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Nonreciprocal enhancement of macroscopic entanglement with noise tolerance
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The entanglement of different macroscopic objects can provide crucial resources for various quantum applica-
tions and quantum-enabled devices. The generation, manipulation, and enhancement of entanglement are pivotal
areas of research. In this study, we introduce an approach for producing enhanced nonreciprocal entanglement in
a hybrid spinning optomechanical system. By exploiting the Sagnac effect to break the time-reversal symmetry
of the system, we successfully generate and amplify the nonreciprocal bipartite entanglement between the
atomic ensemble and mechanical oscillator, exhibiting an approximately twofold enhancement under competitive
equilibrium conditions. Furthermore, we investigate and quantify the nonreciprocal tripartite entanglement en-
compassing the atomic ensemble, optical cavity, and mechanical oscillator by employing the residual contangle
measurement. We find that the nonreciprocal bipartite (tripartite) entanglement is not only enlarged almost two
(five) times, but also noise resistant. The proposed scheme of enhanced bipartite and tripartite entanglement has
the potential to advance a wide range of quantum technologies, spanning from quantum information processing
to quantum sensing applications.
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I. INTRODUCTION

Entanglement, a characteristic phenomenon of the intri-
cate quantum domain [1–3], serves as a fundamental resource
for advancing quantum technologies such as quantum com-
munications [4], quantum information processing [5–7], and
quantum sensing [8]. Initially, researchers concentrated on
preparing, manipulating, and quantifying quantum entan-
glement solely within microscopic systems encompassing
entities such as photons, atoms, and ions [9]. However, with
notable progress in microfabrication, the exploration of entan-
glement among macroscopic entities has garnered significant
interest and is now evolving [10–12]. Recent experimen-
tal breakthroughs in macroscopic entanglement have been
witnessed across a spectrum of systems, including the single-
particle interference of macromolecules [13], the collective
spins of atomic ensembles [14], the superconducting microcir-
cuit [15,16], and beyond. In recent times, cavity optomechan-
ical (COM) systems have emerged as a primary platform for
investigating macroscopic quantum phenomena [17–19]. This
rapidly advancing frontier in research delves into fundamental
macroscopic physical phenomena driven by optomechanical
interactions [20–26]. Extensive exploration of fundamental
quantum theory within this domain includes studies of macro-
scopic quantum coherence [27], quantum sensing [26,28], and
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quantum-classical boundary [19]. Due to the advantages of
universality and scalability, the COM platform offers broad
applications in modern quantum sciences and technologies,
including quantum precision measurements [29] and gravi-
tational wave detection [30]. With the rapid advancement of
this field in recent years, diverse research directions within
COM systems have emerged. Among these, the exploration
of quantum entanglement between optical cavities and me-
chanical resonators stands out as particularly intriguing [3].
Recently, a variety of schemes has been proposed, aiming to
achieve macroscopic entanglement [21–24,31–35] and hybrid
multiparticle entanglement through the integration of atoms,
ions, or additional mechanical oscillators [36–40].

In parallel with the rapid development of the COM system,
nonreciprocal physics has also witnessed significant break-
throughs in recent years. Various methods for fabricating
nonreciprocal optical devices have been proposed and demon-
strated both theoretically and experimentally [41–49]. These
nonreciprocal optical devices have crucial applications in
numerous areas, including optical chaos [18], unidirectional
laser [50,51], optomechanical high-order sidebands [18], one-
way photon blockade [52–54], single-photon isolator [55–57],
and nonreciprocal entanglement [58,59]. The intersection of
nonreciprocal physics and quantum entanglement has led
to the emergence of numerous promising schemes across
various systems. Recently, several approaches to achieve non-
reciprocal entanglement between different modes have been
proposed [58–63]. However, here we explore the concept of
nonreciprocal enhancement of macroscopic entanglement.
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In this paper, we propose a scheme to achieve enhanced
nonreciprocal bipartite and tripartite macroscopic entangle-
ment in a spinning COM system [59,64], exploiting the
Sagnac effect to break time-reversal symmetry. Our work
demonstrates that both bipartite and tripartite entanglement
are significantly enhanced under nonreciprocal conditions. We
delve into the intrinsic mechanisms underlying this enhance-
ment, attributing it to greater entanglement transfer when the
system’s internal coupling reaches competitive equilibrium.
Additionally, we investigate the robustness of nonreciprocal
macroscopic entanglement against environmental noise, find-
ing that the achieved nonreciprocal bipartite and tripartite
entanglement exhibit higher noise tolerance. Our proposal
offers the following features: (i) achievement of nonreciprocal
bipartite and tripartite macroscopic entanglement, (ii) signifi-
cant enhancement of macroscopic entanglement compared to
traditional schemes, and (iii) superior noise tolerance of non-
reciprocal bipartite and tripartite entanglement compared to
stationary systems. This proposal provides valuable resources
for engineering various quantum effects, such as establishing
viable phononic quantum networks, synchronizing mechani-
cal motions, realizing dual-comb spectroscopy, and advancing
chiral quantum information processing [19,65–67].

