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Continuous variable quantum teleportation provides a path to the long-distance transmission of quantum
states. Photon-varying non-Gaussian operations have been shown to improve the fidelity of quantum teleportation
when integrated into the protocol. However, for a given type of non-Gaussian operation, the achievable fidelity
varies with the parameters associated with the operation. Previous work only focused on particular settings of
the parameters, over which an optimization was missing. The potential of such operations is not fully uncovered.
Given a fixed non-Gaussian operation, the achievable fidelity also varies with input states. An operation that
increases the fidelity for teleporting one class of states might do the contrary for other classes of states. A
performance metric, upon which an operation is optimized, suitable for different input states, is also missing. In
this work, we build a framework for photon-varying non-Gaussian operations for multimode states, upon which
we propose a performance metric suitable for arbitrary teleportation input states. We then apply the new metric
to evaluate different types of non-Gaussian operations. Starting from simple multiphoton photon subtraction
and photon addition, we find that increasing the number of ancillary photons involved in the operation does not
guarantee performance improvement. We then investigate a generalization of the operations mentioned above,
finding that operations that approximate a particular form provide the best improvement. The results provided
here will be valuable for real-world implementations of quantum teleportation networks and applications that
harness the non-Gaussianity of quantum states.
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I. INTRODUCTION

Continuous variable (CV) quantum teleportation protocols,
adaptable with off-the-shelf optical technologies, provide a
path to the long-distance transmission of quantum information
encoded in quantum states. Many breakthroughs have been
made in the deployment of large-scale quantum teleportation
systems over the past decades, e.g., [1–6].

The core of teleportation is the consumption of entan-
gled resource states distributed before the protocol begins.
However, imperfect resource states caused by finite power
during state production and channel loss during state dis-
tribution limit the achievable fidelity of the input state (the
state to be teleported). One class of resource states is the
two-mode squeezed vacuum (TMSV) state, which can be pro-
duced by combining two single-mode squeezed vacuum states
at a balanced beam splitter. Perfect teleportation requires
TMSV states with infinite squeezing, which is unachievable in
theory and experiment (e.g., only 15-dB squeezing is achiev-
able with state-of-the-art technologies [7]). TMSV states with
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higher squeezing are also more sensitive to decoherence
during distribution over lossy channels [8], making the long-
distance distribution of TMSV states another outstanding
challenge.

Non-Gaussian operations have been shown to enhance
entanglement and other desirable properties when applied
to Gaussian states. Much attention has been drawn to the
studies of such operations in various quantum informa-
tion applications, such as quantum key distribution [9–20],
noiseless linear amplification [21–27], entanglement distilla-
tion [28–35], and quantum computing [36–39]. In teleporta-
tion, non-Gaussian operations can improve fidelity at the cost
of reduced overall efficiency, e.g., [40–56]. However, for a
given type of non-Gaussian operation, the achievable fidelity
varies with the parameters associated with the operation. For
example, varying the number of photons being subtracted
(or added) in photon subtraction (or addition) provides dif-
ferent fidelity [44–47]. The fidelity offered by a cascaded
application of the same operation also varies with the num-
ber of operations [55]. Previous work focused on particular
parameter settings, e.g., restricting the number of ancillary
photons in the operation or the number of cascaded opera-
tions to a few (mostly � 3 for [40–56]). It remains unclear
whether increasing the complexity of non-Gaussian opera-
tions always improves fidelity. To fully reveal the potential of
non-Gaussian operations, an optimization over the parameters
of the operations is needed.

To carry out the optimization a proper performance met-
ric is also needed. Previous work focused on the fidelity of
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particular classes of input states, e.g., coherent states,
squeezed states, and CV qubit states. However, for a given
resource state, the achievable fidelity also varied with differ-
ent input states. The fidelity for teleporting one input state
cannot properly gauge the performance of teleporting other
input states. For example, for coherent states input, applying
photon subtraction to the resource states increases fidelity [40]
while using photon addition decreases the fidelity [41]. On the
contrary, for squeezed states input, applying photon subtrac-
tion and photon addition both increase the fidelity [42]. The
energy-constrained channel fidelity was proposed in [57] and
developed in [58] as a performance metric for teleportation.
However, the metric is independent of the input states and
does not indicate the achievable fidelity for any input states.
A performance metric suitable for different input states is still
missing.

This paper aims to fully uncover the potential of the
photon-varying (PV) operations (i.e., operations that include
both photon subtraction and photon addition) in CV teleporta-
tion. To this end, we first build a framework for PV operations
in the multimode setting, expressing the characteristic func-
tion of the photon-varied state as a multivariable multi-index
Hermite-Gaussian function. Based on the framework built,
we introduce a performance metric suitable for arbitrary in-
put states. We then propose generalized PV operations with
parameters optimized using the new metric as the cost func-
tion. Using practical photon catalysis as an example, we also
demonstrate possible methods to implementing the general-
ized operations. Our results show that the optimal generalized
PV operations approach a specific Gaussian operation, the
noiseless linear amplification. The key contributions of this
paper are summarized as follows.

