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Quantum steering is considered one of the most well-known nonlocal phenomena in quantum mechanics.
Unlike entanglement and Bell nonlocality, the asymmetry of quantum steering makes it vital for one-sided
device-independent quantum information processing. Although there has been much progress on steering
detection for bipartite systems, the criterion for Einstein-Podolsky-Rosen steering in tripartite systems remains
challenging and inadequate. In this paper we first derive a promising steering criterion for any three-qubit
states via correlation matrix. Furthermore, we propose the monogamy relation between the tripartite steering
of system and the bipartite steering of subsystems based on the derived criterion. Finally, as illustrations,
we demonstrate the performance of the steering criterion and the monogamy relation by means of several
representative examples. We believe that the results and methods presented in this work could be beneficial
to capture genuine multipartite steering in the near future.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen put forward the celebrated
paradox in which they pointed out the incompleteness of
quantum mechanics, known as the Einstein-Podolsky-Rosen
(EPR) paradox [1]. To formalize this argument, Schrödinger
[2] subsequently introduced the notion of quantum steering.
Specifically, it was assumed that Alice and Bob share a maxi-
mally entangled state

|ψAB〉 = 1√
2

(|01〉 − |10〉), (1)

where |1〉 and |0〉 denote the two eigenstates of the spin op-
erator σz. Because of the perfect anticorrelations of the above
state, if Alice measures her particle with observable σz and ob-
tains the result of +1 or −1, the state of Bob’s corresponding
particle will collapse to |1〉 or |0〉, whereas if Alice’s mea-
surement choice is the observable σx, then the state of Bob’s
particle will be collapsed to either |x+〉 = (|0〉 + |1〉)/

√
2 or

|x−〉 = (|0〉 − |1〉)/
√

2. Herein it can be seen that Alice is
capable of making another particle instantly collapse into a
different state by performing local measurements on her own
particle, which Schrödinger called quantum steering. In other
words, quantum steering is a unique property of quantum sys-
tems, which describes the ability to instantaneously influence
one subsystem in a two-party system by performing a local
measurement of the other.

In order to attempt to interpret incompleteness of quan-
tum mechanics, scientists put forward a local hidden-variable
(LHV) model theory [3]. Notably, Bell [4] derived the famous
Bell inequality by using the LHV model and found that Bell
inequality can be violated in reality. Note that the violation
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of this inequality means that the predictions of quantum the-
ory cannot be explained by the LHV model, revealing the
nonlocality of quantum mechanics. At that time the concept
of quantum steering had not yet been mathematically de-
fined. Eventually, Wiseman and co-workers [5,6] formally
introduced the definition of quantum steering. They de-
scribed quantum steering as a quantum nonlocal phenomenon
that cannot be explained by local hidden-state (LHS)
models.

As a kind of quantum nonlocality, quantum steering is
different from quantum entanglement [7–9] and Bell nonlo-
cality. To be explicit, the characteristic of quantum steering
is inherent asymmetry [10–15], and even one-way steering
may occur. In some cases, party A can steer B, while B
cannot steer A [16,17]. Therefore, quantum steering, as an
effective quantum resource, plays a crucial role in various
quantum information processing tasks, such as one-sided
device-independent quantum key distribution [18–20], secure
quantum teleportation [21,22], quantum randomness certifica-
tion [23,24], and subchannel discrimination [25,26].

To judge whether a quantum state is steerable, several
authors have significantly contributed to explaining this is-
sue and brought up numerous different criteria [27–42] of
quantum steering, for example, the steering criterion based
on linear steering inequalities [27–29], the local uncer-
tainty relation [30–35], the all-versus-nothing proof [36], and
Clauser-Horne-Shimony-Holt–like inequalities [37–39]. Then
detection of steerability can be achieved by steering robust-
ness [25], steerable weight [43], and violating those various
steering inequalities, etc. In experimental research, several
criteria for quantum steering have been verified [28,44–50].
A groundbreaking experiment was proposed by Ou et al. [45]
using Reid’s criterion [42] to demonstrate the existence of
quantum steering. To date, many criteria for bipartite steer-
ing detection have been proposed. However, there have been
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few investigations into tripartite steering detection, which still
needs to be addressed.

