma-
trix multiplication with the potential to be applied to solving
PDEs using explicit time advancement were compared by
Shao [41] based on the SWAP test, singular value estimation,
and HHL algorithms. However, all of these methods utilize
QPE as a subroutine, thus limiting their ε dependence and the
number of state initialization queries required.

The algorithm presented here uses an explicit time-
marching strategy for solving the advection equation by
embedding numerical integrators into a series of Hamiltonian
simulations. The algorithm achieves linear scaling in the re-
quired number of time steps NT , requires a single copy of
the initial quantum state, and applies to various boundary
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conditions with arbitrary finite-difference stencils. The mathe-
matical description of the algorithm is provided next, followed
by analyses of the errors and complexity in Secs. III and IV,
respectively. State-vector simulations of a two-dimensional
laminar channel flow and a lid-driven cavity problem are
provided and analyzed in Sec. V. The paper is finalized with
concluding remarks in Sec. VI.

II. ALGORITHM

The first step is to discretize the advection equation in
space and time using the FDM. Central, forward, or backward
schemes of any order of accuracy can be chosen for the spatial
derivatives, and these can vary throughout the domain, e.g., by
reducing the order of accuracy and transitioning to a one-sided
scheme towards a wall. A second-order central scheme for
a one-dimensional problem will be chosen to describe the
algorithm and analyze its baseline properties, with different
schemes being demonstrated later in the paper. When com-
bined with forward Euler discretization in time, the advection
equation in one dimension for a constant velocity u becomes

φt+1
m − φt

m

�t
+ u

φt
m+1 − φt

m−1

2�x
= 0 (3)

for spatial grid point m and temporal location t . When
solved classically, the forward-time central-space scheme in
Eq. (3) is unstable for hyperbolic PDEs such as the ad-
vection equation, requiring upwind schemes for conditional
stability [42]. The quantum representation of such forward-
time schemes in the present algorithm is stable for arbitrary
finite-difference stencils, as will be demonstrated later in
this section. Equation (3) can be solved for φt+1

m , obtaining
an equation to advance the solution in time. A vector �φt =
[φt

0, φ
t
1, . . . , φ

t
N−1] can be constructed from φ to write Eq. (3)

as a matrix transformation

�φt+1 = A �φt . (4)

For the described one-dimensional advection equation dis-
cretized with a second-order central FDM, the matrix A takes
the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − r
2 0 r

2
r
2

. . .
. . . 0

. . .
. . .

. . .

0 . . .
. . . − r

2− r
2 0 r

2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

when considering simple periodic boundary treatment where
the first and last grid points are adjacent, leading to entries in
the top right and bottom left corners. The stability parameter
r = u�t/�x is the Courant-Friedrichs-Lewy (CFL) number
and is related to the condition number κ . To ensure numer-
ical stability, r must not exceed 1 [43], though in practice
and especially for explicit schemes, much lower values are
required. In D-dimensional space with k-order-accurate spa-
tial discretization, the sparsity of the matrix s = 1 + Dk with
FDM coefficients determined by k.

While divergence-free advection is a norm-preserving pro-
cess, the truncation errors from the discretization procedure
in Eq. (3) lead to the matrix A being nonunitary, i.e., A†A �= I

and AA† �= I . Therefore, to enact A on a quantum state |φt 〉,
the nonunitary Hamiltonian embedding procedure described
by Gingrich and Williams [44] is used. A Hamiltonian H is
constructed from A in the form

H =
[

0 iA
−iA† 0

]
, (6)

where i is the imaginary unit. A quantum state is evolved
according to H by the unitary operator

	 = exp(−iHθ )

= exp

[
0 Aθ

−A†θ 0

]
, (7)

where the symbol θ is the Hamiltonian evolution time for
a single time step. The time step size is encoded in the
Hamiltonian, so θ affects the accuracy of a time step and its
probability of success rather than the evolution time itself.
The exponential function produces a block matrix with the
structure [44]

exp

[
0 X
Y 0

]
=

⎡
⎣cosh(

√
XY ) X sinh(

√
Y X )√

Y X

Y sinh(
√

XY )√
XY

cosh(
√

Y X )

