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Success probabilities in time-reversal-based hybrid quantum state transfer
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We consider two memory nodes of a quantum network connected by flying qubits. We are particularly
interested in the case where a flying qubit produced by one node has to be transformed before it can interface
efficiently with the next node. Such transformations can be utilized as a key part of the distribution of quantum
states and hence entanglement between the nodes of a hybrid quantum network linking together different
quantum technologies. We show how and why the probability of interfacing successfully is determined by the
overlap of the spectral shape of the actual flying qubit and the ideal shape. This allows us to analytically and
numerically analyze how the probability of success is impacted by realistic errors, and show the utility of our
scheme (in consonance with known error correction methods) in connecting hybrid nodes of a quantum network.
We focus here on a concrete implementation in which the memory nodes consist of three-level atoms in cavities
and the flying qubits are photons.
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I. GENERAL INTRODUCTION

The quantum internet [1] is envisioned to allow the imple-
mentation of various quantum communication, computation,
and measurement (sensing) tasks that improve upon their clas-
sical counterparts. Scaling the underlying networks to connect
a larger numbers of quantum processor systems, often referred
to as nodes in the context of quantum communication, improv-
ing these processors, and controlling their robustness against
noise are among important current practical issues [2,3]. The
fundamental building blocks of these networks are the nodes
themselves and the quantum transmission lines (also called
quantum channels) that serve as the network edges. Such an
edge links together two nodes so that quantum information,
say the state of a qubit, can be sent between them at will.
These nodes may range from simple devices operating on
small numbers of qubits to large-scale quantum computers.
When envisaging a large quantum network, or ultimately the
quantum internet, many different implementations of an edge
will be needed, e.g., to reliably connect close-by units com-
posing a single computation node, different types of nodes, as
well as distant nodes.

Two promising research avenues for the scalability of
quantum networks are in the development of distributed and
hybrid quantum communication and computation technolo-
gies. The utility of distributed quantum technologies lies in
the likely scenario that it is easier to connect many high-
functioning, modestly sized, often homogeneous, devices
(which have been demonstrated), using quantum effects like
entanglement as a resource, than to scale a single device to
have the same net processing power [4–10]. A complemen-
tary means of scaling quantum networks is by developing a
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hybrid quantum architecture, where either [11] different types
of (i) qubits or (ii) nodes are connected so that tasks can be
delegated so as to leverage the strengths of a given type of
qubit or node.

Case (i) can be envisaged as a hybrid device that uses
different kinds of qubits for different purposes. For instance,
using separate types of qubits for local logic operations and
for interfacing with quantum channels, which would allow
for communication between nodes with minimal disruption
to local computation or storage processes [12–17]. In case
(ii), heterogeneous nodes (or smaller intranodal units), that
are based on different quantum technologies, are connected
to form the elementary unit of a hybrid quantum network (or
node). Such hybridization would be valuable in making more
powerful large-scale nodes, say a node that integrates solid-
state computation units leveraging fast nanosecond gates (at
the expense of relatively short microsecond coherence times
for both depolarization and dephasing) [18–21] with atom-
based memory units with long coherence times on the order
of milliseconds (or seconds for ions though they can be sig-
nificantly longer [22], typically limited by dephasing times)
at the expense of slower microsecond gate times [23–25] for
hybrid quantum computation [26–28]. More broadly, realizing
such hybrid links would increase the connectivity of quantum
networks. Especially as different technologies (trapped ions,
superconducting circuits, etc.) become better established as
platforms for qubit implementation, how to interface them is
an important question to address [29–38].

A. Background and scope

The implementation of a specific edge depends on the
properties of the nodes it is linking, including their underlying
technological implementation, natural energy scale, physi-
cal separation, and intended function (say communication or
computation). In this work we focus on discrete (as opposed to
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continuous [39]) variable quantum communication in which
intermediate “flying qubits” carry quantum information along
an edge realized by a guided quantum channel. Photons are
the quintessential flying qubit, and the one we consider here
(though phonons could be used, e.g., in some optomechanical
systems [40–42] and other solid-state systems [43]), as they
can efficiently travel between nodes and they have several
degrees of freedom (mode occupation number, polarization,
temporal-mode, etc.) that can be used to encode quantum
information.