(i) We derive an analytical solution to the characteristic
functions of multimode Gaussian state modified by PV op-
erations.

(ii) Using the new solution, we propose a new performance
metric for PV operations in CV teleportation. With the met-
ric, we explain why PV operations provide different fidelity
improvements for different input states. We also show that
PV operations do not always provide increasing fidelity as the
complexity of the operations grows.

(iii) We propose a generalized PV operation. Optimizing
the operation against the metric we show that such an opera-
tion always provides increasing fidelity as the complexity of
the operation grows.

The analytical solution we derived is of independent inter-
est in its own right. Compared with a similar solution in [53],
our solution does not contain any differential operators and
is compatible with multimode Gaussian states. We expect
the solution to be useful also for other quantum information
applications that benefit from multimode non-Gaussian opera-
tions, e.g., measurement-based quantum computation [59] and
cluster states teleportation [60].

The remaining sections are organized as follows. Section II
establishes a framework for CV teleportation with TMSV
resource states and photon-varying operations, upon which
the generalized photon-varying operations are introduced and
investigated in Sec. III. Section IV extends the studies of
the above operations in teleportation with generalized TMSV
states. Conclusions of the paper are given in Sec. V.

II. CV TELEPORTATION WITH PHOTON-VARYING
OPERATIONS

We consider the Vaidman-Braunstein-Kimble (VBK) pro-
tocol, which is the first CV teleportation protocol proposed
in [61] and developed in [62]. In the VBK protocol, Alice first
prepares a TMSV state with modes 1 and 2 and sends mode
2 to Bob. The distributed state is then used as the resource
state for teleportation. Alice couples the input mode (to which
the input state is encoded) with mode 1 at a balanced beam
splitter. The p quadrature of one output of the beam splitter
and the q quadrature of the other output are measured by
two homodyne detectors. The measurement outcome is sent
to Bob through a lossless classical channel. Based on the
outcome received, Bob applies a displacement operation to
mode 2. In the limit of infinite squeezing of the resource state,
mode 2 approaches the input mode.

We define the Wigner characteristic function (CF) of a
single-mode state with density operator ρ̂ as

χ (ξ ) = tr{ρ̂D̂(ξ )}, (1)

where ξ ∈ C, tr{·} represents the trace operation, D̂(ξ ) =
eξ â†−ξ∗â is the displacement operator, â and â† are the ladder
operators of ρ̂, and (·)∗ represents the complex conjugate.
The relation between the input and output modes of the VBK
protocol can be described using the CF formalism [63]

χout (ξ ) = χ (ξ, ξ ∗)χ in(ξ ), (2)

where χ in(ξ ) is the CF of the input mode, χout (ξ ) is the
CF of the output mode (averaged over Alice’s measurement
outcomes), and χ (ξ1, ξ2) is the CF of the resource state. The
above equation indicates that the protocol can be viewed
as a quantum channel with a ξ -dependent response function
χ (ξ, ξ ∗). The output mode after passing the quantum channel
approaches the input mode when the response function is flat,
i.e., χ (ξ, ξ ∗) → 1 for all ξ . The performance of teleportation
can be measured by the fidelity between the input mode and
the output mode, which quantifies the closeness of the CFs of
the two modes [64]

F = 1

π

∫
d2ξχ in(−ξ )χout (ξ ), (3)

where d2ξ := dξ
∧

dξ ∗ with
∧

the exterior product. The
fidelity approaches unit for any input states when the response
function χ (ξ, ξ ∗) → 1.

Photon subtraction (ân, n ∈ N) and photon addition
(â†n, n ∈ N) are two types of non-Gaussian operations, both
shown to improve the teleportation fidelity for certain input
states. In [65] the states applied by the two operations men-
tioned above are named as photon-varied quantum states. In
this paper, we will use photon-varying (PV) operations to refer
to the two operations. A physical implementation to the PV
operations is shown in Fig. 1(a), which consists of an ancillary
Fock state |l〉, a photon number resolving detector, and a beam
splitter with transmissivity T < 1. In the operation, the initial
mode is coupled with the ancillary state at the beam splitter.
A photon number-resolving detection is performed on one
output of the beam splitter. The operation has been successful
if m photons are detected. Photon subtraction ân can be ap-
proximated by setting l = 0, m = n, and T → 1 while photon
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(a)

(b)

FIG. 1. (a) A physical implementation to the PV operations.
(b) The application of K PV operations to a K-mode Gaussian state.

addition â†n can be approximated by setting l = n, m = 0,
and T → 1. Both operations can also be implemented by a
cascaded applications of the same single-photon operations.