⎤
⎦

=
⎡
⎣ cos(θ

√
AA†) A sin(θ

√
A†A)√

A†A

−A† sin(θ
√

AA† )√
AA†

cos(θ
√

A†A)

⎤
⎦, (8)

where the top right and top left blocks of Eq. (8) are termed
Ã and Ĩ , respectively. The Ã matrix is closely proportional to
A for small values of θ or when

√
A†A ≈ I since sin(Iθ ) =

I sin(θ ), leading to Ã ≈ A sin(θ ). Furthermore, the Ĩ matrix
is closely proportional to I for small values of θ or when√

AA† ≈ I , leading to Ĩ ≈ I cos(θ ). For the advection equa-
tion evolution operator in Eq. (5),

√
A†A and

√
AA† can be

approximated by I + O(r2) for small values of r. Equation (8)
also reveals that the singular values σi(Ã) = sin[σi(A)θ ] are
bounded by 1, stabilizing the scheme regardless of the finite-
difference stencil. Applying 	 to a solution register |φt 〉
supplemented by an ancilla qubit initialized as |1〉 produces
the state

	|1〉|φt 〉 = 	

[
0

|φt 〉
]

=
[

Ã|φt 〉
Ĩ|φt 〉

]
≈

[|φt+1〉
|φt 〉

]
. (9)

Postselecting the ancilla qubit in the state |0〉 collapses the so-
lution register to |φt+1〉 = Ã|φt 〉, and if postselection fails, the
state collapses to Ĩ|φt 〉 ≈ |φt 〉, allowing the state to be reused
for further computation. The quantum circuit representations
of a successful and unsuccessful time step are shown in Fig. 1.

III. ERROR ANALYSIS

An expression for the error upper bound can be derived
by considering the errors at each time step associated with
the application of Ã and Ĩ and combining them with the
number of time steps required and the probability of posts-
election success. First, the errors per time step are derived in
Sec. III A, followed by the probability of a successful time
step in Sec. III B. These are combined to produce the overall
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FIG. 1. Quantum circuit for (a) a successful time step measuring
|0〉 and (b) an unsuccessful time step measuring |1〉.

error bound in Sec. III C and compared to the errors when
applied to a different PDE, the heat equation, in Sec. III D.

A. Error per time step

The matrix A in Eq. (5) is a Toeplitz matrix and so can
be defined in terms of its diagonals, where the main diagonal
d0 = 1, the superdiagonal d1 = −r/2, and the subdiagonal
d−1 = r/2. Similarly, the corresponding terms in Ã can be
evaluated as a function of r and θ . Considering a 4 × 4 matrix
to avoid unnecessary negligible terms, Ã can be expressed as

Ã = 1

2

(
sin(θ ) + sin(θ

√
r2 + 1)√

r2 + 1

)
for d0

= − r sin(θ
√

r2 + 1)

2
√

r2 + 1
for d1,−d−1

= 1

2

(
sin(θ ) − sin(θ

√
r2 + 1)√

r2 + 1

)
for d2, d−2. (10)

The similarity between the matrices in Eqs. (5) and (10) can
be compared by constructing an error matrix that quantifies
the error of the terms relative to the main diagonal. The
property that Eq. (10) must satisfy is d1,−d−1 = −rd0/2 with
other elements equaling 0, i.e., the relative proportions of the
matrix must be consistent. If Eq. (5) is scaled by d [Eq. (10)]

0 to
yield equal diagonal elements with Eq. (10), then subtracting
Eq. (10) from the scaled Eq. (5) gives the error matrix EA,
given by

EA = 0 for d0

= − r

4

(
sin(θ ) − sin(θ

√
r2 + 1)√

r2 + 1

)
for d1,−d−1

= −1

2

(
sin(θ ) − sin(θ

√
r2 + 1)√

r2 + 1

)
for d2, d−2. (11)

The maximum error for the application of Ã can then be
defined by taking the spectral norm of Eq. (11),

‖EA‖ = 1
2 [sin(θ )

√
r2 + 1 − sin(θ

√
r2 + 1)]. (12)

FIG. 2. Surface plot of the minimum probability of a successful
time step defined in Eq. (16).

