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The method of quantum Lanczos recursion is extended to solve for multiple excitations on the quantum
computer. While quantum Lanczos recursion is, in principle, capable of obtaining excitations, the extension
to a block Lanczos routine can resolve degeneracies with better precision and only costs O(d2) for d excitations
on top of the previously introduced quantum Lanczos recursion method. Extension to non-Hermitian operators
is also discussed.
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I. INTRODUCTION

For quantum computation to lead to new discoveries [1],
efficient means of solving for the ground state must be un-
derstood and implemented. Some near-term algorithms that
have been used in the era of noisy quantum devices have led
to an increased interest in results obtained from variational
quantum eigensolvers [2–10] which ultimately face noise and
other limitations [11]. Looking to the long-term capabilities of
a quantum computer when error correction is available, other
algorithms are useful to investigate.

By far, the longest studied algorithms to obtain ground
states is the implementation of real-time evolution. In this
algorithm, an initial Hamiltonian Ĥ0 is defined and an initial
state �0 is prepared on the quantum computer. The time-
dependent Hamiltonian is

Ĥ (t ) = Ĥ0 + λ(t )ĤI + C, (1)

with interaction term ĤI , constant C, and time-dependent cou-
pling constant (or similar form) λ(t ) at time t . By adiabatically
(slowly) increasing the interaction term in time, the wave
function will eventually arrive at the ground state for the fully
interacting Hamiltonian.

However, this solution strategy is known to be extremely
slow for quantum chemical systems [12,13]. In order to ap-
ply the Hamiltonian, a time-evolution operator of the form
exp[−iĤ (t )δt] must be applied to the wave function. The
Trotter-Suzuki decomposition of the time-evolution operator
must be decomposed into many terms, O(N4), to capture the
full electron-electron interaction term, although this can be
reduced as N → ∞ to O(N2) for the case of local basis func-
tions [14]. However, since the time step δt must be very small
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depending on the strength of correlation in the system, the
resulting number of operations makes the time necessary to
solve for even small molecules extremely long. This is true of
other classical solution techniques such as Hartree-Fock [15].
This is expected based on the complexity of solving quantum
chemistry systems [16].

The question of how to obtain excited states is one that
has been investigated in recent papers [6,17–28], and a direct
solution would provide a means to fully manipulate the wave
function. If this can be accomplished without the use of time
evolutions, then avoiding the small time step necessary for
those methods could be possible.

In addition to ground-state solvers, obtaining excited states
is a highly valuable quantity for quantum chemistry systems.
Historically, excited states have been more difficult to obtain.
So, if a quantum algorithm could reliably obtain the excita-
tions, then this would represent a major improvement over
existing classical techniques [29–31].

Recently, Lanczos methods have been investigated in the
context of solving quantum systems. One variety of Lanczos
on the quantum computer uses even vectors of a Krylov sub-
space and imaginary-time evolution techniques to obtain the
ground state and other quantities of interest [24,32].

Another recently introduced variety of Lanczos algorithms
was introduced in Ref. [33] that circumvents any time evolu-
tion. The full Lanczos recursion can be implemented to find
the ground state or the continued fraction representation of
the Green’s function [33]. This second Lanczos technique,
called quantum Lanczos recursion (QLR), avoids the use of
a time-evolution operator and therefore bypasses the com-
putational bottleneck in terms of the number of terms in the
Trotter-Suzuki decomposition.

One other advantage of the QLR is that the traditional
limitations of Lanczos on the classical computer are entirely
circumvented [34]. The only limitation is how accurately the
operations can be applied to the wave function in practice, and
this was implemented on the quantum computer as reported in
Ref. [35] after the initial implementation in Ref. [33]. Since
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then, other methods have used the idea of a Krylov subspace
to speed up real-time evolution [7].

This paper uses similar techniques as QLR to show that the
traditional Lanczos recursion can be replaced by a block Lanc-
zos routine to resolve several excitations, leading to quantum
block Lanczos recursion (QBLR), although “block” can be
replaced by “banded” or some other name corresponding to a
trivial change of gauge of the unitary matrices involved. While
it is trivially demonstrated from QLR that excitations can be
found, the performance of block Lanczos will allow for the
resolving of degeneracies with greater ease. This was recently
demonstrated in tensor network algorithms [36,37].

