
PHYSICAL REVIEW A 110, 012419 (2024)

Distance-four quantum codes with combined postselection and error correction

Prithviraj Prabhu and Ben W. Reichardt
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, USA

(Received 26 May 2023; accepted 20 March 2024; published 8 July 2024)

When storing encoded qubits, if single faults can be corrected and double faults can be postselected against,
logical errors occur due to at least three faults. At current noise rates, having to restart when two errors are
detected prevents very long-term storage, but that should not be an issue for low-depth computations. We
consider distance-four efficient encodings of multiple qubits into a modified planar patch of the 16-qubit surface
code. We simulate postselected error correction for up to 12 000 rounds of parallel stabilizer measurements
and subsequently estimate the cumulative probability of logical error for up to 12 encoded qubits. Our results
demonstrate a combination of low logical error rate and low physical overhead. For example, the distance-four
surface code, using postselection, accumulates 25 times less error than its distance-five counterpart. For six
encoded qubits, a distance-four code using 25 qubits protects as well as the distance-five surface code using 246
qubits. Hence, distance-four codes, using postselection in a planar geometry, are qubit-efficient candidates for
fault-tolerant, moderate-depth computations.
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I. INTRODUCTION

Error correction and postselection. Noisy intermediate-
scale quantum (NISQ) algorithms for eigensolvers [1,2] and
machine learning [3] are growing popular as applications for
state-of-the-art few-qubit quantum systems. Unfortunately,
these devices are still prone to large amounts of noise [4–6].
Although error correction can decrease error rates [7–9], cur-
rent experiments encode only one logical qubit that is still
fairly noisy [10–13]. In this paper we simulate storing multi-
ple logical qubits in a lattice as a first step toward modeling
few-qubit computations. We repeatedly correct and remove
single-qubit errors. On detecting a more dangerous—and less
common—two-qubit error, we reject and restart. This “post-
selection” technique allows distance-four codes to achieve
logical error rates similar to those of distance-five codes. For
example, as shown in Table I, a distance-four code can correct
errors on six logical qubits with a failure rate similar to that
of the distance-five surface code using only 10% as many
physical qubits. Table I also shows that acceptance rates are
fairly high, so occasional restarts should not be a major issue
for low-depth NISQ algorithms [14,15].

Postselection is a versatile tool in the quantum tool kit. In
experiments, it has been used to decode the [[4, 2, 2]] error-
detecting code [16,17] and the [[4, 1, 2]] surface code [11,18].
In theoretical research, it has been used to reduce the logical
error probability of state preparation [19,20] and magic-state
distillation [21,22]. Recently, postselection was used to im-
prove quantum key distribution [23,24] and learning quantum
states [25,26].

Knill previously combined postselection with error cor-
rection on concatenated distance-two codes to show an
impressive 3% fault-tolerance threshold [27]. We also com-
bine postselection and error correction, but with distance-four
codes. As Fig. 1 indicates, distance-two codes can detect sin-
gle errors, and distance-three codes can correct them, meaning

logical errors are due to second-order faults. Distance-three
codes may alternatively be used to detect one or two errors,
but then they lose the ability to correct, and computations
are very short-lived. We choose to use distance-four codes
since they can simultaneously correct an error and detect two
errors. Correcting some errors ensures restarts are less fre-
quent, so longer computations can be run. Since logical errors
are caused only by third-order faults, logical error rates are
very low.

Physical layout. In practice, it is difficult to build a quan-
tum computer with native (fast, reliable) two-qubit gates
between every pair of qubits. Instead, qubits are placed on a
one- or two-dimensional lattice, and two-qubit gates are medi-
ated by local interactions, as in superconducting architectures
and solid-state systems. Current ion-trap systems use long-
range gates [28] and transport mechanisms [10] to connect all
the qubits, but some degree of locality is required for larger
systems. In light of these connectivity constraints, it may be
wiser to choose quantum codes that can be laid out on a
lattice such that error correction requires the fewest number of
local native gates. The popular surface code has the attractive
feature that it requires only nearest-neighbor interactions on
a two-dimensional (2D) square lattice [29,30]. Similarly, er-
ror correction for topological codes has been investigated on
sparser degree-three lattices [31–33]. But there is insufficient
research on the performance gains of more densely connected
layouts.

We suggest using 16-qubit codes on the 25-qubit rotated
square lattice in Fig. 2, where ancilla qubits additionally in-
teract with neighboring ancillas. This allows the use of flag
qubits for fault tolerance [34–37], in turn allowing measure-
ment of large stabilizers. As shown in Fig. 3, we choose
distance-four codes whose stabilizer generators are fairly lo-
cal, with short Shor-style stabilizer measurement sequences
that do not require any SWAP gates. We consider two block
codes and a color code that encode multiple qubits [38] and
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TABLE I. Postselected error correction for six logical qubits
using [[16, k, 4]] codes on the 25-qubit planar layout in Fig. 2. The
probability of logical error, acceptance, and expected time to com-
plete are shown for 300 time steps, with noise rate p = 5 × 10−4.
The k = 6 code achieves a logical error rate close to the distance-five
surface code using only 10% of the qubits. In comparison, for six
physical qubits at a memory error rate of p/10, the probability of
error is about 6 × 300 × p/10 = 0.09. The most favorable numbers
for each metric are indicated in bold. Colors for the multi-qubit codes
reflect those in the graphs of Fig. 11.

the rotated surface code [39] as a benchmark for postselection.
In contrast, before the advent of topological codes, block
codes were used for the simulation of 2D local error correction
[40–42]. These proposals performed Steane error correction
on small distance-two and -three codes and required many
swaps.