We focus on a guided channel (e.g., optical
fiber [6,23,44,45] or microwave coaxial cable [46–53])
linking close-by nodes, say within a given laboratory or
device, leaving the consideration of nonguided free-space
channels to other work [54–58]. The main issue with distant
nodes is that the fidelity of states being transferred (and
likewise the degree of entanglement generated) typically
decreases exponentially with the length of the connecting
channel due to photon absorption and noise in the channel
(the rate of this decay can be minimized by using telecom
light) [59–62]. In principle, this issue can be solved using a
quantum repeater, which itself needs to be able to distribute
entanglement between close-by “repeater stations,” though
further details are beyond the scope of this work [63–65].
Accordingly, we will not explicitly address the difficulties
of connecting distant nodes. Note that the error correction
protocols we mention are still relevant for distant nodes
though they will have more overhead for larger distances.

In this paper we focus on the theoretical implementation of
a deterministic quantum state transfer (QST) scheme capable
of linking hybrid quantum nodes [in the sense of case (ii)
above] via itinerant photons. In particular, we consider con-
necting two different types of spatially separated nodes, with
potentially different spectral properties (resonance frequency
and decay width). The state of a qubit prepared at the “sender”
node 1 is mapped to the state of an emitted photon wave
packet (facilitated by local controls) that is sent to a “receiver”
node 2 via a guided channel. To optimally be absorbed at
node 2, and hence to map the photonic state to a material
qubit state, this wave packet must be modified, tailoring its
time-frequency shape [66]. In our previous work [67] we
showed how this can be accomplished by incorporating a uni-
tary transformation, U , that time reverses [see Supplemental
Material (SM) [68] Sec. A4 for some discussion of why we
emphasize time reversal], frequency shifts, and stretches or
compresses the intermediate photon wave packet along the
quantum channel [69]. The original version of this scheme
(without the unitary) was proposed in the seminal work of
Cirac and co-workers [70]. In the time domain, U is given
by

U (t, t ′) =
√

ξeiω0(T −t )δ(t ′ − ξ (T − t )). (1)

With the inclusion of this unitary transformation, we showed
how to design system controls (laser pulses) that will transfer
the state of a qubit at node 1 to one at node 2 even if the
nodes have significantly different resonance frequencies and
decay rates (provided we can implement U correctly). This
is especially important in hybrid cases, where without U the
likelihood of node 2 absorbing a photon emitted by node 1,

FIG. 1. Potential subgraph representing part of a quantum net-
work (above) with a zoomed in focus (below) on two nodes (red
points) and the quantum channel (blue edges) linking them, along
which our QST scheme is implemented (see the main text for details).
The graph structure is only for illustration purposes, showing how
our scheme can fit into the bigger picture of quantum networking.
The dashed lines indicate potential continuations of the network to
other nodes. The lower image is modified from figures of Refs. [70]
and [67].

even for well-designed controls, is very small. A schematic
representation of how such a pair of linked nodes might fit
into a larger quantum network is given in Fig. 1.

In this paper we consider and analyze realistic errors
that can occur in the hybrid QST scheme of our previous
work [67], which demonstrated how the scheme works in
ideal conditions. We focus on errors in the implementation
of the unitary transformation, as other common errors, such
as those due to photon absorption in the transmission line,
incorrect laser controls, and cavity loss, are well known and
understood [71–75]. This lets us show our protocol’s utility
in the presence of these realistic errors especially when it is
supplemented by known error correction protocols [74,75]
that can correct these common errors as well as errors in
the unitary transformation using local quantum computations
with auxiliary quantum emitters at each node (see Sec. III D).
Nonetheless, error mitigation remains a crucial part of making
such error correction protocols viable, specifically to keep
the expected number of repetitions of a primitive transfer
operation low and moreover to lessen additional overhead.

We also show that the probability of successfully transfer-
ring the state from one node to another, Psuccess, is determined
(rather intuitively) by the overlap between the actual and ideal
single-photon wave packets to be incident on node 2 denoted
by � and �, respectively. Specifically, we find

Psuccess = |〈�|�〉|2 =
∣∣∣∣
∫ ∞

−∞
dt �∗(t )�(t )

∣∣∣∣
2

(2)

(see Sec. III A for the corresponding derivation in the par-
ticular case we focus on in this work, where each node
is comprised of a three-level atom in a cavity, and see
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SM Sec. A for a general argument for this result, which
ultimately amounts to the Born rule). This can be understood
by interpreting the successful completion of the protocol as
a photodetection event in which the receiving node can be
thought of as a photodetector, that (in the case of a “click”)
would project onto a particular single-photon wave packet �,
which is determined by the parameters of node 2 and the laser
driving it.