This paper is structured as follows. In Sec. II, we intro-
duce the theoretical model and the derivation of the linearized
dynamics and quantification of the quantum entanglement. In
Sec. III, by applying the logarithmic negativity and residual
contangle, we demonstrate the enhanced bipartite and tri-
partite entanglement in the nonreciprocal effect. In Sec. IV,
we briefly discuss the experimental feasibility based on two
possible schemes. A summary is given in Sec. V.

II. THEORETICAL MODEL AND ENTANGLEMENT
QUANTIFICATION

Our theoretical model is a hybrid optomechanical system,
where an atomic ensemble is directly or indirectly coupled
with a whispering gallery microresonator (WGM). The res-
onator is mounted on a turbine [68] and evanescently coupled
to a tapered fiber. Here, the atomic ensemble consists of Na

two-level atoms with natural frequency ωa. By inputting the
laser from opposite directions, we can drive two different
cavity propagating modes, i.e., clockwise (CW) mode and
counterclockwise (CCW) mode. In addition, the spinning
resonator can be flexibly stretched, providing a mechanical
breathing mode with frequency ωm.

For the spinning resonator, the system’s time-reversal sym-
metry has been broken due to the Sagnac-Fizeau shift [69],

�F = nR�ωc

c

(
1 − 1

n2
− λ

n

dn

dλ

)
, (1)

where ωc is the stationary resonance frequency. The wave-
length and the speed of light in vacuum are λ and c,
respectively. The radius and the angular velocity of the res-
onator are R and �, respectively. The refractive index of the
material is n. The dispersion term dn/dλ, which is small in
the typical materials (up to 0.01 m−1), indicates the relativistic
origin of the Sagnac effect [68,69]. Meanwhile, the effective
cavity frequency of the CW (CCW) driving mode is given by
ωcw = ωc + �F (ωccw = ωc − �F ).

When the CCW mode is driven by a laser field, the system
can be described by the Hamiltonian

H = H0 + HI ,

H0 =
∑

j=ccw,cw

h̄ω ja
†
j a j + h̄ωm

2
(p2 + q2) + h̄ωa

2
Sz,

HI = −h̄G0(a†
cwacw + a†

ccwaccw )q + (h̄gacwS+

+ h̄gaccwS+ + ih̄εe−iω0t a†
ccw + H.c.). (2)

On the other side, when the laser is used to drive the CW
mode, the driving term ih̄εe−iω0t a†

ccw needs to be substituted
to ih̄εe−iω0t a†

cw. Here, S±,z = ∑Na
i=1 σ i

±,z are the collective spin
operators of the atomic ensemble, where σ+, σ−, and σz are the
spin-1/2 algebra Pauli matrices. The annihilation and creation
operators of cavity mode j are aj and a†

j . The dimensionless
mechanical displacement and momentum operators are q and
p. The single-photon optomechanical coupling constant is
given by G0 = (ωc/R)

√
h̄/mωm, where m is the mass of the

resonator [17]. Similarly, the atom-cavity coupling constant
is given by g = μ

√
ωc/2h̄ε0V , where V is the cavity mode

volume and μ is the dipole moment of the atomic transition.
The field amplitude of the input laser is |ε| = √

2κP/h̄ω0 with
frequency ω0 = 2πc/λ = 1.216 × 1015 Hz, where κ and P
are the optical decay rate and input laser power. In a rotating
frame with respect to Hi = h̄ω0(a†

cwacw + a†
ccwaccw + S+S−),

the Hamiltonian changes [17],

H =
∑

j=cw,ccw

h̄� ja
†
j a j + h̄�aS+S− + h̄ωm

2
(p2 + q2)

− h̄G0(a†
cwacw + a†

ccwaccw )q + (h̄gacwS+

+ h̄gaccwS+ + ih̄εa†
ccw + H.c.), (3)

where � j = ω j − ω0 and �a = ωa − ω0 are the effective de-
tuning. The spin operators S±,z of the atomic ensemble can
be transformed to a collective bosonic operator c†(c) in the
Holstein-Primakoff representation [39,70,71],

S− = c
√

Na − c†c ≈ √
Nac,

S+ = c†
√

Na − c†c ≈ √
Nac†,

Sz = c†c − Na

2
, (4)

where the operators c and c† obey the standard boson commu-
tator [c, c†] = 1. This is satisfied under the low temperature
(low excitation limit), i.e., 〈c†c〉/Na � 1.

Considering the photon losses in the cavity, the sponta-
neous emission of atoms, and the Brownian noise acting on
the mirror, we can get the quantum Langevin equation as
follows:

q̇ = ωm p,

ṗ = −ωmq + G0(a†
cwacw + a†

ccwaccw ) − γm p + ξ,

ȧcw = −(i�cw + κ )acw + iG0qacw − iGac +
√

2κain
cw,

ȧccw = −(i�ccw+κ )accw+iG0qaccw − iGac +
√

2κain
ccw + ε,

ċ = −(i�a + γa)c − iGa(acw + accw ) +
√

2γaFc, (5)
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where γm and γa are the mechanical damping rate and the
line width of the atomic excited state. The coupling constant
between the CW (CCW) optical mode and atomic mode is
Gcw−a (Gccw−a). For simplicity, the effective atomic coupling
constant is set as Gcw−a = Gccw−a = Ga = g

