
PHYSICAL REVIEW A 110, 012428 (2024)

Depth scaling of unstructured search via quantum approximate optimization

Ernesto Campos ,1,* Daniil Rabinovich,1,2 and Alexey Uvarov 1

1Skolkovo Institute of Science and Technology, Moscow 121205, Russian Federation
2Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation

(Received 26 March 2024; accepted 20 June 2024; published 9 July 2024)

Variational quantum algorithms have become the de facto model for current quantum computations. A promi-
nent example of such algorithms—the quantum approximate optimization algorithm (QAOA)—was originally
designed for combinatorial optimization tasks, but has been shown to be successful for a variety of other
problems. However, for most of these problems the optimal circuit depth remains unknown. One such problem
is unstructured search, which consists of finding a particular bit string or, equivalently, preparing a state of high
overlap with a target state. To bound the optimal QAOA depth for such a problem we build on its known solution
in a continuous time quantum walk (CTQW). We Trotterize a CTQW to recover a QAOA sequence, and employ
recent advances on the theory of Trotter formulas to bound the query complexity (circuit depth) needed to prepare
a state that approaches perfect overlap with the target state. The obtained complexity exceeds Grover’s algorithm
complexity O(N

1
2 ), but remains smaller than O(N

1
2 +c ) for any c > 0, which shows quantum advantage of QAOA

over classical solutions. We verify our analytical predictions by numerical simulations of up to 68 qubits.

DOI: 10.1103/PhysRevA.110.012428

I. INTRODUCTION

Variational quantum algorithms have become the de facto
model of quantum computation of the noisy intermediate-
scale quantum (NISQ) computers era. These algorithms make
use of a parametrized quantum circuit (also known as an
ansatz) whose parameters are iteratively tuned by a classi-
cal coprocessor to minimize a cost function—a procedure
that has been shown to alleviate some of the limitations of
NISQ computers [1–3]. A prominent example of a variational
algorithm, called the quantum approximate optimization al-
gorithm (QAOA), was originally designed to approximate
solutions to combinatorial optimization problems [4]. It was
later shown to be effective for a variety of other tasks, and is
currently one of the most studied quantum algorithms. Mile-
stones of QAOA research include experimental realizations
using 23 qubits [5], several results that aid and improve on
the original implementation of the algorithm [6–9], and uni-
versality results [10,11], implying the importance of QAOA
beyond the NISQ era. Among the promising uses of QAOA
is its application to the problem of unstructured search, where
the objective is to prepare a particular target bit string. No-
table results related to unstructured search via QAOA include
the discovery of parameter concentrations [9], optimal depth
scaling when using a modified mixer [12], and near optimal
depth scaling when preparing a state with an overlap of 1

2
with the target state [13]. Nevertheless, the depth scaling
for approaching perfect overlap, and how it compares to the
complexity of Grover’s algorithm [14], were unknown.

The problem of unstructured search has been studied in
the context of many other models of quantum computing

*Contact author: ernesto.campos@skoltech.ru

including adiabatic quantum computing [15] and continu-
ous time quantum walks (CTQWs) [16]. CTQW is a type
of quantum algorithm used to simulate the dynamics of a
quantum system given a graph that describes the transitions
between states. In this context, “continuous” refers to the
fact that the transitions from one state to another occur
continuously over time rather than at discrete steps as in a
discrete time quantum walk. Originally proposed by Farhi and
Gutmann [17], it relates to a classical continuous time ran-
dom walk by the analogy between a classical transfer matrix
and a quantum Hamiltonian. CTQWs are known to provide
an exponential speedup in certain problems [18], recover
Grover’s search [16], and be a computationally universal
model [19].

Continuous time evolution in CTQWs can be approximated
by discretizing them into a quantum circuit with the use of
product formulas, like the Suzuki-Trotter formulas [20,21].
Notably, CTQW solving the unstructured search problem re-
covers a QAOA sequence upon this discretization.

