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This paper presents a computational analysis of a superconducting transmon qubit design, in which the
superconductor-insulator-superconductor (SIS) Josephson junction is replaced by a coplanar, superconductor-
constriction-superconductor (ScS) nanobridge junction. Within the scope of Ginzburg-Landau theory, we find
that the nanobridge ScS transmon has an improved charge dispersion compared to the SIS transmon, with a
tradeoff of smaller anharmonicity. These calculations provide a framework for estimating the superconductor
material properties and junction dimensions compatible with gigahertz frequency ScS transmon operation.
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I. INTRODUCTION

The transmon has become an enabling superconducting
qubit device architecture, with primary advantages of immu-
nity to charge noise and relatively long coherence lifetimes
achieved by designing the device to have Josephson energy
far exceeding the charging energy. Similar to other super-
conducting qubit architectures, the transmon core consists of
one or more Josephson junctions (JJs), which are predomi-
nantly superconductor-insulator-superconductor (SIS) tunnel
junctions—most often a thin-film sandwich structure of alu-
minum, aluminum oxide, and aluminum (Al/AlOx/Al), in
which AlOx is the tunnel barrier [Fig. 1(a)].

Fabrication of Al/AlOx/Al SIS JJs typically involves phys-
ical vapor deposition of the top and bottom Al layers from two
different angles relative to the substrate, through a common
mask [1,2]. After depositing the first Al layer, the sample
is exposed to a controlled level of oxygen to form the thin
AlOx barrier. The exponential dependence of the JJ critical
supercurrent (Ic) on tunnel barrier width sets a requirement for
tightly controlled oxidation conditions [3,4]. To achieve low
device-to-device variation for fabrication at the manufacturing
scale, additional considerations must be implemented (e.g.,
minimizing junction area variations) [5,6]. In addition, the
temporal drift of Ic, commonly referred to as junction aging
and attributed to surface chemistry of AlOx in air, remains an
incompletely resolved issue [7].

In a transmon, the SIS JJ is shunted by a large capacitor
to minimize the charging energy and thus provide immunity
to charge noise. Further, the qubit is coupled to a high-Q
microwave resonator for readout. Although high-Q resonators
can be fabricated from Al with proper processing, the shunting
capacitor and the resonator are more typically fabricated sep-
arately from the SIS JJ, using a superconductor with higher Tc

and better chemical robustness compared to Al [e.g., niobium
(Tc = 9.2 K) [8], tantalum (Tc = 4.4 K) [9], or titanium nitride
(Tc = 5.6 K) [10]]. The improved chemical robustness allows
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the use of postfabrication wet chemical treatments to remove
surface contaminants that contribute to two-level system loss
[11,12]. However, some of these types of treatments, partic-
ularly those involving strong acids or corrosives, are more
difficult after Al/AlOx/Al junction fabrication, due to the
junction’s fragile nature [13].

In this paper we computationally analyze the performance
impact of replacing the transmon SIS tunnel junction with
a coplanar superconductor-constriction-superconductor (ScS)
Josephson junction. A ScS JJ is composed of two supercon-
ductors separated by a nanobridge, or a thin neck of the same
superconductor [Fig. 1(b)], with the constriction establishing
the superconducting phase difference that enables Josephson
behavior. Nanobridge ScS JJs are coplanar and can be fabri-
cated using conventional lithography and metallization. Here,
we follow the formalism established by Koch et al. in [14] to
determine the electrical properties of ScS transmons, which
are shown to be different from SIS transmons, stemming from
a different ScS JJ current-phase relationship (CPR) compared
to that of a SIS JJ [15–18]. Comparing the two device ar-
chitectures, we show that the ScS transmon generally has
lower anharmonicity than the SIS transmon, for devices with
the same Josephson energy and capacitive energy. However,
the smaller anharmonicity is accompanied by a significantly
smaller charge dispersion, giving the ScS transmon stronger
immunity against charge noise.

II. RESULTS AND DISCUSSION

A. General description of ScS transmon anharmonicity

The Hamiltonian of a transmon can be written as

Ĥ = 4Ec(n̂ − ng)2 + EJ (ϕ̂), (1)

where ng is the offset charge and EJ (ϕ) is the potential en-
ergy of the junction. The latter is defined by the CPR of the
junction, IJ (ϕ), using the following integral:

EJ (ϕ) =
∫

IJV dt =
∫

IJ
�0

2π

dϕ

dt
dt =

∫
IJ

�0

2π
dϕ. (2)
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For a SIS junction having a sinusoidal CPR, IJ (ϕ) = Ic sin ϕ,
EJ (ϕ) takes a cosine form and the eigenvalues of the
Hamiltonian can be solved analytically [14]. In contrast, the
CPR of a nanobridge ScS junction typically distorts away
from the sinusoidal form, leading to a modified potential en-
ergy, and so in general the eigenvalue problem must be solved
numerically.