The transformation for performing a PV operation on the
single-mode state ρ̂ can be written as

ρ̂ → ρ̂PV = 1

tr{ânρ̂â†n} ânρ̂â†n, (4)

where â is replaced with â† for photon addition. Using the
identities

tr{âρ̂D̂(ξ )} = −e− |ξ |2
2

∂

∂ξ ∗
[
e

|ξ |2
2 χ (ξ )

]
,

tr{ρ̂â†D̂(ξ )} = e− |ξ |2
2

∂

∂ξ

[
e

|ξ |2
2 χ (ξ )

]
,

tr{â†ρ̂D̂(ξ )} = e
|ξ |2

2
∂

∂ξ

[
e− |ξ |2

2 χ (ξ )
]
,

tr{ρ̂âD̂(ξ )} = −e
|ξ |2

2
∂

∂ξ ∗
[
e− |ξ |2

2 χ (ξ )
]
, (5)

the transformation in Eq. (4) can be rewritten in an equivalent
CF form as

χ (ξ ) → χPV(ξ ) = 1

N Ot,n(ξ )χ (ξ ), (6)

where

Ot,n(ξ ) = (−1)net |ξ |2
2

∂2n

∂ξ n∂ξ ∗n
e−t |ξ |2

2 , (7)

N = Ot,n(ξ )χ (ξ )|ξ=0 is the normalization constant, t = −1
for photon subtraction, and t = 1 for photon addition. In [65]
it was shown that the operator Ot,n(ξ ) can be simplified to a
generalized two-variable Hermite polynomial function when

the initial state is a single-mode Gaussian state. To find the
simplified form of the CF of the TMSV state after the PV
operation, we first extend the result in [65] to the general
multimode case.

For a symmetric 2K-by-2K matrix M, we define the gen-
eralized multi-index multivariable Hermite function by the
generating function

∞∑
n1,...,n2K =0

(
2K∏
i=1

uni
i

ni!

)
Hn1,...,n2K (x; M) = euT Mu+xT u, (8)

where x, u ∈ C2K are column vectors, the ui’s are elements of
u, and (·)T represents matrix transpose (not conjugate trans-
pose). Performing some algebraic manipulation on Eq. (8)
leads to the analytical solution to Hn1,...,n2K (x; M),

Hn1,...,n2K (x; M)

=
∑
{ni, j}

⎡
⎣ 2K∏

i=1

ni!xi
qi

qi!

Mni,i

i,i

ni,i!

2K∏
j=i+1

(2Mi, j )ni, j

ni, j!

⎤
⎦, (9)

where the Mi, j’s are elements of the matrix M, the xi’s are
elements of the vector x, the summation is taken over all
possible combinations of the ni, j’s (1 � i � 2K, i � j � 2K)
such that qi � 0 for all i, where

qi = ni − ni,i −
2K∑

i′=1

nmin(i,i′ ),max(i,i′ ). (10)

The details of the derivation of Eq. (9) can be found in Ap-
pendix A.

From Eq. (8) it follows that for a column vector d ∈ C2K ,

∞∑
n1,...,n2K =0

(
2K∏
i=1

uni
i

ni!

)
Hn1,...,n2K

(
Mx − d; −1

2
M

)

× e− 1
2 xT Mx+dT x

= e− 1
2 (x−u)T M(x−u)+dT (x−u). (11)

Comparing the terms in the Taylor expansion for the right side
of the above equation it follows that

∂
∑2K

i=1 ni∏2K
i=1(∂xi )ni

e− 1
2 xT Mx+dT x

= (−1)
∑2K

i=1 ni Hn1,...,n2K

(
Mx − d; −1

2
M

)
e− 1

2 xT Mx+dT x.

(12)

The details of the derivation of Eq. (12) can also be found in
Appendix A.

A K-mode Gaussian state with covariance matrix V and
vector of means μ (V and μ are both for the quadratures) has
the CF

χ (ξ) = e− 1
2 ξ̃

†
Ṽ ξ̃+μ̃† ξ̃, (13)

where ξ = [ξ1, . . . , ξK ] ∈ CK , ξ̃ = [ξ1, ξ1
∗, . . . , ξK , ξK

∗]† is
the augmented vector of ξ, Ṽ = ZJV J†Z, μ̃ = ZJμ, Z =
IK ⊗ [1, 0; 0,−1], J = IK ⊗ [1, i; 1,−i]/2, IK is the K-by-K
identity matrix, and we set the variance of the vacuum state
to 1 shot noise unit (i.e., h̄ = 2) and will use this setting
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throughout the paper. As shown in Fig. 1(b), suppose every
mode of the K-mode state undergoes an independent PV oper-
ation with ni (1 � i � K) photons varied. Combining Eqs. (6)
and (12), the CF for the state after the operations can then be
written as

χPV(ξ) = (−1)
∑K

i=1 ni

N Hn1,n1,...,nK ,nK

(
X (Ṽ

′
ξ̃ + μ̃); −1

2
XṼ

′
)

× χ (ξ), (14)

where Ṽ
′ = Ṽ + diag[t1, t1, . . . , tK , tK ]/2, ti = −1 (or 1)

when photon subtraction (or photon addition) is applied to the
ith mode, X = IK ⊗ [0, 1; 1, 0], and

N = (−1)
∑K

i=1 ni Hn1,n1,...,nK ,nK

(
X μ̃; − 1

2 XṼ
′)
. (15)

For conciseness, we will use Hn1,n1,...,nK ,nK (ξ) to represent
Hn1,n1,...,nK ,nK (X (Ṽ

