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The entropic uncertainty relation imposes a limit on the accuracy of measurement outcomes of two conjugate
observables, which can be reduced in the presence of quantum memory. We theoretically study the dynamical
behaviors of the quantum-memory-assisted entropic uncertainty relation for a bipartite system under local
nonequilibrium dephasing environments and a common nonequilibrium dephasing environment. Particularly, we
study the influence of the competition between nonequilibrium and non-Markovianity in controlling the entropic
uncertainty bound (EUB) in weak- and strong-coupling regimes. We find that the nonequilibrium nature renders
a promising protocol to efficiently harness the EUB in both regimes without requiring any operations on the
main system. Further, we reveal that the EUB can be significantly reduced in a common bath case compared
to the case of local baths. Moreover, we elucidate the primary factor responsible for governing the dynamical
behaviors of EUB by examining the interplay between quantum discord and the minimal missing information
about the particle to be measured. In addition, we investigate the state preparation and measurement choice
(SPMC) condition in both environmental setups with weak- and strong-coupling regimes. Remarkably, we show
that the SPMC condition does not hold in the common environment scenario.
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I. INTRODUCTION

The uncertainty relation is one of the crucial and remark-
able aspects of quantum mechanics that distinguishes the
quantum world from the classical one. It inevitably limits our
knowledge to precisely predict the measurement outcomes of
two conjugate observables simultaneously. In 1927, Heisen-
berg initially suggested the uncertainty relation corresponding
to the momentum and position of a particle [1]. It is stated
that measuring the position and momentum of a particle at
the same time with high accuracy is impossible. This fa-
mous uncertainty relation was first formulated by Kennard [2]
in the form of standard deviation, i.e., �x�p � h̄/2. Later,
Robertson [3] generalized this uncertainty relation for any
two observables R1 and R2, as �R1�R2 � 1

2 |〈ψ |[R1, R2]|ψ〉|.
However, this uncertainty bound is state dependent; therefore,
it becomes meaningless when the state |ψ〉 exhibits the zero-
expectation value for the commutator [R1, R2] [4].

In the context of information theory, entropy was consid-
ered a preferable measure to quantify the uncertainty relation
over the standard deviation approach [5,6]. The well-known
and improved version of the entropic uncertainty relation
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(EUR) proved by Maassen and Uffink [7] may read as follows:

H (R1) + H (R2) � log2
c

2
. (1)

Here H (�) = −∑
i pi(�) log2 pi(�) characterizes the Shan-

non entropy of the observables � ∈ (R1, R2), and pi(�) =
〈ψ�

i |�|ψ�
i 〉 denotes the probability of measuring observable

� on state � with ith outcome. Furthermore, the complemen-
tarity of the observables R1 and R2 can be expressed as c =
max j,k〈ψR1

j |ψR2
k 〉, where |ψR1

j 〉 and |ψR2
k 〉 are the eigenstates

of R1 and R2, respectively. Notably, as c is related to the two
observables, it explicitly reflects that the lower bound of the
EUR does not depend on the given quantum state. Therefore,
entropy is considered a more rigorous quantifier for formulat-
ing the uncertainty relation than the standard deviation.

Nevertheless, the uncertainty relations mentioned above
do not apply when the measured particle is entangled with
another particle, known as a quantum memory [8]. Berta
et al. [9] addressed this gap by deriving a more generalized
uncertainty relation called the quantum memory-assisted en-
tropic uncertainty relation (QMA-EUR). This new uncertainty
relation can be written as

S(R1|B) + S(R2|B) � log2
1

c
+ S(A|B). (2)

Here, S(A|B) = S(�AB) − S(�B) characterizes conditional
von Neumann entropy, where S(�) = −tr(� log2 �), and
S(�|B) with � ∈ (R1, R2) represents the conditional entropy
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of the postmeasurement state ��B = ∑
i(|ψ�

i 〉〈ψ�
i | ⊗

I )�AB(|ψ�
i 〉〈ψ�

i | ⊗ I ) after measurement performed by �,
where |ψ�

i 〉 are the eigenstates of the observable �, and I
is the identity operator. The quantum correlations between A
and B can result in a negative conditional entropy S(A|B) [10],
which, in turn, may suppress the lower bound given by Eq. (1).
Consequently, the QMA-EUR can predict the measurement
outcomes of the two observables R1 and R2 precisely (even
with zero uncertainty) when A and B are maximally entangled.
This uncertainty relation has been verified by various
experiments [4,11–13] and has vital applications in quantum
information science, including entanglement witness [14],
quantum key distribution [15], quantum metrology [16],
quantum teleportation [17], quantum batteries [18], and
more as discussed in a recent review [19]. Moreover,
QMA-EUR and its lower bound have been further studied
recently in Refs. [20–23] for improvement.