However, we can estimate the anharmonicity of a ScS
transmon using a perturbative approach. The discussion here
is limited to a single-valued CPR that is distorted from the
sinusoidal form, but retains its 2π periodicity and odd parity,
which set IJ (nπ ) = 0 for all n ∈ Z [16]. Near ϕ = 0, the CPR
can be expressed by a Maclaurin expansion carrying only
odd-order terms:

IJ (ϕ) = I0

∞∑
n=0

anϕ
2n+1

(2n + 1)!
, (3)

in which I0 = I ′
J (0) and the coefficients an = I (2n+1)

J (0)/I0

(note this definition sets a0 ≡ 1). Note that the CPR of a SIS
junction is thus a special case of Eq. (3), with I0 = Ic and
an = (−1)n.

Near ϕ = 0, the potential energy of a ScS transmon is
obtained by integrating the Maclaurin series in Eq. (3), as

EJ,ScS(ϕ) = I0�0

2π

(
1

2
ϕ2 +

∞∑
n=1

anϕ
2n+2

(2n + 2)!

)
. (4)

By comparing Eq. (4) with the potential energy of a SIS
transmon,

EJ,SIS(ϕ) = EJ,SIS(1 − cos ϕ)

= EJ,SIS

(
1

2
ϕ2 +

∞∑
n=1

(−1)nϕ2n+2

(2n + 2)!

)
, (5)

we may define the Josephson energy of a ScS transmon as
EJ,ScS = I0�0/2π and recognize that the anharmonicity, led
by a ϕ4 term, is approximately −a1 times that of a SIS
transmon.

The leading anharmonic term (a1ϕ
4/4!) in Eq. (4) can be

treated as a first-order perturbation to the quantum harmonic
oscillator (QHO), so that the mth eigenenergy of a ScS trans-
mon is approximated as

Em,ScS ≈ h̄ωp

(
m + 1

2

)
+ a1

4
(2m2 + 2m + 1)EC, (6)

in which h̄ωp = √
8EJEC is the Josephson plasma energy.

The transition energy between the (m − 1)th and mth levels
is therefore

Em−1,m,ScS ≈ h̄ωp + a1mEC, (7)

which recovers the familiar SIS result with a1 = −1 [14]. In
general, if a1 < 0, the ScS transmon will have negative quartic
anharmonicity, similar to the SIS transmon [19].

B. Ginzburg-Landau analysis of a ScS junction

A concrete form of the CPR of a ScS Josephson junc-
tion can be derived from an appropriate model of superfluid
transport. In this paper, we limit our analysis to the approx-
imation based on the Ginzburg-Landau (GL) model which,

AlAl

AlO

Superconductor

(a) (b)

wd
Constriction

FIG. 1. (a) Schematic of an Al/AlOx/Al SIS Josephson junc-
tion. For clarity, the native oxide covering both Al electrodes is
omitted. (b) Schematic of a coplanar superconductor-constriction-
superconductor Josephson junction, in which two superconducting
pads are connected by a nanobridge that has length d and width w

(inset).

although limited, can provide an estimate of the relationship
between the junction nonlinearity and its physical dimen-
sions. Now consider a ScS Josephson junction composed of
a diffusive quasi-one-dimensional nanobridge that is placed
in the interval x ∈ [−d/2, d/2], with length d and width w

[Fig. 1(b), inset], connecting two large superconducting is-
lands that respectively have uniform order parameters � =
�0 exp(±iϕ/2), where |�0|2 = ns is the bulk superfluid den-
sity. The two islands thus maintain a phase difference of ϕ

across the nanobridge. This neglects any phase drop within the
islands, or equivalently, their kinetic inductance (KI). Vijay
et al. have noted that the rigid boundary condition is a crude
approximation and is valid only when the bridge width w is
much shorter than the superconducting coherence length ξ

(see [18,20,21]). The analysis and following discussion are
therefore confined to this regime. With w � ξ , the spatial
variation of the supercurrent density across the nanobridge
width can be neglected, so that the order parameter along the
nanobridge follows the one-dimensional GL equation [16,22]:

ξ 2

(
d

dx
− i

2eA

h̄

)2

� +
(

1 − |�|2
|�0|2

)
� = 0. (8)

In the dirty limit, ξ can be approximated by the geometric
mean of the Pippard coherence length ξ0 and the electron
mean free path l , i.e., ξ ≈ √