√
Na in our pro-

posal. The zero-mean input noise operators for the optical,
atomic, and mechanical modes are ain

j , Fc, and ξ , respectively.
Under the condition of ωm/γm � 1, these noise operators can
be described by the following correlation functions [72]:〈

ain
j (t )ain,†

j (t ′)
〉 = δ(t − t ′),

〈Fc(t )F †
c (t ′)〉 = δ(t − t ′),

〈ξ (t )ξ (t ′)〉 	 γm(2nm + 1)δ(t − t ′), (6)

where nm is the thermal phonon number and characterized
by the equation nm = [exp(h̄ωm/kBT − 1)]−1, with the kB the
Boltzmann constant and T the temperature of the mechanical
oscillator reservoir.

Under the strong optical driving, we can linearize these
operators by separating them into two parts, i.e., a steady-state

value plus a small fluctuation, i.e., q = qs + δq, p = ps + δp,
a j = α j + δa j , c = cs + δc. The quadratures of fluctuation
and noise operators are defined by

δXj = 1√
2

(δa†
j + δa j ), δYj = i√

2
(δa†

j − δa j ),

δx = 1√
2

(δc† + δc), δy = i√
2

(δc† − δc),

X in
j = 1√

2

(
ain,†

j + ain
j

)
, Y in

j = i√
2

(
ain,†

j − ain
j

)
,

xin = 1√
2

(
F in,†

c + F in
c

)
, yin = i√

2

(
F in,†

c − F in
c

)
. (7)

We define the vectors of the quadratures of fluctuation op-
erators and operators of input noises, uT (t ) = (δXccw, δYccw,

δXcw, δYcw, δx, δy, δq, δp) and vT (t ) = (
√

2κX in
ccw,

√
2κY in

ccw,√
2κX in

cw,
√

2κY in
cw,

√
2γaxin,

√
2γayin, 0, ξ ). Equation (5) can

be written in compact form as u̇(t ) = Au(t ) + v(t ), where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ
∼
�ccw 0 0 0 Ga −Gy

ccw 0

−∼
�ccw −κ 0 0 −Ga 0 Gx

ccw 0

0 0 −κ
∼
�cw 0 Ga −Gy

cw 0

0 0 −∼
�cw −κ −Ga 0 Gx

cw 0
0 Ga 0 Ga −γa �a 0 0

−Ga 0 −Ga 0 −�a −γa 0 0
0 0 0 0 0 0 0 ωm

Gx
ccw Gy

ccw Gx
cw Gy

cw 0 0 −ωm −γm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Here, we have redefined the effective optical detuning
∼
� j =

� j − G0qs. The real and imaginary parts of the linearized
optomechanical coupling strength are Gx

j and Gy
j , i.e., Gj−m =

Gx
j + iGy

j = √
2G0α j . The linearized optomechanical cou-

pling strength for the CW optical mode and CCW optical
mode are Gcw−m and Gccw−m, respectively. The solution of the
above compact form equation can be given directly,

u(t ) = M(t )u(0) +
∫ t

0
dsM(s)v(t − s), (9)

where M(t ) = exp(At ). According to the Routh-Hurwitz cri-
terion [73], the system eventually reaches stability only when
all eigenvalues of A have the negative real parts. In our
proposed parameter scheme, the criterion can be satisfied.
Meanwhile, the steady-state value of the system operators is
given by

ps = 0,

qs = G0(|αcw|2 + |αccw|2)

ωm
,

αcw = −iGacs

i
∼
�cw + κ

,

αccw = −iGacs + ε

i
∼
�ccw + κ

,

cs = −iGa(αccw + αcw )

i�a + γa
. (10)

The steady state is independent of the initial condition.
Due to the quantum noise terms having a Gaussian nature

and the system dynamics being linearized, we can use an
8×8 correlation matrix to characterize the steady state of the
system, which is a zero-mean four-partite Gaussian state. The
correlation matrix is given by

Vkl = 〈uk (∞)ul (∞) + ul (∞) + uk (∞)〉
2

. (11)

Because the system can be stable eventually after the long evo-
lution, we get M(∞) = 0 and u(∞) = ∫ ∞

0 dsM(s)n(t − s).
By substituting this result into Eq. (11), the Lyapunov equa-
tion of the system is given as follows [3]:

AV + VAT = −D, (12)

where D = diag[κ , κ , κ , κ , γa, γa, 0, γm(2nm + 1)] is the
diffusion matrix. By solving Eq. (12), we can get the cor-
relation matrix V which includes internal information of the
correlation. The correlation matrix V can be described in this
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way [74],

V =

⎛
⎜⎜⎜⎝

Kccw Lccw−cw Lccw−a Lccw−m

LT
ccw−cw Kcw Lcw−a Lcw−m

LT
ccw−a LT

cw−a Ka La−m

LT
ccw−m LT

cw−m LT
a−m Km

⎞
⎟⎟⎟⎠, (13)

where each matrix element represents a 2 × 2 matrix, e.g.,
Kccw and Kcw are used to describe the local characters of
two cavity modes with different driving directions. Ka and
Km describe the atomic mode and mechanical mode. Li− j ,
respectively, describes the correlation of two modes (i, j =
ccw, cw, a, m). By adopting the logarithmic negativity Ei− j ,
we quantify the bipartite entanglement between any two com-
ponents. For example, the bipartite entanglement between any
two modes can be defined as [75]