In this paper we make use of recent developments in the
analysis of product formula errors [22] to discretize CTQW
for the problem of unstructured search, which recovers a
QAOA sequence. As a result, we identify an upper bound on
the QAOA circuit depth (query complexity) for unstructured
search, sufficient to approach perfect overlap. Our complexity
bound exceeds the well-known Grover complexity O(N

1
2 ) but

scales slower than O(N
1
2 +c) for any c > 0. Our analysis is

supported by numerical evidence up to 68 qubits. Compared
to the results presented by Jiang et al. [13], our method offers
an improvement to the overlap in exchange for a slightly
higher complexity. This result sheds light onto the power
of QAOA and makes a step towards closing the gap be-
tween QAOA and Grover’s algorithm in terms of scaling and
overlap.
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II. PRELIMINARIES

A. Unstructured search via CTQW

In the most general sense, a continuous time quantum walk
is described by a Hamiltonian H which induces a unitary
evolution, defined by the operator e−iHt . Here Hamiltonian H
is analogous to the transfer matrix of classical continuous time
random walks.

In this setting, solving unstructured search in a hypercube
graph consists of the evolution under the operator

U (α, t ) = e−i(αHx+Hw )t , (1)

where Hx = ∑n
j=1 Xj is the adjacency matrix of the

n-dimensional hypercube graph, with Xj being a Pauli X ma-
trix applied to the jth qubit; Hw = |w〉〈w| is the projector on
the target state |w〉 ∈ {|0〉, |1〉}⊗n, α is a tunable parameter,
and t is the evolution time. The objective is then to maximize
the overlap:

max
α,t

|〈w|U (α, t )|+〉⊗n|2. (2)

We can see that (2) is target independent by substituting |w〉 =
Ux|0〉⊗n, where Ux ∈ {X,1}⊗n [23]. Therefore, without loss
of generality we set |w〉 = |0〉⊗n and Hw = H0 = (|0〉〈0|)⊗n.
The optimal value of α was calculated by Farhi et al. [15] to be

α∗ = 1

2n

n∑
k=1

Cn
k

k
= 1

n
+ O

(
1

n2

)
, (3)

where Cn
k are binomial coefficients (details in Appendix A).

The evolution U (α∗, t )|+〉⊗n largely occurs in the
two-dimensional subspace spanned by the low-energy
eigenstates of α∗Hx + H0 (see Appendix B). These two
eigenstates are approximately given by

|ψ+〉 = 1√
2

(|+〉⊗n + |0〉⊗n) + O

(
1

n

)
,

|ψ−〉 = 1√
2

(|+〉⊗n − |0〉⊗n) + O

(
1

n

)
, (4)

with an energy gap � = 2√
2n

[
1 + O

(
1
n

)]
[24] (details in

Appendix B). Thus, up to a global phase we can approximate
the evolution as

U (α∗, t )|+〉⊗n = 1√
2

(|ψ+〉 + e−i�t |ψ−〉) + O

(
1

n

)
, (5)

allowing one to establish that for t∗ = π
2

√
2n the overlap

becomes

|〈0|⊗nU (α∗, t∗)|+〉⊗n|2 = 1 + O

(
1

n

)
. (6)

B. Unstructured search via QAOA

An alternative way of solving the unstructured search prob-
lem is by employing QAOA. With |w〉 representing a target bit
string in the computational basis, the task is to variationally
prepare a candidate state of high overlap with |w〉. In QAOA,
an n qubit candidate state |ψp(γ,β)〉—prepared by a circuit

of depth p—is parametrized as

|ψp(γ,β)〉 =
p∏

k=1

e−iβk Hx e−iγk Hw |+〉⊗n, (7)

with real parameters γk ∈ [0, 2π ), βk ∈ [0, π ).
The optimization task is to maximize the overlap between

the candidate state |ψp(γ,β)〉 and the target state |w〉 given by

0 � max
γ,β

|〈w|ψp(γ,β)〉|2 � 1. (8)

Similar to CTQW, without loss of generality, one can set
|w〉 = |0〉⊗n.