The algorithm here can also be performed with the prepara-
tion of a single initialization of starting wave functions. A full
collapse of the eigenstates is avoided, meaning that a wave
function can be preserved for the next computation. This is
accomplished by use of a state-preserving quantum counting
algorithm [33], referred to in some works as Quantum Merlin
Arthur (QMA) sampling [38,39].

Some additional discussion on how errors in the Lanczos
coefficients will affect the ground-state energy and otherwise
is also presented. The method of slowly introducing terms into
the Hamiltonian is also discussed in the context of Lanczos.

II. EXCITATIONS FROM QUANTUM
LANCZOS RECURSION

The Lanczos algorithm from Ref. [33] can be used to find
excitations of a given model by a simple alternative of coeffi-
cients. In this section, QLR will be reviewed and an extension
to finding excited states will be shown.

A Lanczos recursion relation to find subsequent elements
of the Krylov subspace, {ψ0, ψ1, . . . , ψN }, is

|ψn+1〉 = Ĥ |ψn〉 − αn|ψn〉 − βn|ψn−1〉, (2)

where the resulting Hamiltonian in the basis of the Krylov
subspace forms a tridiagonal matrix. When diagonalized, the
ground state is found to a high accuracy, even if only a few n
are determined.

Applying operators to wave functions. The method is from
Ref. [40]. Consider a Hamiltonian which is represented as a
linear combination of unitaries,

Ĥ =
∑

i

riÛi, (3)

where Ui is a Pauli term from a given Hamiltonian (see [40]).
A unitary

Ŵ =
∑

i

|i〉〉〈i| ⊗ Ûi (4)

may be constructed such that i indexes auxiliary qubits. We
can prepare a state

|R̂〉c =
∑

j

√
r j

‖r‖ | j〉〈0|c (5)

for r = 〈r1, r2, . . .〉. We note that 〈R|Ŵ |R〉 = Ĥ/‖r‖. One can
apply the unitary Ŵ onto a state with any one of a number
of operations [40–45]. This effectively applies the operator

onto the wave function as a block encoding. Coefficients are
measured but they are normalized to the factor ‖r‖.

Minimal measurements of the wave functions. In order
to sample the coefficients αn and βn without completely
measuring (and therefore destroying) the wave function, a
state-preserving quantum counting algorithm can be used. The
algorithm applies a generic operator A as in the form

A|�〉 = p|�〉 + p⊥|�⊥〉, (6)

which signifies a superposition of eigenstates. The operator
A is normalized and represented as a unitary such that it can
be represented on the qubits [14,33]. The resulting probability
p is the expectation value of A. All states orthogonal to the
original state are marked with a ⊥ symbol. The basis of the
superposition chosen here is that of the eigenbasis because this
will be the natural basis to pick for quantum phase estimation
(QPE) [1,40,46].

The key to finding p is to count the number of transitions
from � to � (wave function to same wave function) after the
application of A by the methods in Sec. II. To verify that
the same state is obtained after this procedure, the energy
of the state can be computed with QPE at the start of the
algorithm and stored on a register. After the operator is ap-
plied, the energy is then computed on a separate register. The
two registers are compared and represented on a single qubit,
called a pointer qubit. The pointer qubit is then measured.
If the energies match, one value is returned and the original
wave function is recovered. This is counted as a “success”
in the algorithm. The ratio of successes to the total times the
algorithm is run is p. Once p is found, the expectation value
of A can be determined.

If the pointer qubit demonstrates that the wrong state
was recovered, then a recovery procedure is used to find
the original state [14,33,39,44]. In essence, the unitary of
all operations applied onto the wrong wave function and the
process above is repeated until the correct wave function is
found [39].

Operators for Lanczos recursion. To find the Lanczos co-
efficients, the following relations hold [33]:

αn = 〈ψn|Ĥ |ψn〉 and βn = 〈ψn−1|Ĥ |ψn〉, (7)

and therefore provide a means to use state-preserving quan-
tum counting to obtain the coefficients. The map between the
Krylov states and the original ground state can be summarized
as

|ψn〉 = Ĝn|�〉, (8)

where [33]

G0 = Ĥ − α0, (9)

G1 = (Ĥ − α1)(Ĥ − α0) − β1, (10)

and so on, where each of these operators must be scaled and
shifted to create a unitary representation that gives a posi-
tive operator value measurement (POVM) [1]. For a quantum
chemistry system, this can be accomplished by shifting the
potential so that its minimum lies at zero energy and then
normalizing the Hamiltonian appropriately. After perform-
ing a given Lanczos step, the result of the POVM, the true
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value can be recovered by undoing the shifting and scaling
operation.