B. Outline

We outline the model for the interaction of the nodes and
present our QST scheme in Sec. II. This includes specify-
ing the corresponding Hamiltonian and equations of motion
(EOMs) for the amplitudes of various excitations as well as
giving an overview of the standard errors present in such a
scheme. In Sec. III we consider errors in the unitary trans-
formation. In Sec. III A we show how these errors can be
described in the context of quantum measurement theory in
terms of positive operator-valued measures (POVMs). Then in
Sec. III B we show how the ideal value of the unitary transfor-
mation’s timing parameter can be determined and in Sec. III C
we perform some further numerical analysis of the probability
of successful state transfer in the presence of unitary errors. In
Sec. III D we highlight how known error correction protocols
could be used to reliably perform this state transfer procedure
in the presence of realistic errors. In Sec. III E we consider
the relevance of our work in heralded schemes, as opposed
to deterministic schemes. Finally, in Sec. IV we discuss the
utility of our scheme and provide an outlook of other contexts
where it could be employed. Additional analysis and support-
ing details regarding the scope of our results are provided in
the Supplemental Material (SM) for this paper [68].

II. SCHEME AND MODEL

Here we summarize the model used for two linked nodes
of a quantum network interacting via a quantum channel.
For brevity, we leave much of the corresponding derivations
and further details to Refs. [76,77], the textbook [78], and
our previous work [67]. Starting from the Gardiner-Collett
model [76], one can show that in the quantum trajectory
formalism [77], the dynamics (during time intervals when no
quantum jump occurs) are determined by an effective non-
Hermitian Hamiltonian of the form

Heff = H1 + H2 + Htl. (3)

Here Hj is the Hamiltonian for node j = 1, 2 and Htl accounts
for the nodes’ interaction via the transmission line.

A. Node implementation

Here we consider nodes that can encode the state of a qubit
in an effective two-level system with a controllable coupling
to a well-defined electromagnetic field mode. Such a node is
readily realized, at least theoretically, by a three-level �-type
atom (or ion) in a high-Q optical cavity [70] and there has
been significant recent experimental progress in such sys-
tems [13,79–81] (see Sec. II F). Accordingly, we focus on this
case (both here and in our previous work [67]) as an exemplar
of the physics underlying our scheme. The overall scheme

applies more generally so our use of “atom” throughout the
paper can often be mapped to other material systems such as
an ionic, solid-state, or superconducting qubit in analogous
setups. These atomic systems along with the rest of our QST
scheme are highlighted in Fig. 1. In this case, at each node the
state of a qubit is encoded in the ground states of the atom,
|e〉 and |g〉, which are coupled via a Raman transition through
an auxiliary atomic excited state |r〉. We consider asymmetric
cavities that preferentially couple to the transmission line,
e.g., by using a partially transmitting mirror to interface with
the transmission line and a (near) perfectly reflective outer
mirror.

That is, the dynamics of the first Raman qubit are con-
trolled using a laser pulse that drives a transition from |e1〉
to |r1〉, which is followed by the transition |r1〉 to |g1〉 and the
emission of a photon into cavity 1, and meanwhile leaves |g1〉
undisturbed with no corresponding emission. Thus, if atom 1
was in the “excited” state |e1〉, an emitted photon would leak
out of cavity 1, propagate down the transmission line along
which it would be transformed via U , before its incidence on
node 2. Then atom 2, which is prepared in |g2〉, can simply
undergo the Raman process analogous to that undergone by
atom 1 but in the backwards order, with the goal of inducing
absorption of the photon. This is possible as by implementing
U we have effectively equalized the spectral properties of the
two nodes (analogous to impedance matching).

By linearity, this process can thus be used to implement
our QST scheme, where the state of atom 1, cg|g1〉 + ce|e1〉,
is transferred to the photon, cg|0〉 + ce|1〉, and then to atom
2, cg|g2〉 + ce|e2〉. Here we take the photonic qubit to be
encoded in the occupation number degree of freedom, i.e.,
either the vacuum |0〉 or single-photon |1〉 state in a certain
mode [82,83]. Other encodings could potentially be used with
appropriate modifications to our scheme. There are of course
tradeoffs between different encodings, e.g., the polarization
encoding {|H〉, |V 〉} is more robust in some scenarios [84,85]
yet the occupation number encoding is necessary for the
known error correction protocols we consider (see SM
Secs. A6 and D for further discussion).