Ei− j = max[0,−ln2μ−], (14)

where μ− = min[eig(i�2Ṽ4)], �2 = ⊕2
j=1 iσy, and Ṽ4 =

P1|2V4P1|2 [36,76,77]. Here, P1|2 = diag(1,−1, 1, 1) and V4 is
the correlation matrix of a two-mode subsystem. When we
study the bipartite entanglement between the mechanic mode
and the atomic mode, the correlation matrix V4 is

Va−m =
(

Ka La−m

LT
a−m Km

)
. (15)

For a Gaussian state of the two-mode system, entanglement
can be generated if and only if μ− < 1/2, which is equivalent
to Simon’s entanglement criterion [76].

Moreover, by applying a contangle quantity, we can quan-
tify tripartite entanglement. The definition of contangle is
given by [78,79]

Ri| jk
T = Ci| jk − Ci| j − Ci|k, (16)

where Cu|v is defined as the squared logarithmic negativity and
is used to quantify the entanglement of the subsystem which
consists of u and v. Here, v can contain one mode or two
modes. To calculate the one-mode–vs–two mode contangle
Ci| jk , Eq. (14) can be applied, but �2 = ⊕2

j=1 iσy needs to

be substituted to �3 = ⊕3
j=1 iσy as well as Ṽ4 = P1|2V4P1|2 is

substituted to Ṽ = Pi| jkV6Pi| jk , where

P1|23 = diag(1,−1, 1, 1, 1, 1),

P2|13 = diag(1, 1, 1,−1, 1, 1),

P3|12 = diag(1, 1, 1, 1, 1,−1). (17)

The monogamy of quantum entanglement is satisfied,
Ri| jk
T � 0, i.e.,

Ci| jk � Ci| j + Ci|k, (18)

which is similar to the Coffman-Kundu-Wootters monogamy
inequality of a three-qubit system [80]. The tripartite entan-
glement can be quantified by the minimum residual contangle,
which can be defined as follows [78,79]:

RT = min
[
Ra|mb
T , Rm|ab

T , Rb|am
T

]
. (19)

The nonzero RT denotes that the genuine tripartite entangle-
ment is generated in the system.

III. NONRECIPROCAL ENHANCEMENT
OF ENTANGLEMENT

In this section, the logarithmic negativity and the mini-
mum residual contangle are, respectively, applied to quantify
the bipartite and tripartite entanglement of different modes
(cavity mode, mechanical mode, and atomic mode). And we
investigate the variation of entanglement with the change of
parameter conditions. The most remarkable part of our system
is the enhanced nonreciprocal entanglement.

A. Bipartite entanglement

We first compare and discuss the variation of the bipar-
tite entanglement, and atom-mechanical entanglement Ea−m,
with respect to the stationary resonator and spinning resonator
driven by the input laser in opposite directions, respectively.
As shown in Fig. 1(c), the logarithmic negativity of atom-
mechanical subsystem Ea−m as a function of the cavity field
detuning is plotted with choosing experimental feasible pa-
rameters: n = 1.48, m = 10 ng, R = 1.1 mm, λ = 1550 nm,
Q = 3.2 × 107, ωm = 63 MHz, γm = 5.2 kHz, T = 5 mK,
� = 30 kHz, κ = γa = 38 MHz, P = 40 mW, Ga/ωm = 0.6,
�a/ωm = −1.1.

When the resonator is stationary, the time-reversal symme-
try of the system is unbroken, and the entanglement between
the atomic ensemble and mechanical oscillator is constant for
the opposite direction driving, i.e., an identical effect can be
achieved whether or not the CW or CCW cavity mode is
driven. Meanwhile, the maximal value of atom-mechanical
entanglement occurs around �c/ωm 	 1. The optimal cavity
detuning for atom-mechanical entanglement in the optome-
chanical system is at the red-sideband resonance, which has
been extensively investigated and discussed [39,78]. The un-
derlying physics can be attributed to the redistribution of
bipartite entanglement. On the other hand, when the resonator
rotates in a counterclockwise direction and is, respectively,
driven from both sides, the effective frequency of the optic
cavity is shifted due to the Sagnac effect (ωc ± �F ). Mean-
while, the atom-mechanical entanglement is different for the
spinning resonator with driving the CW and CCW modes,
which shows that we achieve the nonreciprocal entanglement
between two macroscopic objects. As shown in Fig. 1(c), the
peak of entanglement is shifted into opposite directions [59].
Except for the change of the optimal cavity detuning condition
due to the Sagnac effect, we also find that the maximal value
of atom-mechanical entanglement is significantly enhanced,
e.g., surpassing near 1.72 times with driving CW mode and
near 1.8 times with driving CCW mode compared to the
atom-mechanical entanglement of the stationary resonator.