Among those steering criteria of bipartite systems, Lai and
Luo [51] employed the correlation matrix of the local ob-
servations and proposed the steerability criterion for bipartite
systems of any dimension, and three classes of local measure-
ments, including local orthogonal observables (LOOs) [52],
mutually unbiased measurements [53], and general symmetric
informationally complete measurements [54], were applied
on attaining the proposed steering criteria. Inspired by Lai
and Luo’s work, we first derive the steering criterion for an
arbitrary three-qubit quantum state via correlation matrices
with LOOs. In addition, for a three-qubit state, we also pro-
pose a monogamy relation between three-party steering and
subsystem two-party steering.

The remainder of the paper is arranged as follows. Sec-
tion II introduces the notion of EPR steering and several
well-known criteria. In Sec. III we present a new criterion of
EPR steering in tripartite systems and also present its proof.
Furthermore, we put forward the monogamy relation between
three-party steering and subsystem two-party steering. As
illustrations, we render several representative examples to
demonstrate the detection ability of our criterion in Sec. IV.
We summarize the paper in Sec. V.

II. EPR STEERING

Wiseman et al. [5] provided the definition of quantum
steering. To be more specific, Alice prepares two entangled
particles, sends one to Bob, and declares that she can steer the
state of Bob’s particle by measuring her remaining particle.
For each measurement choice x and measurement result a of
Alice, Bob will gain the corresponding unnormalized condi-
tional state σa|x. These unnormalized conditional states satisfy∑

a σa|x = ρB, which ensures that Bob’s reduced state ρB =
trA(ρAB) does not depend on Alice’s choice of measurements.
Bob then verifies that the unnormalized conditional state can
be described as the LHS model

σa|x =
∫

dλ pλ pC (a|x, λ)pB
λ, (2)

where λ represents the hidden-variable parameter, pC (a|x, λ)
represents the local response function, and pB

λ represents the
hidden state. If the conditional state σa|x can be described by
the local hidden-state model, then the quantum state ρAB is not
steerable; otherwise, it is steerable.

In the experiment, we use x and y to represent the measure-
ment choices of Alice and Bob, respectively, and use a and b
to represent the measurement results obtained by measuring
x and y, respectively. For a quantum state ρAB that conforms
to the LHS model, the joint probability distribution can be
written as

p(a, b|x, y) =
∫

dλ pλ pC (a|x, λ)pQ
(
b|y, pB

λ

)
, (3)

where pC (a|x, λ) denotes classical probability and
pQ(b|y,pB

λ ) = tr(Mb|y pB
λ ) denotes quantum probability. If

the probability distribution obtained by the experiment cannot
obey this formula, then we say that a bipartite state is steerable
from Alice to Bob.

As mentioned in the Introduction, many steering crite-
ria have been proposed to judge whether a quantum state
is steerable. Here we briefly introduce one typical criterion
for arbitrary bipartite systems via correlation matrices [51].
Suppose that Alice and Bob share a bipartite state ρ on a
Hilbert space. Then A = {Ai : i = 1, 2, . . . , m} and B = {Bi :
i = 1, 2, . . . , n} are the local observables of the two sets of
parties a and b, respectively. The corresponding correlation
matrix can be written as

C(A,B|ρ) = (ci j ), (4)

with

ci j = tr[(Ai ⊗ Bj)(ρ − ρa ⊗ ρb)]. (5)

Lai and Luo proposed and proved that if ρ is unsteerable from
Alice to Bob, then

‖C(A,B|ρ)‖tr �
√

�a�b, (6)

where

�a =
m∑

i=1

V (Ai, ρa),

�b = max
σb

(
n∑

j=1

(trBjσb)2

)
−

n∑
j=1

(trBjρb)2. (7)

With respect to the matrix C, ‖C‖tr represents the trace norm,
i.e., the sum of singular values. Additionally, the conven-
tional variance of Ai in the state ρA is given by V (Ai, ρa) =
tr(A2

i ρa) − tr(Aiρa)2 and the maximum is over all states σb on
Bob’s side.

III. DETECTING EPR STEERING FOR TRIPARTITE
SYSTEMS VIA CORRELATION MATRICES

Quantum steering describes the ability to instantaneously
influence a subsystem in a two-body system by taking a mea-
surement on the other subsystem. For a three-qubit system,
if we would like to explore the system’s steering, we have to
divide the tripartite system into two parties. Here we divide it
into two parties 1 → 2; then we can consider this system as
the C2 ⊗ C4 state. Therefore, based on the steering criterion
proposed by Lai and Luo, we extend the two-party criterion to
a three-party version.