For these nodes, the effective dynamics in the single (or
zero) excitation subspace are ultimately determined by the
Hamiltonian (h̄ = 1) [67,70]

Hj = iG j (t )(a†
j |g j〉〈e j | − a j |e j〉〈g j |). (4)

The operators a†
j and a j are the creation and annihilation oper-

ators for cavity j, respectively. Likewise |e j〉〈g j | and |g j〉〈e j |
are the raising and lowering operators for the effective two-
level atom j, respectively. Here Gj (t ) = g j� j (t )/2	 j is the
Jaynes-Cummings interaction strength between the effective
two-level atom and cavity at node j, where (as depicted in
Fig. 1) g j is the bare atom cavity coupling, � j (t ) is the user-
controlled Rabi frequency envelope of the driving laser, and
	 j = ωL j − ωr j is the laser detuning. Note Gj (t ) is real with
the implicit time-dependent laser phase, of the form eiφ j (t ),
factored out. To obtain this form for Hj we selected specific
laser frequencies ωL j to eliminate shifts to the cavity energy
states and chose the laser phases φ j (t ) (the chirps specifically)
to compensate for the ac Stark shift to |e j〉 [see Eq. (34) of
Ref. [67] and the surrounding discussion for details as well
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as SM Sec. B1]. Additionally, we assumed far off-resonant
driving lasers (to suppress spontaneous emission [86]) so that
we could adiabatically eliminate the excited states |r j〉, and
we went into a rotating frame at the frequency of the laser
driving each system ωL j (in which the states |e〉 and |g〉 are to
be interpreted).

B. Interaction model

Assuming a vacuum field input, or less strictly that no light
is incident on the nodes in relevant modes, the connection of
the nodes is ultimately described by [67]

Htl = − i

2
(γ1a†

1a1 + γ2a†
2a2 + 2

√
γ1γ2eiζ t a†

2ã1), (5)

which provides an effective description of the transmission
line in which node 2 is effectively directly coupled to the
transformed output of node 1. This is accounted for by the
operator ã1, which is an annihilation operator for the trans-
formed photon that exits the unitary transformation device.
Note that both a1 and ã1 are time-delayed operators, which
implicitly account for the time delay of light propagating
between the nodes. This description highlights the role of
the transmission line as an intermediary for the transfer of
excitations from node 1 to node 2 (via the a†

2ã1 term). Here
γ j is the decay rate for cavity j into the transmission line. The
relative phase of ζ = ωL2 − ωL1 in the excitation transfer term
corresponds to oscillations at the mismatch in the frequencies
of the lasers driving the two systems and is due to going into
the aforementioned rotating frames for each node.

Within this model we assume the coupling to be unidi-
rectional with photons only propagating from system 1 to 2
(there is no a2a†

1 term in Htl), at least during the QST proce-
dure. Ideally, this unidirectionality should be a consequence
of atom 2 being prepared in a stable ground state |g2〉, yet
it can be physically imposed as necessary, e.g., by using a
circulator [87]. Then U does not affect system 1 dynamics
and a1 acts in the Heisenberg picture in a standard way, i.e.,
on |C〉1 = c0|0〉1 + c1|1〉1 it acts as

1〈0|a1(t )|C〉1 = c1(t ). (6)

Meanwhile, in this effective description, the second system is
effectively directly coupled to the unitarily transformed output
of system 1. This is accounted for by the a†

2ã1 term of Eq. (5),
where ã1 encodes the effect of U , acting as

1〈0|ã1(t )|C〉1 = χ (t )c1( f (t )) (7)

in contrast to Eq. (6), where [88]

χ (t ) =

⎧⎪⎨
⎪⎩

0, ti < t < ts,√
ξeiω0(T −t ), ts < t < t f ,

1, otherwise

(8)

and

f (t ) =
⎧⎨
⎩

undefined, ti < t < ts,
ξ (T − t ), ts < t < t f ,

t, otherwise.
(9)

Here ts is the time at which the transformed field starts to be
produced and it is controlled via the relation T = ts(1 + 1/ξ ).
These functions are broken up into intervals as the part of

the photon wave packet to be transformed, taken to be of
duration tl = l/c, must pass through the unitary transforma-
tion device (in the time interval ti ≡ ts − tl < t < ts), before
the transformed wave packet is produced (in the interval
ts < t < t f ≡ ts + tl/ξ ). Outside of the time interval where the
transformation is happening ã1 reduces to the standard a1. The
form of these functions for ts < t < t f comes directly from
Eq. (1), assuming that the untransformed pulse is blocked at
the transformation device during the production of the trans-
formed field. [This assumption is not necessary, but it leads
to a simpler description of how the unitary transformation’s
effect can be encoded in the time argument of a fictitious
system 1̃ that is, effectively, directly driving system 2 (see
Ref. [67] for further discussion). Furthermore, the distinction
of whether we block the original field for ts < t < t f does not
matter if the two Raman processes are driven by lasers with
substantially different frequencies |ζ | = |ωL2 − ωL1| 	 γ1,2

(see Sec. III B)]. The crucial part is that the transformed part
of the field (which should be the entirety of the single-photon
wave packet assuming the control parameters are suitably
picked and implemented) has the time-reversed and stretched
argument ξ (T − t ).