′
ξ̃ + μ̃); − 1

2 XṼ
′
) in the rest of the paper

when the context is clear.
We can now proceed with the two-mode case. Applying

PV operations (with parameters n1 and n2 for the two modes,
respectively) to both modes of a two-mode Gaussian state
produces a photon-varied state with CF of the form

χPV(ξ1, ξ2) = (−1)n1+n2

N Hn1,n1,n2,n2 (ξ1, ξ2)χ (ξ1, ξ2). (16)

For an arbitrary input state, teleportation using the above
state as resource state or using a resource state without any
operation are equivalent to quantum channels with different
response functions. The ratio between the two response func-
tions can be written as

χPV(ξ, ξ ∗)

χ (ξ, ξ ∗)
= 1

Hn1,n1,n2,n2 (0, 0)
Hn1,n1,n2,n2 (ξ, ξ ∗)

:= H(ξ ). (17)

The function H(ξ ), which we name as the response ratio
function, can be used to indicate the impact of the PV oper-
ations. The benefits of using the response ratio function are
twofold. First, the response ratio function characterizes the
resource states modified by PV operations and is independent
of the input states, yet can be used to calculate the fidelity
for any input states. Second, for Gaussian resource states, the
response ratio functions associated with the PV operations
are (normalized) Hermite polynomial functions, which have
many well-studied properties that will help analyze the PV
operations.

The response ratio functions directly reveal the impact of
PV operations on the resource states. Recall from Eq. (2) the
output state of teleportation with resource state modified by
the PV operation can be written as

χout (ξ ) = H(ξ )χ (ξ, ξ ∗)χ in(ξ ). (18)

For Gaussian resource state with response function χ (ξ, ξ ∗) ∈
(0, 1), at any point ξp, H(ξp) > 1 indicates that the PV opera-
tions reduce distortion caused by the quantum teleportation
channel to any input state at ξp. Applying PV operations
with H(ξ ) > 1 for all ξ to the resource state improves the
teleportation fidelity for any input state. For PV operations
with H(ξ ) > 1 only for a certain area of ξ , the increase in
fidelity depends on the input state.

We now consider the TMSV state with the form

|TMSV〉 = Ŝ(r) |0, 0〉1,2 =
√

1 − λ2
∞∑

n=0

λn |n, n〉1,2 ,

(19)

where Ŝ(r) = er(â†
1 â†

2−â1â2 ) is the two-mode squeezing operator
and r = atanh(λ) is the squeezing parameter. The CF of the
TMSV state is then given by

χTMSV(ξ1, ξ2) = e− 1
2 [V (|ξ1|2+|ξ2|2 )−

√
V 2−1(ξ1ξ2+ξ1

∗ξ2
∗ )], (20)

where V = cosh(2r) is the variance of the distribution of the
quadratures. The response ratio function for the TMSV state
with PV operations can be written as

H(ξ ) = Hn1,n1,n2,n2 (ξ, ξ ∗)/Hn1,n1,n2,n2 (0, 0), (21)

where

Hn1,n2,n3,n4 (ξ, ξ ∗)

=
∑

n5,n6,n7,n8

ξ (n2+n3 )ξ ∗(n1+n4 )|ξ |2(−n5−n6−n7−n8 )

× n1!n2!(A + C)n1+n2−2n5−n7−n8 An5

n5!(n1 − n5 − n7)!(n2 − n5 − n8)!

× n3!n4!(B + C)n3+n4−2n6−n7−n8 Bn6

n6!(n3 − n6 − n7)!(n4 − n6 − n8)!

Cn7+n8

n7!n8!
, (22)

the summation is taken over all possible ni’s (i = 5, 6, 7, 8)
such that the variables in every factorial are nonnegative,
A, B = −(V − 1)/2 for photon subtraction, A, B = −(V +
1)/2 for photon addition (A and B can take different values
when different operations are applied to the two modes), and
C = √

V 2 − 1/2 for both operations.
Figure 2 shows the response ratio function H(ξ ) for PV

operations with different settings. In this paper, the squeezing
of TMSV states in the dB unit is rdB = −10 log10[exp(−2r)].
In Figs. 2(a) and 2(b), we consider scenarios where both
modes of a TMSV state are applied with the same operation
(i.e., the symmetric scenarios with n1 = n2 = n). For both
PV operations the response ratios are functions of |ξ |2. For
photon subtraction, we find H(ξ ) > 1 for any ξ , showing
that symmetric photon subtraction can improve teleportation
fidelity for any input states. For photon addition H(ξ ) < 1 is
found when |ξ |2 is less than a certain threshold, indicating
that symmetric photon addition cannot improve fidelity for
input states with CF centered around the origin, e.g., coherent
states and Fock states. For input states with CF spread across
the complex plain, e.g., squeezed states with high squeezing,
it is possible for symmetric photon addition to improve fi-
delity. For both PV operations, increasing n does not always
increase H(ξ ) for every ξ . In Fig. 2(c), we consider scenarios
where different operations are applied to the modes, finding
none of the asymmetric scenarios provide H(ξ ) larger than
their symmetric counterpart for any ξ . Although not shown in
Fig. 2(c), we also compare the response ratio function H(ξ )
with the above PV operations for TMSV states with different
squeezing, finding that the above conclusions still hold but the
scales are different.