Following the same procedure, Ĩ can be written as

Ĩ = 1
2 [cos(θ ) + cos(θ

√
r2 + 1)] for d0

= 0 for d−1,−d1

= 1
2 [cos(θ ) − cos(θ

√
r2 + 1)] for d2, d−2 (13)

and an error matrix can be constructed that quantifies error
relative to the identity matrix:

EI = 0 for d0

= 0 for d1, d−1

= − 1
2 [cos(θ ) − cos(θ

√
r2 + 1)] for d2, d−2. (14)

Taking the spectral norm of the error matrix gives

‖EI‖ = 1
2 [cos(θ ) − cos(θ

√
r2 + 1)], (15)

which represents the maximum error for a failed postselection.

B. Time-step success probability

The probability of a successful time step P = ‖Ã|φ〉‖2 can
be studied by analyzing the contribution of Ĩ to the state. The
square of the spectral norm ‖Ĩ‖2 corresponds to the largest
action of Ĩ on a state vector squared and so can be used to find
the worst-case probability of successful measurement Pmin =
1 − ‖Ĩ‖2. Using the definition of Ĩ in Eq. (13), Pmin is defined
as

Pmin =
{

sin2(θ ) when 0 < θ � π

1+√
r2+1

sin2(θ
√

r2 + 1) when π

1+√
r2+1

< θ � π
2 ,

(16)

which is visualized in Fig. 2. The figure shows that Pmin is
optimal for small values of r and when θ = π/(1 + √

r2 + 1),
approaching unity as r approaches zero. Using this value
of θ for a typical case where r = 0.1, the minimum prob-
ability Pmin = 99.9985%, corresponding to a worst case of
67 000 successful time steps per failed time step on average.
It is shown in Sec. V that for a practical configuration, the
probability of postselection success is mostly represented by
sin2(θ ), with the contribution from sin2(θ

√
r2 + 1) having a

reduced role leading to θ = π/2 being optimal in practice.
For example, r = 0.1 and θ = π/2 resulted in approximately
1 × 109 successful time steps for every failed time step.
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C. Overall error bound

The overall error bound for the algorithm can be evalu-
ated using ε = NT ‖EA‖ + NF ‖EI‖, where NT is the required
number of successful time steps and NF is the expected
number of failed time steps. Since the number of time

steps required is inversely proportional to the time step,
NT = T/r, where T is the simulation time in nondi-
mensional form and NF = NT /Pmin − NT . Combining these
expressions, the error per the simulation time evaluates
to

ε

T
=

⎧⎨
⎩

1
2r {[cos(θ ) − cos(θ

√
r2 + 1)] cot2(θ ) + sin(θ )

√
r2 + 1 − sin(θ

√
r2 + 1)} when 0 < θ � π

1+√
r2+1

1
2r {[cos(θ ) − cos(θ

√
r2 + 1)] cot2(θ

√
r2 + 1) + sin(θ )

√
r2 + 1 − sin(θ

√
r2 + 1)} when π

1+√
r2+1

< θ � π
2 .

(17)

This bound assumes that the number of failed time steps
is relatively close to the expected value, which is reason-
able as NT becomes large. This expression is visualized in
Fig. 3(a), which reveals that the overall error is mostly in-
sensitive to the value of θ and grows linearly with r. This
indicates that for the low values of r required for numerical
stability, θ = π/2 is the most efficient configuration as it
minimizes the required circuit depth without incurring sub-
stantial additional errors. The linear growth of error in the
quantum matrix representation indicates that the algorithm
does not worsen the error complexity from the classical Eu-
ler method that underpins the algorithm and means there
is little algorithmic benefit in pursuing higher-order time
integrators.