C. Product formulas

Despite a similar formulation, the two discussed ap-
proaches for the unstructured search problem are essentially
different. Indeed, QAOA presents a discrete evolution with
the Hamiltonians Hw and Hx exponentiated individually, as
in (7), while CTQW represents a continuous evolution with
both Hamiltonians appearing in the same exponent, as in (1).
Nevertheless, the so-called product formulas can relate the
two approaches, by providing an approximation to an operator
of the form U (t ) = et

∑M
μ=1 Hμ with a product of exponentials

of individual Hμ [20]. The precision of that approximation
depends on the so-called order of the formula, which controls
the number of individual Hμ exponentiations in the sequence.
High-order Trotter-Suzuki formulas Sq(t ) [21] can be gener-
ated recursively as

S2(t ) = eHMt/2 · · · eH1t/2eH1t/2 · · · eHMt/2, (9)

S2k (t ) = S2
2k−2(ukt )S2k−2[(1 − 4uk )t]S2

2k−2(ukt ), (10)

where uk = 1/(4 − 41/(2k−1)). In general, a q order product
formula can be written in the form

Sq(t ) =
ϒq∏
v=1

M∏
μ=1

eta(v,μ)Hπ (v,μ) , (11)

where ϒq is the number of stages of the formula. The formulas
of qth order approximate the original operator U (t ) with a se-
quence of individual Hμ exponentials with an error of O(t q+1).

In order to approximate an evolution U (t ) with large t
one should partition an evolution into r smaller Trotter steps
Sq(t/r). As calculated by Childs et al. in [22], for unitary U (t )
this results in an approximation error

‖U (t ) − Sr
q(t/r)‖2 � ε = 2(ϒq)q+1δ(t∗)q+1

rq(q + 1)
, (12)

where

δ =
M∑

μ1,μ2,···μq+1=1

∥∥[
Hμq+1 , · · ·

[
Hμ2 , Hμ1

] · · · ]∥∥2. (13)
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III. DEPTH SCALING OF QAOA
FROM A TROTTERIZED CTQW

Theorem 1: Complexity of search via QAOA. A QAOA
circuit of depth

p = O
(
2

n
2 +√

n
√

2 log2 5) (14)

can prepare a state that satisfies |〈ω|ψp(γ,β)〉|2 = 1 +
O(1/n).

Proof. The evolution operator U (α∗, t∗) can be approxi-
mated by a qth-order product formula:

Sr
q(t∗/r) =

rϒq∏
v=1

et∗b(v)H2 et∗a(v)H1 , (15)

where a(v), b(v) ∈ R, H1 = −iH0, H2 = −iHxα
∗, and ϒq =

5q/2−1 (details in Appendix C). Equation (15) gives a QAOA
sequence of depth p = rϒq. The objective is to calculate
the depth that results in an approximation with an error
‖U (α∗, t∗) − Sr

q(t/r)‖2 � ε. This can be calculated from
solving (12) for p:

p = (ϒq)2+1/q(2δ)1/q(t∗)1+1/q

[ε(q + 1)]1/q
. (16)

We make use of the fact that in unstructured search the evo-
lution happens in a symmetric subspace of dimension n + 1.

Definition 1: Symmetric subspace. Hs = Span{|ψ〉 :
Pi j |ψ〉 = |ψ〉}, where Pi j is a permutation of arbitrary qubits i
and j.

Definition 2: Dicke basis vectors. |ek〉 = 1√
Cn

k∑
z1+···+zn=k |z1 · · · zn〉, where zi ∈ {0, 1}, and Cn

k are binomial
coefficients.

In this subspace, the operator Hx is a tridiagonal matrix
with diagonal elements equal to zero, and off-diagonal ele-
ments given by

〈el+1|Hx|el〉 =
√

(l + 1)(n − l ) � n + 1

2
. (17)

It follows that the max norm ‖A‖max = max j,k |Aj,k| of H2 =
−iHxα

∗ can be upper bounded as

‖H2‖max � α∗ n + 1

2
. (18)

As for H0, in the symmetric subspace it takes the form of an
n + 1 dimensional square matrix with all elements equal to
zero except 〈e0|H0|e0〉 = 1.

Notice that for an arbitrary matrix A it follows that

‖[H1, A]‖max � ‖A‖max, (19)

‖[H2, A]‖max � max
j,k

[
(|Aj+1,k| + |Aj−1,k|

+ |Aj,k+1| + |Aj,k−1|)
(

α∗ n + 1

2

)]

� 2α∗(n + 1)‖A‖max. (20)

Thus, in order to find an upper bound for the norm of nested
commutators in (13) we focus only on how many times H2

appears in the sequence. The largest matrix element resulting

from any such sequence is bounded by∥∥[
Hμq+1, · · ·

[
Hμ2 , Hμ1

] · · · ]∥∥max � [2α∗(n + 1)] j (21)

where μ1 	= μ2, and j is the number of times H2 appears in
the sequence.