The coefficient αn can be regarded as applying quantum
counting on the state � with the operator (Ĝ†

nĤĜn). Each
operator Ĝn depends on coefficients from {0, 1, . . . , g − 1}
iterations and therefore the algorithm discovers the coeffi-
cients iteratively. To find βn, the operator (Ĝ†

n−1ĤĜn) is used
instead.

Energies from QLR. Once the Lanczos coefficients are
obtained, the Hamiltonian matrix in its tridiagonal form is
then known. Diagonalizing this matrix and retaining both the
energies and eigenvectors makes the new ground state in terms
of the Krylov basis chosen.

Defining an operator Ŷ (g) for an excitation g ∈ Z+, the
operator for the gth excitation would be defined as

Ŷ (g) =
∑

n

γ (g)
n Ĝn, (11)

in terms of coefficients γn found from the diagonalization. The
summation over n is over as many elements in the Krylov
basis as kept.

Thus, the QLR algorithm can access ground states (g = 0)
or excited states (g � 1) by simply selecting different coef-
ficients from the diagonalization of Ĥ . At the end of this
procedure, the ground state is recovered and can be used
without fully repreparing it.

Note that the convergence of all algorithms discussed here
is no different from the understanding of these methods on the
classical computer [47–54].

A. Reduced computational complexity of applying operators

First strategy: Apply interaction incrementally. When ap-
plying an operator to a wave function, as in Sec. II, several
auxiliary qubits are used.

By applying operators from the full Hamiltonian incre-
mentally in groups of size D (for example, if there are 10
interaction terms to add into an existing Hamiltonian term,
D = 10), the cost can be reduced.

Second strategy: Decrease strength of interaction. Note that
the operator applied onto the original wave function � does
not need to be an operator whose eigenvectors include �. This
means that starting from some known state � with associated
operator Ĥ0,

Ĥ = Ĥ0 + λĤI (12)

can be defined as a new Hamiltonian. This form of the Hamil-
tonian has a similar form as the adiabatic evolution in Eq. (1),
except that the λ coefficient can be much larger than the step
size in time evolution.

The interaction term ĤI can be the full interaction term
or one term of that interaction. By adding the terms incre-
mentally, the final state is closer to the provided initial state
and will allow for the algorithm to find the new ground state.
It is crucial that each step of this procedure begins with an
eigenvector so that the QPE can be applied correctly in the
quantum counting procedure.

B. Demonstration on model systems

A full demonstration on real systems by implementing a
linear combination of unitaries will be delayed for a future
work, but it will be shown here that Lanczos can be applied
iteratively according to the suggestions in the previous para-
graphs.

In order to demonstrate that only a limited number of
Lanczos steps can be used to solve a model that includes a
small number of extra terms from the starting wave function’s
Hamiltonian, a numerical study on a 10-site XXZ model of the
form

Ĥ =
∑

i

Jxy
(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1

) + JzŜ
z
i Ŝz

i+1, (13)

where Jxy = Jz is the XXZ Hamiltonian and spin matrices S =
(Ŝx, Ŝy, Ŝz ) = 1

2σ (with h̄ = 1) for the vector of Pauli matrices
σ [55]. To start, an XY model,

ĤXY = Jxy

∑
i

Ŝx
i Ŝx

i+1 + Ŝy
i Ŝy

i+1, (14)

will be solved for the initial wave function and a single
interaction term of the form Ŝz

i Ŝz
i+1 will be added. In all,

D = 9 terms will be added to the Hamiltonian. Computa-
tions were made with the DMRjulia library using the density
matrix renormalization group (DMRG), Lanczos, and exact-
diagonalization (ED) routines [56–58].

There are three cases of study here: Jxy = Jz (small pertur-
bations), Jxy 
 Jz (large perturbations), and when the initial
ψ0 is far from the starting state.

1. Small perturbations (Jxy = Jz)

Figure 1 shows how the energy converges to the energy
of the full XXZ model with increasing numbers of terms. In
each case, using the initial wave function provided from the
previous iteration, only one Lanczos iteration must be run
to obtain a highly accurate energy with the new interaction
term included. The small difference in energies between the
DMRG solution and the Lanczos solution is shown in the
lower graph of Fig. 1. There is also the possibility to add in a
partial term by using a small term dλ for each of N times such
that Ndλ = λ. This would require more applications of the
Lanczos algorithm with new Hamiltonians and may be useful
for long-range interactions or other cases.