A complete set of LOOs {Gi : i = 1, 2, . . . , d2} form the
orthonormal basis for all operators in the Hilbert space of a
d-level system and satisfy the orthogonal relations tr(GiGj ) =
δi j . For a tripartite system, we divide it into two parties A and
BC, and in this paper, two sets of LOOs GA

m and GBC
n are

chosen for A and BC, respectively, to detect the steerability
of ρ,

GA
m = 1√

2
σm, m ∈ {0, 1, 2, 3}, (8)

GBC
n = 1

2σ[n/4] ⊗ σ(n/4), n ∈ {0, 1, 2, . . . , 15}, (9)

where σm are the Pauli matrices and the signs [n/4] and
(n/4) represent the integer function and remainder function,
respectively.
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Theorem 1. For an arbitrary tripartite state ρabc =
1
8

∑3
i, j,k=0 �i jkσi ⊗ σ j ⊗ σk , if

‖M‖tr >

√[
2 − tr

(
ρ2

a

)][
1 − tr

(
ρ2

bc

)]
, (10)

then ρ is steerable from A to BC, where M is the correlation
matrix constructed with two sets of LOOs GA

m and GBC
n , and

�i jk = tr(ρσi ⊗ σ j ⊗ σk ), the matrix elements, can be given
by

Mmn = �m[n/4](n/4) − �m00�0[n/4](n/4). (11)

Proof. The elements of the correlation matrix M can be
calculated by

Mmn = tr
[(

GA
m ⊗ GBC

n

)
(ρabc − ρa ⊗ ρbc)

]
, (12)

where the reduced states can be expressed as

ρa = trbc(ρabc) = 1

2

3∑
i=0

�i00σi, (13)

ρbc = tra(ρabc) = 1

4

3∑
j,k=0

�0 jkσ j ⊗ σk . (14)

With regard to the Pauli matrices, we have tr(σmσn) = 2δmn.
We substitute these formulas into Eq. (12) and obtain

Mmn = tr
[(

GA
m ⊗ GBC

n

)
(ρabc − ρa ⊗ ρbc)

]
= 1

8

3∑
i, j,k=0

(�i jk − �i00�0 jk )tr

× (σmσi )tr(σ jσ[n/4])tr(σkσ(n/4))

= �m[n/4](n/4) − �m00�0[n/4](n/4). (15)

As for the right-hand side of Eq. (10), Ref. [55] has pointed
out that a d-dimensional single-particle state ρ ′ meets∑

i

tr
(
G2

i ρ
′) = d, (16)

∑
i

tr(Giρ
′)2 = tr(ρ ′2). (17)

Thus, combining Eqs. (7), (16), and (17), we get

�a =
m∑

i=1

V (Gi, ρa) = 2 − tr
(
ρ2

a

)
, (18)

which belongs to the right-hand side of Eq. (10). One can
find the maximum maxσbc [

∑n
j=1 (trGBC

n σbc)2] for all possible
quantum state σbc, namely,

n∑
j=1

(
trGBC

n σbc
)2 = tr

(
σ 2

bc

)
, (19)

where σbc = 1
4

∑3
i, j=0 Ti jσi ⊗ σ j and tr(σ 2

bc) is related to the
purity of any two-particle states. Incidentally, the maximum
of the purity can reach 1. As a result, we have

�bc = max
σbc

(
n∑

j=1

(
trGBC

n σbc
)2

)
−

n∑
j=1

(
trGBC

n ρbc
)2

= 1 − tr
(
ρ2

bc

)
. (20)

Based on Eqs. (15), (18) and (20), Eq. (10) has been proved.
In addition, considering the intrinsic asymmetry of quan-

tum steering, we can judge whether BC can steer A relying
on the following criterion. First, we can use a commutative
operator that can change ρabc to ρbca. In this case, ρbca =
1
8

∑3
i, j,k=0 �i jkσ j ⊗ σk ⊗ σi. If

‖M′‖tr >

√[
4 − tr

(
ρ2

bc

)][
1 − tr

(
ρ2

a

)]
, (21)

then ρ is steerable from BC to A, where M′ is the correlation
matrix, and the matrix elements are