We recall the inequality between the spectral and Frobenius
norm ‖ · ‖F as

‖A‖2 = σmax(A) � ‖A‖F =
⎛
⎝ m∑

j=1

n∑
k=1

|Aj,k|2
⎞
⎠

1
2

, (22)

where σmax(A) is the largest singular value of A.
Using (21) and (22) we find the following expression for

the spectral norm of nested commutators:∥∥[
Hμq+1 , · · ·

[
Hμ2 , Hμ1

] · · · ]∥∥2 � [2α∗(n + 1)] j (n + 1),

(23)

where μ1 	= μ2, and j is the number of times H2 appears in
the sequence.

Substituting (23) into the definition of δ (13) we obtain

δ � 2(n + 1)
q∑

j=1

[2α∗(n + 1)] jCq−1
j−1 (24)

� 2(n + 1)[2α∗(n + 1) + 1]q
. (25)

The binomial coefficients in (24) come from the number of
combinations in which H2 can appear j − 1 times outside the
first commutator. An extra factor of 2 appears from the first
commutator being either [H1, H2] or [H2, H1].

After substituting ϒq = 5q/2−1, t∗ = π
2

√
2n, and (25) into

(16), we derive

p � p0

√
2n

(
2π (n + 1)

√
2n

5ε

) 1
q

5q, (26)

where

p0 = π [2α∗(n + 1) + 1]

2 × 53/2(q + 1)
1
q

. (27)

To minimize (26) we take its derivative and set it to zero.
Neglecting a small negative contribution, we find the value
of q that results in the shortest depth to be

q �
(

n ln
√

2 + ln[2π (n + 1)] − ln 5ε

ln 5

) 1
2

. (28)

Substituting (28) into (26) and simplifying we arrive at

p � p0

(
2π (n + 1)

5ε

) 2
q

2
n
2 +√

n
√

2 log2 5. (29)

Importantly, from (27) and (3) one can show that p0 < 1
2 .

Moreover, since the CTQW is limited to an overlap 1 +
O(1/n), as given by (6), errors smaller than ε = O(1/n) do not
meaningfully alter the overlap of QAOA. Therefore, for errors
of this order and large n, the second factor in (29) does not
grow with n. This leaves the last factor in (29) as the dominant
contribution, establishing (14). �
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FIG. 1. Overlap with the target state |0〉⊗n through the circuit for
states |ψ〉 prepared by (i) Grover search, (ii) QAOA from a Trotter-
ized CTQW with numerically calculated depth, and (iii) QAOA from
a Trotterized CTQW with analytically predicted depth for n = 42, 46
and ε = 0.01. In agreement with (6), the overlaps of the QAOA
sequences reach 1 + O( 1

n ).

Remark 1: Complexity comparison. Theorem 1 puts the
query complexity of the derived QAOA circuit in between the
traditional Grover’s algorithm and classical search

O(N
1
2 ) < O

(
N

1
2 2

√
log2 N

√
2 log2 5) < O(N ), (30)

where N = 2n.
It is also worth noting that

O
(
N

1
2 2

√
log2 N

√
2 log2 5) < O(N

1
2 +c), (31)

for any c > 0.
QAOA angles can be recovered by expressing Sr

q(t∗/r)
as a product of second-order terms by following (10) and
recursively calculating the parameters tk that correspond to
each second order term as

Sr
q(t∗/r) =

p∏
k=1

S2(tk ). (32)

Then, QAOA angles can be recovered by

βk = tk, γk 	=p = tk + tk+1

2
, γp = tp

2
. (33)

IV. NUMERICAL EXPERIMENTS

We begin testing our analytics by confirming that the
resulting QAOA sequence has sufficient depth to precisely
approximate the evolution of the corresponding CTQW. We
compare (i) Grover search, (ii) QAOA from a Trotterized
CTQW with numerically calculated depth, and (iii) QAOA
from a Trotterized CTQW with analytically predicted depth.
For these three cases, Fig. 1 illustrates the overlaps increas-
ing through the sequences for ε = 0.01 and n = 42, 46. Here

FIG. 2. Ratios between the analytically calculated depth
panalytical, given by (29), and numerically calculated depth pnumerical

for system sizes n ∈ [22, 68] and ε ∈ {0.001, 0.01, 0.1}. For each
pair n and ε, pnumerical is calculated using the formula of order q
which results in the shortest sequence.