In this one-dimensional example, the convergence is aided
by only adding one term. In realistic systems, the same strat-
egy of adding interaction terms piecemeal will both allow the
Lanczos algorithm to converge quickly and also reduce the
time spent applying the operator with methods from Sec. II.
Still, this should be expected, in general, due to the rapid
convergence of Lanczos techniques.

The computational cost of each additional Lanczos oper-
ation is counted as 1 here. So, each Lanczos step will be
equally costly. There are factors such as the preparation of the
operator at each Lanczos iteration which are not considered.
Additionally, hardware considerations are also not minded in
this treatment. However, it should be noted from the results
here that the convergence is so rapid that any additional cost to
implementing the Lanczos step is likely to result in drastically
fewer steps with regards to other algorithms that may have
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FIG. 1. Convergence in energy (E ) while adding one interaction
term Ŝz

i · Ŝz
i+1 to an XY model on a 10-site lattice (9 interaction terms

to add). Two solvers are used at each step. DMRG is shown as a
solid blue line and a Lanczos solver is shown as a red dashed line.
The initial wave function for the Lanczos algorithm is taken from
the previous iteration. A black dashed line shows the energy of the
full XXZ model. The lower figure shows the difference between the
DMRG and Lanczos solutions. Only one Lanczos iteration was used
for each added term. Lower figure: Energy differences from the exact
value, 	E . All units are such that J = m = h̄ = 1.

smaller costs. This makes a direct comparison between meth-
ods difficult because the rate of convergence of the Lanczos
methods is so high.

2. Large perturbations (Jxy � Jz)

In this case, 100Jxy = Jz to simulate a large perturbation.
For the example here, increasing the number of Lanczos iter-
ations to four for each new added interaction term allows for
the energy to be obtained to a good accuracy here. This is a
large improvement over using only two Lanczos iterations, as
shown by comparing the curves in Fig. 2.

It is possible to use only two Lanczos updates if one adds
portions of the interaction term. In this case, Jz/2 is added to
the Hamiltonian twice, with two Lanczos steps each (total of

FIG. 2. Convergence in energy (E ) while adding a large interac-
tion term JzŜz

i · Ŝz
i+1 with Jxy 
 Jz. The parameters are the same as

Fig. 1. By using four Lanczos steps instead of two, the accuracy is
greatly improved in this case. Decreasing the incremental interaction
strength dλ (here, 0.5 with two rounds of NLanczos = 2) would require
more than double precision (see text).

four Lanczos steps). The results could be improved if more
Lanczos iterations were used here, but this would require
greater precision in the coefficients than is available here with
a double-precision classical implementation.

Note that tests with coefficients found on the classical
computer will be subject to numerical instabilities that will
eventually degrade the accuracy of the resulting ground state,
so a full solution with this method will generate imprecise
answers. For example, when increasing the number of Lanc-
zos iterations to 10 for each step, this can occur in this
example.

3. Arbitrary starting wave function

So far, eigenstates for the starting wave function were used.
The natural question is whether the starting states can be
replaced by some arbitrary state and how the convergence
of the algorithm is affected. When implementing this type
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FIG. 3. Convergence in energy (E ), similar to Fig. 1 except that a
random starting state was used. Tests on larger systems or with more
Lanczos recursion steps quickly suffer from precision errors that will
not be present on the quantum computer.

of initialization on the quantum computer, the only key is
to determine the energy of the wave function. If using QPE
to do this, then the starting state must have an associated
Hamiltonian.

For demonstration purposes, the initial state of alternating
spins here is

|�〉 = |ψ0〉 = | ↑↑↓↓↓↑↓↓↑↑〉, (15)

with Jxy = Jz in the Hamiltonian. While the Hamiltonian,
which has an eigenstate of Eq. (15), is not known and would
therefore prevent the use of this state in the quantum algo-
rithm, it is instructive to observe the convergence in this case
where the initial state is not close to the final problem to solve.

Figure 3 shows the convergence for this starting wave
function. The first Lanczos iteration will be the most difficult
since it must change the wave function the most. Subsequent
iterations converge more easily to the true ground state, just
as in the previous cases.

These examples demonstrate that applying operators in-
crementally is possible and will yield a large cost reduction
on the quantum computer. The examples here were on the

ground state, but higher excited states can be found similar to
the discussion around Eq. (11) once the Lanczos coefficients
are known. In this example, the precision that can be found
from the classical simulation is restricted [34]. The quantum
computer is only limited by any errors on application of the
operators.

