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Mitigation of systematic amplitude error in nonadiabatic holonomic operations
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Nonadiabatic holonomic operations are based on nonadiabatic non-Abelian geometric phases, hence pos-
sessing the inherent geometric features for robustness against control errors. However, nonadiabatic holonomic
operations are still sensitive to the systematic amplitude error induced by imperfect control of pulse timing or
laser intensity. In this work, we present a scheme of nonadiabatic holonomic operations in order to mitigate
the said systematic amplitude error. This is achieved by introducing a monitor qubit along with a conditional
measurement on the monitor qubit that serves as an error correction device. We shall show how to filter out
the undesired effect of the systematic amplitude error, thereby improving the performance of nonadiabatic
holonomic operations.
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I. INTRODUCTION

Quantum operations are a basic element in many quantum
information processing tasks, such as production of entangle-
ment [1,2], quantum state population transfer [3,4], quantum
teleportation [5], and quantum computation [6]. Geometric
phases are only dependent on the evolution path of the quan-
tum system but independent of evolution details so that the
quantum operation based on geometric phases possesses the
inherent geometric features for robustness against control
errors [7–13]. The early schemes of geometric operations
[14–16] are based on Berry phases [17] or adiabatic non-
Abelian geometric phases [18]. However, the implementation
of these schemes needs a long run time associated with
adiabatic evolution [19,20], which undoubtedly degrades its
effectiveness due to the decoherence arising from the inter-
action between the quantum system and its environment. To
avoid this problem, nonadiabatic geometric operations [21,22]
based on nonadiabatic Abelian geometric phases [23] and
nonadiabatic holonomic operations [24,25] based on nona-
diabatic non-Abelian geometric phases [26] were proposed.
The latter utilizes the so-called holonomic matrix as a building
block of quantum operations and therefore possesses inherent
geometric features for robustness against control errors.

The seminal scheme of nonadiabatic holonomic opera-
tions is performed with a resonant three-level system [24,25].
This scheme needs to combine two π rotations about dif-
ferent axes for realizing an arbitrary rotation operation. To
simplify the realization, the single-shot scheme [27,28] and
sing-loop scheme [29] of nonadiabatic holonomic operations
were put forward. The two schemes enable an arbitrary rota-
tion operation to be realized in a single-shot implementation,
thereby reducing about half of the exposure time for nona-
diabatic holonomic operations to error sources. To further
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shorten the exposure time, a general approach of constructing
Hamiltonians for nonadiabatic holonomic operations was put
forward [30]. Up to now, a number of physical implementa-
tions [31–46] and experimental demonstrations [47–55] have
been reported, greatly pushing forward the development of
nonadiabatic holonomic quantum control.

For the preceding schemes of nonadiabatic holonomic op-
erations, a common requirement is that the integration of laser
intensity over a period of time should be equal to a constant
number. For example, in the seminal scheme [24,25], the holo-
nomic operation U = n · σ is implemented using the Hamil-
tonian H (t ) = �(t )(|e〉〈b| + |b〉〈e|) with the requirement∫ τ

0 �(t )dt = π , where n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is
an arbitrary unit vector determining the orientation of a ro-
tation axis, σ = (σx, σy, σz ) is the standard Pauli operator, and
|b〉 = sin(θ/2) exp(−iϕ)|0〉 − cos(θ/2)|1〉. It is clear that the
imperfect control of pulse timing τ or laser intensity �(t ) will
result in an inaccuracy of the integration

∫ τ

0 �(t )dt , namely,
the systematic amplitude error. This leads to the real output
state deviating from the target output state, thereby becoming
a crucial source of inaccurate quantum operations [56,57].
In other words, due to the systematic amplitude error, the
operations intended to be holonomic are no longer purely ge-
ometrical in nature. In actual experimental platforms such as
nuclear magnetic resonance and trapped ions, the systematic
amplitude error often occurs due to the technically imperfect
control on the prescribed amplitude and duration of a driving
field. In cases of nuclear magnetic resonance experiments,
the radiofrequency field inhomogeneity and imperfect pulse
length calibration can lead to the systematic amplitude error
[58]. In trapped-ion experiments, the temperature changes and
voltage fluctuations for the trap electrodes can lead to a drift
of the vibrational quantum numbers and hence an inaccurate
Rabi oscillation for the sideband laser pulse [59,60].