ξ0l [23]. By neglecting the
self-magnetic field and therefore the vector potential A, the
simplified equation

ξ 2 d2

dx2
� +

(
1 − |�|2

|�0|2
)

� = 0 (9)

can be solved numerically with the boundary conditions of
�(±d/2) = �0 exp(±iϕ/2). The solution is then used to
compute the CPR, following

IJ (ϕ) = ieh̄S

2m

(
�∗ d�

dx
− �

d�∗

dx

)
, (10)

in which S is the cross-sectional area of the nanobridge.
As shown in Fig. 2(a), the CPR gradually distorts away

from the sin ϕ form of a SIS junction with increasing con-
striction length (d/ξ ). The characteristic current I0, as defined
in Eq. (3), is given by

I0 = eh̄S

md
|�0|2, (11)
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FIG. 2. (a) The CPR of nanobridge junctions with 0.5 � d/ξ �
3.5, obtained by numerically solving Eqs. (9) and (10). The sinu-
soidal curve is shown in dashed black line for comparison. (b) The
coefficients a1 and a2 of the Maclaurin series in Eq. (2), as func-
tions of d/ξ . (c) The Josephson energy of the nanobridge transmon
gradually deviates from the cosine form of the SIS junction (dashed
black) as d/ξ increases. A harmonic parabola, ϕ2/2, is displayed for
reference (dotted cyan).

to ensure that a0 = I ′
J (0)/I0 = 1. The coefficients a1 and a2

are calculated from the numerical solutions using finite dif-
ferences, and shown in Fig. 2(b) for constriction lengths from
zero to 3.5ξ . Unlike the sinusoidal CPR that has an = (−1)n,
both a1 and a2 decrease in amplitude toward larger d/ξ . Ac-
cording to the plot, 50% of anharmonicity, as measured by
|a1|, is retained when d/ξ ≈ 2.25. For short constrictions with
d/ξ � √

15 ≈ 3.87, Likharev and Yakobson (LY) gave an
approximate CPR in closed form [16,24], by solving Eq. (9)
through a perturbation approach:

IJ (ϕ) = I0

[(
1 + d2

15ξ 2

)
sin ϕ − d2

30ξ 2
sin(2ϕ)

]
. (12)

As shown in Appendix A, the approximation matches the
numerical result for constrictions with length d/ξ up to 1.5,
but departs more significantly for longer nanobridges.

The diminishing anharmonicity is more clearly visual-
ized by numerically calculating the potential energy EJ (ϕ)
using the integral in Eq. (2). As shown by Fig. 2(c),
EJ (ϕ) gradually deviates from the cosine curve (dashed
black) and approaches the parabola (dotted cyan), as d/ξ

increases.
Finally, we note that the GL theory was developed for T ≈

Tc. Although generally GL remains valid at lower T , more
precise descriptions of superfluid transport at arbitrary T are
available. For example, Kulik and Omelyanchuk have given
a solution (KO-1) for short, one-dimensional ScS junctions
with w � d and d � ξ in the dirty limit [15]. As shown in
Appendix B, the CPR of a KO-1 junction at T = 0 K has
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FIG. 3. The eigenenergies (blue lines and numbers) and the prob-
ability densities (‖�‖2) of the first four eigenstates of (a) a SIS
transmon and (b) a nanobridge ScS transmon with d/ξ = 2.25, both
with EJ/EC = 20 and ng = 1/2. The corresponding potential ener-
gies, normalized by EJ , are plotted in red lines for both transmons.

a1 = −1/2 and a2 = 0. By coincidence, this makes the KO-1
CPR numerically very similar to the GL CPR for a nanobridge
with length d/ξ = 2.25. In general, an arbitrary skewness can
be introduced into the constriction junction CPR using the
form first proposed by Likharev:

IJ = Ic sin(ϕ − LIJ ), (13)

in which L parametrizes the skewness [16]. As shown in
Appendix C, this “skewed sinusoidal” CPR behaves nearly
identically to the GL CPR, within a given range of L. The
skewness factor L has the physical meaning of being the
kinetic inductance associated with the constriction junction
[25], such that when phase drop in the contact leads (i.e.,
their kinetic inductance) is non-negligible, we may capture its
effect by absorbing the additional kinetic inductance into the
L term. Similarly, we may also view GL d/ξ as a pure param-
eter, with the value of d approaching the physical length of
the nanobridge only in the limit of w � ξ . For these reasons,
we will limit the rest of our discussion to CPRs based on the
GL solution, while recognizing that the discussion is generally
applicable to CPRs of other forms or derived from a different
transport model.