D. Comparison with the heat equation

To demonstrate the advantageous properties of Eq. (17) for
the advection equation, the error will be compared against the
algorithm applied to a different PDE, the heat equation. The
heat equation features a second derivative term on the right-
hand side

∂φ

∂t
= D

∂2φ

∂x j∂x j
, (18)

where D is the diffusivity. Following the same discretization
procedure for a one-dimensional problem, the matrix A takes
the form [d−1, d0, d1] = [rh, 1 − 2rh, rh] for the internal grid
points, where rh = D�t/(�x)2 is the stability parameter with
a theoretical maximum value of 0.5. The error bound for the
heat equation evaluates to

ε

T
=

{
1

2rh

[ (8rh−3) sin(θ )+ sin(θ−4rhθ )+2 sin(θ−2rhθ )
2−4rh

+| sin(θ−3rhθ )+3 sin(θ−rhθ )| cot2(θ−4rhθ ) sin(rhθ )
]

when 0 < rh � 1
3

1
2rh

[(1−4rh ) sin(θ )+(4rh−3) sin(θ−4rhθ )+(2−8rh ) sin(θ−2rhθ )
2−4rh

+| sin(θ−3rhθ ) + 3 sin(θ−rhθ )| cot2(θ−2rhθ ) sin(rhθ )
]

when 1
3 < rh � 1

2 ,

(19)

which is visualized in Fig. 3(b). The expression and the fig-
ure reveal that the error asymptotically approaches infinity
for rh → 0.25 and rh → 0.5. Furthermore, as rh → 0, the
error bound does not approach zero as occurs for the advec-
tion equation but rather approaches approximately 2, thereby

FIG. 3. Surface plot of the error bound per nondimensional simu-
lation time as a function of r and θ for (a) the advection equation and
(b) the heat equation. For the heat equation in (b), the surface has
been truncated at ε/T = 20 since ε asymptotically approaches infin-
ity for rh → 0.25 and rh → 0.5.

making it impossible to diminish the error by increasing the
circuit depth. A local minimum value for the error occurs
when rh = 1

3 , where ε/T reduces to approximately 6 for θ =
π/2. The errors for the advection equation are analogous to
classical computations since reducing r linearly reduces the
error, with the error approaching zero as r → 0. This is not
the case when applied to the heat equation where the error
is a convoluted discontinuous function of rh without a clear
trend. Even using the optimal value of rh = 1

3 or rh < 0.01,
the errors are still too large for useful computation, indicating
that the heat equation evolution operator cannot be efficiently
represented in this manner. Therefore, the algorithm cannot be
considered a sufficiently general PDE solver.

IV. COMPLEXITY ANALYSIS

The number of qubits grows as n = O(log N ) since the
computational grid is compressed into the amplitudes of the
exponentially growing computational basis states. The circuit
depth grows linearly with the required number of time steps
NT ∝ T N1/D. The number of time steps growing linearly with
the desired simulation time T is intuitive, but the N1/D factor
with the number of grid points N requires a further break-
down. It is assumed that a D-dimensional domain of equal
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FIG. 4. Evolution of the quantum amplitudes from state-vector simulations of a 2D laminar channel flow described by the advection
equation at different time intervals for (a) θ = π/(1 + √

r2
max + 1) while varying rmax and (b) rmax = 0.25 while varying θ . The simulations

use a second-order-accurate central finite-difference stencil.

side lengths is discretized by N = ND
x grid points, where Nx =

Ny = Nz for D > 1. The CFL number rmax = max(u j )�t/�x
constrains the time step size to the grid spacing, where halving
�x requires halving �t or, equivalently, doubling Nx requires
doubling NT . Given that NT ∝ Nx and N = ND

x , then N ∝ ND
T ,

or inversely NT ∝ N1/D.
In terms of error, Fig. 3 shows that ε grows linearly with

r, which is the same as the underpinning Euler method.
Halving r halves ε, which requires doubling NT and there-
fore doubling the circuit depth, so the circuit depth grows
with 1/ε.