To date, there are two approaches to mitigating the system-
atic amplitude error in nonadiabatic holonomic operations.
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One approach is the composite nonadiabatic holonomic oper-
ations [61]. This approach adopts the basic ideal of composite
pulse technology and thus can effectively suppress the sys-
tematic amplitude error. However, it needs four elementary
operations to implement an arbitrary rotational operation.
The increased number of unitary operations extends the
total evolution time, consequently amplifying the impact
of environment-induced decoherence. The other approach
exploits environment-assisted nonadiabatic holonomic opera-
tions [62]. This approach needs to engineer the environment of
a quantum system to minimize the systematic amplitude error.
However, in many situations the environment might not be
easily controllable and hence it can be a challenge to engineer
the actual environment for a quantum system of interest.

In this work, we put forward a postselection-based scheme
of nonadiabatic holonomic operations in order to mitigate the
systematic amplitude error. We propose to introduce a monitor
qubit and then utilize a conditional measurement on the moni-
tor qubit to filter out the unwanted systematic amplitude error
occurring on the computational qubit. Clearly then, the moni-
tor qubit introduced here serves as an error-correction device,
through which we can improve the fidelity of our operations.
Our scheme thus represents a measurement-assisted approach
towards more accurate nonadiabatic holonomic quantum
control.

II. SCHEME

Consider a quantum system depicted by a Hilbert space
H . This quantum system is comprised of two subsystems,
named principal subsystem HP and monitoring subsystem
HM . The principal subsystem HP is partitioned into an L-
dimensional data subspace Ha

P(t ) = Span{|φk (t )〉}L
k=1 and a

one-dimensional auxiliary subspace Hb
P(t ) = Span{|φb(t )〉},

where t is the time variable, and |φk (t )〉 and |φb(t )〉 are the
time-dependent orthonormal basis in HP. The initial sub-
space of Ha

P(t ) is used as the computational subspace. A
computational qubit is generally represented by a two-level
system, hence it is reasonable to take L = 2. In such a case,
the data subspace is reduced to a two-dimensional subspace
Ha

P(t ) = Span{|φ1(t )〉, |φ2(t )〉} with the feature Ha
P(0) =

Span{|φ1(0)〉, |φ2(0)〉} = Span{|0〉, |1〉}. The monitoring sub-
systemHM is partitioned into two one-dimensional subspaces
Ha

M (t ) = Span{|a(t )〉} and Hb
M (t ) = Span{|b(t )〉}, where the

time-dependent orthonormal basis is set to cyclic vectors such
that |a(τ )〉 = |a(0)〉 ≡ |a〉 and |b(τ )〉 = |b(0)〉 ≡ |b〉, with τ

being the total time of a quantum operation.
The starting point of our scheme is to require the Hilbert

space to possess the following mathematical structure:

H = [
Ha

P(t ) ⊗Ha
M (t )

] ⊕ [
Hb

P(t ) ⊗Hb
M (t )

]
, (1)

schematically shown in Fig. 1. In light of this requirement,
|φ1(t )〉 ⊗ |a(t )〉, |φ2(t )〉 ⊗ |a(t )〉, and |φb(t )〉 ⊗ |b(t )〉 consist
of a set of orthonormal basis vectors in the Hilbert spaceH . It
is clear that this requirement establishes a connection between
the data subspaceHa

P(t ) and the monitoring subspaceHa
M (t ),

and simultaneously links the auxiliary subspace Hb
P(t ) to the

monitoring subspace Hb
M (t ). As a consequence, it is now

possible to mitigate the systematic amplitude error occurring
on the quantum operation for the computational subspace by

FIG. 1. The decomposition construction of the Hilbert space.

performing a conditional measurement or a postselection on
the monitoring subsystem.

For our purpose, we suppose that |φ1(t )〉 ⊗ |a(t )〉,
|φ2(t )〉 ⊗ |a(t )〉, and |φb(t )〉 ⊗ |b(t )〉 are the solutions of the
Schrödinger equation i|ψ̇ (t )〉 = H (t )|ψ (t )〉, where H (t ) is the
driving Hamiltonian governing the time evolution of the quan-
tum system. As an example, we take the driving Hamiltonian
as