C. Eigenenergies and eigenstates of a ScS transmon

For a nanobridge ScS transmon with the potential energy
illustrated in Fig. 2(c), the wave equation can be solved nu-
merically using the finite difference method, in which the
Hamiltonian is expressed in a discretized space of phase
ϕ ∈ [−π, π ), with the periodic boundary condition applied
to both ends. The validity of our computation is confirmed
by comparing a similar numerical solution of the wave equa-
tion for a SIS transmon with the analytical solutions presented
by Koch et al. [14] (see also Appendix D). Figure 3 compares
the first four eigenstates of a SIS transmon and a nanobridge
ScS transmon with length d/ξ = 2.25 and anharmonicity co-
efficient a1 = −1/2, both with EJ/EC = 20 and ng = 1/2.
Although the lower level eigenenergies and eigenfunctions
are similar, the differences become more apparent at higher
energies. This trend is more clearly observed for the transition
energies E0m = Em − E0 calculated for SIS transmons and
the nanobridge ScS transmons at ng = 1/2, across a range
of EJ/EC from 1 to 100 [Fig. 4(a)]. The calculation is made
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FIG. 4. (a) Transition energy E0m = Em − E0 at ng = 1/2, for m = 1, 2, and 3, and (b) oscillator anharmonicity (E12 − E01) at ng = 1/2, as
functions of EJ/EC for SIS transmons (dashed lines) and nanobridge ScS transmons (solid lines). (c) The minimal pulse duration (τp) of SIS
(dashed line) and ScS transmons (solid line) vs EJ/EC , all operated at ω01 = 2π × 10 GHz. In all three panels, the nanobridges have lengths
d/ξ equal to 1.60 (red), 2.25 (orange), and 3.20 (yellow), with corresponding anharmonicity coefficients of a1 = −2/3, −1/2, and −1/3,
respectively.

for three different nanobridge lengths, d/ξ = 1.60, 2.25,
and 3.20, which correspond to anharmonicity coefficients
of a1 = −2/3, −1/2, and −1/3, respectively. In general,
ScS transmons with shorter constrictions (d/ξ ) behave more
like SIS transmons, with longer constrictions becoming more
QHO-like.

The anharmonicities of ScS transmons, defined as α =
E12 − E01, are plotted against EJ/EC and compared with SIS
transmons [Fig. 4(b)], and show diminishing anharmonicity as
constriction length d/ξ increases, closely following the per-
turbation theory result in Eq. (7), i.e., α = a1EC . The smaller
anharmonicity of a ScS transmon means that the transitions
E01 and E12 lie closer in energy, so that a longer rf pulse
is needed to correctly excite the desired transition E01. The
minimal pulse duration can be estimated as τp ≈ 10h̄|α|−1,
where the factor of 10 is included for practical reasons such
as the requirement for pulse shaping [26]. The reduced anhar-
monicity will therefore require longer pulses to maintain the
gate fidelity, decreasing gate speed as compared to conven-
tional SIS transmons. As shown in Fig. 4(c), despite its lower
anharmonicity, τp of the ScS transmon remains less than 10 ns
even for EJ/EC = 100, when the qubit operates at 10 GHz.
For applications where qubit pulse durations are a few to a
few tens of ns, we conjecture that the negative impact of the
lower anharmonicity on ScS transmon performance may be
tolerable.

D. Charge dispersion of a ScS transmon

A primary benefit of the transmon architecture is its relative
immunity to charge noise, when designed to operate in the
regime of EJ � EC . In a SIS transmon, the charge disper-
sion of the mth level decreases exponentially with

√
8EJ/EC ,

following [14]:

εm ≡ Em(ng = 1/2) − Em(ng = 0)

≈ EC
24m+5

(−1)mm!

√
2

π

(
EJ

2EC

) m
2 + 3

4

e−√
8EJ /EC . (14)

Intuitively, the charge dispersion is related to the tunnel-
ing probability between neighboring potential-energy valleys
[Fig. 2(c)], e.g., when ϕ makes a full 2π rotation [14]. By
this reasoning, we may expect the higher barrier height of
a nanobridge ScS transmon to better suppress the tunneling
probability and provide lower charge dispersion, compared to
a SIS transmon.