The remaining complexity considerations depend on the
chosen implementation of the Hamiltonian simulations. As
an example, the algorithm of Berry et al. [40] is considered
due to its near-optimal properties. It combines the strate-
gies of a Szegedy quantum walk [45,46] and fractional-query
simulation [47]. The Szegedy quantum-walk approach scales
optimally in the matrix sparsity but not in the allowable
error, while the simulation of the fractional-query model
scales optimally with the error but not with the sparsity. The
fractional-query model is used to correct the phase more ac-
curately than the QPE step in the quantum-walk approaches
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[45,46], resulting in the favorable scaling in both sparsity
and the allowable error. The overall algorithm implements
Hamiltonian simulation with

O

(
τ [n + log5/2(τ/ε)]

log(τ/ε)

log log(τ/ε)

)
(20)

gates, where τ = s‖H‖maxθ , s is the sparsity, and ‖H‖maxθ is
the maximum value of the matrix Hθ [40], which is O(1) in
this case. The complexity of the Hamiltonian simulation step
can therefore be written as

O

(
s[log(N ) + log5/2(s/ε)]

log(s/ε)

log log(s/ε)

)
. (21)

Suppressing the polylogarithmic terms for simplicity, this re-
duces to an almost linear dependence on the sparsity, Õ(s). For
the block-encoded Hamiltonian in Eq. (6), the sparsity of H is
equal to the sparsity of A, which is s = 1 + Dk, where k is the
order of the spatial discretization. Therefore, the complexity
of the Hamiltonian simulation step can be written as Õ(Dk).
Since the error ε does not appear in this simplified expression,
the dominant source of error arises from the encoding of the
nonunitary operator and the explicit Euler method rather than
the Hamiltonian simulation implementation. Combining all of
these contributions, the circuit depth grows as Õ(NT s/ε) or
Õ(T N1/DDk/ε) for D-dimensional simulations.

Efficient classical simulations of the advection equa-
tion typically have a time complexity of O(NNT ) [48], and
given that NT ∝ T N1/D, this can be written as O(T N (1+D)/D).
The quantum algorithm offers a significant polynomial
improvement over the classical algorithm as their time com-
plexities differ by a factor of N . The effectiveness of the
quantum algorithm increases in higher-dimensional space as
the number of grid points increases at a much faster rate than
the required circuit depth, taking advantage of the exponen-
tially growing Hilbert space.

V. SIMULATIONS

This section presents quantum state-vector simulations of
the algorithm applied to a two-dimensional laminar channel
flow in Sec. V A and a lid-driven cavity flow in Sec. V B.
In Sec. V C the response of the algorithm to noise in
the initial quantum state and the Hamiltonian embedding is
demonstrated, and the errors are quantified for various finite-
difference stencils with and without noise. In all simulations,
N = 64 × 64 = 4096 grid points have been used to discretize
the problems in space, corresponding to 12 qubits represent-
ing the solution and the additional ancilla qubit required by
the algorithm, totaling 13 qubits.

A. Laminar channel flow

The velocity field �u = [u, v] is described by the analytical
solution to the Navier-Stokes equations in this configuration,
known as a plane Poiseuille flow, which has a parabolic profile
of u leading to the nondimensional CFL parameter to be
defined as

r(y) = u(y)�t

�x
(22)

= rmax[4y(1 − y)] 0 � y � 1, (23)

FIG. 5. (a) Typical number of successful time steps for every
failed time step as a function of rmax for different values of θ and
(b) probability of a successful time step P = ‖Ã|φt 〉‖2 and the pre-
diction sin2(θ ) for the rmax = 0.25 case.

which varies from from 0 at the walls to rmax at the center
of the domain, where y is the vertical normalized distance.
The vertical component of the velocity v = 0 because the flow
is laminar. The scalar φ is initialized as a sine wave in the
horizontal direction as

φ(x) = sin(2πx) + 1, 0 � x � 1, (24)

where x is the corresponding normalized horizontal distance.
The x boundaries are periodic, so fluid that flows out of the
right boundary enters through the left boundary. The velocity
reducing to zero at the walls (i.e., a no-slip wall) corresponds
to Dirichlet boundary conditions, where the value of φwall is
maintained according to Eq. (24). This boundary condition
results in a single entry of 1 on the diagonal of A.