M ′
nm = tr

[(
GBC

n ⊗ GA
m

)
(ρbca − ρbc ⊗ ρa)

]
= �[n/4](n/4)m − �[n/4](n/4)0�00m. (22)

Here Theorem 1 presents a steering criterion for evaluating
the steerability of a tripartite system. Then we define the
difference of the left- and right-hand sides of the inequality
as

HA→BC = ‖M‖tr −
√[

2 − tr
(
ρ2

a

)][
1 − tr

(
ρ2

bc

)]
. (23)

Physically, as long as HA→BC is greater than 0, it means that ρ

is steerable from A to BC. Therefore, the quantification of the
steering can be expressed as

SA→BC = max[HA→BC, 0]. (24)

Canonically, one can get ρac or ρab when tracing out B or C.
As a result, the corresponding steering of the states ρab, ρac,
and ρbc can be written as

SA→B = max[HA→B, 0],

SA→C = max[HA→C, 0],

SB→C = max[HB→C, 0], (25)

where

HA→B = ‖C(G, G|ρab)‖tr −
√

�a�b,

HA→C = ‖C(G, G|ρac)‖tr −
√

�a�c,

HB→C = ‖C(G, G|ρbc)‖tr −
√

�b�c. (26)

�
Theorem 2. Based on the criterion proposed above (Theo-

rem 1), for any three-qubit pure state, the monogamy relation
can be obtained as

SA→BC � HA→B + HA→C + HB→C . (27)

A detailed proof of Theorem 2 is provided in the Appendix.
Corollary 1. By virtue of Theorem 2, if HA→B, HA→C , and

HB→C are greater than or equal to 0, the monogamy relation
corresponding to the steering of tripartite system can be fur-
ther generalized as

SA→BC � SA→B + SA→C + SB→C . (28)

Proof. Logically speaking, if HA→B, HA→C , and HB→C are
all greater than 0, the following relations hold:

HA→B = SA→B,

HA→C = SA→C,

HB→C = SB→C . (29)
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Due to the above equivalence relations, Eq. (27) can be further
rewritten as Eq. (28). �

Corollary 2. On the basis of Theorem 2, if HA→B, HA→C ,
and HB→C are less than 0, the monogamy relation corre-
sponding to the steering of tripartite system can be further
generalized as

SA→BC � SA→B + SA→C + SB→C . (30)

Proof. If HA→B, HA→C , and HB→C are less than 0, the
steering of ρab and ρac can be expressed as

SA→B = max[HA→B, 0] = 0,

SA→C = max[HA→C, 0] = 0, (31)

SB→C = max[HB→C, 0] = 0

and SA→BC � 0 holds; we thus have that Eq. (27) can be
rewritten as Eq. (30). �

IV. ILLUSTRATIONS

In what follows, several representative examples will be of-
fered to illustrate the performance of our steering criteria and
the monogamy relation, by employing the randomly generated
states, the generalized Greenberger-Horne-Zeilinger (GHZ)
state, and the generalized W state.

As a matter of fact, there are various effective methods to
generate random states [56–58]. Here we proceed by intro-
ducing the method used for constructing random three-qubit
states. It is well established that an arbitrary three-qubit state
can be represented by its eigenvalues and normalized eigen-
vectors as

ρ =
8∑

n=1

λn|	n〉〈	n|, n ∈ {1, 2, 3, 4, 5, 6, 7, 8}. (32)

Herein λn can be interpreted as the probability that ρ

is in the pure state |	n〉 and the normalized eigenvec-
tor of state can establish arbitrary unitary operations E =
{	1, 	2, 	3, 	4, 	5, 	6, 	7, 	8}. Thus, an arbitrary three-
qubit state can be composed of an arbitrary probability set λn

and an arbitrary E . The random number function 
(a1, a2)
generates a random real number within a closed interval
[a1, a2]. At first, we can generate eight random numbers in
this way:

N1 = 
(0, 1), N2 = N1
(0, 1),

N3 = N2
(0, 1), N4 = N3
(0, 1),

N5 = N4
(0, 1), N6 = N5
(0, 1),

N7 = N5
(0, 1), N8 = N7
(0, 1). (33)

The random probability is the set of λn (n ∈ {1, 2,

3, 4, 5, 6, 7, 8}) controlled by random numbers Nm, which is
expressed as

λn = Nm∑8
m=1 Nm

. (34)

In this way, we get a set of random probabilities in descending
order. For the random generation of unitary operation, we first
randomly give an eighth-order real matrix K by the random
number function f (−1, 1) with the closed interval [−1, 1].