Figure 5(a) plots the first three eigenenergies Em (m =
0, 1, 2) versus the effective offset charge ng for both
SIS (dashed) and nanobridge ScS (solid) transmons, with
EJ/EC = 10. Clearly, in longer constrictions (i.e., larger d/ξ ),
the ScS transmon eigenenergies are more weakly perturbed
by ng. Calculations of the charge dispersion, εm = Em(ng =
1/2) − Em(ng = 0), across a wide range of 1 � EJ/EC � 100
show that suppression of charge dispersion in the ScS trans-
mon becomes more effective for larger EJ/EC ratios and
longer constriction length, d/ξ [Fig. 5(b)]. When EJ/EC =
100, the charge dispersion of the first excited state of a ScS
transmon with length d/ξ = 2.25 is over one order of mag-
nitude less than the corresponding SIS transmon. It is noted
that the computation for a SIS transmon matches the analytical
result very well [14], again demonstrating the high numerical
precision of our finite difference computation. The computa-
tional error only becomes significant as the normalized charge
dispersion, |εm|/E01, approaches 10−11 and smaller [visible
in the lower right corner of Fig. 5(b)]. This is due to the
accumulation of floating-point error that eventually shows up
when evaluating the vanishing difference between the two
eigenenergies at ng = 0 and 1/2.

In Fig. 5(b), the y axis is presented on a logarithmic
scale and the x axis is scaled as

√
EJ/EC , so that all

curves take a linear form approaching large EJ/EC val-
ues. For the SIS transmon, the slope matches the expected
exp(−√

8EJ/EC ) dependence in Eq. (14). For the ScS trans-
mon with length d/ξ = 2.25, the slope is larger, and is best
described by

εm ∝ exp(−
√

1.17 × 8EJ/EC ). (15)
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FIG. 5. (a) The eigenenergies Em of the lowest three eigenstates (m = 0, 1, 2) of SIS transmons (dashed line) and nanobridge ScS
transmons, as functions of the offset charge ng. All have EJ/EC = 10. (b) The charge dispersion εm of the lowest three eigenstates and the
dephasing time T2 of SIS transmons (dashed lines) and nanobridge ScS transmons (solid lines), all operated at ω01 = 2π × 10 GHz, as
functions of EJ/EC . In all three panels, the nanobridges have lengths d/ξ equal to 1.60 (red), 2.25 (orange), and 3.20 (yellow), corresponding
to a1 = −2/3, −1/2, and −1/3, respectively.

The improved charge dispersion makes the ScS transmon
less sensitive to charge noise and, in turn, gives it a longer
dephasing time T2. For dephasing caused by slow charge
fluctuations of large amplitude, Koch et al. [14] has found an
upper limit of T2 given by

T2 ≈ 4h̄

e2π |ε1| . (16)

Using this relation, we compare T2 for both SIS and ScS
transmons for EJ/EC between 1 and 100 [Fig. 5(c)]. The ScS
transmon improves T2 across the entire range of EJ/EC and
especially at higher ratios. At EJ/EC = 100, the SIS trans-
mon has a T2 ceiling of about 3 ms, compared to about 15
ms for the ScS transmon with d/ξ = 1.60 (a1 = −2/3), a
fivefold increase. More significant improvement is achieved
for longer constrictions (i.e., larger d/ξ ). At present, because
the T1 lifetime of SIS transmon qubits is still beyond 1 ms
and not limited by the charge noise, this advantage of the ScS
transmon architecture will yield little performance benefit.
However, because we expect the lifetimes of superconducting
qubits to continue improving (Schoelkopf’s law) [27], there
may be a point when charge noise dephasing becomes a
bottleneck, for which the ScS transmon architecture can offer
effective mitigation despite the tradeoff of slower gate speed.

E. ScS transmon design parameters

The operational behavior of a ScS transmon is determined
by its EJ , EC , and anharmonicity α, which define the operating
frequency ω01, the relative immunity to charge noise (ε1),
and the minimum excitation pulse duration (τp). These three
quantities are not independent. We can visualize this interde-
pendence with three sets of contour lines plotted in the plane
of EJ versus EC [Fig. 6(a)], in which we set the anharmonic-
ity to α = −EC/2, corresponding to a nanobridge ScS with
length d/ξ = 2.25. These contours represent (1) a transmon
operating frequency (ω01/(2π )) between 1 and 10 GHz (set
of red, descending diagonal lines), (2) ratios of EJ/EC from

10, 100, and 1000 (set of blue, ascending diagonal lines), and
(3) the minimum excitation pulse duration τp between 3.2 and
100 ns (set of dashed, predominantly vertical lines). Selecting
two of these defines the third one. For example, a ScS trans-
mon designed to operate at ω01/(2π ) = 5 GHz and with an
excitation pulse of τp = 32 ns (green dot in Fig. 6(a)) must
have a EJ/EC ratio of about 400. Instead, a shorter excitation
pulse of τp = 10 ns (purple dot in Fig. 6(a)) requires a trade-
off of smaller EJ/EC ≈ 40, and thus less immunity against
charge noise.