The evolution of the quantum amplitudes for (a) vary-
ing CFL parameter r and (b) varying Hamiltonian evolution
time θ per time step is provided in Fig. 4, showing that a
visually similar solution is reached regardless of the values
of r or θ . The equivalent simulation time corresponds to
2000 successful time steps for rmax = 0.1, 800 successful
time steps for rmax = 0.25, and 400 successful time steps
for rmax = 0.5. The simulations in Fig. 4(a) use θ = π/(1 +√

r2
max + 1) calculated from Fig. 2 to optimize Pmin, i.e., the

worst-case probability of measurement success. The simula-
tions in Fig. 4(b) use a constant rmax = 0.25 while varying
θ to π/2, π/4, and π/8. Varying θ alters the probability of
a successful time step P = ‖Ã|φt 〉‖2, and the variation of P
with rmax and θ is presented in Figs. 5(a) and 5(b), respec-
tively. The value of θ that optimizes the worst-case Pmin is
not found to be optimal in practice, with π/2 providing a
significantly greater probability of postselection success. For
example, rmax = 0.1 and θ = π/(1 + √

r2
max + 1) leads to a

typical 67 000 successful time steps for every unsuccessful
time step compared to approximately 1 × 109 when θ = π/2.
The prediction of sin2(θ ) from Fig. 2 is very accurate for all
values of θ as shown in Fig. 5(b). Although the probability
of time step success is close to certain when θ = π/2, there
remains a small chance of failure so the algorithm cannot
be considered entirely deterministic. However, this does not
impact the ability of the algorithm to prepare the state |φT 〉;
it just requires further attempted time steps. The θ = π/4 and
π/8 cases in Fig. 4(b) demonstrate the ability of the algorithm
to withstand postselection failure, where approximately only
50% and 14.6% of the time steps succeed, respectively.
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FIG. 6. Error contours for the channel flow simulations compared to the analytical solution as a percentage, defined as 100|φ(x, y, t ) −
|φ〉|/max[φ(x, y, t )], for (a) θ = π/(1 + √

r2
max + 1) while varying rmax and (b) rmax = 0.25 while varying θ .

The laminar channel flow configuration can be considered
as an ensemble of one-dimensional advection problems and
so has an analytical solution that can be calculated using
the method of characteristics. Given the initial condition in
Eq. (24), the analytical solution at time t is

φ(x, y, t ) = sin{2π [x − u(y)t]} + 1

‖φ(x, y, 0)‖ , (25)

where the denominator ensures a norm of 1 so the solu-
tions can be compared like for like. Figure 6 compares the
quantum solution for all cases against the analytical solution
by plotting the local errors as a percentage, 100|φ(x, y, t ) −

|φ〉|/max[φ(x, y, t )]. The errors remain within 3% for every
case and appear to grow linearly with the local value of
r, increasing towards the center of the domain where r is
greatest and with increasing rmax as shown in Fig. 6(a). This
is in agreement with the theoretical linear dependence of the
algorithm with the error derived in Sec. IV. Figure 6(b) shows
how the errors vary with θ under the influence of unsuccessful
time steps, which shows that reducing θ does not decrease
the overall accuracy of the solution, again agreeing with the
theoretical expression visualized in Fig. 3. However, reducing
θ does require more time steps to be attempted, thereby in-
creasing the circuit depth and confirming the theoretical result
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FIG. 7. (a) Velocity vectors overlaid with velocity magnitude contours for the lid-driven cavity simulations at Re = 100 and (b) contours
showing the evolution of the quantum amplitudes for lid-driven cavity simulations discretized by a one-sided second-order-accurate upwind
finite-difference stencil.

that θ = π/2 is the most efficient configuration. In all cases,
the errors smoothly display the parabolic profiles of the scalar
field, indicating that discretization errors are consistently lead-
ing to propagation at a slightly different velocity to u(y).
The parabolas of zero error are false negatives, arising due
to identical scalar values on either side of a local maximum
or minimum masking the true error. The algorithm accurately
represents the Dirichlet boundary where the scalar gradients
are greatest, as demonstrated by the errors reducing to zero
towards the y boundaries.