H (t ) = �(t )|φb(0)〉〈φ2(0)| ⊗ |b〉〈a| + H.c., (2)

where �(t ) is a time-dependent real parameter, and H.c. rep-
resents the Hermitian conjugate term. For this Hamiltonian,
the basis state |φ1(0)〉 ⊗ |a〉 is a dark state, which can be
seen from the fact that H (t )|φ1(0)〉 ⊗ |a〉 = 0. The evolution
operator corresponding to the Hamiltonian reads

U(t ) = [|φ1(0)〉〈φ1(0)| ⊗ |a〉〈a| + cos ω(t )[|φ2(0)〉〈φ2(0)|
⊗ |a〉〈a| + |φb(0)〉〈φb(0)| ⊗ |b〉〈b|] − i sin ω(t )

× [|φb(0)〉〈φ2(0)| ⊗ |b〉〈a| + H.c.] (3)

with ω(t ) = ∫ t
0 �(t ′)dt ′. If we require

∫ τ

0
�(t )dt = π, (4)

the above-defined evolution operator then yields

U(τ ) = [|φ1(0)〉〈φ1(0)| − |φ2(0)〉〈φ2(0)|] ⊗ |a〉〈a|
− |φb(0)〉〈φb(0)| ⊗ |b〉〈b|. (5)

Considering that the initial state in the principal subsystem
resides in the computational subspace spanned by the basis
|φ1(0)〉 and |φ2(0)〉, the unitary operation is actually equiv-
alent to U(τ ) = [|φ1(0)〉〈φ1(0)| − |φ2(0)〉〈φ2(0)|] ⊗ |a〉〈a|.
Thereafter, the target operation can be obtained by tracing out
|a〉〈a|, which yields

U = |φ1(0)〉〈φ1(0)| − |φ2(0)〉〈φ2(0)|. (6)

It defines a rotation operation about the axis determined
by {|φ1(0)〉, |φ2(0)〉} with an angle π . Especially, when
|φ1(0)〉 and |φ1(0)〉 are set to |φ1(0)〉 = cos(θ/2)|0〉 +
sin(θ/2) exp(iϕ)|1〉 and |φ2(0)〉 = sin(θ/2) exp(−iϕ)|0〉 −
cos(θ/2)|1〉, i.e., the eigenstates of n · σ, the rotation axis
along an arbitrary direction can be implemented.
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Before proceeding further, we briefly demonstrate that
the evolution operator in our scheme is a nonadiabatic
holonomic operation. Nonadiabatic holonomic transformation
arises from the time evolution of a quantum system with a
subspace, for example the subspace Ha

P(t ) ⊗Ha
M (t ) in the

Hilbert spaceH of our scheme, satisfying the cyclic evolution
condition

L∑
k=1

|φk (τ )〉〈φk (τ )| ⊗ |a(τ )〉〈a(τ )|

=
L∑

k=1

|φk (0)〉〈φk (0)| ⊗ |a(0)〉〈a(0)| (7)

and the parallel transport condition [24,25]

〈φk (t )| ⊗ 〈a(t )|H (t )|a(t )〉 ⊗ |φl (t )〉 = 0. (8)

The first condition guarantees that a quantum state in the
desired subspace returns to the initial subspace and the second
condition ensures that the unitary operator is purely geometric
within the subspace. From Eq. (5), we can readily verify that
the cyclic evolution condition is satisfied. Furthermore,
using the commutation relation [H (t ),U(t )] = 0, one
can confirm that 〈φk (t )| ⊗ 〈a(t )|H (t )|a(t )〉 ⊗ |φl (t )〉 =
〈φk (0)| ⊗ 〈a(0)|U†(t )H (t )U(t )|a(0)〉 ⊗ |φl (0)〉 = 〈φk (0)| ⊗
〈a(0)|H (t )|a(0)〉 ⊗ |φl (0)〉 = 0, i.e., the parallel transport
condition is also satisfied. The unitary time evolution
considered above is hence a nonadiabatic holonomic
operation.