FIG. 1. Plot of SA→BC vs Htot for 105 randomly generated three-
qubit pure states. Each green dot represents a random pure state.
Here Htot = HA→B + HA→C + HB→C is set. The black line denotes the
proportional function with a slope of unity.

Thus, we can construct a random Hermitian matrix by using
the matrix K ,

H = D + (U T + U ) + i(LT − L), (35)

where D denotes the diagonal part of the real matrix K and L
(U ) represents the strictly lower (upper) triangular part of the
real matrix K . The superscript T represents the transpose of
the corresponding matrix.

By means of this method, we can obtain normalized eigen-
vectors |	n〉 of the Hermitian matrix H that forms the random
unitary operation E . We thereby attain the random three-qubit
state ρ = ∑8

n=1 λn|	n〉〈	n|. Here N1 = 1 corresponds to the
case of generating a three-qubit pure random state.

Example 1. By utilizing the above method, we prepare 105

random three-qubit pure states and plot SA→BC versus Htot =
HA→B + HA→C + HB→C in Fig. 1. Following the figure, the
green dots corresponding to the 105 random states are always
above the black diagonal line with the slope of unity, that is
to say, the inequality (27) is held for all the generated random
states.

Example 2. On the basis of Example 1, we extract those
random states that satisfy the conditions of Corollaries 1
and 2 and draw the steering distribution in Figs. 2(a) and
2(b), respectively. One can easily see that SA→BC � Stot =

FIG. 2. Plots of (a) SA→BC vs Stot = SA→B + SA→C + SB→C for
the selected random states (the number of these selected random
states, which satisfy HA→B � 0, HA→C � 0, and HB→C � 0, is 990)
and (b) SA→BC vs Stot for the selected random states (the number of
these selected random states, which satisfy HA→B < 0, HA→C < 0,
and HB→C < 0, is 13 366). The black line denotes the proportional
function with a slope of unity.
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FIG. 3. Quantum steering vs the state’s parameter θ in the case
of the generalized GHZ state. The black dotted line denotes HA→B,
the black dash-dotted line denotes HA→B, and the black dashed line
denotes HB→C . Specifically, the three black lines are overlapped due
to the same expressions (38). The red solid line denotes SA→BC and
the red dashed line represents Htot .

SA→B + SA→C + SB→C is maintained, which essentially dis-
plays Corollaries 1 and 2.

Example 3. Let us first consider a type of three-qubit state,
the generalized GHZ state, which can be described as

|ψ〉GHZ = sin θ |000〉 + cos θ |111〉, (36)

where 0 � θ � π/2. Incidentally, the quantum state will be-
come separable without any quantum correlation, when θ = 0
or π/2. To determine whether the state is steerable, we can
judge by whether it conforms to the inequality (10). If the
inequality is satisfied, it means that ρ1 = |ψGHZ〉〈ψGHZ| is
steerable from A to BC. According to Eq. (10), we have

‖M1‖tr = 2|cos θ sin θ | + 2 cos2 θ sin2 θ,

2 − tr
(
ρ2

a

) = 1
4 (5 − cos 4θ ),

1 − tr
(
ρ2

bc

) = 2 cos2 θ sin2 θ. (37)

For clarity, the variation trend of the corresponding steering
SA→BC with the coefficient θ is plotted in Fig. 3. As can be
seen from Fig. 3, in the range of θ ∈ [0, 2π ], SA→BC is always
greater than 0, which illustrates the relative tightness of our
EPR steering criterion (10).

On the basis of Eq. (25), the steering of subsystems ρab,
ρac, and ρbc can be calculated as

HA→B = HA→C = HB→C = 2 cos2 θ sin2 θ

−
√

[2 − (cos4θ + sin4θ )][1 − (cos4θ + sin4θ )].
(38)

Figure 3 also has plotted HA→B, HA→C , HB→C , and Htot

as a function of the state’s parameter θ . It is interesting
to see that HA→B, HA→C , and HB→C coincide perfectly and
HA→B, HA→C, HB→C � 0 and SA→BC � Htot are satisfied all
the time, which show the performance of Theorem 2 and
Corollary 2, respectively.