To explain the enhancement effect of nonreciprocal en-
tanglement in our proposal, we traverse all the bipartite
entanglement of the subsystems and give an intrinsic physical
reason. Those results are shown in Figs. 2(a)–2(c), where we
plot the logarithmic negativity of different two-mode subsys-
tems versus the atom detuning �a. In Fig. 2(a), the cavity
detuning is set to �c/ωm 	 1, i.e., the optimal cavity de-
tuning condition for the stationary resonator coming from
Fig. 1. It is noticed that the entanglement is redistributed from
the cavity-mechanical subsystem to the atom-cavity and the
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FIG. 1. (a) The coupling strength between different modes. Due to the presence of an atomic ensemble, the entanglement between the
driving cavity mode and mechanical mode is redistributed to the entanglement between other modes so that the four modes can be coupled
together. (b) Frequency spectrum of the spinning COM system. The effective frequency of the optical cavity is shifted into opposite directions
(ωc + �F and ωc − �F ) due to the Sagnac effect. (c) Nonreciprocal enhancement of entanglement between atomic ensemble and mechanical
oscillator. The parameters are chosen as � = 30 kHz, �a/ωm = −1.1, Ga/ωm = 0.6, and P = 40 mW.

atom-mechanical subsystems near �a/ωm 	 −1. In addition,
it is found that due to the indirect interaction induced by
atoms, the entanglement can also be redistributed to that
undriven cavity-atom mode and undriven cavity-mechanical
mode, as shown in the green lines in Fig. 2(a). As a re-
sult, the four modes in the system are entangled between
two pairs, and the schematic diagram is shown in Fig. 1(a).
In Figs. 2(b) and 2(c), the resonator remains spinning and
the system is, respectively, driven from the opposite direc-
tions. Meanwhile, the optimal cavity detuning conditions for
different driving situations are different and satisfied, respec-
tively, i.e., �c/ωm 	 −1 for CW mode driven and �c/ωm 	
2.5 for CCW mode driven. Compared with the stationary
resonator in Fig. 2(a), we find that the entanglement re-
distribution from the driven cavity-mechanical mode to the
atomic-mechanical mode becomes more significant, and other
unimportant entanglement is restrained. Therefore, the atom-
mechanical entanglement is enhanced at the optimal detuning.

In addition, we further investigate the underlying reason
for the enhancement of entanglement redistribution in our
proposal. In Figs. 2(d)–2(f), we show the effective strengths of
driven optomechanical coupling Gcw(ccw)−m and cavity-atom
coupling Gcw(ccw)−a versus the atom detuning �a, where the

cavity field detuning is set to the optimal conditions in differ-
ent driving situations. Here, the cavity-atom coupling strength
is assumed to be constant and does not vary with the atom
detuning. However, the effective optomechanical coupling
strength Gcw(ccw)−m = √

2G0αcw(ccw) varies with the change
of atom detuning, which is evident from Eq. (11). In Figs. 2(e)
and 2(f), the resonator remains spinning and the system is,
respectively, driven from the opposite directions. We can see
that the effective optomechanical coupling strength is close
to the cavity-atom coupling at �a/ωm 	 −1, while the values
of these two coupling strengths are separated for the station-
ary resonator at �a/ωm 	 −1, as shown in Fig. 2(d). When
entanglement redistribution emerges, the approximately equal
coupling strengths can enhance the entanglement transfer
process, contributing to the more significant entanglement
redistribution in the nonreciprocal effect. That is to say, the
entanglement transfer is most remarkable when the coupling
is in equilibrium.

In Fig. 3, we, respectively, plot Ea−m versus the decay of
cavity κ and the spontaneous radiation of atom γa in differ-
ent driving situations, where the optimal cavity and atomic
detuning conditions for different driving situations have been
satisfied. We can see that the nonreciprocal atom-mechanical

-3 -2 -1 0
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-3 -2 -1 0
0

0.1

0.2

-3 -2 -1 0
0

0.1
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0.4

0.6

0.8

-3 -2 -1 0
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-3 -2 -1 0
0.4

0.6

0.8
(d) (e) (f)

(a) (b) (c)a a a

FIG. 2. Entanglement and coupling strengths of various two-mode subsystem vs atomic detuning in different driving situations and in
which the optimal cavity detuning condition is satisfied. (a), (d) For the stationary resonator, �c/ωm = 1. (b), (e) For the rotation resonator
under CW driving mode, �c/ωm = −1. (c), (f) For the rotation resonator under CCW driving mode, �c/ωm = 2.5.
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FIG. 3. Robustness of bipartite entanglement against noise in
different driving situations. (a) For spinning resonator under CW
driving mode, �c/ωm = 2.5 and �a/ωm 	 −1. (b) For spinning res-
onator under CCW driving mode, �c/ωm = −1 and �a/ωm 	 −1.
(c) For stationary resonator, �c/ωm = 1 and �a/ωm 	 −1.

entanglement [Figs. 3(a) and 3(b)] is larger than in the sta-
tionary resonator [Fig. 3(c)] with the same cavity decay and
the atom spontaneous radiation. These results suggest that the
nonreciprocal effect significantly enhances the robustness of
bipartite entanglement against noise.