Importantly, EJ and EC of a ScS transmon are set by
the physical device dimensions and fundamental properties
of the materials comprising it. EJ is given by I0�0/2π , in
which the characteristic current I0 may be approximated by
π�/eRn in the dirty limit, where � is the superconduct-
ing energy gap and Rn is the normal-state resistance of the
junction. For a BCS superconductor where � = 1.76kBTc, we
can express EJ in terms of the material properties Rn/Tc =
1.76kB�0/(2eEJ,ScS), which is shown as the second (right)
y axis in Fig. 6(a). Similarly, because EC is set by the to-
tal capacitance (C� = e2/2EC,ScS) which depends on device
geometry and dielectric properties, we can express EC as a
capacitance, shown as a second (top) x axis in Fig. 6(a).

Returning to the example, we can now see from Fig. 6(a)
that designing a nanobridge ScS transmon with ω01/(2π ) =
5 GHz, τp = 32 ns, and EJ/EC ratio of about 400 (green dot)
requires a junction with Rn/Tc ≈ 6 k K−1 and capacitor with
C� ≈ 250 fF. If one instead desires the shorter excitation pulse
time of τp = 10 ns (purple dot), the constriction must have
Rn/Tc ≈ 20 k K−1 and C� ≈ 75 fF. Because Rn is related to
the constriction sheet resistance (R�) through Rn = R�d/w,
and d is fixed at 2.25ξ in this example, the following con-
straint applies to the values of material parameters (R�, Tc, ξ )
and nanobridge width w:

Rn

Tc
= 2.25R�ξ

Tcw
, (17)

to design a nanobridge to any Rn/Tc value in Fig. 6(a).

012427-5



MINGZHAO LIU AND CHARLES T. BLACK PHYSICAL REVIEW A 110, 012427 (2024)

(a) (b)

(c)

FIG. 6. (a) A graphical guide for designing a nanobridge ScS transmon with required EJ and EC to match desired transmon frequency ω01

and minimum pulse duration τp. The nanobridge length is fixed at 2.25ξ . The red lines are contour lines for transmon frequencies set at values
between 1 and 10 GHz. The dashed black lines are contour lines for τp set at a few values between 3.2 and 100 ns. The blue lines are contour
lines for EJ/EC ratios set at 10, 100, and 1000. A second x axis that is parallel to EC is presented for C� , following C� = e2/2EC . Similarly, a
second y axis that is parallel to EJ is presented for Rn/Tc, following Rn/Tc = 1.76kB�0/(2eEJ ). (b), (c) The normal-state sheet resistances R�
required to match the Rn/Tc values at the (b) green spot (6 k K−1) and the (c) purple spot (20 k K−1), for materials with different values of
Tc and ξ . The nanobridge width is fixed at 20 nm.

Equation (17) shows that to achieve the Rn/Tc values of a
few k K−1 required for 5-GHz transmon operation, R� and ξ

should be large and Tc and w small. The nanobridge width w is
limited by available nanofabrication techniques. Setting w =
20 nm, the constraints on R�, Tc, and ξ applied by Eq. (17)
are illustrated in Figs. 6(b) and 6(c) for Rn/Tc values specified
by the green and purple dots in Fig. 6(a), respectively. The
requirement for large R� is eased with lower Tc. However,
Tc must be high enough to minimize quasiparticle loss at the
working temperature of transmon (typically 20 mK), so we set
the lowest Tc to 0.2 K in this example.

These plots show that, in general, R� must be
≈1–10 k/�, which is difficult to achieve in conventional
metallic superconductors, but is within the range of high KI
superconductors, such as granular aluminum [28,29] or amor-
phous niobium-silicon alloys (a-NbxSi1−x) [30–32]. The latter
material is also promising because of its relatively long coher-
ence length (30–50 nm) and suitable Tc (0.3–1 K) [30,31].

Lastly, we note that the requirement for large Rn can
be relaxed for transmons operated at higher frequency
approaching the range of millimeter waves. For example, by
extrapolating the plot in Fig. 6(a), we can estimate that a

transmon operated at ω01 = 2π × 20 GHz with EJ/EC = 500
requires τp = 10 ns and Rn/Tc only about 1 k K−1, which
can be achieved with a much wider selection of materials.
In general, because ScS junctions can support large critical
current densities, they have advantages for higher-frequency
operations that require large EJ (i.e., Ic).