All real quantum systems inevitably interact with envi-
ronments, leading to the phenomenon of decoherence or
dissipation, i.e., the rapid destruction of quantum corre-
lations [24]. Hence, quantum correlations are fragile, and
decoherence effects hinder their potential advantages in prac-
tical implementations. Particularly, in this scenario, several
interesting questions arise: What are the consequences of
environmental decoherence on QMA-EUR? Does the deco-
herence effect inevitably result in increased uncertainty due to
the loss of quantum correlations? Is this uncertainty relation
dependent only on quantum correlation in the presence of
decoherence? To answer these questions, several studies have
been conducted to unveil the effects of various decoherence
models on the time evolution of QMA-EUR [25–31]. In these
studies, the authors investigated different scenarios where
either particle A or quantum memory B was exposed to a
noisy environment or both locally experienced decoherent or
dissipative environments. Furthermore, various environmental
noise-controlled strategies have been employed to reduce un-
certainty and its lower bound, including weak measurements,
non-Markovianity, and filter operations [32–34]. Addition-
ally, in all these studies, the environment was considered in
equilibrium.

Recently, it has been reported that the nonequilibrium
aspect of the dephasing environment offers a promising
technique for controlling decoherence [35,36], quantum-
to-classical transition [37], and quantum speed limit [38].
Moreover, nonequilibrium feature outperforms in quantum
metrology [39], quantum parameter estimation [40], quantum
state tomography [41], and quantum steering [42]. Addi-
tionally, nonequilibrium can also suppress non-Markovianity
and disentanglement in two-qubit systems [43]. With these
motivations in mind, we aim to investigate the dynamical
behaviors of QMA-EUR under the nonequilibrium phase
damping environments. For this purpose, we first study the en-
tropic uncertainty bound (EUB) when the measured particle A
and quantum memory B interact locally with their correspond-
ing nonequilibrium dephasing environments. Both A and B are
initially considered in the Bell-diagonal states. Specifically,
we explore the effects of the nonequilibrium nature of the
bath on the dynamics of EUB. Notably, in Refs. [27,33],
the authors have revealed that non-Markovianity gener-
ally reduces the EUB while nonequilibrium suppresses the

non-Markovian nature of the dynamical map [35–37]. In this
scenario, one might intuitively think that nonequilibrium can
increase EUB. However, this is not true; we show that the
EUB can be diminished via the nonequilibrium feature in both
weak- and strong-coupling regimes. Moreover, we shed light
on the key factor that governs the dynamical behaviors of EUB
by analyzing the interplay between quantum discord (QD) and
the minimal missing information about the particle A to be
measured.

Second, we set the same initial state and investigate the
dynamics of the EUB when particle A and quantum memory B
are coupled to a common nonequilibrium dephasing environ-
ment. Notably, it has been demonstrated in Refs. [44,45] that,
depending on the initial state, the common bath setup provides
a promising avenue for enhancing quantum correlations. In
this context, one might think that the EUB will be reduced
due to the amplification of quantum correlation rather than
increase monotonically to a stable magnitude. However, we
show that in the common bath case the EUB increases mono-
tonically to a stationary value, which implies that quantum
correlation is not the only factor that controls EUB. Inter-
estingly, the rate at which the EUB tends to a steady-state
value can be slowed down by the nonequilibrium aspect of
the environment in both weak- and strong-coupling regimes.
Moreover, we show that the maximum magnitude of EUB can
be considerably lower in the common bath setup compared to
the local baths in both weak- and strong-coupling. The reason
behind these dynamical behaviors of the EUB is explored by
examining the competition between quantum discord and the
minimal missing information about the particle to be mea-
sured. In addition, we investigate the state preparation and
measurement choice (SPMC) condition for the given initial
state in both environmental setups and show that this con-
dition cannot be satisfied under the common bath scenario.
It indicates that the EUB is not tighter in the common bath;
therefore, one may not compute entropic uncertainty (EU)
directly from the joint entropy of the whole system.

The structure of the paper is outlined as follows: In
Sec. II, the nonequilibrium dephasing models with their ana-
lytical solutions are presented. The dynamics of QMA-EUR
for a bipartite system, locally subjected to the respective
nonequilibrium dephasing environments, is given in Sec. III.
Section IV is devoted to the dynamical behaviors of the
QMA-EUR under the common nonequilibrium dephasing en-
vironment. In Sec. V, we explore the SPMC condition in both
environmental setups in detail. The conclusion of our main
findings is provided in Sec. VI.

II. NONEQUILIBRIUM DEPHASING MODELS
AND THEIR SOLUTIONS

In this section, first, we assume that the measured par-
ticle, labeled as A, and the quantum memory, labeled B,
are locally and independently subjected to nonequilibrium
pure dephasing environments with nonstationary and non-
Markovian statistical properties. In the second case, both A
and B simultaneously interact with a common nonequilibrium
pure phase damping environment. A complete analysis of
these two distinct models is provided below.
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A. The local nonequilibrium dephasing environments

Here we begin with the case where A and B are locally
coupled to their respective nonequilibrium phase damp-
ing environments with non-Markovian and nonstationary
features. To solve this model, we first consider the single-
particle dynamics, which can be easily generalized to a
two-qubit system via the Kraus operators representation
approach [46–48].