Results. We compare our 16-qubit codes with the 25-qubit,
distance-five surface code. We show below in Fig. 10 that,
with rejection, the normalized logical error rate of the pro-
posed codes is less than that of the distance-five surface code
by as much as 1 order of magnitude. The distance-four surface
code actually achieves a separation of 2 orders of magnitude.

However, the logical error rate per time step does not
capture the drawback of restarts. Instead, a better metric is the
cumulative probability of logical error. Figure 4 compares this
metric between the different codes for short computations that
do not restart too often (more information is given in Fig. 11
below). For one logical qubit, the distance-four surface code
vastly outperforms its distance-five counterpart, and the k = 2
and k = 4 codes achieve a good balance of low qubit overhead
and a low logical error rate. We also show that just 50–75
physical qubits are sufficient for good protection of 12 logical
qubits. Overall, we obtain lower logical error rates with higher
encoding rates using postselection and multiqubit codes.

In Appendix B, we compare the storage error rate of un-
encoded qubits with the encodings in Fig. 3. As expected, at
error rates up to 10−3, fault-tolerant error correction is more
robust than leaving qubits idle.

FIG. 1. Distance-four codes with postselection lead to O(p3)
logical errors, much like distance-five codes. Even-distance codes
require restarts, however, unlike odd-distance codes.

FIG. 2. Planar layout of 16 data and 9 ancilla qubits, shown
in black and red respectively. CNOT gates are allowed along the
edges. Gray edges are required for the surface code, and green edges
between ancillas are required for the codes in this paper.

Future work. In order to verify these results on current
quantum systems, some work is required. Dense qubit connec-
tivity in ion-trap systems may allow for simple measurement
of high-weight stabilizers, but superconducting devices gen-
erally prefer a low qubit degree due to high cross-talk errors.
It may be possible to modify the circuits in this work to allow
a maximum qubit degree of at most five or six, such as in the
IBM Tokyo device [43]. Consequently, in Fig. 12 below, we
show that error correction of the k = 2 code is possible with
degree-four connectivity but requires many extra qubits.

We show only how to do fault-tolerant error correction, but
the ultimate goal is to perform quantum computation. Selec-
tive logical measurements could induce computation within a
patch, and transversal gates between vertically stacked code
patches could facilitate non-Clifford gates. If these operations
introduce a low amount of error, it may be possible to execute
relatively high-depth circuits. These tools can then be used
to execute short NISQ and magic-state distillation algorithms.
As an example, our results show that just 50 physical qubits
may be sufficient to demonstrate 10 − to − 2 Meier-Eastin-
Knill (MEK) distillation experimentally with O(p3) logical
errors [22].

Organization. In Sec. II we provide more details about
distance-four codes and the examples we choose in this pa-
per. Section III details the methods used for fault tolerance.
In particular, stabilizer measurement circuits are dealt with
in Sec. III A, and sequences of stabilizer measurements are
handled in Sec. III B. The noise model and results of simu-
lations are contained in Sec. IV. Section V concludes with a
discussion of future work and open questions.

II. CODES

We compare the error-correction performance of six
[[n, k, d]] stabilizer quantum codes, where n is the number of
physical data qubits and k is the number of logical qubits. A
distance-d quantum code should correct all errors of weight
j � t = � d−1

2 �, occurring at rate O(pj ), for error rate p. At
low error rates, an unlikely error of weight (d − j) may be
misidentified as the more likely weight- j error, inducing a
logical flip on recovery. In even-distance codes, errors of
weight d/2 can be detected, but applying a correction may
induce a logical flip. In this paper, we stop the computation
instead of attempting to correct, ensuring logical flips occur
only at rate O(pt+2) and not at O(pt+1) as before.

For the distance-four codes shown in Fig. 3, we show that
the logical error rate scales as O(p3) like a distance-five code.
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FIG. 3. Codes considered in this paper, with associated distance-four fault-tolerant Z or X stabilizer measurement sequences. (The last
three codes are self-dual CSS.) Time steps of parallel measurements are separated by a vertical line (|). Corresponding to the asterisk (∗),
for the surface code, fault-tolerant X and Z error correction is carried out using a rolling window of four syndromes, each measured in two
time steps.

As a benchmark we first consider the rotated distance-four
surface code [44] in the layout in Fig. 2. For a fair com-
parison of both the resource requirements and logical error
rate, we consider additional benchmarks: the distance-three
and -five surface codes. As in Ref. [44], each distance-
d surface code uses d2 data qubits and (d − 1)2 ancilla
qubits.

The next three codes are the central focus of this work.
These self-dual Calderbank-Shor-Steane (CSS) codes were
first considered in Ref. [38] to show examples of codes that
can be constructed to have single-shot sequences of stabilizer
measurements. By fixing some of the logical operators, the
k = 6 code can be transformed into the k = 4 and k = 2
codes. Alternatively, puncturing the k = 6 code yields the
well-known [[15, 7, 3]] Hamming code.