III. QUANTUM BLOCK LANCZOS RECURSION

In principle, one should be able to discover all excitations
from QLR as described above [59], but the extension of this
method to a block or banded Lanczos algorithm is known
to resolve degeneracies to a higher degree and generally aid
convergence [36]. This would also circumvent any issues with
using approximate Lanczos coefficients by still giving highly
reliable wave functions from the extension presented here.

Block Lanczos is used in quantum chemistry [60], but
also in physics, particularly for dynamical mean-field theory
computations [61]. The scalar coefficients of the Lanczos
recursion are extended to a matrix of coefficients.

To formulate the problem, consider a set of wave functions
grouped as supervectors �, which is a vector of d excitations,

�n = (|ψn〉1, |ψn〉2, . . . , |ψn〉d ), (16)

and therefore the task is to find matrices A and B which are of
dimension d × d block such that Lanczos can be performed.
This means that d registers, each with a wave function, are
also available.

Extending the three-term recursion from Eq. (2) to a block
or banded (or other) Lanczos scheme with more terms in
the recursion would be possible to prepare more than one
excitation at a time [61]. The expanded Lanczos recursion
relation appears as [62]

�n+1Bn+1 = Ĥ�n − �nAn − �n−1B†
n, (17)

for a vector of wave functions � with matrices

An = �†
nĤ�n, (18)

and Bn defined recursively from

Bn = �†
n−1Ĥ�n, (19)

as can be most immediately seen from the tensor network dia-
grams in Ref. [36]. It should be understood that when applying
Ĥ onto the wave-function supervector, the Hamiltonian is
applied onto each wave function in the vector. The implication
of Eqs. (18) and (19) is that there are simply d2 applications
of QLR to obtain QBLR.

Because the coefficients can be obtained by an operator
acting on a ground state of an initial Hamiltonian, this implies
that the coefficients of both A and B can be recovered by
performing a state-preserving quantum counting operation on
each term of the matrix. This was also true in the scalar case,
and this establishes that the block Lanczos case can avoid
repeated wave-function preparation as in Ref. [14]. Using
the methods of that paper, each coefficient must be obtained
individually: one quantum counting process for each operator.
However, if operations can be performed in parallel on the
quantum computer, then this could improve performance to
simultaneously find all coefficients of a block.
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On the classical computer, the blocks can be represented as
a block-diagonal supermatrix representing the Hamiltonian

Ĥ =

⎛
⎜⎜⎜⎜⎜⎝

A0 B†
1 0 · · · 0

B1 A1 B†
2 · · · 0

0 B2 A2
. . . 0

...
...

. . .
. . . B†

n
0 0 0 Bn An

⎞
⎟⎟⎟⎟⎟⎠

, (20)

which can be diagonalized to find the energies of the excita-
tions. From the coefficients of the eigenvectors of Ĥ (denoted
as γn still here too), the excitation wave functions can also be
obtained.

In order to understand how best to apply the operators on
the quantum computer, the block Lanczos equation can be
written as∑

j

B(n+1)
i j |ψn+1〉 j = Ĥ |ψn〉i −

∑
j

A(n)
i j |ψn〉 j

−
∑

j

(B∗)(n)
i j |ψn−1〉 j, (21)

for a single row i of the left-hand side. This form makes clear
that the d registers containing the d excitations can be acted
on with the appropriate operators (sum over j) and added with
the wave function on other registers with the appropriate oper-
ators. Note that the elements of A and B are stored classically
and therefore the inverse of each matrix can be found. If this
is done, then apply B−1

n+1 once the coefficients are found from
Eq. (19).

The operators from Eq. (11) will be denoted as Gn for
a given level and are extended from the scalar Lanczos
case as Ĝn → Gn. Similarly, ψ → � for the wave function.
One additional operation is included, i.e., G, compared with
the operators listed in Ref. [33], which is that of the inverse
B−1 operator. Since the operators can be determined on the
classical computer, the operators can simply be prepared in
a slightly different way. Again, the inverse is converted to a
unitary as is standard for applying operators [14,33,41–43].

The form of the wave function on the quantum computer
takes the form

Ĝn(i, j)|ψ0〉|i〉| j〉, (22)

for elements of (Gn)i j = Ĝn(i, j). The operators Ĝ are derived
from Eq. (21) for the block Lanczos case, extending the scalar
Lanczos case used previously.