Let us consider particle A, a two-level quantum system
(qubit) that interacts with a nonequilibrium phase damping
environment E , wherein the environmental effects induce
random fluctuations in the intrinsic frequency of particle A,
i.e., ω(t ) = ω0 + δ(t ) [49,50]. The transition frequency be-
tween |1〉 (excited) and |0〉 (ground) levels is denoted by
ω0, and the function δ(t ) is associated to the environmental
dichotomic noise, defined by the non-Markovian and non-
stationary stochastic process. Furthermore, we suppose that
energy of the system is constant, and stochastic fluctuations
just bring pure dephasing in dynamics of particle A. In this
context, the Hamiltonian of subsystem A and its correspond-
ing environment can be expressed as [49–52]

HA(t ) = h̄

2
(ω0 + δ(t ))σ z

A, (3)

where σ z
A denotes the Pauli operator. The dynamics of

the whole system is described by the Liouville master
equation as

∂

∂t
ρ(t ; δ(t )) = − i

h̄
[HA(t ), �(t ; δ(t ))], (4)

where the term �(t ; δ(t )) indicates the state of the en-
tire system which depends on the environmental noise
δ(t ).

For the time being, we are only interested in the dynamics
of particle A. Therefore, its reduced state can be obtained
by taking the statistical average over reservoir variables, i.e.,
�A(t ) = 〈�(t ; δ(t ))〉. It is important to note that initially we
assume an uncorrelated state between A and the corresponding
phase damping environment. Thus, one can easily derive the
reduced density matrix �A(t ) in the basis {|1〉, |0〉} through the

Kraus operators representation [41,43] as

�A(t ) =
2∑

m=1

Em
A (t ) �A(0) Em

A
†(t )

=
(

�11(0) �10(0)e−iω0tγA
∗(t )

�01(0)eiω0tγA(t ) 1 − �11(0)

)
, (5)

where �A(0) is the initial state of the particle A and Em
A (t )

denote the Kraus operators for A, such that the condition∑2
m=1 Em

A (t )Em
A

†(t ) = I holds all the time. The Kraus oper-
ators for this model is given in Appendix A [see Eq. (A1)].
Furthermore, γA(t ) = 〈 exp [i

∫ t
0 δ(t́ )dt́ ]〉 describes the deco-

herence factor of particle A, and 〈...〉 shows the statistical
average over the environmental noise δ(t ). The analytical
expression for the decoherence factor of particle A can be
derived as (for the details, see Ref. [37])

γA(t ) = L−1[�A(p)], (6)

with

�A(p) = p2 + (β + iaυ )p + β(2λ + iaυ )

p3 + βp2 + (2βλ + υ2)p + βυ2
, (7)

where L−1 defines the inverse Laplace transform with initial
conditions γA(0) = 1, d

dt γA(0) = iaυ, and d2

dt2 γA(0) = −υ2.
The environmental noise δ(t ) is characterized by a non-
Markovian and nonstationary random telegraph process such
that its amplitude randomly flips between +υ and −υ at
an average rate of λ. The nonstationary and non-Markovian
properties of this noisy process are described by the nonequi-
librium parameter a and the memory kernel K (t − τ ) =
βe−β(t−τ ) where β represents the damping rate, respectively.
Unlike the equilibrium case, the decoherence factor γA(t )
is a complex time-dependent function because of the non-
stationary aspect of the environmental noise. Notably, when
a = 0, the environment is in equilibrium, and γA(t ) becomes
a stationary dichotomic noise; however, in other cases, the
environment remains in nonequilibrium.

Now, we focus on the scenario where both the particle
A and quantum memory B are under the local nonequilib-
rium dephasing environments. Therefore, by exploiting the
Kraus operators representation method given in Refs. [41,43],
we can straightforwardly derive the reduced density matrix
for the bipartite state �L

AB(t ) in the basis {|1〉 = |11〉, |2〉 =
|10〉, |3〉 = |01〉, |4〉 = |00〉} as

�L
AB(t ) =

4∑
n=1

F n(t ) �AB(0) F n†(t )

=

⎛
⎜⎜⎜⎜⎝

�11(0) �12(0)e−iω0tγB
∗(t ) �13(0)e−iω0tγA

∗(t ) �14(0)e−i2ω0tγA
∗(t )γB

∗(t )

�21(0)eiω0tγB(t ) �22(0) �23(0)γA
∗(t )γB(t ) �24(0)e−iω0tγA

∗(t )

�31(0)eiω0tγA(t ) �32(0)γA(t )γB
∗(t ) �33(0) �34(0)e−iω0tγB

∗(t )

�41(0)ei2ω0tγA(t )γB(t ) �42(0)eiω0tγA(t ) �43(0)eiω0tγB(t ) 1 − [�11(0) + �22(0) + �33(0)]

⎞
⎟⎟⎟⎟⎠, (8)

where L stands for local baths, and F n(t ) represent the
Kraus operators for the bipartite system �L