Improvements. Although these codes encode more logical
qubits, they suffer from the difficult task of having to measure
weight-eight stabilizers. It is possible to construct a [[16, 2, 4]]
subsystem code with only weight-four stabilizers and gauge
operators. Using the layout of Fig. 2, we compared this code
with the k = 2 subspace code in this paper but found no
significant improvements. This code is still useful, however,
as we show in Sec. V.

Many other codes can also be constructed with 16 qubits.
For a biased-noise system, a CSS code with two logical
qubits can be constructed with Z distance six and X distance
four. For more logical qubits, a non-CSS [[16, 7, 4]] code can
be used [45]. Although its stabilizer generators are larger,

flag-based measurement may still offer a low-overhead route
to fault tolerance.

III. FAULT-TOLERANT ERROR CORRECTION

A stabilizer measurement circuit is made fault tolerant to
quantum errors by using extra physical qubits. These ancillas
are used to catch faults that may spread to high-weight errors.
In contrast, the bad faults in a syndrome extraction sequence
flip syndrome bits. Additional stabilizers are measured, essen-
tially encoding the syndrome into a classical code.

A circuit is fault tolerant to distance d if j � t = � d−1
2 �

midcircuit faults cause an output error of weight of at most
j. Additionally, for even-distance fault tolerance, sets of d/2
faults spreading to weight >d/2 errors should be detected, so
the computation can be restarted. When these faults yield an
error of weight d/2, the computation is restarted if the faults
can be detected; otherwise, it is rejected in the next round of
error correction.

A. Stabilizer measurement circuits

Quantum error correction involves the measurement of a
set of operators called stabilizers to diagnose the location
of errors. For fault-tolerant error correction, these stabiliz-
ers may be measured individually, as in Shor’s scheme [46],
or together, using Steane- or Knill-type syndrome extraction
[47,48].

FIG. 4. Summary of the results. For short computations, the probability of a logical error in the distance-four rejection-based surface code
is approximately 25 times lower than that of the distance-five variant. Further, for six logical qubits, the k = 6 code on one patch of 25 qubits
can match six patches of the distance-five surface code.
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FIG. 5. (a) A distance-four stabilizer measurement circuit con-
tains ancilla preparation, CNOT gates, measurement, and a recovery.
(b) Rules for fault tolerance. One fault should be corrected to an error
of X/Z weight of at most 1—this is sufficient for distance three. Two
faults should either be rejected (R) or result in an error of weight 2.

The flag method is a popular spin-off of Shor’s scheme
[34–37]. By connecting multiple data qubits to each flag qubit,
large stabilizers can be measured with relatively low overhead.
In addition, flag circuits can be made fault tolerant only up
to a desired degree. For example, Shor-style measurement
of a weight-w stabilizer needs w + 1 ancillas and is fault
tolerant to distance w, but we show a weight-eight stabilizer
measurement circuit with six ancillas that is fault tolerant to
distance four.

For distance-three fault tolerance, we show in Fig. 5 that
one fault in the circuit should result in an error of X and Z
weight of at most 1. For distance four, if two faults occur
and can be detected, the computation must be rejected and
restarted. If this detection is not possible, the circuit must
be designed to ensure errors cannot spread to weight greater
than 2. Note that a fault may alter the value of the measured
syndrome bit; syndrome bit errors are dealt with in Sec. III B.

We develop flag-based stabilizer measurement circuits. For
this, we use a randomized search algorithm constrained by
the above fault-tolerance rules and the geometric locality of
Fig. 2. We used a stabilizer circuit simulator [49] to determine
the flag configurations caused by different faults. A circuit
is described as valid if, for every flag configuration, correc-
tions and rejections can be applied while satisfying all the
fault-tolerance conditions. With all six codes in this work, the
stabilizers that are measured are of weights two, four, and
eight. At the circuit level, the measurement of a weight-two
stabilizer is automatically fault tolerant (one fault causes an
error of weight of at most 1). A weight-four stabilizer mea-
sured fault tolerantly to distance three (i.e., one fault results
in an error of weight of at most 1) is automatically fault
tolerant to distance four, as two faults occurring in the circuit
cannot create data errors with X and Z weight greater than
2. In Fig. 6(a), the weight-four stabilizer measurement circuit
applies a correction only for the 01 ancilla measurement.
Figure 7(a) shows a circuit to measure weight-eight stabilizers
fault tolerantly to distance four. This circuit uses different
patterns of flag-qubit measurements to either correct an error
(for an O(p) fault event), or reject (upon detecting an O(p2)
fault event). The flag patterns associated with corrections and
with rejection are tabulated in Appendix A. Figures 6(b) and
7(b) show different ways of arranging the qubits to measure
weight-four and weight-eight operators.