In all, the algorithm costs a practical amount of d2 over
the scalar Lanczos case. Each element of the matrix equa-
tions is simply one application of a set of equations slightly
modified from QLR. Note that the effort expended to apply
operators onto wave functions is not wasted at the end with a
single measurement. The state-preserving quantum counting
algorithm can be used to obtain the correct expectation values
without completely measuring the wave function.

A. Algorithm summary

The following summarizes the previous discussion to
demonstrate how to implement the block Lanczos on the
quantum computer.

Quantum block Lanczos recursion: Algorithm for multiple
excited states.

(1) A set of starting eigenfunctions, {|
〉}, is prepared on ν

registers (one for each wave function).
(2) Start a counter at n = 0.
(3) Construct the operator Gn representing the appropriate

step from Eq. (17). This operator spans several excitations.
(4) Gn is applied onto the current state and quantum count-

ing is used to determine the Lanczos coefficients, given by
Eqs. (18) and (19).

(5) With the new coefficient(s), the algorithm returns to
step (2), increments n, and finds the next step of coefficients.

(6) Storing the coefficients classically, the block-diagonal
Hamiltonian from Eq. (20) can be formed and diagonalized.
A set of coefficients γn can then be used to determine the
energies.

The scaling of the method is no worse than the application
of the operators at each step, albeit the number of times this
must be run for d excitations is O(d2).

The coefficients of the next step are not known before-
hand, so each step must be performed iteratively. Once the
coefficients are obtained with the quantum counting process,
they can be stored classically and used without obtaining them
again, although the d2 coefficients of a given block can be
parallelized. Note, also, that the algorithm can be restarted at
any time since the coefficients are stored classically.

The ground-state energy can be checked when diagonal-
izing Eq. (20) on the classical computer. If the ground-state
energy is converged within the accuracy needed for QPE,
then there are sufficient Lanczos steps run to find an accurate
ground-state energy. The same applies for the excited state
convergence.

B. Error analysis

In this section, a careful analysis of the relevant parame-
ters of the system will show how uncertainty in the Lanczos
coefficients will influence the resulting energies.

To investigate the effects of noise on the resulting energies,
a block Hamiltonian of a particular size a is created for b
such blocks. When a = 1, the QLR algorithm is used. When
a > 1, QBLR is represented. A set of matrices is generated
with values between [0,1] to mimic the values on the operators
for the quantum computation. A noise term selected from a
Gaussian distribution of width η is selected for each element.

The energies with noise E are computed with respect to the
true energies without noise E0 to find the mean absolute error
(MAE) Ē defined as

Ē = 1

M

M∑
i=1

∣∣E (i) − E (i)
0

∣∣, (23)

for a number of eigenvalues M.
The MAE is shown in Fig. 4. As expected, as the noise

decreases in each of the parameters, the accuracy of the en-
ergy eigenstates increases. In both cases, the error decreases
linearly with the noise applied to each term. This is a straight-
forward but useful result. If the quantum counting obtains
coefficients to a precision δ, then the resulting energy is also
obtained to an error of roughly δ. The change in this trend
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FIG. 4. Mean average error for a system of block size d = 20 for
various numbers of iterations, {4, 5, 6, . . . , 20}. All lines are nearly
the same in magnitude. The general linear trend is mostly unchanging
with the input parameters.

for other parameters that could have been picked (larger block
sizes, more blocks, etc.) is very stable.

What this implies is that for a QPE to obtain the correct
eigenvalue, the Lanczos coefficients must be sufficiently ac-
curate (i.e., δ is a threshold for how accurate the coefficients
will be). This is a crucial aspect to know how much precision
must be obtained from the quantum counting algorithm.

C. Excitations of a spin model

Block Lanczos can be equally applied to the model used in
the previous section for the ground state. To start, the ground
state plus three excitations of the model will be searched for.

For the case where Jxy = Jz, the results are shown in Fig. 5.
The errors in the ground state and first excitation of the model
are shown to have relatively constant error. Either as the num-
ber of Lanczos iterations, NL, is increased or the interaction
strength is limited by the amount dλ with NL iterations applied

on each operator, the error in the resulting wave function
remains well controlled.

Block Lanczos is noted to be well controlled and to recover
all excitations very stably for a given problem [54]. Other
excitations are also recovered, but will not be shown since they
are very similar to the first excitation shown here.