AB(t ) [given in
Eq. (A2)], where

∑4
n=1 F n(t )F n†(t ) = I . The reduced density

state �L
AB(t ) describes the time evolution of the two-qubit
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system where γA(t ) [γB(t )] is the dephasing factor of
particle A (quantum memory B). Notably, the diagonal el-
ements remain unchanged due to pure dephasing, and all
the off-diagonal elements decay with time as �L

AB(t ) evolves.
Moreover, we assume both qubits are initially in Bell-diagonal
state �AB(0), i.e.,

�AB(0) = 1

4

⎛
⎝IAB +

3∑
j=1

μ jσ
j

A ⊗ σ
j

B

⎞
⎠, (9)

where IAB represents the 4 × 4 identity matrix and σ
j

A(B) is the
jth component of the Pauli operator for A(B). Furthermore,
{μ j = μ j (0)} represent the initial correlation parameters such
that −1 � μ j � 1. The Bell-diagonal states lead to numer-
ous applications; for example, Bell-diagonal states reveal
the general form of the reduced density state of any quan-
tum spin chains with Z2 (parity) symmetry [53]. Moreover,

Bell-diagonal states contain pure and mixed states, which
can be easily prepared in the currently available experimental
setups [54–57].

B. The common nonequilibrium dephasing environment

In this subsection, we consider the case where the par-
ticle A and quantum memory B are coupled to a common
nonequilibrium dephasing environment with non-Markovian
and nonstationary features. The total Hamiltonian is given by

H = h̄

2

[
(ω0 + δ(t ))

(
σ z

A + σ z
B

)]
, (10)

where A and B have the same intrinsic transition frequency
ω0 and are subjected to common stochastic environmental
nonequilibrium fluctuations δ(t ). Thus, employing the ap-
proach given in Ref. [46], we can obtain the reduced density
matrix for the bipartite system under the common bath case as

�C
AB(t ) =

⎛
⎜⎜⎜⎜⎝

�11(0) �12(0))e−iω0tγ (t ) �13(0)e−iω0tγ (t ) �14(0))e−i2ω0t |γ (t )|4
�21(0)eiω0tγ ∗(t ) �22(0) �23(0) �24(0)e−iω0tγ ∗(t )

�31(0)eiω0tγ ∗(t ) �32(0) �33(0) �34(0)e−iω0tγ ∗(t )

�41(0)ei2ω0t |γ (t )|4 �42(0)eiω0tγ (t ) �43(0)eiω0tγ (t ) �44(0)

⎞
⎟⎟⎟⎟⎠, (11)

where C refers to the “common environment” and γ (t ) is
defined in Eq. (6). The above Eq. (11) describes the dynamics
of a quantum system (consisting of particle A and quantum
memory B) subjected to a common nonequilibrium dephasing
environment. We again consider that A and B are initially in
the Bell-diagonal states given by Eq. (9). It is essential to
mention that in the common bath scenario diagonal elements
and two off-diagonal elements, �32(0) and �23(0), remain
unchanged, while others decrease with time as �C

AB(t ) evolves.

III. EUB UNDER THE LOCAL NONEQUILIBRIUM
DEPHASING ENVIRONMENTS

In this section, we study the dynamical behaviors of the
EUB when A and B are locally and independently in contact
with their own nonequilibrium dephasing environments. How-
ever, before presenting our main findings, we first revisit some
preliminary concepts and known results from the literature
that help us to understand the detailed mechanisms governing
the EUB. For this purpose, let us introduce the analytical
expression of Eq. (2) for the Bell-diagonal states. The set {σ j}
with j ∈ {1, 2, 3} represents the Pauli observables. We then
choose observables R1 = σ 1 and R2 = σ 3 for the measure-
ments. Thus, the left-hand side of Eq. (2) takes the form [25]

UE = H

(
1 + μ1

2

)
+ H

(
1 + μ3

2

)
, (12)

where UE shows the entropic uncertainty for the observables
σ 1 and σ 3, while H (χ ) = −χ log2 χ − (1 − χ ) log2(1 − χ )
defines the binary entropy [47]. Furthermore, for the observ-
ables σ 1 and σ 3, the complementarity c is always equal to
1/2. In the case of Bell-diagonal states, where S(�B) = 1, the

right-hand side of Eq. (2) becomes

BEU = S(�AB) = −
4∑

l=1

ηl log2 ηl , (13)

where η1,2 = [1 ± μ1 ± μ2 − μ3]/4 and η3,4 = [1 ± μ1 ∓
μ2 + μ3]/4 are the eigenvalues of �AB(0). Equation (13) char-
acterizes the entropic uncertainty lower bound (denoted by
BEU) of the uncertainty, given by Eq. (12).