III. CONCLUSION

In summary, we have shown through computation that a
short ScS Josephson junction can be used as a substitute for
the SIS tunnel junction in a transmon qubit. In the transmon
regime (EJ � EC), a ScS transmon has smaller anharmonicity
than a SIS transmon, but appreciably lower charge disper-
sion that provides a significantly higher T2 ceiling. Using
this analysis, we estimate that high-performance ScS trans-
mons can be achieved with narrow constrictions (i.e., w � ξ )
having a normal-state resistance of a few k, which can be
made from a thin nanobridge formed in low Tc, high KI
superconductors using conventional, high-resolution nanofab-
rication techniques. The ScS transmon design may allow all
components, including constriction junction, capacitor, and
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(a) (b)

FIG. 7. (a) The CPRs of nanobridge junctions according to the
closed form approximation by Likharev and Yakobson (LY, solid
lines), compared with the numerical results (NUM, dashed lines).
(b) The Maclaurin coefficients a1 and a2, as functions of d/ξ , for the
LY solution and the numerical solution.

resonator, to be fabricated in a single lithography step. This is
a simplification compared to conventional SIS transmon fab-
rication, and may provide an architecture amenable to device
postprocessing, cleaning, and encapsulation.
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APPENDIX A: NANOBRIDGE SCS CPR ACCORDING
TO LIKHAREV-YAKOBSON APPROXIMATION

LY gave an approximated solution to Eq. (9) [16,24], using
a perturbative approach. When the nanobridge and the super-
conducting islands have the same Tc, the corresponding CPR
is written

IJ (ϕ) = eh̄S

md
|�0|2

[(
1 + d2

15ξ 2

)
sin ϕ

− d2

30ξ 2
sin(2ϕ)

]
. (A1)

Maclaurin expansion according to Eq. (3) produces
I0 = eh̄S

md |�0|2, a1 = I (3)
J (0)/I0 = −1 + d2/(5ξ 2), and

a2 = I (5)
J (0)/I0 = 1 − d2/ξ 2. For a few selected values

of d/ξ , the LY CPRs are compared with our numerical
solutions in Fig. 7(a), showing that the two solutions match
each other up to d/ξ = 1.5. A comparison of their Maclaurin
coefficients further reveals that the LY solution approaches
the numerical solution as d/ξ → 0, but diverges quickly as
d/ξ exceeds 1 [Fig. 7(b)].

(a) (b)

FIG. 8. (a) The CPR and (b) the potential energy EJ (φ) of a KO-1
ScS junction at T = 0 K (black solid lines) are compared with the
corresponding ones of a nanobridge ScS with d/ξ = 2.25 at the GL
regime (red dashed lines).

APPENDIX B: SCS CPR ACCORDING
TO THE KO-1 MODEL

A more precise description of superfluid transport at arbi-
trary T is given by the Eilenberger equations, which further
reduce to the Usadel equation in the dirty limit. For a short
ScS junction with w � d and d � ξ , a solution was given by
Kulik and Omelyanchuk (KO-1). At T = 0 K, the KO-1 CPR
reads

IJ (ϕ) = π�0

eRn
cos

ϕ

2
tanh−1

(
sin

ϕ

2

)
, (B1)

in which �0 is the superconducting energy gap at 0 K [15,17].
Integrating the CPR by Eq. (2) produces the potential energy
of the KO-1 ScS junction at 0 K:

EJ,ScS(ϕ) = ��0

2eRn

[
ln

(
cos2 ϕ

2

)
+ 2 sin

ϕ

2
tanh−1

(
sin

ϕ

2

)]
. (B2)

According to the convention set in Eq. (3), Maclaurin
expansion of the CPR in Eq. (B1) produces I0 = I ′

J (0) =
π�0/(2eRn), a1 = I (3)

J (0)/I0 = −0.5, and a2 = I (5)
J (0)/I0 =

0. This indicates that, numerically, a short ScS junction in the
KO-1 limit will behave very similarly to a nanobridge junction
with d/ξ = 2.25 at the GL limit (a1 = −0.5, a2 = −0.09),
with anharmonicity about one-half of a SIS junction (Fig. 8).

APPENDIX C: CPR IN SKEWED SINUSOIDAL FORM

The skewed sinusoidal CPR described by Eq. (13), IJ =
Ic sin(ϕ − LIJ ), does not have a closed-form expression for
IJ . To obtain its Maclaurin expansion according to Eq. (3),
we note that at ϕ = 0 its first derivative can be expressed as
dIJ = Icd (ϕ − LIJ ), which can be rearranged to dϕ = (1 +
LIc)d (ϕ − LIJ ). Now with the second equation relating dϕ to
the differential of the argument ϕ − LIJ , we may readily find
the derivatives of IJ at ϕ = 0, as

I (2n+1)
J (0) = (−1)nIc

(1 + LIc)2n+1
. (C1)
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(a) (b)

FIG. 9. (a) The skewed sinusoidal CPRs according to the numer-
ical form in Eq. (13), with different values of skewness factor L, in
the unit of I−1

c . (b) The Maclaurin coefficients a1 and a2, as functions
of L, according to Eq. (C2).