C. Model generality

Importantly, our focus on a particular kind of node does
not limit the scope of our work, which is meant to concern
hybrid links, as the ideas behind our scheme apply to many
other analogous controllable systems that could be used for
either (or both) node(s). In fact, the Hamiltonian governing
the system dynamics we analyze [given in Eqs. (3)–(5)] is
quite general for deterministic QST schemes like ours, so the
physics should be identical after an appropriate mapping of
physical parameters. This is provided the unitary transfor-
mation U can be implemented to transduce the intermediate
photon between the emitting and receiving nodes energy and
time scales. [Note that U has a proposed implementation in
the optical regime [89]. In other regimes, say for microwave
systems or hybrid cases, such as the coupling of microwave
and optical nodes, some aspects of such a transformation
have been considered yet to our knowledge the entire uni-
tary we consider has not been (see SM Sec. A5 for further
discussion)].

In particular, we assume that we utilize nodes for which
individual excitations can controllably and reversibly be trans-
ferred from the material system to a photonic mode (emission)
and vice versa (absorption), often at the single-photon level,
say mediated by a cavity or resonator [70,85,90]. It should
then be possible to recast the Hamiltonians for the nodes
themselves into the standard Jaynes-Cummings form [as was
done for Eq. (4)] through the appropriate adiabatic elimina-
tion of auxiliary states, selection of unitary transformations
to the node Hamiltonian, and tuning of the system and
control parameters. One benefit of such coherent and re-
versible interactions is that you can generate different kinds
of target states, e.g., tune the wave packet’s shape, ampli-
tude, and phase (see SM Sec. B for further discussion).
This is to be contrasted against heralded, probabilistic ap-
proaches such as those based on spontaneous emission (see
Sec. III E). The form of the Hamiltonian describing the
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coupling of the nodes, Eq. (5), is also common within the
context of input-output theory in which one eliminates the
channel from the description (via its corresponding contin-
uous mode field operators) to obtain a simpler description
where the two nodes are effectively directly coupled (see
SM Sec. A2 for further details and examples).

D. System evolution

Starting from Eq. (3), the zero-excitation ground state
evolves trivially |gg〉|00〉 → |gg〉|00〉 as

i
d

dt
|gg〉|00〉 = Heff|gg〉|00〉 = 0 (10)

in the interaction picture. Meanwhile the dynamics of a state
in the single-excitation subspace

|ψ (t )〉 = α1(t )|eg〉|00〉 + α2(t )|ge〉|00〉
+ β1(t )|gg〉|10〉 + β2(t )|gg〉|01〉 (11)

are encoded by α j and β j , which are the state amplitudes
for an excitation being in atom j (|e j〉) and cavity j (|1 j〉),
respectively. The corresponding amplitude EOMs are

α̇1 = −G1β1, (12a)

β̇1 = G1α1 − γ1

2
β1, (12b)

α̇2 = −G2β2, (12c)

β̇2 = G2α2 − γ2

2
β2 − √

γ2eiζ t�(t ), (12d)

where

�(t ) := √
γ1χ (t )β1( f (t ))

≈
√

γ1ξeiω0(T −t )β1(ξ (T − t )), (13)

is the transformed wave packet (as we are working in a ro-
tating frame, it is a slowly varying envelope function [91])
emitted by system 1 that is driving system 2. The approx-
imation in Eq. (13) is exact during the transformed field
production ts < t < t f and hence holds in the large l limit.
Note that by tuning the laser frequencies and phases to ob-
tain the simple Jaynes-Cummings type node Hamiltonians of
Eq. (4) we are fixing α1 and β1 to have the same constant
phase, so without loss of generality we take them both to be
real. This simplified case, where we tune the control parame-
ters so that the system 1 amplitudes are real, is of course not
general, though it entirely suffices for our QST scheme and
makes our analysis easier. It is worth mentioning that one can
controllably modulate the phase of the emitted photon wave
packet, �(t ) = √

γ1β1(t ), in time by adjusting the parame-
ters of the driving laser, namely the phase (though this can
exacerbate non-Markovian effects, which need more careful
treatment [92]), and then α1 also acquires a time-dependent
phase (see SM Sec. B1 for more details).