To understand the fundamental reasons behind the increase
or decrease in EUB, we introduce the relationship between
QD (represented by DQ) and the minimal missing information
(represented by M) about A after measurements are performed
on B. Mathematically, this relationship can be expressed as
(detailed derivation is given in Appendix B)

BEU = log2
1

c
+ M − DQ, (14)

where for the Bell-diagonal states M can be defined as
M = H ((1 + ξ )/2) with ξ = max{μ1, μ2, μ3} [58] and the
analytical expression for QD is provided in Appendix B.
Equation (14) reflects that the EUB depends not only on QD
but also on M. Interestingly, this relationship renders an av-
enue to control the dynamical behaviors of EUB by governing
the competition between M and QD.

As the dephasing noise process preserves the general form
of the Bell-diagonal states, thus the evolved correlation pa-
rameters can be easily obtained using the approach provided
in Ref. [59]. For the case of local baths with the same decoher-
ence factor, i.e., γA(t ) = γB(t ) = γ , the evolved parameters
can be computed from Eqs. (8) and (9), which take the form
μ1(t ) = μ1|γ (t )|2 and μ2(t ) = μ2|γ (t )|2, and due to the de-
phasing process μ3(t ) = μ3 remains constant. It implies that
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(a)

(b)

FIG. 1. Dynamics of (a) the entropic uncertainty bound (EUB)
(red curves) and (b) quantum discord (QD) (purple curves) and min-
imal missing information (M) about the measuring particle (orange
curves) as a function for timescale λt for different values of a= 0, 0.7,
and 1, in the weak-coupling regime with the local baths setup. Here
assume the initial-state parameters μ1 = 0.9, μ2 = 0.54, μ3 = −0.6.

these correlation parameters are strongly dependent on the
initial value and nature of the dephasing environments. No-
tably, in our paper, we have set the initial-state parameters
as follows: μ1 = 0.9, μ2 = 0.54, and μ3 = −0.6, satisfying
the state preparation and measurement choice condition (dis-
cussed in Sec. V). Furthermore, these initial-state parameters
demonstrate the phenomenon of freezing quantum discord in
the case of a local bath setup [37,57]. However, in a common
bath scenario, an enhancement in the magnitude of quantum
discord towards a steady state can be observed [45] for this
initial-state. Interestingly, it will help us unveil the role of
these phenomena in the temporal evolution of the EUB. Now,
with the assistance of the evolved correlation parameters, we
can easily evaluate the dynamics of the entropic uncertainty,
entropic uncertainty bound, quantum discord, and minimal
missing information about particle A and unveil the effects of
the nonequilibrium on them.

In Fig. 1, we plot the time evolution of the EUB, QD, and
M when both the measured particle A and quantum memory B
are weakly coupled (i.e., υ/λ < 1; for this case, the dynamics
is Markovian [35]) with their respective local nonequilibrium
dephasing environments. Particularly, in Fig. 1(a), we display
the dynamics of the EUB as a function of the timescale λt
for different values of the nonequilibrium parameter a with
υ = 0.8λ, β = λ, and initial correlation parameters μ1 = 0.9,
μ2 = 0.54, μ3 = −0.6. When the environment is in equilib-
rium, i.e., a = 0, the magnitude of EUB increases to a stable
value, as shown by the red solid curve in Fig. 1(a). The

reason behind this increase in EUB can be demonstrated by
the competition between the M and QD, as represented by
Eq. (14). For a = 0, before the vertical gray solid line, one
may observe that initially, the quantum discord exhibits a con-
stant value for a certain time interval and then suddenly starts
decaying towards zero, while M increases to a steady value, as
illustrated by the purple and orange solid curves in Fig. 1(b),
respectively. This reflects that the initial enhancement in the
magnitude of EUB comes from M because QD stays constant
during this period. However, after the vertical black solid line
in Fig. 1(a), the increase in the value of EUB is merely due to
the decay of QD because M stays constant.

On the other hand, when the environment begins to deviate
from equilibrium, for instance, a = 0.7, the dephasing in
the quantum system reduces [35–37]. As a result, both the
time interval for the frozen quantum discord and the time
needed for M to reach its maximum significantly increase, as
indicated by the position of the vertical gray dot-dashed line
in Fig. 1(b). This leads to two remarkable changes in the dy-
namical behavior of EUB: (i) lowering its value for a specific
initial time interval and (ii) slowing the rate at which it tends
to maximum value, as illustrated by the red dot-dashed curve
in Fig. 1(a). Moreover, we notice a further decrease in the
magnitude of the EUB (before reaching a stable value) when
dephasing environments move far away from equilibrium,
i.e., a = 1, as depicted by the red dashed curve in Fig. 1(a). It
is evident that this decrease in EUB is caused by the extended
duration of the frozen discord and the increased time for M
to stabilize when the environment is far from equilibrium
(a = 1), as displayed by the position of the vertical gray
dashed line in Fig. 1(b). These results reveal that the
nonequilibrium trait of the dephasing environment offers an
alternative and effective avenue to control the time evolution
EUB.