Improvements. The benefit of measuring stabilizers indi-
vidually is that error decoding is relatively simple. When
stabilizers with overlapping support are measured in parallel,

FIG. 6. (a) Circuit to measure a weight-four X stabilizer fault tol-
erantly to distance four, satisfying the locality constraints in (b). The
±Z measurements are used to flag midcircuit faults. Gates bunched
together can be performed in parallel. (b) Two layouts for measuring
stabilizers in the sequences of Fig. 3.

as in the surface code, more complicated decoding algorithms
like minimum-weight perfect matching are required. How-
ever, we can still make small improvements for additional
parallelism. In the k = 2 and k = 4 codes, only two of the
corner weight-four stabilizers can be measured simultane-
ously, as each stabilizer requires three ancilla qubits. We
conjecture that by sharing one ancilla qubit among all the
corner stabilizers, it may be possible to fault-tolerantly mea-
sure all four of them using just nine ancilla qubits, as in
Ref. [50]. Alternatively, in Steane-style syndrome extraction,
subsets of stabilizers are measured in parallel using n-qubit re-
source states. Nine ancilla qubits are not sufficient for Steane’s
method, but Ref. [51] showed that any subset of stabilizers
can be jointly measured with specific resource states. If the
fault-tolerant preparation of those resource states is possible
on the nine-qubit ancilla sublattice in Fig. 2, it will be possible

FIG. 7. (a) Circuit to measure a weight-eight X stabilizer fault
tolerantly to distance four, satisfying the locality constraints in (b).
One fault is corrected to at most a weight-one error, but two or more
faults may be either corrected or detected, resulting in rejection.
We show the flag-based corrections in different colors. The stars
represent locations where an X fault results in a correction of that
color. Double faults causing rejection are detailed in Appendix A.
(b) Two layouts for measuring stabilizers in the sequences of Fig. 3.
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FIG. 8. Fault-tolerant error correction with the three-bit repeti-
tion code {000, 111} (adapted from Fig. 1 of Ref. [38]). It is not fault
tolerant to correct errors based on the two parity measurements 1 ⊕ 2
and 1 ⊕ 3. An internal fault on bit 1 can be mistaken for an input error
on bit 3, as they yield the same syndrome. Errors can be corrected
fault tolerantly by adding another parity check, 2 ⊕ 3. Now for up to
one fault at any of the circled locations, an input error is corrected,
and an internal fault leaves an output error of weight 0 or 1.

to develop faster and more efficient stabilizer measurement
circuits.

The circuit of Fig. 7(a) uses six ancilla qubits for distance-
four fault tolerance. We found a distance-three fault-tolerant
circuit using only four ancillas [qubits 9, 10, 11, and 13 in
Fig. 7(b)], which also requires fewer rounds of parallel gates.
In the layout in Fig. 2, this may free up enough ancillas to
measure two weight-eight stabilizers in each time step. The
result is that more stabilizers can be measured faster and data
qubits in an error-correction block experience less idle noise.
Since these circuits are fault tolerant only to distance three,
a future avenue of research could use techniques in Ref. [35]
to look at their performance in adaptive distance-four error
correction.

B. Stabilizer measurement sequences

Introduction. The correction of errors in a quantum code
requires a syndrome built from the measurement results of a
sequence of stabilizers. Since syndrome extraction is noisy, it
is generally not sufficient to measure just a set of stabilizer
generators, as shown in Fig. 8. Even one erroneous collected
syndrome bit can result in an incorrect recovery, pushing the
code into a state of logical error. Instead, more stabilizers
are redundantly measured to protect from quantum faults
that cause syndrome bit flips. The distance-d surface code
does this by measuring the stabilizer generators sequentially
d times in a syndrome repetition code. In our case, for the
distance-three surface code, we use three rounds of syndromes

consisting of two new ones and one old one from the previous
round of decoding. We may port this technique to the k = 2, 4,
and 6 codes, but recent research has shown that these codes
have very small stabilizer measurement sequences [38].

The depth of a quantum circuit is generally calculated as
the number of rounds of parallel two-qubit gates since single-
qubit gates are trivially short. However, in current systems,
the time needed for measurement dominates over the length of
a CNOT [10–12,52]. Hence, the focus shifts from minimizing
CNOT depth to reducing the rounds of measurements needed
for error correction. We therefore denote by “time step” the
time needed to measure a set of stabilizers in parallel, as
shown in Fig. 9(a). In addition to finding short fault-tolerant
sequences of stabilizers, we carefully parallelize their mea-
surement circuits to further speed up error correction.

Fault tolerance rules. We follow the “exRec” formalism of
Ref. [53] to determine rules for fault-tolerant error correction,
as shown in Fig. 9(b). For distance-three fault tolerance, only
two rules are needed. If the input to an error-correction block
has a weight-one error and there are no internal faults, the
syndrome must be sufficient to correct back to the code space.
This is actually the basic rule for an ideal error-correction
block. If there are no input errors and one internal fault
occurs, the weight of the output error after recovery should
be at most 1.

For distance-four fault tolerance, we must consider the
effect of up to two input errors or internal faults. If the input
error has weight two and there are no internal faults, then the
stabilizer measurement sequence must detect the error and
restart the computation. If there is a weight-one input error
and an internal fault, either the computation is restarted, or
the output of the error-correction block must have error of X
and Z weight of at most 1. Finally, if two internal faults occur
with no input error, either the computation is restarted, or the
output error must have a weight of at most 2.

(In the last four rules, the resulting syndrome must never
be equivalent to a weight-one input error on a different qubit.
This ensures that every weight-one input error can be reliably
corrected.)