Note that in our setup the transfer |g1〉 → |g2〉 happens by
default [see Eq. (10)], and so the principal goal is to transfer
any excitation from the first qubit to the second, |e1〉 → |e2〉.
Thus, in the single-excitation subspace, we want |α1(t →
−∞)| = 1 and |α2(t → ∞)| = 1; the former condition is sat-
isfied via appropriate local state preparation while the latter
requires the transmission process to be implemented correctly.

Accordingly, we deem the probability of successful QST to be
Psuccess ≡ |α2(t → ∞)|2, with the caveat that one need also
transfer the relative phase of the qubit states, which requires
an interferometrically stable channel (see the discussion at the
end of Sec. III A for further details).

E. Simplified treatment

As we have alluded to, we want to highlight the role of the
unitary transformation U in our QST scheme. Accordingly,
we use several simplifying strategies that allow us to set aside
other well known kinds of errors and quantify the impact of
U by the single parameter Psuccess. In this subsection, we list
these strategies and briefly discuss how they can naturally be
incorporated into our analysis (see SM Sec. D1 for further
details). These strategies include that

(1) emission of the � system into modes other than the
desired cavity mode is treated post hoc,

(2) cavity field loss into modes other the relevant transmis-
sion line mode is treated post hoc,

(3) transmission line loss is treated post hoc,
(4) we assume the laser pulses (or other control drives) are

implemented correctly, and
(5) we do not account for dispersion in the transmission

line.
Strategies (1) and (2) are worded for the emission process
from node 1, yet we likewise (due to time-reversal symmetry)
apply them during absorption at node 2.

The post hoc treatment in strategies (1), (2), and (3) is
performed by multiplying our probability of success by the
respective survival probabilities P1, P2, and P3 of the pho-
ton being transferred to the desired mode during emission
into (or absorption out of) the cavity (see SM Sec. B3),
the cavity-channel interactions, and its propagation through
the channel [79,93,94]. That is, the evolution described in
Sec. II D is conditioned on attempts where the photon is not
lost (absorbed or in an orthogonal mode). Thus, the modified
success probability of our scheme is

P̃success = P1 × P2 × P3 × Psuccess. (14)

One can naturally separate the first two survival probabilities
into contributions from each of the individual nodes. Namely,
letting Pem- j and Pcav- j denote the respective probabilities
of the emitter and cavity at node j coupling to the desired
mode (which are the same for emission and absorption due
to time-reversal symmetry), we have P1 = Pem-1Pem-2 and
P2 = Pcav-1Pcav-2.

As an instructive example, here we consider the case where
nodes 1 and 2 undergo the same amount of loss. In partic-
ular, we take Pem-1 = Pem-2 = Cem/(1 + Cem) and Pcav-1 =
Pcav-2 = Ccav/(1 + Ccav). Here Cem and Ccav are cooperativity
parameters that quantify how well the emitters and cavities,
respectively, are able to produce photons in the desired output
mode. Meanwhile, for strategy (3), we consider exponential
transmission line loss P3 = e−x/xtl with attenuation distance
xtl [95]. (See SM Sec. D1 for further explanation and mo-
tivation of these parameters and the corresponding survival
probabilities; realistic values are given in Sec. II F.) In this
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case, we have

P̃success = Psuccess ×
(

Cem

1 + Cem

Ccav

1 + Ccav

)2

e−x/xtl . (15)

Strategies (4) and (5) are used for simplicity and could be
accounted for implicitly via modifications to the actual and
target wave packet shapes � and � in Psuccess of Eq. (2). Strat-
egy (4) is well founded in that laser errors in the amplitudes Gj

and phases φ j are typically negligible compared to the other
errors we consider, yet such errors could easily be included in
our model and numerics if necessary. One point of note that
is obfuscated by the effective treatment of Eq. (5) is the role
of the relative timing of the laser pulses (which is implicitly
encoded in the time-delayed operators for node 1). A relative
timing error of δt would result in Psuccess being determined
by the overlap of �(t + δt ), instead of �(t ), with the target
�(t ), degrading the excitation transfer. Thus, in strategy (4),
we additionally assume that no such relative timing errors
are made, which demands care, but can be accomplished by
characterizing and controlling the photon propagation time
through the channel and using a common reference clock for
both nodes. In regards to strategy (5), distortion to the wave
packet � induced by channel dispersion can be (partially)
compensated for by modifying the control pulses [92] as well
as the unitary transformation U (see SM Sec. A4). However,
the comprehensive modeling and treatment of such distortion
effects is beyond the scope of our work. We note that channel
dispersion poses less of a problem when using short chan-
nels and/or small bandwidth (large duration) photons, making
strategy (5) more justified in these cases.