We use coherent states as the input state to exem-
plify how the response ratio function connects with the
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photon subtraction

photon addition

photon subtraction

photon addition

(a)

(b)

(c)

FIG. 2. The response ratio function H(ξ ) for PV operations with
different settings. The same operation is applied to both modes of a
TMSV state with (a) 8-dB squeezing and (b) 3-dB squeezing. In (c),
different PV operations are applied to the modes of the state. In this
figure and the figures to follow, all axes are unitless.

teleportation fidelity. We note the transmission of coherent
states is a critical step in various quantum information applica-
tions and methods to increase the transmission distance have
been proposed over the past decade, e.g., using an ancillary
TMSV state in an erasure-correcting code [66,67], measuring
the environmental mode and performing local operations on
the transmitted mode [68], and using teleportation enhanced

FIG. 3. The fidelity for teleportation of coherent states using
TMSV states modified by PV operations. The horizontal line repre-
sents the 1/2 classical limit for teleportation of coherent states. The
vertical lines represent the squeezing of 3 dB and 8 dB (as indicated
by the texts).

with the non-Gaussian operations discussed in this work. The
CF for a coherent state |α〉 is

χ coh(ξ ) = e− 1
2 |ξ |2+ξα∗−ξ∗α. (23)

The fidelity for teleportation using TMSV states modified by
PV operation can then be written as

F = 1

π

∫
d2ξe−|ξ |2 e−(V −√

V 2−1)|ξ |2H(ξ ). (24)

Figure 3 compares the fidelity for teleportation of coherent
states using TMSV states modified by different PV operations.
When photon addition is applied to any mode of the TMSV
state, the fidelity cannot be improved and even drops below
the 1/2 classical limit for certain λ. For photon subtraction,
subtracting more photons is only effective when the initial
squeezing is small.

III. CV TELEPORTATION WITH GENERALIZED
PHOTON-VARYING OPERATIONS

For TMSV resource states, an upper bound to any H(ξ )
can be written as

Hmax(ξ ) = 1

χTMSV(ξ, ξ ∗)
= e(V −√

V 2−1)|ξ |2 . (25)

The response ratio functions H(ξ ) associated with PV oper-
ations âni

i and â†ni
i (i = 1, 2) are both polynomial functions

of |ξ |2, of which the degree equals n1 + n2. We showed in
the previous section that these functions did not approach
Hmax(ξ ) with increasing degree. It remains unclear whether
H(ξ ) associated with combinations of the PV operations that
approaches Hmax(ξ ) exists.

Consider one generalized PV operation Â†
N (with a conju-

gate transpose ÂN ) of the form

Â†
N =

N∑
n=0

enâ†n
1 â†n

2 , (26)
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where the en’s are normalized real-value coefficients. We
note that the generalized PV operation defined above does
not contain any asymmetric term as we showed in the pre-
vious section that asymmetric PV operations are inferior to
their symmetric counterparts. The response ratio function for
a TMSV state with the generalized PV operation given by
Eq. (26) can be written as

H(ξ ) = 1

eT H (0, 0)e
eT H (ξ, ξ ∗)e, (27)

where e = [e0, . . . , eN ]T ,

H (ξ, ξ ∗) =

⎡
⎢⎣ H0,0,0,0(ξ, ξ ∗) . . . HN,0,N,0(ξ, ξ ∗)

...
. . .

...

H0,N,0,N (ξ, ξ ∗) . . . HN,N,N,N (ξ, ξ ∗)

⎤
⎥⎦,

(28)

and the elements Hn1,n2,n3,n4 (ξ, ξ ∗) are given by Eq. (22) [with
A = B = −(V + 1)/2].

For given TMSV states, we use the integrated response
ratio function as the target function to be maximized. For
a fixed N , the optimization is taken over the vector e. The
optimal e can then be written as

eopt = argmax
e∈RN+1

∫ ξlim

0
H(ξ ) d|ξ |, (29)

where we set an upper limit ξlim for the integration with
respect to |ξ |. Figures 4(a) and 4(b) show the response ratio
function H(ξ ) for the generalized PV operations Â†

N with
optimized parameters. In this paper, we adopt a particle swarm
algorithm for all optimization problems. In Figs. 4(a) and 4(b)
the parameter vector e is set to maximize the integrated re-
sponse ratio function (with ξlim = 2). Distinct from the PV
operations discussed in the previous section, the generalized
PV operations here always provide increasing H(ξ ) with in-
creasing N . The response ratio function also approaches the
upper bound Hmax(ξ ) as N grows. However, we are unable
to show that Hmax(ξ ) is saturated when N approaches infinite
because we cannot optimize H(ξ ) accurately with N > 20.

We attempt to better explain why the generalized PV oper-
ations provide increasing H(ξ ) as the degree of the operations
grows. The upper bound in Eq. (25) can be saturated by the
noiseless linear amplifier (NLA), which is given by

gâ†
1 â1 =

∞∑
n=0

lnn g

n!
(â†

1â1)n, (30)

where the amplification gain satisfies g →√
(V + 1)/(V − 1). The NLA defined above cannot be

realized as it does not converge as n grows but approximation
to the NLA is possible.