The above discussion is the ideal case without any op-
erational errors. In practice, it is difficult to execute perfect
control on the quantum system. The imperfect control may
lead to the quantum system over-evolving or under-evolving
during the time evolution, resulting in the output state leaking
into the entire Hilbert space (hence it is no longer purely
geometrical). A typical control imperfection that induces leak-
age is the systematic amplitude error, which occurs in such a
way that ∫ τ

0
�(t )dt = π → (1 + ε)π (9)

due to the imperfect controls of evolution time τ → (1 + ε)τ
or amplitude parameter �(t ) → (1 + ε)�(t ). In this case, the
resulting unitary operator is found to be

Uε (τ ) = [|φ1(0)〉〈φ1(0)| − cos(επ )|φ2(0)〉〈φ2(0)|] ⊗ |a〉〈a|
− cos(επ )|φb(0)〉〈φb(0)| ⊗ |b〉〈b|
+ i sin(επ )[|φ2(0)〉〈φb(0)| ⊗ |a〉〈b|
+ |φb(0)〉〈φ2(0)| ⊗ |b〉〈a|]. (10)

Still assuming that the initial state of the principal subsystem
resides in the computational subspace, we always consider
the initial state |ψ (0)〉 = [c1|φ1(0)〉 + c2|φ2(0)〉] ⊗ |a〉, where
|c1|2 + |c2|2 = 1. To see clearly what the systematic ampli-
tude error may lead to, let us recall again that in the ideal case,
the final state is given by |ψ (τ )〉 = [c1|φ1(0)〉 − c2|φ2(0)〉] ⊗
|a〉 and the target output state after performing a partial trace
yields

|φ(τ )〉 = c1|φ1(0)〉 − c2|φ2(0)〉. (11)

By contrast, in a nonideal case with the systematic amplitude
error, the evolution state under the action of Uε (τ ) is in turn
given by

|ψε (τ )〉 = [c1|φ1(0)〉 − c2 cos(επ )|φ2(0)〉] ⊗ |a〉
+ ic2 sin(επ )|φb(0)〉 ⊗ |b〉. (12)

Obviously, the systematic amplitude error leads to the evo-
lution state leaking into the entire Hilbert space. However,
our scheme is designed in such a way that we are allowed
to monitor the impact of the systematic amplitude error on the
monitor qubit and hence acquire indirectly some information
about the quality of the operation. Specifically, at the end
of the time evolution, we can always perform a projective
measurement on the monitoring subsystem to project the state
back to the initial computational subspace. This projective
measurement yields

|φε (τ )〉 = c1|φ1(0)〉 − c2 cos(επ )|φ2(0)〉√
|c1|2 + |c2|2 cos2(επ )

(13)

when collapsing the monitor into the basis vector |a〉, and
|φ̄ε (τ )〉 = −|φb(0)〉 when collapsing the monitor into the ba-
sis vector |b〉. As a consequence, conditional on |a〉 being
detected, we claim that the output state is obtained, reading
|φε (τ )〉. As indicated from Eq. (12), the success probability
of this postselection is |c1|2 + |c2|2 cos2(επ ). For a small sys-
tematic amplitude error (i.e., small ε), the success probability
is approximately equal to 1 − |πc2|2ε2 + |π2c2|2ε4/4, show-
ing that the robust output state can be obtained with a rather
high success probability.

The above-assumed Hilbert space structure to imple-
ment our scheme is relevant to actual physical systems.
For example, the principal subsystem can be taken as a
three-level material qutrit while the monitor subsystem can
be taken as a photon qubit in cavity quantum electrody-
namics [63], a vibrational mode in trapped ions [64], an
oscillator mode in superconducting quantum circuits [65,66],
and so on. The Hamiltonian in Eq. (2) is then commonly
expressed as H (t ) = �0(t )|e〉〈0| ⊗ |0〉〈1| + �1(t )|e〉〈0| ⊗
|0〉〈1| + H.c., where the first term of the tensor product de-
notes the principal qutrit and the second term denotes the
monitor qubit. Here, we set the parameters to be �0(t ) =
�(t ) sin(θ/2) exp(iϕ) and �1 = −�(t ) cos(θ ), and then we
have |φ1(0)〉 = cos(θ/2)|0〉 + sin(θ/2) exp(iϕ)|1〉, |φ2(0)〉 =
sin(θ/2) exp(−iϕ)|0〉 − cos(θ/2)|1〉, and |φb(0)〉 = |e〉. The
driving can be facilitated by coupling the atomic states to
the quantized cavity mode through Jaynes-Cummings inter-
actions in cavity quantum electrodynamics, by coupling the
internal states to the motional levels through the sideband
transition in trapped ions, or by coupling the transmon to a su-
perconducting transmission line resonator in superconducting
quantum circuits. All these options indicate that our scheme
is already possible based on hardware available today.