Solutions. To perform distance-four fault-tolerant error
correction on the layout of Fig. 2, we consider measuring sta-
bilizers only of the form given in Sec. III A. The goal is then to
devise short parallel stabilizer measurement sequences occu-
pying the fewest time steps while satisfying the fault-tolerance
rules above. For each of the proposed codes, the sequences in

FIG. 9. (a) A stabilizer measurement sequence (SMS) consists of multiple time steps of parallel stabilizer measurement circuits, where the
end of a time step denotes the simultaneous measurement of all the ancilla qubits. (b) Rules for distance-four fault tolerance—the first two are
sufficient for distance three: (1) An input one-qubit error must be corrected. (2) One internal fault must be corrected to an error of weight of at
most 1. (3) A two-qubit input error is rejected. (4) One input error and one internal fault should be corrected to an error of weight of at most 1
or rejected. (5) Two internal faults must be rejected or propagate to an error of weight of at most 2.
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Fig. 3 were found using the techniques of Ref. [54]. First, we
tested long, randomly generated sequences. By observing pat-
terns in the valid sequences and correlations between stabiliz-
ers, we improved the sequences to the concise ones in Fig. 3.

The k = 2 code measures 10 X (or Z) stabilizers over five
time steps; hence, recovery occurs every 10 time steps. On the
other hand, the k = 6 code contains no stabilizers of weight
less than 8, so parallelism is difficult. Here, seven X (or Z)
stabilizers are measured over seven time steps for a total of
14 time steps between recoveries. The distance-four surface
code measures all its stabilizer generators in two time steps.
The first is used to measure the nine weight-four stabilizer
generators using the nine ancilla qubits, and the second time
step is used to measure the boundary weight-two stabilizers.
Recovery occurs after two fresh syndrome layers are mea-
sured, at a frequency of four time steps.

Rejection decoding with the surface code. Many algorithms
exist to decode errors on the surface code. With the hope
of testing larger surface codes with rejection decoders, we
implemented a version of the union-find decoding algorithm
[55]. To apply postselection rules for distance-four fault tol-
erance, we start at the end of union-find, with a set of edges
representing X or Z faults. If there are three or more edges, we
immediately reject and restart. If there are two or fewer edges,
some choices can be made. First, if the two faults are well
separated in time, the older fault can be reliably corrected. We
experimented with different separation lengths and settled on
a configuration that rejects the least often but has the highest
O(p3) logical errors. Second, measurement faults do not con-
tribute to data errors. They are exempted from postselection
by projecting edges onto the 2D plane. Evidently, there is a lot
of scope for further improvements to the postselection rules.
Research also needs to be done on how to generalize these
rules to higher-distance surface codes.

IV. RESULTS

Noise model. For simulation, we consider independent
circuit-level noise as follows:

(1) With probability p, the preparation of |0〉 is replaced by
|1〉 and vice versa, and similarly, |〉+ is replaced by |−〉.

(2) With probability p, a ±X or ±Z measurement on any
qubit has its outcome flipped.

(3) With probability p, a one-qubit gate is followed by a
random Pauli error drawn uniformly from {X,Y, Z}.

(4) With probability p, the two-qubit CNOT gate is followed
by a random two-qubit Pauli error drawn uniformly from
{I, X,Y, Z}⊗2 \ {I ⊗ I}.

(5) After each time step, with probability p(1 + m/10),
each data qubit is acted upon by a random one-qubit Pauli
error drawn uniformly from {X,Y, Z}. (A time step denotes
one round of parallel stabilizer measurements of maximum
CNOT depth m, as in Sec. III B.)

The rest error rate models the observed performance
of present-day quantum systems, where the time taken to
measure an ancilla qubit is long compared to the CNOT gate
time. We model the rest error rate during measurement as
p and during CNOT gates as p/10. Even with dynamical
decoupling [56], the error incurred by the idle data qubits can
be quite high.

FIG. 10. O(p3) scaling of the X logical error rate and O(p2)
scaling of the rejection rate, with error bars, for the distance-four
codes. The distance-three and distance-five surface codes are shown
for comparison. Our codes have a logical error rate per time step as
low as 1/10 the distance-five surface code. The distance-four surface
code is as low as 1/100.

Normalized logical error rate. The logical error rate of
fault-tolerant storage can be estimated by checking for a
logical error after each block of error correction. However,
different codes correct errors at different frequencies—
once every 4 time steps for the surface code but 14
for the k = 6 code. To compare the codes on a similar
timescale, we normalize the logical error rates with respect to
the time step.

We plot the logical error rate per time step in Fig. 10,
where we show that a distance-four surface code has a storage
error rate of O(10−9) for a CNOT gate error rate of just 10−4.
Even with the infidelity of present-day CNOT gates, ∼10−3,
we show logical error rates approaching 10−6. These results
demonstrate the benefits of postselection.