Our analytical solution to the CF of multi-mode Gaussian
states is limited to generalized PV operations, i.e., the super-
position of either photon subtraction or addition. For general
non-Gaussian operations that are polynomials of both ladder
operators the solution to the CF is yet to be found. However,
when applied to Gaussian states with symmetrical properties,
the general non-Gaussian operations are equivalent to certain

(a)

(b)

(c)

FIG. 4. (a) The response ratio functions H(ξ ) for TMSV states
with generalized PV operations defined by Eq. (26) with different pa-
rameter vector e, where e is set such that the integrated response ratio
function is maximized. TMSV states with lower initial squeezing are
considered in (b). In (c) the PC-NLA is considered. In all figures,
the upper bound to the response ratio function Hmax(ξ ) is defined in
Eq. (25). For solid curves, the value of N rises for curves from the
bottom to the top.

generalized PV operations. For example, the identity

1√
V + 1

â†
2 |TMSV〉 = 1√

V − 1
â1 |TMSV〉 , (31)
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and the commutation relation [69]

(â†
1â1)n =

n∑
m=1

1

m!

m∑
j=1

(
m
j

)
(−1)m− j jn(â†

1)mâm
1 , (32)

show that any polynomials of (â†
1â1) with degree N can be

mapped to an equivalent operator Â†
N (or ÂN ) when applied

to TMSV states. Therefore, on the one hand, for TMSV
states, our solution can be used to analyze the impact of any
non-Gaussian operations that are polynomials of the ladder
operators, including the NLA and its approximations. On the
other hand, the generalized PV operations Â†

N for TMSV states
can be realized indirectly by known methods that approxi-
mate the NLA, e.g., coherent PV operations [70] or photon
catalysis.

We use the NLA built from photon catalysis, which we
refer to as PC-NLA, as a practical example to illustrate how
the upper bound on H(ξ ) can be approximated. It is worth
noting that the PC-NLA, which requires a parallel application
of single-photon photon catalysis [71], has been shown to
improve the log-negativity of entangled states distributed over
lossy channels. When applied to mode 1 of a TMSV state, the
PC-NLA can be represented by an operator

M̂c =
√

T
N+â†

1 â1
N∑

k=0

(
N
k

)(
T − 1

T N

)k

â†k
1 âk

1, (33)

where N is the number of photon catalysis in the operation
and 0 < T < 1 is the beam-splitter transmissivity for each
photon catalysis operation. More details on the PC-NLA can
be found in Appendix B. Figure 4(c) compares the response
ratio function H(ξ ) associated with M̂c for different N , where
we assume a phase correction operation (−1)â†

1 â1 is applied
to the TMSV state before the application of M̂c. Results in
Fig. 4(c) show that the PC-NLA always provides increasing
H(ξ ) as N grows. However, for PC-NLA the function H(ξ )
converges much slower to the bound compared with Â†

N with
optimized parameters, suggesting PC-NLA is not the optimal
method to approach the bound.

IV. TELEPORTATION WITH OTHER RESOURCE STATES
AND PHOTON-VARYING OPERATIONS

In this section, we extend our studies of the PV operations
to some generalized forms of TMSV states.

A. Two-mode squeezed coherent states

Two-mode squeezed coherent (TMSC) states have drawn
research attention in recent years due to their ability to
improve measurement-independent quantum key distribu-
tion [18,72,73]. A general TMSC state can be defined by [74]

|TMSC〉 = D̂1(z1)D̂2(z2)Ŝ(r) |0, 0〉1,2 , (34)

where D̂1(z1), D̂2(z2) are displacement operators with
z1, z2 ∈ C. The above state has an alternative definition,
which is given by swapping the order of the squeezing op-
erator and the displacement operators

|TMSC〉 = Ŝ(r)D̂1(z̃1)D̂2(z̃2) |0, 0〉1,2 , (35)

FIG. 5. The response ratio functions for two-mode squeezed co-
herent states with PV operations are shown in (a) and (b) with
different displacement z. Both functions are symmetric with respect
to the imaginary axis Im(ξ ).

where z̃1 = z1 cosh r − z∗
2 sinh r and z̃2 = z2 cosh r −

z∗
1 sinh r. In this work, we will use the definition in Eq. (34).

The CF for a TMSC state can then be written as

χTMSC(ξ1, ξ2) = eξ1z∗
1−ξ∗

1 z1 eξ2z∗
2−ξ∗

2 z2χTMSV(ξ1, ξ2), (36)

where χTMSV(ξ1, ξ2) is the CF for the TMSV state in Eq. (20).
Consider the case for z1 = z2 = z ∈ R, the response func-

tion for a TMSC state equals that of a TMSV state,
χTMSV(ξ, ξ ∗). Similar to before, the response ratio functions
H(ξ ) for TMSC states with PV operations can be calculated
using Eq. (14), which are not shown here for conciseness.
Examples of H(ξ ) are shown in Figs. 5(a) and 5(b), where
we have adopted a three-dimensional (3D) plot as they cannot
be expressed as a function of |ξ |. Figure 5 shows that for a
given PV operations H(ξ ) decreases as z increases.