III. PERFORMANCE

Let us now compare what our scheme can achieve versus
what happens if we do not resort to the monitoring subsystem.
We consider the seminal scheme of nonadiabatic holonomic
operations [24,25]. Therein, the driving Hamiltonian is taken
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as H ′(t ) = �(t )[|φb(0)〉〈φ2(0)| + H.c.] [corresponding to the
first term of the tensor product in Eq. (2)] with the require-
ment

∫ τ

0 �(t )dt = π . The resulting evolution operator acting
on the computational subspace yields U ′ = |φ1(0)〉〈φ1(0)| −
|φ2(0)〉〈φ2(0)|, like the form in Eq. (6). If there is a systematic
amplitude error such as that in Eq. (9), the time evolution
operator is given by

U ′
ε (τ ) = |φ1(0)〉〈φ1(0)| − cos(επ )|φ2(0)〉〈φ2(0)|

− cos(επ )|φb(0)〉〈φb(0)| + i sin(επ )

× [|φ2(0)〉〈φb(0)| + |φb(0)〉〈φ2(0)|]. (14)

For the same initial input state |φ(0)〉 = c1|φ1(0)〉 + c2|φ2(0)〉
residing in the computational subspace, the output state under
the action of U ′

ε then reads

|φ′
ε (τ )〉 = c1|φ1(0)〉 − c2 cos(επ )|φ2(0)〉

+ ic2 sin(επ )|φb(0)〉. (15)

As seen above, the systematic amplitude error causes the
time-evolving state to leak out of the computational subspace.
However, in the plain version, there is no extra qubit tagging
the unwanted amplitude on the state |φb(0)〉.

To demonstrate the improvement of our nonadiabatic
holonomic operation with a monitoring qubit, we compare
fidelities F = |〈φε (τ )|φ(τ )〉| of our scheme with the reference
plain scheme described above, where |φε (τ )〉 is the erroneous
output state and |φ(τ )〉 is the target output state. A straight-
forward calculation based on Eqs. (11) and (13) yields that in
our scheme, the fidelity is given by

F = |c1|2 + |c2|2 cos(επ )√
|c1|2 + |c2|2 cos2(επ )

. (16)

In contrast, the fidelity of the reference scheme is obtained by
combining Eqs. (11) and (15) as

F ′ = |c1|2 + |c2|2 cos(επ ). (17)

It is obvious that F > F ′. Evidently then, our scheme im-
proves the fidelity of nonadiabatic holonomic operations on
the computational space by introducing a conditional mea-
surement on the monitor qubit. To elucidate the advantages
of our approach, we further plot the fidelities F (the red line)
and F ′ (the blue line) versus the error ratio ε in Fig. 2, setting
c1 = c2 = 1/

√
2 for convenience. The result shows that our

scheme maintains high fidelity over the range ε ∈ [0, 0.3]
compared with the reference scheme. This indicates that our
scheme indeed improves considerably the fidelity of nona-
diabatic holonomic operations. It is worth emphasizing that
even for a large value ε = 0.3, in the sense that the systematic
amplitude error occurs in such a way that

∫ τ

0 �(t )dt = π →
1.3π , the fidelity of our scheme still exceeds 95% but the
fidelity of the reference plain scheme is lower than 80%. This
example indicates that the nonadiabatic holonomic operation
in our scheme behaves well while the nonadiabatic holonomic
operation in the reference scheme is strongly deteriorated by
the systematic amplitude error.

Note that the previously mentioned composite
nonadiabatic holonomic operations can also effectively
mitigate the systematic amplitude error but extending
the total evolution time [61]. Here, we illustrate these
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FIG. 2. The fidelities of our scheme, the reference scheme, and
the composite scheme. Note, however, that a similar performance of
the composite pulse scheme as compared with our scheme proposed
in this work is obtained without accounting for any decoherence
effects.

two points. In the composite nonadiabatic holonomic
scheme, we need to sequentially applying the driving
Hamiltonians H1 = �(t )[|φb(0)〉〈φ2(0)| + H.c.] and
H2 = �(t )[−i|φb(0)〉〈φ2(0)| + H.c.] to the quantum system
with the requirement