n = 46 is the largest system size with the optimal order q = 6,
allowing for the numerical estimation of the optimal depth
with high precision (details on the numerical execution of
these circuits and search for optimal depths can be found in
Appendix D). For the QAOA sequence obtained analytically
we use a q = 4 order formula, as calculated from Eq. (28).
We observe the overlaps from the QAOA sequences to follow
smooth curves reminiscent of those of CTQWs with respect
to t , reaching 1 + O( 1

n ) as in Eq. (6).
In order to verify the tightness of Eq. (29), we exhaus-

tively calculate the depth required by a Trotterized CTQW to
have an error below certain threshold ε. Figure 2 illustrates
the ratio between the depth predicted by Eq. (29) and the
depth calculated numerically in the range n ∈ [22, 68] and
ε = {0.001, 0.01, 0.1}. When numerically approximating the
optimal depth, for each pair n and ε, we use the formula of
the order which results in the shortest sequence. The sharp
fluctuations that appear at q = 8 are likely due to the longer
sequences of every step S8(t/r), and the more computationally
intensive task of approximating depths for the larger system
sizes. Across the entire range the ratio demonstrates a seven-
fold increase, showing a much slower growth compared to the
dominant factor 2

n
2 .

Figure 3 illustrates numerically calculated depth with re-
spect to ε ∈ [0.001, 0.1] for n = 40, 42, 44 and q = 6. It can
be observed that depth growth slows down as ε becomes
smaller. In Eq. (29), the impact of ε on depth is given by the
factor ε

− 2
q which diminishes for higher-order formulas (large

systems), and goes to 1 in the limit n → ∞.

V. DISCUSSION

Our results demonstrate quantum advantage for unstruc-
tured search via QAOA where the ansatz state approaches
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FIG. 3. Numerically calculated depths for a range of
ε ∈ [0.001, 0.1] for n = 40, 42, 44 and q = 6.

perfect overlap with the target. We prove the query com-
plexity to be higher than that of Grover’s algorithm O(N

1
2 ),

but notably smaller than O(N
1
2 +c) for any c > 0. Compared

to the results presented by Jiang et al. [13], our approach
offers an improvement to the overlap in exchange for a higher
complexity.

It might be tempting to tighten the bound (29) by con-
sidering evolution in a two-dimensional subspace spanned
by the low-energy eigenstates (B9). However, the estimate
obtained this way does not match the numerical experi-
ments, predicting depths of the order of O(2

n
2 ), lower than

what we numerically observe. This discrepancy is likely
caused by a probability leakage out of this two-dimensional
subspace.

Nevertheless, it may still be possible to improve the
derived upper bound for depth. Equation (12), as intro-
duced by Childs et al. [22], makes use of multiple upper
bounds in an attempt to make it as general as possible,
which opens the door for finding a tighter expression tai-
lored to our particular setting. Similarly, in our analysis
we make use of some generous upper bounds in order to
obtain a closed form of δ, which offers room for improve-
ment. Regardless of this, it is unlikely that any improvement
would lower the bound to the point of optimal scaling. As
we observe numerically, the suboptimal complexity appears
to be a fundamental feature of the Trotterization of the
considered CTQW. Alternatively, one may consider the Trot-
terization of hybrid adiabatic and CTQW evolutions, similar
to those presented in [25]. Such evolutions also present op-
timal scaling and may result in Trotter sequences of lower
complexity.

Our result provides insight on the power of QAOA
and makes a step towards closing the gap between QAOA
and Grover’s algorithm in terms of scaling and overlap.
If this gap were to be closed, QAOA could become a
more attractive alternative to Grover’s algorithm due to the
easier implementation of the mixer Hx compared to the
projector |+〉〈+|⊗n.

The code used for this paper is written in PYTHON and is
available on reasonable request.
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APPENDIX A: OPTIMAL VALUE OF α AND ENERGY GAP

For completeness here we reiterate the calculation of the
optimal value of α for CTQW, presented in [15]. Let H =
αHx + |0〉〈0|, where |0〉 ≡ |0〉⊗n. We seek to find α for which
the energy gap � is minimum.