Next, we consider TMSC states with generalized PV op-
erations Â†

N . Recall from Eq. (25) the upper bound to states
with the response function χTMSV(ξ, ξ ∗) is a polynomials of
|ξ |2. For Â†

N the non-|ξ |2 terms in H(ξ ) can also be eliminated
by a proper setting of the parameter vector e. Figure 6(a)
shows the optimized response ratio function for the TMSC
states with different displacement z, where H(ξ ) is optimized
over e independently for each state. Similar to the results in
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(a)

(b)

FIG. 6. (a) The response ratio function H(ξ ) with generalized
PV operations Â†

N (with N = 10) and optimized e for two-mode
squeezed coherent states. For the solid curves, the value of z de-
creases for curves from the bottom to the top. (b) The response
function χPV(ξ, ξ ∗) for two-mode squeezed thermal states with gen-
eralized PV operation Â†

10.

Fig. 5, the H(ξ ) for TMSC states with the generalized PV
operations also decreases with increasing z. The results shown
suggest that to obtain the maximal improvement offered by the
generalized PV operations, the mean values of TMSC states
must be displaced to zero before the operations.

B. Two-mode squeezed thermal states

Two-mode squeezed thermal (TMST) states are another
generalization of the TMSV states. A TMST state can be
defined by

ρ̂TMST = Ŝ(r)ρ̂th1ρ̂th2Ŝ†(r), (37)

where

ρ̂thi =
∞∑

n=0

n̄n
i

(n̄i + 1)n+1
|n〉i 〈n|i , (38)

i = 1, 2 and the ρ̂thi’s are thermal states with mean photon
number n̄i. Consider the case for n̄1 = n̄2 = n̄, the CF for the

TMST state can be written as

χTMST(ξ1, ξ2) = e− 1
2 [V (|ξ1|2+ξ2|2 )−√

V 2−1(ξ1ξ2+ξ1
∗ξ2

∗ )](2n̄+1).

(39)

Figure 6(b) shows the response function χPV(ξ, ξ ∗) for the
TMST states with Â†

N , where we optimize H(ξ ) over e and
calculate the corresponding χPV(ξ, ξ ∗). We note χPV(ξ, ξ ∗)
other than H(ξ ) is shown to better compare the impact of the
initial squeezing and the noise level. For the dotted curves
the noise level n̄ is set such that the initial TMST state pro-
vides a fidelity for teleportation of coherent states of 1/2,
i.e., χTMST(ξ, ξ ∗) = exp (−|ξ |2). As n̄ increases χPV(ξ, ξ ∗)
decreases, showing that the generalized PV operations cannot
reduce noise in the resource state. Although not displayed in
the figures, the operation Â†

N always provides H(ξ ) > 1 for
the parameters considered.

C. Dissipative TMSV states

The distribution of entangled states is a prerequisite for
quantum teleportation. For TMSV states passed through dis-
sipative environments, the generalized PV operations cannot
be realized in a local fashion. Therefore, we only consider the
case where the PV operations are applied before the channel
transmission of the TMSV state. Consider two independent
lossy channels modeled by beam splitters with transmissivity
T1 and T2. A TMSV state is first applied with a generalized
PV operation, of which the two modes are then transmitted
through the channels. We define a new function H′(ξ ) as the
ratio between the response function for a TMSV state first
applied with a generalized PV operation and then distributed
over the channels, and the response function for a TMSV state
directly distributed over the channels. We find that H′(ξ ) > 1
is always satisfied for T1 = T2. For T1 �= T2, H′(ξ ) might drop
below unit for certain area of ξ . The above results coincide
with the conclusion in [8] that TMSV states with higher
squeezing are more sensitive to channels with asymmetric
losses.

V. CONCLUSION

In this paper, we built a framework for PV operations in
the multimode setting, expressing the characteristic function
of the photon-varied two-mode Gaussian state as a multi-
variable multi-index Hermite-Gaussian function. Based on the
framework built, we introduced the response ratio function, a
performance metric suitable for arbitrary teleportation input
states. For given resource states, the fidelity for any input
states can be calculated from the response ratio function. We
then proposed generalized PV operations and investigated the
use of such operations in various Gaussian states. Our re-
sults show that the generalized PV operations approximating
noiseless linear amplification provide the most improvement
in teleportation with TMSV states. Utilizing the symmetrical
property of TMSV states, we also analyze the impact of PC-
NLA with the response ratio function method, exemplifying
possible methods for implementing the generalized PV oper-
ations in real-world communication systems.