B. Lid-driven cavity

A scalar transported in a lid-driven cavity has been sim-
ulated to demonstrate the performance of the algorithm for
a multidimensional problem where no straightforward an-
alytical solution exists. The lid-driven cavity configuration
involves a square cavity filled with a fluid, where the top wall
(lid) moves horizontally at a constant velocity Uwall, while the
other three walls remain stationary. The fluid directly adjacent
to the moving wall acquires the same velocity as the wall due
to the no-slip condition. This imparts momentum to the rest of
the fluid, causing it to circulate within the cavity.

As no analytical solution is available for this configuration
and for comparison, the velocity field has been generated by
the commercial computational fluid dynamics software Ansys
Fluent [49] for a Reynolds number Re = UwallL/ν = 100,
where L is the side length of the cavity and ν is the kinematic
viscosity. The domain was discretized with 64 × 64 cells and
solved using the finite-volume method with a pressure-based
coupled solver and a second-order upwind scheme for the
spatial derivatives. The resulting velocity vectors are shown
in Fig. 7(a), overlaid by the velocity magnitude. The vectors
are drawn on a 32 × 32 grid for a less-cluttered graphic.

The scalar field is initialized as a sine wave in the y di-
rection, φ(x, y) = sin(2πy) + 1 for y = 0 to 1. The quantum
simulations use a second-order one-sided upwind finite-
difference stencil to evaluate the matrix A, where the direction
of the stencil is in the opposite direction to the local velocity

component. The maximum CFL parameter rmax = 0.1, the
Hamiltonian evolution time per time step θ = π/2, and the
simulations have been carried out for NT = 2800 time steps
with each time step occurring successfully. The initial condi-
tions and subsequent evolution of the scalar field are shown
in Fig. 7(b), which shows the scalar field swirling and being
distorted by the velocity field. The no-slip wall naturally leads
to a Dirichlet condition at the boundary in pure advection
problems, and Fig. 7(b) shows that the wall boundary values
are effectively maintained. The solution is physically plausi-
ble and captures other qualitative features of the flow such as
the vortex location and is in close quantitative agreement with
corresponding classical simulations.

C. Effects of noise and the spatial scheme

Returning to the laminar channel flow where an analyti-
cal solution is available, Fig. 8 shows the effects of various
types of noise on the simulations using rmax = 0.1, θ = π/2,
and a fourth-order central scheme for the spatial derivatives.
Figure 8(a) shows that, when subject to Gaussian noise with a
standard deviation of 10% of mean(φ), the numerical methods
in the algorithm are capable of handling the noise as the same
qualitative solution is obtained as the noise-free simulations
in Fig. 4. The initial noise is retained in the final solution
and does not appear to accumulate or dampen. Figure 8(b)
demonstrates the effects of noise in the Hamiltonian embed-
ding procedure in Eq. (6). When the entries of A are subject
to noise with a standard deviation of 1% of the true value, the
correct qualitative solution is obtained with errors that appear
to grow linearly with time and the local value of u(y).

The growth of the mean absolute value of the error with no
noise, initial state noise, and Hamiltonian embedding noise is
shown in Fig. 9 for a fourth-order central scheme, a second-
order central scheme, and a second-order one-sided upwind
scheme. In all cases, the errors are calculated against the
noise-free analytical solution in Eq. (25). Starting with the
noise-free error evolution, Fig. 9 confirms that the mean error
grows linearly with time for all spatial discretization schemes.
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FIG. 8. Evolution of the quantum amplitudes from state-vector simulations of a noisy channel flow with (a) Gaussian noise in the initial
state and (b) Gaussian noise in the Hamiltonian embedding. The simulations use a fourth-order-accurate central finite-difference stencil.