B. Tripartite entanglement

After discussing the nonreciprocal enhancement effect on
bipartite entanglement, we now investigate the impact of
the nonreciprocal effect on the tripartite entanglement. In
Fig. 3(a), we, respectively, plot the minimal residual contangle
Ri| jk
T versus the atom detuning �a for the stationary resonator

and the spinning resonator driven from the opposite direc-
tions. At �a/ωm 	 −1, the tripartite entanglement among
the driven cavity mode, atomic mode, and mechanical mode
reaches the maximal value. This is because the redistribution
of entanglement leads to those bipartite entanglements reach-
ing a relatively balanced value, which results in the tripartite
entanglement maximal.

Compared with the stationary system, the nonreciprocal
effect in the spinning system also enlarges the tripartite entan-
glement due to the enhanced bipartite entanglement transfer
process. As shown in Fig. 4(a), the maximized value of tri-
partite entanglement for the spinning resonator driven by the
CW mode (�c/ωm = −1) is about 5.2 times the maximized
value for the stationary resonator. The maximized value for
the spinning resonator driven from the opposite direction
(�c/ωm = 2.5) is about 3.6 times. In addition to the en-

FIG. 4. (a) Nonreciprocal enhancement of tripartite entangle-
ment for atomic ensemble, optical cavity, and mechanical oscillator.
The parameters are chosen as � = 30 kHz, P = 40 mW, �c/ωm =
−2.5 for the spinning resonator under CW driving mode, �c/ωm =
−1 for the spinning resonator under CCW driving mode, and
�c/ωm = 1 for the stationary resonator. (b)–(d) The robustness of
tripartite entanglement against noise in different driving situations.
The optimal cavity detuning conditions and atomic detuning condi-
tions for different driving situations are satisfied, respectively.

hancement effect of entanglement, the obtained nonreciprocal
entanglement is also more robust against the environmental
noise of the system. In Figs. 4(b) and 4(c), we, respectively,
plot Ri| jk

T of the spinning resonator versus the decay of cavity
κ and atom γa in different driving situations, where both
the optimal cavity and atomic detuning conditions have been
satisfied. However, the value of tripartite entanglement is very
low for the stationary resonator, i.e., always less than 0.01 in
Fig. 4(d). This indicates that the nonreciprocal effect can sig-
nificantly enhance the robustness against noise. The maximal
value of whole tripartite entanglement can reach more than
0.06 at an appropriate damping rate for the CW driving and
0.05 for the CCW driving, as shown in Figs. 4(b) and 4(c).
That means that we can generate the maximized nonreciprocal
tripartite entanglement by optimizing the system parameters
in the spinning system.

As we all know, the macroscopic entanglement is particu-
larly sensitive to temperature. Therefore, we go on to discuss
the robustness of nonreciprocal macroscopic entanglement
to the environment temperature. For the bipartite entangle-
ment in our system, we choose the entanglement between
the atomic ensemble and mechanical oscillator Ea−m as an
example. In Fig. 5(a), we, respectively, plot the bipartite en-
tanglement Ea−m versus temperature for the stationary and
spinning resonator to investigate the temperature robustness
of the atom-mechanical entanglement Ea−m.

We find that although the nonreciprocal atom-mechanical
entanglement is stronger than the stationary system, it is also
fragile to temperature. As shown in Fig. 5(a), the entangle-
ment in the stationary system vanishes near 3 K, while in the
spinning system, the entanglement vanishes near 1.5 K for the
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FIG. 5. (a) Temperature robustness of atom-mechanical entan-
glement in different driving situations. (b) Temperature robustness
of tripartite entanglement in different driving situations.

CW driving and 2.2 K for the CCW driving. Namely, the tem-
perature robustness of atom-mechanical entanglement in the
nonreciprocal effect is weaker. This is because of the increase
in effective optomechanical coupling for the spinning res-
onator, which is evident in Figs. 2(d)–2(f). The larger effective
optomechanical coupling means that the thermal environment
has a greater influence on the system. This is because the
low-frequency mechanical oscillator is the primary source of
thermal environmental noise. However, the results are quite
different when studying the robustness of the tripartite en-
tanglement. In Fig. 5(b), the tripartite entanglement versus
temperature is shown. We can see that the nonreciprocal effect
not only enhances the tripartite entanglement at low tempera-
tures, but also makes it more robust against temperature. The
tripartite entanglement vanishes near 0.7 K for the stationary
resonator, but the nonreciprocal tripartite entanglement is still
entangled above 2 K, whatever the driving situation is. This
suggests that the generated nonreciprocal tripartite entangle-
ment is more noise tolerant.