Therefore, coefficients for the Maclaurin expansion in Eq. (3)
are given by

I0 = I ′
J (0) = Ic

1 + LIc
,

an = I (2n+1)
J (0)/I0 = (−1)n

(1 + LIc)2n
. (C2)

The magnitude of coefficients an would therefore decrease
with increasing L [Fig. 9(b)], following a similar trend as
the GL CPR toward longer bridge lengths [Fig. 7(b), dashed
lines]. As shown in Fig. 9(a), the skewed sinusoidal CPRs,
normalized by I0, appear similar to the GL CPRs shown in
Fig. 2(a).

APPENDIX D: FINITE DIFFERENCE SOLUTIONS
OF TRANSMON WAVE EQUATIONS

In the phase basis, the kinetic energies of SIS and ScS
transmons are both given by

T = 4EC (n̂ − ng)2 = 4EC

(
− d2

dϕ2
+ 2ing

d

dϕ
+ n2

g

)
, (D1)

by recognizing that n̂ = −id/dϕ. The derivative terms can
be approximated by finite differences. By discretizing ϕ over
the interval [−π, π ) into an arithmetic sequence {ϕk = −π +
kδ}, where k = 0, 1, . . . , N − 1 and δ = 2π/N , an analytic
function ψ defined over the interval is discretized as a series
{ψk = ψ (ϕk )}. The first and second derivatives of ψ are ap-
proximated by finite differences to the sixth-order accuracy of
δ [33], as

ψ (1)(ϕk ) ≈ δ−1

(
− ψk−3

60
+ 3ψk−2

20
− 3ψk−1

4

+ 3ψk+1

4
− 3ψk+2

20
+ ψk+3

60

)
(D2)

and

ψ (2)(ϕk ) ≈ δ−2

(
ψk−3

90
− 3ψk−2

20
+ 3ψk−1

2
− 49ψk

18

+ 3ψk+1

2
− 3ψk+2

20
+ ψk+3

90

)
. (D3)

In the discretized space of ϕ, the Hamiltonian is ex-
pressed by a N × N matrix H = {Hkl}, (k, l = 0, 1, . . . , N −
1), which has the following nonzero matrix elements:

Hkl =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

EC
9δ2

(
98 + 36n2

gδ
2
) + EJ (ϕk ), (l = k)

− 6EC
δ2 (1 ∓ ingδ), (l = (k ± 1) mod N )

3EC
5δ2 (1 ∓ 2ingδ), (l = (k ± 2) mod N )

− 2EC
45δ2 (1 ∓ 3ingδ), (l = (k ± 3) mod N )

(D4)

while all the other elements are zero. The modular arithmetic
gives a cyclic symmetry to the off-diagonal matrix elements,
which enforces the periodic boundary conditions at ϕ = ±π .

The first few eigenvalues and eigenvectors of H are ob-
tained by using the SCIPY [34] sparse matrix eigensolver
(scipy.sparse.linalg.eigs). The validity of the finite
difference method is verified by comparing the numerical
results for SIS transmons with the analytical Mathieu function
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FIG. 10. (a) The first four eigenenergies of a SIS transmon, plotted vs EJ/EC , for ng = 1/2, calculated using the analytical solutions
(gray solid lines) and the finite difference method (dashed lines), as functions of EJ/EC . (b) Relative errors of the finite difference solutions,
calculated as (Em,FD − Em,a )/Em,a, in which Em,FD and Em,a are the mth eigenenergies given by the finite difference method and the analytical
solution, respectively. (c) The charge dispersion εm of the lowest four eigenstates of a SIS transmon (dashed lines), calculated by using the
analytical solutions (gray solid lines) and the finite difference method (dashed lines), as functions of EJ/EC .
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solutions. For the first four eigenenergies of SIS transmons
with 1 � EJ/EC � 100 and ng = 1/2, the two methods give
virtually identical results [Fig. 10(a)]. The relative differences
between eigenenergies obtained from the two methods are less

than 10−11, as shown in Fig. 10(b). The computation results
on charge dispersion εm are compared in Fig. 10(c), showing
that the two methods match each other very well, further
demonstrating the accuracy of the finite difference method.
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