F. Realizable parameters in cavity QED experiments

We will now consider realistic values of the parameters
Cem,Ccav, and xtl for atom or ion in an optical cavity type
nodes. This allows us to quantify the impacts of the standard
loss mechanisms that we set aside in the previous subsec-
tion. For transmission line loss we consider two cases that
are employed or sought in the literature: optical and telecom
light, for which x(opt)

tl ≈ 1.2–1.5 km and x(tele)
tl ≈ 15–25 km,

respectively [96]. For emitter and cavity losses, we consider
several references that use nodes similar to our exemplar case
and in Table I we list the corresponding cooperativities and
survival probabilities they are (or would be) able to achieve.
The average cooperativities based on this table are C(avg)

em =
9.0 and C(avg)

cav = 5.9, whereas, if the maximum and minimum
values are disregarded in each case, the averages become 3.6
and 5.8, respectively.

We note that the reported ion experiments tend to have
lower emitter and cavity cooperativities than the neutral atom
experiments. One main reason for this is that small mode
volumes are needed to obtain large ion-light couplings g, yet
they also result in a stronger disturbance to the trapping field
due to stray fields caused by charge build up on the dielectric
mirrors in a typical Fabry-Perot type cavity setup. This can be
largely circumvented using a fiber-based Fabry-Perot cavity,
in which the two cavity mirrors are each an end face of an op-
tical fiber, wherein the accumulated charge is distributed over
the fibers’ dielectric surfaces [97]. In Sec. III D we use these
realistic xtl values and the tabulated cooperativity values to

TABLE I. Overview of realizable emitter and cavity parameter
values based on several recent experimental analyses that consider
nodes comprised of a neutral atom or ion coupled to an optical cavity
(in experiments that use two such nodes, we list the values for each,
labeled A and B). Here we list the emitter and cavity cooperativities
(Cem and Ccav) as well as the corresponding maximum probabilities
that a photon is emitted by the atom or ion into the correct cavity
mode, Pem = Cem/(1 + Cem), and then from the cavity into the de-
sired output mode (in the transmission line), Pcav = Ccav/(1 + Ccav).
In some references, Ccav was not given and could not be calculated
directly, yet an analog to Pcav is reported. In these cases we in-
fer the values of Ccav by backtracking (indicated via italics). Here
Ptot = P1P2 = (PemPcav)2 is the combined probability of this full
emission process at node 1 and symmetrically of absorption at node
2, assuming both nodes have the same cooperativities. The emitter in
each of the neutral atom experiments is a 87Rb atom. In the trapped
ion experiments, Refs. [103] and [104] use a single 174Yb+ ion and
up to 5 40Ca+ ions, respectively, while the others [80,97] use a single
40Ca+ ion. An extended version of this table is given in SM Sec. D1.

Pem Pcav Ptot

Emitter type Refs. Cem (%) Ccav (%) (%)

Neutral atom [98] 2.8 74 9.0 90 44
[99,100] 6.0 86 11.9 92 62

[101] 66.7 99 1.3 57 31
[94] 2.9 75 8.0 89 44

[102] A 7.7 89 11.5 92 66
[102] B 6.9 87 6.0 86 56

Ion [103] 0.05 5 0.5 32 0.02
[79,104] 0.3 24 6.7 87 4
[80] A 0.8 45 0.3 20 0.8
[80] B 1.9 66 3.5 78 26
[97] 3.2 76 0.3 2a 2

aThe setup of Ref. [97] is not intended to preferentially produce
photons out of one mirror. Accordingly, the cavity parameter values
reported here appear small (and are excluded from the reported
C (avg)

cav ) yet they could readily be increased by modifying the setup.

inform how implementable our scheme is (in consonance with
an error correction protocol) in different parameter regimes
(see Fig. 7).

III. UNITARY ERRORS

Here we consider errors in the unitary parameter values of
ω0, ξ , and T . We focus on cases where the transformation
duration, tl , is long enough to transform essentially all of the
pulse. That is, we do not analyze errors due to the unitary
not being implemented for long enough, which (at least in
nonlinear optical setups) could be due to not using a long
enough medium for the transformation device. Errors such as
photon absorption or distortion can be corrected for [74,75],
though the corresponding protocols do not correct for errors
due to the undesired production of a photon. Hence we assume
there is no other mechanism for atom 2 to absorb an excitation,
which is consistent with the assumption of a vacuum field
input to system 1 needed to obtain the effective Hamiltonian
of Eq. (3). In particular, we assume that there are no relevant
thermal excitations, which is only valid for systems at low
temperatures relative to their operation frequency such that
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the average thermal occupation number nth = 1/(eh̄ω/kBT − 1)
is nearly zero (it is desirable to have it be far less than 1) [105].
This is typically a very good approximation for optical sys-
tems though systems that operate at lower frequencies need
to be cooled. For instance, at room temperature T = 293 K
optical light with wavelength λ ≈ 700 nm will have nth ≈
3 × 10−31, whereas microwave light with λ ≈ 20 mm will
have nth ≈ 400. Hence adequate cooling is crucial in reduc-
ing thermal noise and loss experienced by guided microwave
channels such as cryogenic microwave links [53,106].