A model with Jz = 100 is possible to evaluate and gives
the correct number of excitations with this strategy. The model
becomes more Ising-like and gives a degeneracy in the ground
state, showing that the ground-state degeneracy is captured by
this method and that large perturbations are solved just as well
as in the scalar case of Figs. 2 and 3.

D. Stability with degeneracies

Block Lanczos methods are known to be more stable when
computing degenerate excitations. In Fig. 6, it is shown that
the block Lanczos algorithm converges to the excitations and
their degeneracies. The scalar Lanczos algorithm can en-
counter spurious degeneracies to a much greater degree. The
spurious degeneracies encountered by the Lanczos algorithm
are due to finite numerical precision in the simulator used
for these results (i.e., it is an expression of being run on a
classical computer, not an algorithmic fact). Whether noise on
the quantum computer will ultimately introduce these degen-
eracies is a possibility and deserves further investigation on
real quantum hardware.

E. Discussion

The advantages of many excitations being discovered is
chiefly one of stability. The ability to resolve degeneracies and
generate orthogonal wave functions is valuable in a variety
of contexts and now available for the quantum computer.
That this method is rapidly convergent [63,64], resolves de-
generacies, and avoids repeated wave-function preparation
means that this method could be a valuable alternative to
time-evolution methods.

FIG. 5. Energy differences of the ground state (left) and first excitation (right) of the 10-site spin-half XXZ model by adding interaction
terms on the free XY model as in Sec. II B in the case of Jxy = Jz. The block Lanczos method performs with a nearly constant error in this case.
The number of Lanczos iterations is given by NL and the operator is applied with a variable increment in terms of the interaction strength dλ.
In that case, the operator dλŜz

i Ŝz
i+1 is applied sufficient times to give the full interaction strength with λ = 1 (e.g., four times for dλ = 0.25).
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FIG. 6. Left: Lanczos plotted with a number of energies as a function of 160 iterations on a 10-site spin-half XXZ model. Higher excitations
require more iterations, but spurious degeneracies can be encountered. Eigenvalues (solid) are seen to converge to exact energies (dashed), but
spurious degeneracies appear as for the ground state around iterations 50, 90, and 125 in the figure. The initial picked state was the ground
state of the model plus 0.1 times a vector of random numbers. Right: Block Lanczos run for 40 iterations (block size: four) on the same model
captures degeneracies much more stably. The initial state was constructed from the same state as in the left figure with three orthogonal vectors
from a Gram-Schmidt process.

The goal of QBLR is to retain the accuracy of the wave
function, which is controlled directly through the gate fi-
delities and other quantities on the quantum computer. The
quantum advantage sought here is for an exponential reduc-
tion in memory, which is a property that quantum computers
exhibit under the extended Church-Turing thesis, which asks
if an algorithm can be computed with significantly less
memory resources over classical computing [65]. Lanczos
techniques do have this property when applied on a quan-
tum computer theoretically if perfect application of gates is
assumed and with sufficient time to sample the coefficients.
The typical errors on a classical computer [34,52,59,65,66]
do not appear since values are retained to quantum precision.

The opportunity to obtain ground states from QLR places
added emphasis on the development of state-preserving quan-
tum counting and methods of applying operators to wave
functions such as the linear combination of unitaries (and
included subroutines) to obtain both the Green’s function and
ground state.

The possibility to discover ground states or excited states
deserves more consideration since these methods are free
of time steps and Trotter-Suzuki decompositions, a common
feature in many other proposals. The Lanczos algorithms also
do not need any notion of locality to aid convergence as would
be expected for a matrix product state’s relationship to local
Hamiltonians [57,67,68], particularly for time-evolving block
decimation (TEBD) [56]. The only instance where locality
plays any role is in the writing of the application of the
operators to the wave function, which could play a role in
near-term implementation. It is not clear how many Lanczos
coefficients would need to be obtained to find accurate ground
states from this method for phase estimation to give accurate
results. Further discussion would require specialization to a
specific problem and is deferred to a future study [33]. Note
that extensions to a fitting function for the remaining coeffi-
cients is possible in principle [69].