FIG. 4. Steering of the generalized W state vs the state’s param-
eter α. The red solid line represents steering SA→BC ; the black dotted
line denotes HA→B; the black dash-dotted line denotes HA→B; the
black dashed line denotes HB→C ; the red dashed line represents Htot,
which here means HA→B + HA→C + HB→C ; and the gray vertical line
represents α = π/2.

Example 4. Let us consider another three-qubit state, the
generalized W state, which can be expressed as

|ψ〉W = sin θ sin α|100〉 + sin α cos θ |010〉 + cos α|001〉,
(39)

where θ ∈ [0, π ] and α ∈ [0, π ]. Without loss of generality,
we choose here θ = π

3 ; hence the two sides of Eq. (10) can be
expressed as

‖M2‖tr =
√

3
8 (5 + 3 cos 2α)sin2α

+ ∣∣ 3
32 (5 + 3 cos 2α)sin2α

∣∣, (40)

2 − tr
(
ρ2

a

) = 1
64 (85 − 12 cos 2α − 9 cos 4α), (41)

2 − tr
(
ρ2

bc

) = 3
16 (5 + 3 cos 2α)sin2α. (42)

Consequently, SA→BC can be drawn as a function of the
state’s parameter α in Fig. 4. It is straightforward to see that
SA→BC � 0, demonstrating the effectiveness of our criterion
in detecting the steering for the generalized W state.

In addition, we have the trace norms of the correlation
matrix and purities as

∥∥C
(
G, G

∣∣ρAB
2

)∥∥
tr =

√
3

2
sin2α + 3

8
sin4α,

∥∥C
(
G, G

∣∣ρAC
2

)∥∥
tr =

√
3

2
sin 2α + 3

8
sin22α,

∥∥C
(
G, G

∣∣ρBC
2

)∥∥
tr = 1

2
sin 2α + 1

2
sin2αcos2α,

tr
(
ρ2

a

) = 1

64
(43 + 12 cos 2α + 9 cos 4α),

tr
(
ρ2

b

) = 1

64
(51 + 12 cos 2α + cos 4α),

tr
(
ρ2

c

) = cos4α + sin4α. (43)

By combining Eqs. (26) and (43), HA→B, HA→C , and HB→C

can be worked out exactly. All the above quantities, SA→BC ,
and Htot with respect to the state’s parameter α are depicted
in Fig. 4. It is apparent that SA→BC (the red solid line) con-
sistently exceeds or equals Htot (the red dashed line), and
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HA→B, HA→C , and HB→C are greater than or equal to 0, for
α = π/2 (the gray vertical line in the figure). With these in
mind, we say that Theorem 2 and Corollary 1 are illustrated
in the current architecture.

V. CONCLUSION

Multipartite quantum steering is considered as a promising
and significant resource for implementing various quantum
communication tasks in quantum networks, which consist
of multiple observers sharing multipartite quantum states. In
this paper we have derived the steering criterion for tripartite
systems based on the correlation matrix, which might be of
fundamental importance in prospective quantum networks. In
particular, we utilize LOOs as local measurements to provide
operational criteria of quantum steering.

Furthermore, we have put forward the monogamy relation
between tripartite steering SA→BC and Htot of the subsystems,
based on our derived criterion. We proved that SA→BC �
HA→B + HA→C + HB→C is always satisfied for arbitrary pure
tripartite states. In addition, we presented two corollaries
in terms of the proposed theorem. At the same time, we
employed various types of states, including the randomly
generated three-qubit pure states, generalized GHZ states,
and generalized W states, as illustrations for our findings.
These examples also show the detection ability of our steer-
ing criterion. We believe our criterion provides a valuable
methodology for detecting the steerability of any three-qubit
quantum states, which may be constructive to generalize into
steering criteria for multipartite states in the future.
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APPENDIX

Basically, the Schmidt decomposition for an arbitrary
three-particle pure state can be written in the form [59]

|	〉 = x|000〉 + yeiφ |100〉 + z|101〉 + h|110〉 + λ|111〉,
(A1)

where x2 + y2 + z2 + h2 + λ2 = 1 and x, y, z, h, λ � 0 are
maintained. For simplicity, we can set φ = 0 and λ = 0. To
prove Theorem 2, we first need to prove the inequality