Cumulative logical error probability. The mean rejection
rates in Fig. 10 provide a good comparison of how often the
different codes reject but do not accurately describe behavior
for bounded-length computation. Here, a more useful metric
is the probability of acceptance Pa(t ), which is how often
a t-time-step computation completes. This quantity can be
estimated empirically by simulating the application of noisy
error correction to an initial state for bounded time, which
we denote as a simulation “run.” If R is the total number of
executed runs and Ra(t ) is the number of runs that have not
been rejected until time step t ,

Pa(t ) = Ra(t )

R
. (1)

Similar to the rejection rate, the logical error rate per time
step is indicative of the frequency of logical errors but does
not help us to understand the drawbacks of postselection. We
again refer to a cumulative metric, the probability of a logical
error after t time steps of error correction, empirically given
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by

PL(t ) = RL(t )

R
, (2)

where RL(t ) is the number of runs in a state of logical error
at time step t . For even-distance codes, one must instead look
at the probability of logical error conditioned on acceptance,
which is calculated as

PL|a(t ) = PL(t )

Pa(t )
= RL(t )

Ra(t )
= RL(t )

R Pa(t )
. (3)

For even-distance codes with postselection, Pa(t ) < 1, and so
PL|a(t ) > PL(t ). For odd-distance codes where we do not per-
form rejection and instead only apply corrections, PL|a(t ) =
PL(t ).

The above formula holds only for a single code patch. The
probability of logical error while using multiple patches can
be upper bounded from the data for a single patch as

PL|a(t, c) � c RL(t )

R Pc
a (t )

, (4)

where c is the number of code patches used. Note that the
number of logically incorrect runs grows linearly with the
number of patches, but the probability of acceptance of mul-
tiple patches is the probability that every patch has been
accepted.

Discussion. We simulated fault-tolerant error correction of
the codes in Fig. 3 for up to 12 000 time steps at error rate p ∈
{0.001, 0.0005, 0.00025, 0.0001}. Using the empirical formu-
las above, we plot in Fig. 11 the probability of X logical error
conditioned on acceptance and the probability of acceptance
for 1, 2, 6, or 12 logical qubits. Note that some plots look
discontinuous. This is because an error-correction block spans
multiple time steps, but logical errors and rejection syndromes
are only checked for at the end of every error-correction block.
Above the graphs of Fig. 11, we compare the number of
physical qubits required for each code.

There is much to learn from Fig. 11. To start, the first
column of graphs shows how a single patch of each code
fares against the others for different error rates. The d = 4
surface code with rejection boasts the lowest logical error
probability overall and has the highest acceptance rates among
all the even-distance codes. The logical error probability of the
k = 2 code actually matches the distance-five surface code,
even though it encodes twice as much information. This is
also apparent from Table II, where we show the probability of
acceptance and logical error for one logical qubit at p = 10−3.

For two logical qubits (second column of graphs), the
surface codes need two patches of qubits; hence, the proba-
bility of logical error doubles, and the acceptance is squared.
The distance-four surface code now has the lowest accep-
tance probability among the distance-four codes. We keep the
range of time steps consistent between the first and second
columns to show that the curves for the multiqubit codes are
unchanged. As shown in Table III, for two logical qubits, the
k = 2 code halves the logical error probability of the d = 5
surface code, using fewer than one third as many physical
qubits.

Going further, we analyzed error correction for 6 and 12
encoded qubits, as shown in the last two columns. With only

TABLE II. Error correction for one logical qubit at p = 0.001.
The probabilities of logical error and acceptance are shown for 80
and 200 time steps. Each code uses one patch of qubits. The distance-
four surface code has the lowest logical error probability for short
computations. Colors for the multi-qubit codes reflect those in the
graphs of Fig. 11.

one tenth of the physical overhead, a single k = 6 code patch
rivals the performance of six patches of the d = 5 surface
code. The single patch of the k = 6 code even outperforms the
k = 2 and k = 4 codes, but this is precisely because only one
code patch is used. When multiple code patches are used for
many logical qubits, the acceptance rate of the distance-four
codes drops exponentially. This is also observed in Tables IV
and V, as the acceptance probability of the distance-four sur-
face code quickly approaches zero.

In the last column of graphs, we compare statistics for 12
logical qubits. Although current NISQ systems protect only
one logical qubit, our results show that just 50–75 physical
qubits are sufficient for 12 logical qubits. In this regime, the
k = 4 code achieves lower logical error probability than the
k = 6 code with only 50% more overhead. Unfortunately, at
longer timescales, postselection sharply increases the logical
error probability, rendering the distance-four codes much less
useful.

All simulations in this paper, developed in PYTHON, were
executed on the University of Southern California Center for
Advanced Research Computing (CARC) high-performance

TABLE III. Error correction for two logical qubits at p =
0.0005. The probabilities of logical error and acceptance are shown
for 300 and 750 time steps. The surface codes require more than one
patch of physical qubits. Among our codes, the k = 2 color code has
few large stabilizers and a fast sequence. These advantages help it
achieve the lowest logical error probability at the highest acceptance
rates. Colors for the multi-qubit codes reflect those in the graphs of
Fig. 11.
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FIG. 11. Probability of X logical error (solid lines) and acceptance (dotted lines) for t time steps of error correction on six codes as a
function of physical error rate (row) and desired logical qubits (column). The three colored curves correspond to the k = 2 (blue), k = 4
(purple), and k = 6 (orange) codes, and the three gray curves are the surface codes. The graphs (especially for few time steps) look like a step
function because the code patches are checked for logical errors only after blocks of error correction, not time steps. The top row compares the
number of physical qubits required to achieve the desired number of logical qubits.
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TABLE IV. Error correction for six logical qubits at p =
0.00025. The probabilities of logical error and acceptance are shown
for 700 and 1500 time steps. The k = 6 code requires one tenth
the physical qubits as the distance-five surface code while nearly
matching the logical error probability. Colors for the multi-qubit
codes reflect those in the graphs of Fig. 11.

computing cluster. The simulations used over 1 million min-
utes of CPU core time on Intel Xeon processors operating at
2.4 GHz.