Let |ek〉 be the Dicke states as in Definition 2, and |hk〉 =
H⊗n

a |ek〉 where Ha is the Hadamard gate. It can be seen that(
n∑

i=1

Zi

)
|ek〉 = (n − 2k)|ek〉, (A1)

Hx|hk〉 = (n − 2k)|hk〉. (A2)

We solve for the eigenvalues of H , H |ψ〉 = E |ψ〉. Multi-
plying it by 〈hk|,

〈hk|H |ψ〉 = E〈hk|ψ〉, (A3)

substituting H , and using property (A2) after a series of alge-
braic manipulations we end up with (A6):

α(n − 2k)〈hk|ψ〉 + 〈hk|0〉〈0|ψ〉 = E〈hk|ψ〉, (A4)

[E − α(n − 2k)]〈hk|ψ〉 = 〈hk|0〉〈0|ψ〉, (A5)

〈hk|ψ〉 = 〈hk|0〉〈0|ψ〉
E − α(n − 2k)

. (A6)

We multiply both sides by 〈0|hk〉 and sum over k:
n∑

k=0

〈0|hk〉〈hk|ψ〉 =
n∑

k=0

|〈hk|0〉|2〈0|ψ〉
E − α(n − 2k)

, (A7)

1 =
n∑

k=0

Pk

E − α(n − 2k)
, (A8)

where we used the fact that |hk〉 form a basis in the symmetric

subspace. Here Pk = |〈hk|o〉|2 = Ck
n

2n . We introduce a change of
variables:

λ = E/α ⇒ α =
n∑

k=0

Pk

λ − (n − 2k)
. (A9)

Letting α > 0, the right-hand side of (A9) approaches +∞ as
λ → n + 0, n − 2 + 0, · · · − n + 0, and goes to −∞ as λ →
n − 0, n − 2 − 0, · · · − n − 0. We will prove that there exist
two roots exponentially close to λ = n for

α∗ = 1

2

n∑
k=1

Pk

k
. (A10)

Substituting α∗ from (A10) to (A9), we get

1

2

n∑
k=1

Pk

k
=

n∑
k=0

Pk

λ + 2k − n
⇐⇒

n∑
k=1

Pk (λ − n)

2k(λ + 2k − n)

= P0

λ − n
= 1

2n(λ − n)
. (A11)
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As we search for |λ − n| � 1, we neglect the term in the
denominator of the left-hand side of (A11):

1

4

n∑
k=1

Pk

k2
= 1

2n(λ − n)2
⇒ λ = n ± ξ, (A12)

where ξ = 2√
2n (

∑n
k=1

Pk
k2 )−

1
2 . The energy gap is then

� = 2α∗ξ, (A13)

which is correct up to exponential precision O(2−n). However,
to obtain a tractable expression we approximate sums in the
expression for α∗ and ξ :

n∑
k=0

Pk

k
= 2

n
+ O

(
1

n2

)
,

n∑
k=0

Pk

k2
= 4

n2
+ O

(
1

n3

)
, (A14)

allowing us to conclude

⇒ � = 2√
2n

[
1 + O

(
1

n

)]
. (A15)

APPENDIX B: LOW-ENERGY EIGENSTATES OF H

From Eqs. (A6) and (A10) we have

α∗〈hk|ψ〉 =
√

Pk〈0|ψ〉
λ − n + 2k

, (B1)

which for k = 0 simplifies to

α∗〈h0|ψ〉 = ±
√

P0

ξ
〈0|ψ〉. (B2)

Note that |h0〉 = |+〉⊗n. For k 	= 0 exponentially small λ − n
can be neglected, giving

α∗〈hk|ψ〉 =
√

Pk

2k
〈0|ψ〉, (B3)

n∑
k=0

|〈hk|ψ〉|2 = 1 = |〈0|ψ〉|2
(α∗)2

(
P0

ξ 2
+

n∑
k=1

Pk

4k2

)
. (B4)

Thus,

(α∗)2 = |〈0|ψ〉|2
(

P0

ξ 2
+

n∑
k=1

Pk

4k2

)
= |〈0|ψ〉|2

(
2

2nξ 2

)
(B5)

where we used Eq. (A11) at the last transition. Finally, we
conclude

〈0|ψ±〉 = ±
√

2n�

2
√

2
. (B6)

From Eqs. (B2) and (B6)

〈h0|ψ±〉 = 1√
2

+ O(2−n). (B7)

Similarly, using (B3) and (B6) for k 	= 0,

〈hk|ψ±〉 = ±
√

Pk

k
√

2

(
n∑

k=0

Pk

k2

)− 1
2

+ O(2−n). (B8)

From Eqs. (B7) and (B8) we obtain the eigenstates

|ψ±〉 = 1√
2

⎡
⎣|+〉⊗n ±

(
n∑

k=0

Pk

k2

)− 1
2 n∑

k=1

√
Pk

k
|hk〉

⎤
⎦+ O(2−n).