Now, we consider the case of the strong-coupling regime
(i.e., υ/λ > 1, indicating non-Markovian dynamics [35]) in
Fig. 2, where the EUB exhibits more complex dynamical
behaviors that may not be evident in the weak-coupling case.
Specifically, in Fig. 2(a), we assume the same initial-state
parameters and display the time evolution of EUB for distinct
values of a with υ = 3λ and β = λ. When the environment is
in equilibrium, i.e., a = 0, the EUB monotonically increases
to a maximal value and then starts oscillations due to the
non-Markovianity effect induced by strong-coupling, as illus-
trated by the red solid curve in Fig. 2(a). According to the
relation given by Eq. (14), the initial increase in EUB stems
from M because quantum discord remains constant during this
initial period, as illustrated by the orange and purple solid
curves before the vertical gray solid line in Fig. 2(b), respec-
tively. However, after the vertical gray solid line in Fig. 2(b),
only QD starts revivals from zero due to the environmental
back-action (non-Markovianity), which is responsible for the
oscillations in EUB. On the other hand, when the environment
gradually deviates from equilibrium, for example, a = 0.7,
two significant changes in the dynamics of the EUB can be
noticed: a reduction in its magnitude and suppression in the
number of oscillations with time, as shown by the red dot-
dashed curve in Fig. 2(a). The reason behind these changes
in the evolution of EUB can be explained by the competition
between QD and M, as mentioned below.
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(a)

(b)

FIG. 2. Dynamics of (a) the entropic uncertainty bound (EUB)
(red curves) and (b) quantum discord (QD) (purple curves) and mini-
mal missing information (M) about the measuring particle (orange
curves) as a function for timescale λt for different values of a =
0, 0.7, and 1, in the strong-coupling regime with the local baths
setup. Here assume the initial-state parameters μ1 = 0.9, μ2 = 0.54,
μ3 = −0.6.

For a = 0.7, the time interval for the frozen QD and the
time required for M to achieve its maximum value increase,
as indicated by the position of the vertical gray dot-dashed
line in Fig. 2(b). Consequently, it leads to a slower rate of
rise in the value of EUB, as represented by the red dot-dashed
curve in Fig. 2(a). However, when the environment deviates
from equilibrium (e.g., a = 0.7), QD begins revivals from
a nonvanishing value, while M remains time invariant after
the vertical gray dot-dashed line throughout the dynamics, as
shown in Fig. 2(b). In this scenario, it is evident that nonequi-
librium suppresses the non-Markovian effect but intriguingly
preserves the QD for a long time, as reported in our earlier
studies [37]. It implies that the reduction in the value and
the suppression in the number of oscillations of EUB with
time are solely due to QD. Moreover, when environments
move far away from equilibrium (a = 1), one can see more
enhancement in the time interval for the frozen QD and the
time needed for M to attain its maximum value, as illustrated
by the position of the vertical gray dashed line in Fig. 2(b).
Additionally, we find that a significant amount of QD can be
maintained for an extended period despite the decrease in the
amplitudes of the revivals (i.e., environmental back-action)
after the vertical gray dashed in Fig. 2(b) when a = 1. These
dynamical behaviors of M and QD bring remarkable changes
in EUB dynamics: (i) a further decrease in the rate of ap-
proaching the maximal value, (ii) a decrease in its magnitude,
and (iii) a further reduction in the number of oscillations, as

(a)

(b)

FIG. 3. Dynamics of (a) the entropic uncertainty bound (EUB)
(red curves) and (b) quantum discord (QD) (purple curves) and mini-
mal missing information (M) about the measuring particle (orange
curves) as a function for timescale λt for different values of a =
0, 0.7, and 1, in the weak-coupling regime with a common bath
setup. Here assume the initial-state parameters μ1 = 0.9, μ2 = 0.54,
μ3 = −0.6.

depicted by the red dashed curve in Fig. 2(a). It confirms
that the nonequilibrium nature of the environments offers a
promising protocol to reduce the EUB, though it suppresses
the non-Markovian effects. However, we find that the maxi-
mum value of EUB (i.e., 1.72) remains the same in both weak-
and strong-coupling regimes.

IV. EUB UNDER A COMMON NONEQUILIBRIUM
DEPHASING ENVIRONMENT

In this section, we explore the dynamical behaviors of
the EUB when both A and B interact with a common
nonequilibrium dephasing environment. The evolved cor-
relation parameters under this common environment setup
can easily be obtained from Eqs. (9) and (11), which take
the form μ1(t ) = 1

2 {μ1[1 + |γ (t )|4] + μ2[1 − |γ (t )|4]} and
μ2(t ) = 1

2 {μ1[1 − |γ (t )|4] + μ2[1 + |γ (t )|4]}, and due to the
dephasing process μ3(t ) remains unchanged, i.e., μ3(t ) = μ3.
With the help of these evolved correlation parameters, we can
straightforwardly derive the general dynamical patterns of the
EUB, QD, and M.