It is worth noting that the analytical solution derived
in this work, the Hermite-Gaussian function, is limited to
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non-Gaussian operations that are polynomials of either ladder
operator. For more general non-Gaussian operations that are
polynomials of both ladder operators, e.g., cascaded PV oper-
ations and photon catalysis, the solution is yet to be found.
For non-Gaussian operations that cannot be represented by
ladder operators, e.g., quantum scissors and their generaliza-
tion [75,76], the corresponding characteristic function will not
have a Hermite-Gaussian form. However, quantum scissors
can still be analyzed using the response ratio method proposed
in this work.
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APPENDIX A: DERIVATIONS OF EQS. (9) AND (12)

The right side of Eq. (8) can be expanded to

euT Mu+xT u =
∑

{ni, j },{ni}

[
2K∏
i=1

(
u2

i Mi,i
)ni,i

ni,i!

]

×
⎡
⎣ 2K∏

i=1, j=i+1

(uiu j2Mi, j )ni, j

ni, j!

⎤
⎦[

2K∏
i=1

(uixi )ni

ni!

]
,

(A1)

where the summation is taken with respect to the indices
ni, j, ni(1 � i � 2K, i � j � 2K ) over [0,∞). Combing the
ui’s in the above equation leads to

euT Mu+xT u =
∑

{ni, j},{ni}

⎡
⎣ 2K∏

i=1, j=i+1

Mni,i

i,i (2Mi, j )ni, j xni
i

ni,i!ni, j!ni!

⎤
⎦

×
2K∏
i=1

u
ni+ni,i+

∑2K
i′=1 nmin(i,i′ ),max(i,i′ )

i . (A2)

Let n∗
i = ni + ni,i + ∑2K

i′=1 nmin(i,i′ ),max(i,i′ ) and qi =
ni − ni,i − ∑2K

i′=1 nmin(i,i′ ),max(i,i′ ), both for 1 � i � 2K , then
the above equation can be rewritten as

euT Mu+xT u

=
∑
{n∗

i }

2K∏
i=1

un∗
i

i

∑
{ni, j}

⎡
⎣ 2K∏

i=1

ni!xi
qi

qi!

Mni,i

i,i

ni,i!

2K∏
j=i+1

(2Mi, j )ni, j

ni, j!

⎤
⎦.

(A3)

Comparing the right side of the above equation and the left
side of Eq. (8), we can then obtain the result in Eq. (9).

Let

f (x − u) = e− 1
2 (x−u)T M(x−u)+dT (x−u), (A4)

FIG. 7. The schematic for the PC-NLA. The photon catalysis
shown in the paths is implemented using the device in Fig. 1(a) with
m = l = 1.

denote the right side of Eq. (11), of which the Taylor expan-
sion with respect to u at 0 can then be written as

∞∑
n1,...,n2K =0

(
2K∏
i=1

uni
i

ni!

)
∂

∑2K
i=1 ni∏2K

i=1(∂ui )ni
f (x − u)|u=0

=
∞∑

n1,...,n2K =0

(
2K∏
i=1

uni
i

ni!

)
∂

∑2K
i=1 ni∏2K

i=1(∂xi )ni
(−1)

∑2K
i=1 ni f (x). (A5)

Comparing the right side of the above equation and the left
side of Eq. (11), we can then obtain the result in Eq. (12).

APPENDIX B: PC-NLA

As is shown in Fig. 7, one major component of the PC-
NLA is the N-splitter, which consists of an array of beam
splitters. The first N-splitter, in conjunction with the vacuum
ancillas, evenly divides the input state into N paths. Parallel
photon catalysis operations are then applied to each path. The
transmissivities T for the beam splitters in the photon catal-
ysis operations are identical. The second N-splitter adopts an
inverse to the arrangement of the beam splitters in the first
N-splitter. The paths after the photon catalysis operations are
recombined at the second N-splitter. The operation is success-
ful when all the output ports except the first port of the second
N-splitter register zero photons.

The PC-NLA can be represented by the operator [71]

M̂c =
∞∑

n=0

√
T

N+n
N∑

k=0

(
N
k

)
n!

(n − N + k)!

( p

N

)N−k
|n〉 〈n| ,

(B1)

where p = (T − 1)/T , which can be rewritten as

M̂c =
√

T
N+â†â

N∑
k=0

(
N
k

)( p

N

)k
â†kâk . (B2)

To see how the above operation approximates the NLA, in the
limit of N → ∞, consider the application of M̂c on one mode
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of a TMSV state with finite squeezing

M̂c |TMSV〉 =
√

T N (1 − λ2)
Nc∑

n=0

(
√

T λ)n
Nc∑

k=0

pkâ†k
1 âk

1

k!
|n, n〉

=
√

T N (1 − λ2)
Nc∑

n=0

(
√

T λ)n
n∑

k=0

(
n
k

)
pk |n, n〉

=
√

T N (1 − λ2)
Nc∑

n=0

(gλ)n |n, n〉 , (B3)

where Nc is a threshold set such that N!/[(N − k)!k!Nk] →
1/k! for k < Nc and λn → 0 for n > Nc, and g = (2T −
1)/

√
T < −1 for T < 1/4.

In teleportation using TMSV states, the minus sign of
the amplification gain will result in a decrease in the

achievable teleportation fidelity. The sign can be corrected by
applying two successive PC-NLA on one mode of a TMSV
state, applying PC-NLA on both modes of the state, or sim-
ply applying a phase correction operation (−1)â†â on the
state.
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