(B9)

Note, the second term has high overlap with |0〉:(
n∑

k=0

Pk

k2

)− 1
2

〈0|
n∑

k=1

√
Pk

k
|hk〉

=
(

n∑
k=0

Pk

k2

)− 1
2 n∑

k=1

Pk

k
(B10)

=
(

4

n2
+ O(n−3)

)− 1
2
(

2

n
+ O(n−2)

)
(B11)

= 1 + O(n−1), (B12)

which justifies use of expressions (4). Notice, however, that
while these expressions are only polynomially correct, this
imprecision comes from approximating the second part of
(B9) with state |0〉. The original form of the eigenstates (B9)
remains exponentially precise.

APPENDIX C: QAOA SEQUENCE
FROM THE TROTTERIZED CTQW

The second-order Trotter sequence for the evolution of a
Hamiltonian with two terms H = H1 + H2 is

S2(t ) = eH2
t
2 eH1

t
2 eH1

t
2 eH2

t
2 (C1)

= eH2
t
2 eH1t eH2

t
2 . (C2)

Similarly, after grouping neighboring terms, higher-order
Suzuki sequences take the form

Sq(t ) =
⎛
⎝5q/2−1∏

v=1

eH2ta(v)eH1tb(v)

⎞
⎠eH2tc, (C3)

where a, b, c ∈ R. In the case of unstructured search, by set-
ting H1 = −iH0, H2 = −iHxα

∗, a step Sq(t/r) takes the form

Sq(t/r)|+〉⊗n = e−i α∗ntc
r

5q/2−1∏
v=1

e−iHx
α∗ta(v)

r e−iH0
tb(v)

r |+〉⊗n, (C4)

which has ϒq = 5q/2−1 stages. Using r steps in the sequence
(15), and grouping terms in neighboring steps, one gets

Sr
q(t/r)|+〉⊗n

=
⎧⎨
⎩

⎛
⎝5q/2−1∏

v=1

e−iHx
α∗ta(v)

r e−iH0
tb(v)

r

⎞
⎠e−iHx

α∗tc
r

⎫⎬
⎭

r

|+〉⊗n

= e−iα∗ntc′
r5q/2−1∏
v=1

e−iHxα
∗ta′(v)e−iH0tb′(v)|+〉⊗n, (C5)

with a′, b′, c′ ∈ R, which recovers a QAOA sequence of
depth p = rϒq = r5q/2−1.
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APPENDIX D: NUMERICAL DETAILS

The numerics presented in this paper were performed by
simulating the QAOA circuits in the n + 1 dimensional sym-
metric subspace. Due to the QAOA angles repeating across
Trotter steps, we simulate these circuit by calculating powers
of a step Sq(t/r), which can be performed efficiently.

In order to numerically approximate the optimal depth for
a given n, ε, and q we perform the following steps.

(1) Define the number of steps as rdl = d · 2n/2−l , where
d and l are integers initially set to d = 1 and l = 0.

(2) Numerically calculate Srdl
q (t/rdl ) and iteratively in-

crease the value of d one by one until finding d = d ′ such

that∣∣〈0|⊗nSrd ′ l
q (t/rd ′l )|+〉⊗n

∣∣2 � |〈0|⊗nU (α∗, t∗)|+〉⊗n|2 − ε.

(D1)

(3) Once condition (D1) is fulfilled we perform a binary
search. This is done by setting the new initial value of d →
2d ′ − 1 and l → l + 1, and repeating step 2.

(4) Steps 2 and 3 get repeated for a fixed number of itera-
tions. Specifically for the numerics presented in the paper, we
used 15 iterations.

(5) The resulting approximated optimal depth is given by
pnumerical = rdl × 5q/2−1.
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