The QBLR algorithm is formally O(d2) applications of
QLR in this formulation. However, note that formally one can
add a single additional qudit of dimension d (or an equivalent
number of qubits to record the number of excitations) to the

quantum computer and use it to control which excitation is
accessed on a single register of qubits used to record the wave
function. However, the measurement of the resulting matrix
coefficients will require more (albeit perhaps only moderately
more) operations to obtain the same quantities using the tech-
nologies here, but it may be possible to reduce the additional
cost to O(1) if it can be tolerated if the number of samplings
of the Lanczos coefficient values is not sampled the same
number of times.

IV. NON-HERMITIAN OPERATORS

The previous discussion was for the block Lanczos al-
gorithm that is formulated for the problem of a Hermitian
operator. The extension of the above methods to non-
Hermitian operators is possible without introducing too much
additional computational cost. Instead, only one additional set
of matrices (or in the case of scalar Lanczos, one additional
set of coefficients) should be found. The procedure will be
defined for the block-matrix case, but it can be reduced to the
scalar case when the block size is of size 1.

Given a non-Hermitian operator ˜̂H with eigenvalue E , a set
of two eigenvalues can be defined. One is known as the left
eigenvectors (a transpose is used even if there are complex
valued entries) [66],

�T
L

˜̂H = �T
L E , (24)

and the other is for the right eigenvectors,

˜̂H�R = E�R, (25)

where block matrices �L and �R have the orthogonality rela-
tion [66]

�T
L �R = Id×d , (26)

with an identity matrix Id×d of dimension d × d .
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The block operator represented analogous to Eq. (20) ap-
pears in this case as

Ťn =

⎛
⎜⎜⎜⎜⎜⎝

A0 C1 0 · · · 0
B1 A1 C2 · · · 0

0 B2 A2
. . . 0

...
...

. . .
. . . Cn

0 0 0 Bn An

⎞
⎟⎟⎟⎟⎟⎠

. (27)

There are two recursion relations for each of the left and right
eigenvectors. They take the form of [70,71]

��T
L,(n)

˜̂H = Ťn ��T
L,(n) + InCn+1�

T
L,(n+1), (28)

˜̂H ��R,(n) = ��R,(n)Ťn + �R,(n+1)Bn+1IT
n , (29)

where

��R,(n) = (
�

(0)
R , �

(1)
R , . . . , �

(n)
R

)
, (30)

��L,(n) = (
�

(0)
L , �

(1)
L , . . . , �

(n)
L

)
, (31)

and In = (0d×d , 0d×d , . . . , Id×d ). (32)

The final term is an identity matrix to ensure that the dimen-
sion of the resulting matrix is consistent with all terms in the
recursion. Only the last block of the matrix is nonzero where
there are blocks of zero matrices, 0d×d .

Writing out the explicit terms of the recursion relation in
the style of the G operators from earlier is lengthy, but a
single operator can be written to be applied on the starting
wave function just as for QLR [33]. The only additional cost
is the determination of an extra block matrix C and double
the number of registers to represent both the left and right
eigenvectors.

The extension of the block Lanczos algorithm to the non-
Hermitian case has therefore only introduced an extra matrix
Cn which must also be found with the other two sets of matri-
ces. However, this does not increase the overall computational
cost of the algorithm presented here. The same forms for the
operators connecting the original wave function provided to
the algorithm can be derived similarly as for the Hermitian
case.

In terms of non-Hermitian solution strategies, there is also
the possibility to implement a full Arnoldi method with this
scheme [72]. In that strategy, all the previous vectors are or-
thogonalized against, adding nonzero entries to the upper right
portion of the matrix. However, the relatively local nature of
the block Lanczos method here may create some advantages

when writing out the operator on the quantum computer, keep-
ing many terms local.

V. CONCLUSION

Lanczos recursion methods on the quantum computer were
extended to solve for many excitations simultaneously. This
uses a block Lanczos technique that is good at resolving de-
generacies in quantum states. This comes at only a cost of the
number of excitations squared sought on the quantum com-
puter. The use of the quantum counting algorithm here allows
for the wave function to not be collapsed at each step, cutting
out a major cost of many other algorithms. Further, interaction
terms can be applied in small groups to aid convergence and
keep the process of applying those operators to the wave func-
tion less than exponentially long. The error of diagonalizing
the Hamiltonian in the Krylov basis was demonstrated to scale
linearly with the noise of the coefficients. The method can
also be applied onto non-Hermitian operators with a moderate
additional cost. Due to the feasible cost of this algorithm
and the rapid convergence of Lanczos techniques, it is ex-
pected that quantum block Lanczos recursion could be an
alternative to existing methods to find the ground and excited
states.
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