Take-home message. Postselection can play a crucial role
in reducing logical error rates. However, when logical infor-
mation is stored for too long, it is likely to be wiped and reset.
This is okay for some algorithms: applications with low depth,
like variational algorithms [14,15], or those that are designed
with rejection, like magic-state distillation [21]. If only one
or two qubits are required, the distance-four surface code and
the k = 2 code offer a very low probability of logical error.
For more qubits, we advise using the k = 4 or k = 6 codes, as
they use far fewer physical resources to achieve competitively
low logical error. We show that 50–75 good physical qubits
are sufficient to correct errors on 12 logical qubits. Even at a
CNOT error rate as high as 5 × 10−4, error correction up to 100
time steps can be run with error probability as low as 1%.

V. FUTURE WORK

In this paper, we showed how to perform fault-tolerant stor-
age with 16-qubit codes. There are two immediate roadblocks
to universal fault-tolerant quantum computation. Currently,
no devices exist with the layout in Fig. 2, so until they are
fabricated, we turn to other layout improvements. The middle

TABLE V. Error correction for 12 logical qubits at p = 0.0001.
The probabilities of logical error and acceptance are shown for 1800
and 4500 time steps. The k = 4 code is well balanced, achieving
competitive logical error rates with low qubit overhead. Colors for
the multi-qubit codes reflect those in the graphs of Fig. 11.

FIG. 12. A degree-four layout for flag-fault-tolerant error cor-
rection of the k = 2 code, using 43 of the 53 qubits on the Google
Sycamore lattice. The stabilizer generators of the code are overlaid.
Note that qubits have a degree of 4 only in the ancillas measuring
the weight-eight stabilizer, but elsewhere the maximum qubit degree
is 3. It may be possible for the k = 2 subsystem code with only
weight-four stabilizers and gauges to fit on a layout with a maximum
degree of 3.

ancilla qubit in Fig. 2 is connected to eight neighboring qubits.
However, careful analysis and modification of the stabilizer
measurement routines may yield solutions that only require
maximum qubit degree five or six. This may not be interesting
for densely connected ion-trap quantum computers but is nec-
essary in superconducting architectures to maintain low cross
talk. Alternatively, we showed that if we are allowed extra
ancilla qubits, maximum degree four is possible, as in the
Google Sycamore lattice in Fig. 12. The stabilizer measure-
ment circuits are all fault tolerant to distance four, but since all
the stabilizer generators are measured simultaneously, error
decoding will require new strategies. The weight-four stabi-
lizers can be measured using the circuit in Fig. 6(a), but the
weight-eight stabilizer requires a new circuit, as we detail
in Appendix A. In Fig. 12, the only qubits with degree-four
connectivity are the ancillas used for measuring the weight-
eight stabilizer. For systems with high cross talk, qubits of
degree three may be sufficient to correct errors on the k = 2
subsystem code since errors can be corrected by measuring
only weight-four operators.

On the theoretical front, we must develop encoding circuits
and a universal logical gate set. States may be prepared either
by using flags for fault tolerance or by combining patches
of distance-two code states into a distance-four state. For
fault-tolerant universal computation, one possible route is
teleportation and logical measurements with distilled magic
states. In fact, logical measurements can be performed along
with error correction [38]. Another route to universality is to
use transversal multiqubit gates between vertically stacked
code patches. It may be possible for gates like the CCZ to
induce magic [57], as the required [[15, 7, 3]] code can be
obtained by puncturing the [[16, 6, 4]] code. If the error in-
troduced by logical operations is kept low, many logical gates
can be applied every time step, allowing high-depth logical
circuits.

Near the threshold of the odd-distance surface codes, posts-
election on the distance-two and -four variants shows reduced
logical error rates. With higher distance, the compounding
effect is larger, meaning distance-eight or -ten surface codes
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may be sufficient for very precise computations. At higher
distance, rejections also become exceedingly rare, increasing
the possible duration of computations. For larger patches on
lattices like that in Fig. 2, more qubits can be encoded at high
distance.

The biggest difficulty will then be in performing operations
on or between different logical qubits in the same patch.
Another avenue to pursue is concatenation. This technique
can combine the low logical error rates of the surface code
with the high encoding rates of block codes.

VI. CONCLUSION

We simulated postselected fault-tolerant error correction
for distance-four 16-qubit codes. Qubits were positioned on
a 2D grid, and the only interactions allowed were local CNOT

gates. Flag qubits were used to measure high-weight stabi-
lizers, allowing for small error correction circuits for block
codes encoding up to six logical qubits. With a phenomeno-
logical noise model, it is not possible to correct errors reliably
using a syndrome of just the stabilizer generators. Instead, we
proposed longer sequences of stabilizers that use redundant
measurements to detect syndrome bit flips. These techniques
are still in early development, and we suggested multiple
improvements for each of them along the way.