In contrast to the local baths scenario, the common bath
setup renders a promising platform for enhancing and trapping
quantum correlations in a steady state [44,45]. Therefore, it
would be interesting to ask the following question: Does the
EUB reduce when particle A and quantum memory B are
coupled with a single common bath? To answer this question,
in Fig. 3(a), we plot the dynamics of EUB under the common
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(a)

(b)

FIG. 4. Dynamics of (a) the entropic uncertainty bound (EUB)
(red curves) and (b) quantum discord (QD) (purple curves) and mini-
mal missing information (M) about the measuring particle (orange
curves) as a function for timescale λt for different values of a =
0, 0.7, and 1, in the strong-coupling regime with a common bath
setup. Here assume the initial-state parameters μ1 = 0.9, μ2 = 0.54,
μ3 = −0.6.

nonequilibrium dephasing environment, considering the same
initial condition and weak-coupling regime, as assumed in
Fig. 1(a). Indeed, in Fig. 3(a), we can see that EUB mono-
tonically increases to a stable constant value even though the
magnitude of quantum correlations (measured by QD) is en-
hanced. This increase in EUB can be explained by the relation
given in Eq. (14), implying that EUB depends not only on QD
but also on M. Therefore, in Fig. 3(b), we illustrate that the
common bath setup not only enhances the value of QD but
also increases the amount of M simultaneously, contributing
to the rise in the value of EUB. Remarkably, however, the
maximum value of EUB is significantly lower in the common
bath setup (approximately 1.15, while in the case of local
baths it is 1.72), as evident from the comparison between
Figs. 1 and 3. This difference is due to the increase in the mag-
nitude of QD from its initial value and the suppression of the
maximum value of M at the same time in the common bath.
Furthermore, similar to the case of the local baths, here the
value of EUB also reduces for a specific initial time when the
environment deviates from equilibrium, for example, a = 0.7
and 1, as shown by the red dot-dashed and dashed curves in
Fig. 3(a), respectively.

Next, in Fig. 4, we illustrate the dynamics of EUB,
QD, and M in the strong-coupling region, assuming the
same initial-state parameters, i.e., μ1 = 0.9, μ2 = 0.54, μ3 =
−0.6. Particularly, for a = 0, we see that EUB abruptly in-
creases to a maximum value and then begins oscillating from

an almost steady state due to the non-Markovianity induced
by strong-coupling, as indicated by the red solid curve in
Fig. 4(a). Interestingly, in the strong-coupling regime, we also
noticed that the maximum value of the EUB is lower in the
common bath case than in the local baths setup, as illustrated
by comparing Figs. 2(a) and 4(a). According to Eq. (14), in
the common bath scenario, the oscillations in the EUB arise
remarkably due to the contributions of the revivals in both QD
and M, as depicted by the purple and orange solid curves in
Fig. 4(b), respectively. However, in the local baths case, the
oscillations in the EUB occur solely due to the revivals in
QD, as shown in Fig. 2. Furthermore, the reduction in the
maximum value of EUB in the common bath is because of
the enhancement in amount of QD and the decrease in the
maximal value of M. Moreover, the nonequilibrium nature
suppresses the amplitude of revivals in both QD and M,
as displayed by the purple and orange [a = 0.7 dot-dashed;
a = 1 dashed] curves in Fig. 4(b), respectively. This leads to
a reduction in the rate at which EUB tends to maximal value
and suppresses its oscillation amplitude as well, as indicated
by the red dot-dashed (a = 0.7) and dashed (a = 1) curves
in Fig. 4(a). It can be concluded that the common bath setup
offers a promising strategy to reduce the maximum value of
EUB in both weak- and strong-coupling regimes, while the
nonequilibrium feature of the environment further contributes
to its control. Notably, the maximal value (1.15) of EUB
remains the same in both coupling regimes.

V. SPMC CONDITION IN LOCAL BATHS
AND COMMON BATH SETUPS

In this section, we investigate the state preparation and
measurement choice condition under two different nonequi-
librium dephasing environmental setups. To this aim, in our
paper we choose observables σ 1 and σ 3 for the measurements
process. Now if the initial Bell-diagonal state satisfies the
condition

μ2 = −μ1μ3, (15)

then EU ≡ EUB is obeyed in Eq. (2). It implies that the
entropic uncertainty in the measurement outcomes of the ob-
servables σ 1 and σ 3 can be directly computed via the joint
entropy S(�AB) of the total system. Equation (15) is referred
to as the SPMC condition.

Now, we check the validity of the SPMC condition in both
the local baths and common bath cases. For this purpose,
we consider that particle A and quantum memory B are in
an initial state with μ1 = 0.9, μ2 = 0.54, μ3 = −0.6, which
satisfies the SPMC condition. We then first assume that A and
B are locally subjected to their respective nonequilibrium de-
phasing environments. In this situation, the SPMC condition
will not be violated, and we can obtain EU ≡ EUB = S(�AB)
in both weak- and strong-coupling regimes, as illustrated in
Figs. 5(a) and 5(b), respectively.