The second-order one-sided scheme is the least accurate, with
mean errors reaching 1.3% after 2000 time steps, followed by
the second-order and fourth-order central schemes with errors
reaching 0.6% and 0.1%, respectively. In the presence of
noise, the one-sided scheme performs best due to the greater
numerical dissipation of the noise in the small scales while
still capturing the derivative information in the large scales.
For the initial state noise, the central schemes maintain the
mean error at approximately 4% while the one-sided scheme
sharply reduces the error before it stabilizes at below 3%. In

FIG. 9. Mean absolute value of the error with different noise and
spatial discretization schemes.

the case of Hamiltonian embedding noise, errors grow linearly
with the simulation time but with a much steeper gradient
than the noise-free simulations. Again, the one-sided scheme
significantly outperforms as the errors grow at a reduced rate.

VI. CONCLUSION

A quantum algorithm for solving the advection equation,
a linear PDE prevalent in various scientific and engineering
industries, was presented. The algorithm uses sparse Hamilto-
nian simulation to embed the discrete time-marching operator
A into the Hamiltonian H , resulting in a unitary operator
	 = e−iHθ that encodes A to a high accuracy regardless of
the values of θ . Postselection failure does not require further
state initialization queries since the resulting operation closely
approximates the identity matrix, having a minimal impact on
the quantum state and allowing the computation to continue.
The algorithm applies to multidimensional problems with ar-
bitrary boundary conditions and finite-difference stencils.

From a resource utilization perspective, qubit requirements
grow logarithmically with the number of grid points N and the
circuit depth grows linearly with the desired number of time
steps, the sparsity of the discrete time-marching operator, and
the inverse of the desired error, Õ(NT s/ε), when suppressing
polylogarithmic terms. This represents a significant polyno-
mial speedup in complexity compared to classical methods,
which typically exhibit a scaling of O(NNT ), leading to a
polynomial improvement by a factor of N .

It was demonstrated mathematically that the methodology
does not universally apply to all PDEs, using the heat equa-
tion as an example. The derived mathematical expressions
for the effects of the r and θ parameters on the error have
been validated numerically with state-vector simulations. In
the channel flow configuration, the amplitudes closely agreed
with the analytical solution for all parameters tested. It was
shown that there is an advantage in using high-order spatial
schemes when the state varies as a continuous function, but
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that low-order dissipative schemes may outperform in noisy
environments.

The typical advantages of the proposed approach over
other algorithms are that the runtime grows linearly with the
simulation time, the state can be reused on postselection fail-
ure requiring a single copy of the initial state, any combination
of finite-difference stencils can be used, and its simplicity
of implementation. Other algorithms that can be applied to
the advection equation are typically aimed at solving homo-
geneous ODEs in the form of Eq. (2), which the advection
equation reduces to when discretized in space. In compari-
son to QLSA-based algorithms [24,25,27,28], the proposed
approach excels due to the single copy of the initial quantum
state required. The optimal QLSA [31] requires O(κ log(1/ε))
queries to the state preparation oracle, which can become
prohibitive when pursuing a practical quantum advantage.
The quantum time-marching algorithm [39] is conceptually
the most similar to the algorithm presented here, although
it results in a runtime with a quadratic dependence on T
compared to a linear dependence in the present algorithm.

Schrödingerization [35–37] and LCHS [32,38] algorithms
both assume that the Hermitian part of the coefficient ma-
trix M is negative semidefinite, which applies to central and
upwind finite-difference schemes for the advection equation.
Occasionally, however, the use of downwind schemes cannot
be avoided, such as when resolving the flow near a compu-
tational boundary. Therefore, the flexibility of the proposed
approach and its simplicity of implementation make it a pre-
ferred choice.

Finally, developing algorithms that evolve a quantum state
by the PDE of interest is only a step towards achieving a
practical quantum advantage, with methods for efficiently
preparing the state and extracting useful global statistics being
crucial for preparing scientific and engineering industries to
be quantum ready.
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