HA→BC � HA→B + HA→C + HB→C . (A2)

In accordance with Eqs. (23) and (26), we can obtain HA→BC ,
HA→B, HA→C , and HB→C for any pure three-qubit state. If we
want to prove that the inequality (A2) is valid, we only need
to prove that

HA→BC − (HA→B + HA→C + HB→C ) � 0. (A3)

As a result, the left item of the resulting formula can be
reexpressed as

f (x, y, z, h) = HA→BC − (HA→B + HA→C + HB→C )

=
√

2z
√

[1 + 2x2(z2 + h2)](x2 + h2) − xh − z(x + h) +
√

2h
√

[1 + 2x2(z2 + h2)](x2 + z2) (A4)

+ 2x
√

z2 + h2 + 2x2(z2 + h2) − zh
√

8zh + (−1 + 2y2 + 2zh)2 +
√

2z
√

[1 + 2h2(z2 + x2)](x2 + h2)

−
√

2x
√

[1 + 2x2(z2 + h2)](z2 + h2) − 1
2 (| f + g| + | f − g| + |w + v| + |w − v|),

with

f = x(h − 2y2h + 2x2h), g = x
√

h2{1 + 4y4 − 4y2(1 + 2xh + h2) − 4h[x + (−1 + z2)h + h3]},
w = x(z − 2y2z + 2x2z), v = x

√
z2{1 + 4y4 − 4y2(1 + 2xz + z2) − 4z[x + (−1 + h2)z + z3]}. (A5)

More specifically, if we can prove that f (x, y, z, h) � 0 in
the region of x2 + y2 + z2 + h2 = 1 with x � 0, y � 0, z � 0,
and h � 0, then the inequality (A2) is proved. There are four
absolute values in the above formula. In order to facilitate cal-
culation, we can divide the region for removing the absolute
value symbols. As a matter of fact, the region can be divided
into 16 subregions and the internal and external boundaries.

In addition, we make use here of the Lagrange multiplier
method to prove the inequity (A2). If the local minima of
Eq. (A4) are greater than 0, it indicates the desired inequality
is true, as the function f (x, y, z, h) is continuous. According to
the Lagrange multiplier method, to solve the local minima of
f (x, y, z, h) under the condition x2 + y2 + z2 + h2 − 1 = 0,

we require constructing the Lagrange function

f (x, y, z, h, k) = f (x, y, z, h) − k(−1 + x2 + y2 + z2 + h2),
(A6)

where k denotes the Lagrange multiplier. Then we take the
derivatives of x, y, z, h, and k as

∂ f (x, y, z, h, k)

∂x
= 0,

∂ f (x, y, z, h, k)

∂y
= 0,

∂ f (x, y, z, h, k)

∂z
= 0,
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TABLE I. Specific situation of 16 regions and the number of the
critical points of the corresponding regions.

f + g f − g w + v w − v No. of critical points

+ + + + 2
+ + + − 0
+ + − + 0
+ − + + 0
− + + + 0
− − + + 0
− + − + 0
+ − − + 0
+ + − − 0
− + + − 0
+ − + − 0
− − + − 0
− + − − 0
+ − − − 0
− − − + 0
− − − − 0

∂ f (x, y, z, h, k)

∂h
= 0,

∂ f (x, y, z, h, k)

∂k
= 0, (A7)

respectively. The solutions satisfying these equations are
called the critical points. Finally, we choose the critical point

satisfying conditions x � 0, y � 0, z � 0, and h � 0 to get
the local minimum of f (x, y, z, h).

All the subregions and the number of corresponding critical
points are shown in Table I. After careful computation, two
critical points can be found as

(x, y, z, h) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0.390 368 239 272 184 67, 0,

0.788 617 685 785 144 8, 0.475 073
450 567 846 94)
(0.390 368 239 272 127 77, 0,

0.788 617 685 785 211 7, 0.475 073
450 567 758 7).

Then we can substitute the critical points into Eq. (A4); the
same local minimum fmin(x, y, z, h) = 0.361 084 is obtained,
which is obviously greater than 0. In other words, the inequal-
ity (A2) is held in the subregions.