We showed a variety of results interpolating between low
logical error rates and low physical overhead. The downside of
using postselection is that the logical qubits cannot be stored
for too long, but low-depth NISQ algorithms are definitely
possible. For these shorter timescales, we compared the log-
ical error probability to a distance-five surface code: (1) The
distance-four surface code has at least a 25-fold decrease in
logical error rate. (2) A k = 2 color code with weight-eight
stabilizers halves the probability of a logical error with only
30% of the qubits. (3) A k = 6 block code matches perfor-
mance with just 25 qubits as opposed to 246. Using just 25–75
physical qubits, we demonstrated that it is possible to protect
well 6 to 12 logical qubits.
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TABLE VI. For the circuit in Fig. 7, we list the appropriate
corrections for flag outcomes caused by single faults and the list of
flag outcomes that result from two faults.

Raised flags Correction Raised flags Correction

{13} {6} {12,13} {6}
{9,12} {1,5} {12,13,14} {6,7,8}
{9,11,12,14} {1,4,5}

Rejections

{9,11}, {9,13}, {9,14}, {11,12}, {12,14}, {13,14}, {9,11,12},
{9,11,14}, {9,12,13}, {9,12,14}, {9,13,14}, {11,12,13},
{11,12,14}, {11,13,14}, {9,11,12,13}, {9,11,13,14},
{9,12,13,14}, {11,12,13,14}, {9,11,12,13,14}

APPENDIX A: CORRECTIONS AND REJECTIONS FOR
WEIGHT-EIGHT STABILIZER MEASUREMENTS

The corrections and rejections for the fault-tolerant weight-
eight stabilizer measurement circuit in Fig. 7(a) are shown in
Table VI.

For the layout described in Fig. 12, the weight-eight
stabilizer is measured fault tolerantly with the circuit in
Fig. 13, with associated corrections and rejections tabulated in
Table VII.

APPENDIX B: COMPARING MEMORY AGAINST
UNENCODED QUBITS

In this section, we determine whether information pro-
tected by fault-tolerant error correction is more reliable than
being stored in an unprotected qubit. For the postselection
codes, Fig. 14 plots the CNOT depth at which qubits have
accumulated 1% probability of logical error. The unprotected
qubit is modeled to accumulate errors only through rest noise,
whereas logical errors in the encoded qubits are due to cir-
cuits for fault-tolerant error correction. For the error rates we
consider (�10−3), it is clear that the encoded qubits are better
preserved for much longer than an unprotected qubit.

FIG. 13. (a) Distance-four fault-tolerant circuit for measuring a
weight-eight stabilizer on a square lattice layout, as arranged in (b).
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TABLE VII. For the circuit in Fig. 13, we list the appropriate
corrections for flag outcomes caused by single faults and the list of
flag outcomes that result from two faults.

Raised flags Correction Raised flags Correction

{10} {1} {11} {2}
{12} {6} {14} {8}
{15} {7} {16} {8}
{10,11} {1,2} {10,12} {1,6}
{15,16} {7,8} {10,11,15,16} {3}

Rejections

{9, 11}, {9, 12}, {9, 15}, {9, 16}, {9, 17}, {10, 14}, {10, 15},
{10, 16}, {10, 17}, {11, 12}, {11, 15}, {11, 16}, {11, 17},
{12, 15}, {12, 16}, {12, 17}, {14, 15}, {15, 17}, {9, 10, 11},
{9, 10, 12}, {9, 10, 15}, {9, 10, 16}, {9, 10, 17}, {9, 14, 16},
{9, 15, 16}, {10, 11, 12}, {10, 11, 14}, {10, 11, 15}, {10, 11, 16},
{10, 11, 17}, {10, 12, 14}, {10, 12, 15}, {10, 12, 16},
{10, 12, 17}, {10, 14, 16}, {10, 15, 16}, {10, 16, 17},
{11, 12, 15}, {11, 12, 16}, {11, 14, 16}, {11, 15, 16},
{12, 14, 16}, {12, 15, 16}, {14, 15, 16}, {14, 16, 17},
{15, 16, 17}, {9, 10, 14, 16}, {9, 10, 15, 16}, {9, 11, 15, 16},
{10, 11, 12, 14}, {10, 11, 14, 15}, {10, 11, 14, 16},
{10, 11, 15, 17}, {10, 11, 16, 17}, {10, 12, 14, 15},
{10, 12, 14, 16}, {10, 12, 15, 16}, {11, 12, 14, 16},
{12, 14, 15, 16}, {9, 10, 11, 15, 16}, {9, 11, 12, 15, 16},
{10, 11, 12, 14, 15}, {10, 11, 12, 14, 16}, {10, 11, 12, 15, 16},
{10, 11, 14, 15, 16}, {10, 11, 15, 16, 17}, {11, 12, 14, 15, 16},
{11, 12, 15, 16, 17}, {9, 10, 11, 12, 15, 16},
{10, 11, 12, 14, 15, 16}

FIG. 14. CNOT depth at which each code has accumulated 1%
probability of the X logical error. In black, the depth is plotted for
one unencoded qubit at a rest error rate 1/10 the CNOT error rate.
Plots shown for the k = 2 (blue), k = 4 (purple), and k = 6 (orange)
and d = 4 surface (gray) codes assume the depth of ancilla qubit
measurement is 10 times the depth of a CNOT gate. The CNOT depth
shown for the surface code is for 0.01% probability of the X logical
error. All data points shown for the postselection-equipped codes
have acceptance >5%.
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