IV. EXPERIMENTAL FEASIBILITY

In this section, we discuss the experimental feasibil-
ity of our theoretical model. Experimentally, the resonator
spins fast enough to split its countercirculating optical
mode, achieving the nonreciprocal propagation of light in
a spinning whispering-gallery-mode resonator evanescently
coupled with a tapered fiber [68]. Before long, the non-
reciprocal entanglement between the mechanical oscillator
and optical cavity was investigated in a similar system [59].
Based on that experimental and theoretical research, we se-
lected the experimentally feasible parameters for the WGM
resonator. The radius and angular velocity of a microdisk
are R = 1.1 mm and � = 30 kHz, respectively. The qual-
ity factor of the optical cavity mode is Q = 3.2 × 107 and,

FIG. 6. Two experimentally feasible setup diagrams. (a) Direct
coupling between resonator and atomic ensemble. The atomic en-
semble is loaded in a magnetic trap or optical trap. (b) Indirect
coupling between resonator and atomic ensemble. The atomic en-
semble is trapped in a fiber-based Fabry-Perot cavity and this fiber
simultaneously couples with the resonator.

correspondingly, the decay rate is κ = 38 MHz. The fre-
quency and decay rate of the mechanical mode are ωm =
63 MHz and γm = 5.2 kHz, respectively. In our theoretical
mode, the coupling between the atomic ensemble and mi-
crodisk resonator may be a challenging problem. Here, we
discuss two possible schemes to achieve our proposal as
follows.

First, we give a direct coupling scheme. As shown in
Fig. 6(a), the atomic ensemble can be loaded into a magnetic
trap or optical trap to couple it to the WGM resonator by the
optical evanescent field. In this scheme, the atomic ensemble
is a cloud of dilute atomic gas, which is optically precooled
and loaded into a magnetic trap or optical dipole trap in a vac-
uum. After evaporative cooling, the atomic ensemble can form
a condensate consisting of approximately 106 atoms through
the Bose-Einstein condensate (BEC) phase transition [81–83].
The coupling between the WGM cavity and atom by the opti-
cal evanescent field has been reported experimentally [84–86].
As already confirmed in experiments [86], by employing a
deep standing-wave optical dipole trap, the coupling between
atom and resonator is achieved, where the atomic dipole de-
cay rate is γa = 2π × 3 MHz and the coupling strength is
g ≈ 2π × 10 MHz.

On the other hand, the atomic ensemble can also be cou-
pled to the WGM resonator via indirect interaction. As shown
in Fig. 6(b), the atomic ensemble is trapped in a fiber-based
Fabry-Perot cavity and simultaneously couples the fiber with
the WGM resonator, resulting in the indirect coupling be-
tween the atomic ensemble and resonator. The scheme of
trapping the atomic ensemble inside a fiber-based Fabry-Perot
cavity has already been realized in experiment [87]. In this
experiment, the atomic ensemble forms a BEC in a magnetic
trap by evaporative cooling, and the BEC is positioned in the
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fiber-based Fabry-Perot mode. Each of the atoms is identi-
cally and strongly coupled to the cavity mode, where the
single-atom coupling strength is g = 2π × 215 MHz and the
atomic decay rate is γa = 2π × 3 MHz. In addition, the
coupling between the fiber and the WGM resonator has al-
ready been demonstrated [88,89]. In our scheme, the selected
atomic collective coupling strength is Ga = 38 MHz and, cor-
respondingly, the single-atom coupling strength is g ≈ 104 Hz
(Ga = g

√
Na) for the atomic ensemble formed by hundreds

of thousands of atoms. Meanwhile, the atomic decay rate is
set as γa = Ga. Compared to the previous theoretical and ex-
perimental works, those chosen parameters are experimental
feasibility in our proposal.

V. CONCLUSION

In conclusion, we have achieved nonreciprocal bipar-
tite and tripartite macroscopic entanglement, explored the
enhancement effects of entanglement, and assessed the ro-
bustness of entanglement against various types of noise.
The origins of nonreciprocal and enhanced entanglement
are elucidated: the nonreciprocity of macroscopic entangle-
ment stems from breaking time-reversal symmetry via the
Sagnac effect. Concurrently, the enhancement of nonrecip-
rocal macroscopic entanglement results from competitive
coupling dynamics within the system. Achieving competitive
equilibrium facilitates significant entanglement redistribu-
tion from cavity-mechanical to atom-mechanical subsystems,
thereby enhancing tripartite entanglement in our proposal.
Moreover, we investigated the noise tolerance of both bipar-
tite and tripartite entanglement and found them to exhibit
robustness against environmental noise. Regarding tempera-
ture robustness, we observed that bipartite entanglement is
enhanced at low temperatures, but becomes fragile at higher
temperatures. Conversely, tripartite entanglement demon-
strates reversed temperature robustness, being more resilient
to environmental noise even at higher temperatures. Fur-
thermore, we discussed the experimental feasibility of our
proposal, which combines optical nonreciprocal effects with
a compound COM system. The outcomes of our study are
instrumental in advancing the understanding of quantum char-
acteristics in macroscopic compound systems. Importantly,
our proposed scheme offers significant potential for engi-
neering various quantum effects and establishing practical
quantum networks.
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APPENDIX: DERIVATION OF THE LINEARIZED
DYNAMICS

When the CCW mode is driven, the effective Hamiltonian
of the system is given by

H =
∑

j=cw,ccw

h̄� ja
†
j a j + h̄�aS+S− + h̄ωm

2
(p2 + q2)

− h̄G0(a†
cwacw + a†

ccwaccw )q + (h̄gacwS+ + h̄gaccwS+

+ ih̄εa†
ccw + H.c.). (A1)