∫ 2τ

τ
�(t )dt = ∫ τ

0 �(t )dt = π/2.
The resulting operator is an elementary gate Ue =
|φ1(0)〉〈φ1(0)| + i|φ2(0)〉〈φ2(0)|. To realize the target
evolution in Eq. (6), we need to combine two elementary gates
such that U = U 2

e = |φ1(0)〉〈φ1(0)| − |φ2(0)〉〈φ2(0)|. Clearly
then, this scheme increases the number of unitary operations
and hence extends the operation duration, consequently
amplifying the potential impact of environment-induced
decoherence. If there is a systematic amplitude error, the time
evolution operator then yields

U ′
ε (τ ) = |φ1(0)〉〈φ1(0)| −

[
cos(επ ) + 1√

2
sin2(επ )e

iπ
4

]

× |φ2(0)〉〈φ2(0)| −
[

cos(επ ) + 1√
2

sin2(επ )e− iπ
4

]

× |φb(0)〉〈φb(0)|. (18)

For the input state |φ(0)〉 = c1|φ1(0)〉 + c2|φ2(0)〉, the result-
ing output state is given by

|φ′
ε (τ )〉 = c1|φ1(0)〉 − c2 cos(επ )|φ2(0)〉

− c2√
2

sin2(επ )e
iπ
4 |φ2(0)〉. (19)

The fidelity between this erroneous state and the target output
state in Eq. (11) is then calculated as

F ′ =
{

[|c1|2 + |c2|2 cos(επ )]2 + |c2|4
2

sin4(επ )

+ [|c1|2 + |c2|2 cos(επ )]|c2|2 sin2(επ )

}1/2

. (20)
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To elucidate the mitigation of the systematic amplitude errors,
we additionally plot the fidelity F ′ (black line) versus the
error ratio ε in Fig. 2. It shows that the composite nonadi-
abatic holonomic operation has a similar robustness to our
scheme against systematic amplitude errors. This in turn
indicates that our scheme is indeed robust against system-
atic amplitude errors while consuming much less evolution
time compared with the composite pulse scheme. Finally, we
would like to remark that our scheme can be generalized to
other models of nonadiabatic holonomic operations [27–30].
To illustrate this point, we take the model of the single-loop
scheme [29] as another example. To that end, we divide the
whole evolution into two equal-interval time evolutions with
the Hamiltonians in the first interval [0, τ1) reading H1(t ) =
�(t )[|φb(0)〉〈φ2(0)| ⊗ |b〉〈a| + H.c.] and in the second inter-
val [τ1, τ ] reading H2(t ) = �(t )[exp(−iφ)|φb(0)〉〈φ2(0)| ⊗
|b〉〈a| + H.c.], where �(t ) is a time-dependent real parameter
and φ is an arbitrary phase. For these two Hamiltonians,
|φ1(0)〉 is still a dark state. With the requirement

∫ τ1

0 �(t )dt =∫ τ

τ1
�(t )dt = π/2, we have

U(τ ) = [|φ1(0)〉〈φ1(0)| − eiφ|φ2(0)〉〈φ2(0)|] ⊗ |a〉〈a|
− e−iφ |φb(0)〉〈φb(0)| ⊗ |b〉〈b|. (21)

Because the initial state in the principal subsystem is prepared
in the computational subspace, the unitary operation is equiv-
alent to U(τ ) = [|φ1(0)〉〈φ1(0)| − exp(iφ)|φ2(0)〉〈φ2(0)| ⊗
|a〉〈a|. Thereafter, we trace out the monitor qubit and then the
target operation can be obtained as

U = |φ1(0)〉〈φ1(0)| − eiφ|φ2(0)〉〈φ2(0)|. (22)

Ignoring an unimportant global phase, it is just a ro-
tation about an arbitrary axis with an arbitrary angle.
Without loss of generality, we consider an input state as
|ψ (0)〉 = [c1|φ1(0)〉 + c2|φ2(0)〉] ⊗ |a〉. In the ideal case,
the target output state after performing measurement
yields

|φ(τ )〉 = c1|φ1(0)〉 − c2eiφ |φ2(0)〉. (23)

If the systematic amplitude error occurs in such a way that
the integration varies from π/2 to (1 + ε)π/2, the unitary
operator then becomes

Uε (τ ) =
[
|φ1(0)〉〈φ1(0)| +

(
sin2 πε

2
− cos2 πε

2
eiφ

)

× |φ2(0)〉〈φ2(0)|
]

⊗ |a〉〈a|

+
(

sin2 πε

2
− cos2 πε

2
e−iφ

)