In addition to the critical points within these 16 subregions,
there may also exist critical points on the boundaries including
internal ones and external ones. Next let us turn to consider the
cases of the region’s boundaries. The internal boundaries refer
to those with f = g and w = v, while the external ones refer
to those with x = 0, y = 0, z = 0, or h = 0. Likewise, we take
advantage of the Lagrange multiplier method to judge whether
the inequality is valid on the boundaries. In what follows, we
will discuss the cases of the internal and external boundaries,
respectively.

With respect to the internal boundary, there exist three
cases, i.e.,

| f + g| + | f − g| + |w + v| + |w − v| = 2 f + 2w for f = g > 0, w = v > 0,

| f + g| + | f − g| + |w + v| + |w − v| = 2 f − 2w for w = −v < 0, f = g > 0,

| f + g| + | f − g| + |w + v| + |w − v| = 2w − 2 f for w = v > 0, f = −g < 0. (A8)

By the Lagrange multiplier method, we obtain the critical points shown in Table II.
For the external boundaries, the critical points can be divided into the following cases. On the boundary with x = 0, the

absolute value items of Eq. (A4) will disappear and the function consequently can be simplified into

f (y, z, h) =
√

2(2zh + zh
√

1 + 2z2h2)

− hz[1 +
√

4y4 + (1 + 2hz)2 + y2(−4 + 8hz)]. (A9)

On the boundary of y = 0, the corresponding function can be reexpressed as

f (x, z, h) = − 4x2 + 4x4 +
√

2z[
√

(−1 − 2h2 + 2h4)(−1 + z2) +
√

(−1 − 2x2 + 2x4)(−1 + z2)]

+ x(2
√

1 − x2 −
√

2
√

1 + x2 − 4x4 + 2x6 − 2z) (A10)

+ h{−2x +
√

2
√

(−1 + h2)(−1 − 2x2 + 2x4) − z[1 +
√

(1 + 2hz)2]}.

To be explicit, we have listed all the critical points of the
five cases mentioned above in Table II. One critical point
is (x, y, z, h) = (0, 0, 0.707 107, 0.707 107) and we obtain
the local minimum fmin(x, y, z, h) = 0.780 239; other critical
point is (x, y, z, h) = (0, 1, 0, 0) and fmin(x, y, z, h) = 0 is ob-
tained. Apparently, all the local minima are greater than or
equal to 0, showing that the inequality (A2) is held on these
boundaries.

TABLE II. Number of critical points of boundaries.

2 f + 2w 2 f − 2w 2w − 2 f x = 0 y = 0

0 0 0 2 0
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TABLE III. Number of critical points in different cases on the
boundary z = 0.

f1 + g1 f1 − g1 No. of critical points

+ + 0
+ − 0
− + 0
− − 0

On the boundary of z = 0 and h = 0, the function f can be
written as

f (x, y, h) = hx + 2h2x2 − 1
2 (| f1 + g1| + | f1 − g1|), (A11)

f (x, y, z) =(
√

2 + 1)zx + 2z2x2 − 1
2 (|w1 + v1| + |w1 − v1|),

(A12)

with f1 = x(h + 2h2x − 2hy2), w1 = 2x2z2 + x(z − 2y2z),
g1 =x

√
h2[1 − 4h(−h+h3+x) − 4(1+h2 + 2hx)y2 + 4y4],

and v1 =x
√

z2[1+4y4 − 4y2(1+2xz + z2) − 4z(x − z+z3)].
The numbers of critical points on the boundary of z = 0 and
h = 0 are listed in Tables III and IV, respectively. The only
critical point is found as (x, y, z, h) = (0, 1, 0, 0), and we
compute that the corresponding local minimum is equal to 0.

TABLE IV. Number of critical points in different cases on the
boundary h = 0.

w1 + v1 w1 − v1 No. of critical points

+ + 1
+ − 0
− + 0
− − 0

Thus, the inequality (A2) is satisfied on the boundaries with
z = 0 and h = 0 as well.

In summary, the local minima of the function
fmin(x, y, z, h) � 0 are satisfied all the time in the whole
region, consisting of the above 16 subregions and all
boundaries. Therefore, the inequality

HA→BC � HA→B + HA→C + HB→C (A13)

holds for all three-qubit pure states. Owing to Eq. (24), we
have SA→BC � HA→BC . In combination with the above in-
equality (A13), the monogamy relation (27) can be obtained
as

SA→BC � HA→B + HA→C + HB→C . (A14)

As a consequence, Theorem 2 has been proved.
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