On the other hand, if we consider the same initial-state and
bath parameters but assume that both A and B are coupled
to a common nonequilibrium dephasing environment, it is
observed that the SPMC will not hold in both weak- and
strong-coupling cases, as shown in Figs. 6(a) and 6(b), respec-
tively. However, upon comparing Figs. 5 and 6, it becomes
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(a)

(b)

FIG. 5. Dynamics of entropic uncertainty (EU) (blue dot-dashed
curves) and the entropic uncertainty bound (EUB) (red solid curves)
as a function of timescale λt in (a) weak-coupling and (b) strong-
coupling regimes under the local baths setup. Here assume the initial-
state parameters μ1 = 0.9, μ2 = 0.54, μ3 = −0.6 with a = 0.7.

(a)

(b)

FIG. 6. Dynamics of entropic uncertainty (EU) (blue dot-dashed
curves) and the entropic uncertainty bound (EUB) (red solid curves)
as a function of timescale λt in (a) weak-coupling and (b) strong-
coupling regimes for the common bath case. Here assume the initial-
state parameters μ1 = 0.9, μ2 = 0.54, μ3 = −0.6 with a = 0.7.

evident that the degree of entropic uncertainty and its lower
bound are significantly reduced in the common bath scenario.
Furthermore, we reveal that the EUB is not tighter in the
common bath; hence, one cannot calculate EU directly from
the joint entropy of the whole system.

VI. CONCLUSIONS

We have theoretically investigated the dynamical behaviors
of the QMA-EUR for a bipartite system in both local and
common nonequilibrium dephasing baths setups. Particularly,
we have studied the influence of the competition between
nonequilibrium and non-Markovianity in controlling the EUB
in weak- and strong-coupling regimes. We have found that
the nonequilibrium nature presents a promising approach for
efficiently harnessing the EUB in both regimes without de-
manding any operations on the system of interest. Further,
our findings indicate that a common bath can significantly
lower the EUB compared to local baths. Moreover, we have
clarified the main reasons responsible for governing the dy-
namical behaviors of EUB by probing the interplay between
quantum discord and the minimal missing information about
the particle to be measured. In addition, we have analyzed the
SPMC condition in both environmental setups with weak- and
strong-coupling regimes. Interestingly, we have shown that
the SPMC condition does not hold in the common environ-
ment scenario for the given initial-state parameters. Therefore,
one cannot directly compute the entropic uncertainty from the
joint entropy [S(�AB)] of the total system in the common bath
case. Moreover, we intend to expand our current paper and
the findings in Ref. [25] to the multipartite system discussed
in Refs. [60,61].
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APPENDIX A: KRAUS OPERATORS OF THE SINGLE
AND TWO QUBITS SYSTEMS

The Kraus operators [41,43] for particle A are given by

E1
A (t ) =

(
1 0

0 eiω0tγA(t )

)
,

E2
A (t ) =

(
0 0

0
√

1 − |γA(t )|2

)
. (A1)

Now, the Kraus operators for the composite system AB, under
the local nonequilibrium dephasing environments case, can be
simply expressed by the tensor products of each subsystem’s
Kraus operators [41,43] as follows:

F 1(t ) =
(

1 0

0 eiω0tγA(t )

)
⊗

(
1 0

0 eiω0tγB(t )

)
,

F 2(t ) =
(

1 0

0 eiω0tγA(t )

)
⊗

(
0 0

0
√

1 − |γB(t )|2

)
,
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F 3(t ) =
(

0 0

0
√

1 − |γA(t )|2

)
⊗

(
1 0

0 eiω0tγB(t )

)
,

F 4(t ) =
(

0 0

0
√

1 − |γA(t )|2

)
⊗

(
1 0

0
√

1 − |γB(t )|2

)
.

(A2)

Here, γA(t ) and γB(t ) are decoherence factors for particle A
and quantum memory B, respectively. Further, we consider
that both A and B have the same dephasing factor, γA(t ) =
γB(t ) = γ (t ).

APPENDIX B: RELATIONSHIP BETWEEN QD AND EUB

We explore the relationship between QD and the EUB,
given by Eq. (2). For this purpose, we recall the definition of
QD, i.e.,

DQ = −S(A|B) + min{Bi}
∑

i

qiS
(
�i

A

)
, (B1)

where min{Bi}
∑

i qiS(�i
A) represents the minimal missing in-

formation (which is labeled as M) related to A, given that a set
of measurements {Bi} is performed on subsystem B [62] and

�i
A = trB[Bi�ABB†

i ]
qi

with qi = tr[Bi�ABB†
i ]. Now Eq. (B1) can be

expressed as follows:

S(A|B) = M − DQ. (B2)

Thus, from Eqs. (2) and (B2), we can derive the relationship
among EUB, QD, and M as given by Eq. (14). Moreover,
for the Bell-diagonal states, QD has an analytical expression
which is given by [57,58]

DQ = 2 +
4∑

l=1

ηl log2 ηl − C, (B3)

where C = ∑2
i=1

1+(−1)iξ

2 log2[1 + (−1)iξ ], with ξ = max{|
μ1 | | μ2 |, | μ3 |}, characterizes the classical correlations for
the bipartite system.
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