× |φb(0)〉〈φb(0)| ⊗ |b〉〈b| + i sin(πε) cos
φ

2
e

iφ
2

× |φ2(0)〉〈φb(0)| ⊗ |a〉〈b| + i sin(πε) cos
φ

2
e− iφ

2

× |φb(0)〉〈φ2(0)| ⊗ |b〉〈a|. (24)

The evolution state is consequently given by

|ψε (τ )〉 =
[
c1|φ1(0)〉 + c2

(
sin2 πε

2
− cos2 πε

2
eiφ

)
|φ2(0)〉

]

⊗ |a〉 + i sin(πε) cos
φ

2
e− iφ

2 |φb(0)〉 ⊗ |b〉. (25)

Afterwards, we perform a measurement on the monitor qubit.
Then, we have the output state

|φε (τ )〉= c1|φ1(0)〉+c2[sin2(πε/2) − cos2(πε/2)eiφ]|φ2(0)〉√
|c1|2 + |c2|2[1 − sin2(επ ) cos2(φ/2)]

(26)

conditional on the basis vector |a〉 clicking. If we do not resort
to the monitor qubit, the output state instead yields

|φ′
ε (τ )〉 = c1|φ1(0)〉 + c2

(
sin2 πε

2
− cos2 πε

2
eiφ

)
|φ2(0)〉

+ i sin(πε) cos
φ

2
e− iφ

2 |φb(0)〉. (27)

Using the same method to calculate the fidelity as before,
we can also conclude that the output state with our scheme
is closer to the ideal case than that without introducing any
postselection measurement.

IV. REALIZATION IN DECOHERENCE-FREE SUBSPACES

Let us now turn to the question of how to real-
ize our scheme in the decoherence-free subspace H =
Span{|010〉, |100〉, |001〉}. The decoherence-free subspace not
only provides a natural mathematical structure in Eq. (1),
allowing us to use postselection to protect nonadiabatic holo-
nomic operations against the fractional systematic amplitude
error, but it also gains their resilience to the collective dephas-
ing induced by the interaction Hamiltonian

Hint = [
σ (1)

z + σ (2)
z + σ (3)

z

] ⊗ E , (28)

where E is the environment operator shared by all three qubits
[67–69]. In the three-qubit decoherence-free subspace, the
first two qubits are used as the principal subsystem such
that HP = Span{|01〉, |10〉, |00〉}, and the last qubit is used
as the monitoring subsystem such that HA = Span{|0〉, |1〉}.
The computational qubit is encoded as |0〉L ≡ |01〉 and |1〉L ≡
|10〉 while the basis vector |00〉 acts as an ancilla. The Hamil-
tonian governing the time evolution of the quantum system is
chosen as

H (t ) =
∑
k<l

[
Jx

kl (t )Rx
kl + Jy

kl (t )Ry
kl

]
, (29)

where Jx
kl (t ) and Jy

kl (t ) are the coupling parameters corre-
sponding to the XY interaction Rx

kl = [σ (k)
x σ (l )

x + σ (k)
y σ (l )

y ]/2
and the Dzyaloshinskii-Moriya interaction Ry

kl = [σ (k)
x σ (l )

y −
σ (k)

y σ (l )
x ]/2, respectively [70–75]. For our purpose, we set

the nonzero coupling parameters as Jx
13(t ) = −J (t ) cos(θ/2),

Jx
23(t ) = J (t ) sin(θ/2) cos ϕ, and Jy

13(t ) = J (t ) sin(θ/2) sin ϕ.
Then, we have

H (t ) = J (t )|00〉〈�2| ⊗ |1〉〈0| + H.c. (30)

with |�2〉 = sin(θ/2) exp(−iϕ)|0〉L − cos(θ/2)|1〉L. Note
that the Hamiltonian H (t ) has a dark state |�1〉 ⊗ |0〉 =

012426-5
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cos(θ/2)|0〉L|0〉 + sin(θ/2) exp(iϕ)|1〉L|0〉, where |�1〉
combines with |�2〉 making up another basis in the
computational space, such that Ha

P(0) = Span{|0〉L, |1〉L} =
Span{|�1〉, |�2〉}. If we require

∫ τ

0 J (t ) = π , we have the
evolution operator

U = (|�1〉〈�1| − |�2〉〈�2|) ⊗ |0〉〈0| − |00〉〈00| ⊗ |1〉〈1|.
(31)

Recalling that the input states of the principal subsystem are
in the computational space spanned by {|0〉L, |1〉L}, the evolu-
tion operator is equivalent to U = (|�1〉〈�1| − |�2〉〈�2|) ⊗
|0〉〈0|. Therefore, the target nonadiabatic holonomic operation
can be obtained by tracing out |0〉〈0| after the time evolution,
that is, U = |�1〉〈�1| − |�2〉〈�2|. This is the ideal case with-
out systematic amplitude errors.