By considering damping and noise terms from the external
environment, a set of nonlinear Langevin equations can be
derived as

q̇ = 1

ih̄
[q, H] = ωm p,

ṗ = 1

ih̄
[p, H] − γm p + ξ

= −ωmq + G0(a†
cwacw + a†

ccwaccw ) − γm p + ξ,

ȧcw = 1

ih̄
[acw, H] − κacw +

√
2κain

cw

= −(i�cw + κ )acw + iG0qacw − iGac +
√

2κain
cw,

ȧccw = 1

ih̄
[accw, H] − κaccw +

√
2κain

ccw

= −(i�ccw + κ )accw + iG0qaccw − iGac +
√

2κain
ccw

+ ε,

ċ = 1

ih̄
[c, H] − γac +

√
2γaFc

= −(i�a + γa)c − iGa(acw + accw ) +
√

2γaFc. (A2)

Each system operator can be rewritten as a steady-state
value plus a fluctuation operator with zero-mean value with
a strength driven laser. i.e., q = qs + δq, p = ps + δp, a j =
α j + δa j , c = cs + δc. By inserting these expressions into the
nonlinear Langevin Eq. (A2) and decoupling these equations,
a set of equations of steady-state value and a set of equa-
tions for the fluctuation operators can be derived as

ps = 0,

qs = G0(|αcw|2 + |αccw|2)

ωm
,

αcw = −iGacs

i
∼
�cw + κ

,

αccw = −iGacs + ε

i
∼
�ccw + κ

,

cs = −iGa(αccw + αcw )

i�a + γa
, (A3)

and

δq̇ = ωmδp,

δ ṗ = −ωmδq + G0(α†
cwδacw + αcwδa†

cw + α†
ccwδaccw

+ αccwδa†
ccw ) − γmδp + ξ,
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δȧcw = −(i�cw + κ )δacw + iG0(qsδacw + αcwδq) − iGaδc

+
√

2κain
cw,

δȧccw = (i�ccw + κ )δaccw + iG0(qsδaccw + αccwδq) − iGaδc

+
√

2κain
ccw,

δċ = −(γa + i�a)δc − iGa(δacw + δaccw ) +
√

2γaFc,

(A4)

where
∼
� j = � j − G0qs. The quadratures of fluctuation and

noise operators are defined by

δXj = 1√
2

(δa†
j + δa j ), δYj = i√

2
(δa†

j − δa j ),

δx = 1√
2

(δc† + δc), δy = i√
2

(δc† − δc),

X in
j = 1√

2

(
ain,†

j + ain
j

)
, Y in

j = i√
2

(
ain,†

j − ain
j

)
,

xin = 1√
2

(
F in,†

c + F in
c

)
, yin = i√

2

(
F in,†

c − F in
c

)
. (A5)

By combining Eqs. (A3) and (A4), we can obtain the dy-
namical equation of the quadratures of fluctuation operators,

δq̇ = ωmδp,

δ ṗ = −ωmδq + Gx
cwδXcw + Gy

cwδYcw + Gx
ccwδXccw

+ Gy
ccwδYccw − γmδp + ξ,

δẊcw = −κδXcw + ∼
�cwδYcw + Gaδy − Gy

cwδq +
√

2κX in
cw,

δẎcw = −∼
�cwδXcw − κδYcw + Gcwδq − Gaδx + Gx

cwδq

+
√

2κY in
cw,

δẊccw = −κδXccw + ∼
�ccwδYccw + Gaδy − Gy

ccwδq

+
√

2κX in
ccw,

δẎccw = −∼
�δXccw − κδYccw + Gccwδq − Gaδx + Gx

ccw

+
√

2κY in
ccw,

δẋ = Ga(δYccw + δYcw ) − γaδx + �aδy +
√

2γaXin,

δẏ = −Ga(δXccw + δXcw ) − �aδx − γaδy +
√

2γayin.

(A6)

Here, Gx
j and Gy

j are the real and imaginary parts
of the linearized optomechanical coupling strength, i.e.,
Gj−m = Gx

j + iGy
j = √

2G0α j . Gcw−m and Gccw−m are the
linearized optomechanical coupling strength for the CW
optical mode and CCW optical mode, respectively. We
define the vectors of the quadratures of fluctuation op-
erators and input noise operators, uT (t ) = (δXccw, δYccw,

δXcw, δYcw, δx, δy, δq, δp) and vT (t ) = (
√

2κX in
ccw,

√
2κY in

ccw,√
2κX in

cw,
√

2κY in
cw,

√
2γaxin,

√
2γayin, 0, ξ ). Equation (A6)

can be written in compact form as u̇(t ) = Au(t ) + v(t ), where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ
∼
�ccw 0 0 0 Ga −Gy

ccw 0

−∼
�ccw −κ 0 0 −Ga 0 Gx

ccw 0

0 0 −κ
∼
�cw 0 Ga −Gy

cw 0

0 0 −∼
�cw −κ −Ga 0 Gx

cw 0
0 Ga 0 Ga −γa �a 0 0

−Ga 0 −Ga 0 −�a −γa 0 0
0 0 0 0 0 0 0 ωm

Gx
ccw Gy

ccw Gx
cw Gy

cw 0 0 −ωm −γm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A7)

This is the same as Eq. (8) in the main text.
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