If there is a systematic amplitude error ε, unlike the ideal
case, the evolution operator goes to an erroneous one,

Uε = [|�1〉〈�1| − cos(επ )|�2〉〈�2|] ⊗ |0〉〈0|
− cos(επ )|00〉〈00| ⊗ |1〉〈1| − i sin(επ )|�2〉〈00|
⊗ |0〉〈1| − i sin(επ )|00〉〈�2| ⊗ |1〉〈0|. (32)

This erroneous time evolution operator takes the system ini-
tially in the computational space to a state eventually away
from the computational subspace. However, upon performing
a conditional measurement on the monitoring subsystem, we
can obtain the output state closer to the target output state. For
an input state |(0)〉 = (c1|�1〉 + c2|�2〉) ⊗ |0〉, the output
state is achieved as the following:

|�ε〉 = c1|�1〉 − c2 cos(επ )|�2〉√
|c1|2 + |c2|2 cos2(επ )

, (33)

conditional on |0〉 being detected. From the general discus-
sions in the preceding section, we can easily conclude that
this output state is much closer to the target output state
|�(τ )〉 = c1|�1〉 − c2|�2〉 than the output state

|�′
ε (τ )〉 = c1|�1〉 − c2 cos(επ )|�2〉 − ic2 sin(επ )|00〉 (34)

obtained using the reference scheme. This ends our dis-
cussion on an explicit implementation of our scheme in a
decoherence-free subspace.

V. CONCLUSION

In conclusion, we have proposed a scheme to protect
nonadiabatic holonomic operations against the systematic am-
plitude error. Our scheme requires a conditional measurement
on a monitor qubit, so that the time-evolving final state can
be brought back to the computational subspace when the
systematic amplitude error occurs. Clearly, the monitor qubit

introduced in our scheme serves as an error-correction de-
vice, through which the impact of systematic amplitude errors
on the quantum system is suppressed. In essence, we have
thus introduced a measurement-assisted approach to nonadi-
abatic holonomic operations. This is markedly different from
previous mitigation approaches, namely the composite pulse
nonadiabatic holonomic operations that increase the number
of unitary operators [61], and environment-assisted nonadia-
batic holonomic operations that are based on the engineering
of an environment [62]. Our scheme as an alternative may
avoid some serious impact of environment-induced decoher-
ence, and it can work for an actual environment without
environment engineering. Furthermore, we have given a phys-
ical realization of our scheme in a decoherence-free subspace,
making it not only robust against the systematic amplitude
error but also resilient to some collective dephasing noise.

It is worth noting that our scheme assumes reliable and
fast readout of the monitor qubit. The effectiveness of our
scheme will be affected by the measurement errors and de-
coherence effects from the monitor qubit. This is a rather
familiar situation. One similar example is one-way quantum
computation, one of the most important models for the realiza-
tion of quantum computation, implemented by first preparing
a highly entangled cluster state and then performing one-qubit
measurements on the state [76,77]. Therein the overall com-
putation fidelity will be affected by the state readout errors
as well. Fortunately, current experimental technology permits
us to read out a qubit state with high fidelity, and qubit co-
herence time can be extended by various active methods. One
trapped-ion qubit is allowed to achieve a single-shot readout
fidelity 99.93% [78] and its coherence time up to several
minutes [79]. In superconducting circuits, the transmon qubit
admits a measurement fidelity 99.8% [80,81] and coherence
time up to a dozen microseconds [82]. The feasibility of
one-way quantum computation has also been demonstrated
experimentally through a universal set of quantum gates, in-
cluding one-qubit and two-qubit gates [83]. More related to
our proposal here, high-fidelity measurement, namely 99.5%,
has been performed in the experimental demonstration of
nonadiabatic holonomic operations [53]. Considering that our
proposal is a universal scheme independent of specific phys-
ical systems, the above-mentioned high-fidelity measurement
methods can likely be transferred to the measurement of the
ancillary qubit introduced in our scheme.
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