The ideal values of the frequency and stretching parameters
are ω0 = ω0i ≡ ζ = ωL2 − ωL1, which compensates for the
difference in frequencies of the two systems, and ξ = ξi ≡
γ2/γ1, which stretches the wave packet to match the receiving
timescale of cavity 2 [67]. Unlike for ω0 and ξ , there is not
a similarly “nice” expression for the ideal value of the timing
parameter T = ts(1 + 1/ξ ), which controls the starting time
for the transformation ts. However, the goal is simple: for a
given l one need simply select a ts (and hence T ) such that the
largest contributions to β1(t ) are transformed. We can be more
precise in finding the optimal value of T , though we defer this
to Sec. III B, where the analysis will be made easier using the
machinery we will develop in the following section. For now
we simply note that such an optimal T , which we will call T ∗,
must exist.

As we are focusing on errors in the unitary parameters in
this section, we assume that G1 is implemented correctly such
that α1, β1 are as desired (see SM Sec. B for a discussion
of how an appropriate α1 or β1 can be used to determine the
corresponding G1) and that [107]

G2(t ) = ξiG1(ξi(Ti − t )) (16)

with Ti = T |ξ=ξi [see strategy (4) above]. Note that with this
choice, the laser phase φ2(t ) for system 2 is also time reversed
and scaled relative to that for system 1, assuming they are
implemented in the prescribed way. Hence the second laser
pulse is not affected by an error in the unitaries’ values of ξ

and T . (In fact Ti need not take on its optimal value T ∗
i as long

as it is consistent in U and G2 and l is long enough for the
entire wave packet to be transformed.) One can show that the
above choices for the unitary parameters and G2’s relation to
G1 are an optimum, in that given solutions α1 and β1, there
are corresponding solutions for system 2,

αi
2(t ) = eiω0iTiα1(ξi(Ti − t )) (17)

and

β i
2(t ) = −eiω0iTiβ1(ξi(Ti − t )) (18)

(assuming l is long enough for the entire wave packet to be
transformed), which act in a time-reversed manner relative to
their system 1 counterparts. Hence, with the above choices
and assumptions, if atom 1 loses an excitation, α1 goes from
one to zero, then atom 2 will absorb it, as |αi

2| goes from zero
to one.

A. Unitary parameter errors

If an excitation is sent from atom 1, we want atom 2 to
absorb it and hence to achieve |α2(t → ∞)| = 1. Thus, we

analyze here the structure of α2’s EOM, which, after eliminat-
ing β2 in the coupled Eqs. (12c) and (12d), can be found to
be

α̈2 =
(

Ġ2

G2
− γ2

2

)
α̇2 − G2

2α2 + √
γ2eiζ t G2�(t ). (19)

Rearranging the terms, it follows that

L(t )α2(t ) = �(t ) (20)

with

L(t ) := e−iζ t

√
γ2G2

[
d2

dt2
−

(
Ġ2

G2
− γ2

2

)
d

dt
+ G2

2

]
(21)

a linear operator (we assume it is invertible), and so it has
some Green’s function �∗(t, t ′) [108] such that

α2(t ) =
∫ ∞

−∞
dt ′ �∗(t, t ′)�(t ′). (22)

Here we treat �(t ) as some generic (possibly subnormalized)
wave packet of arbitrary shape. This is justified mathemati-
cally as, in terms of the differential equation Eq. (20), �(t )
is just some nonhomogeneous source term, and the Green’s
function solution is indifferent to the origin of �. Note we
cannot design the first laser pulse G1 (even if it is supple-
mented by our unitary) to produce arbitrary wave packets from
system 1 (see SM Sec. B5 for further discussion).

We will now use this Green’s function to derive an expres-
sion for the limiting value of α2 at some end time te by which
the amplitudes have reached steady values (in practice te can
be taken to be +∞ mathematically). Physically, we know
that |α2| � 1, so with the shorthand �(t = te, t ′) = �e(t ′) we
have

1 � |α2(te)|2 =
∣∣∣∣
∫ ∞

−∞
dt ′ �∗

e (t ′)�(t ′)
∣∣∣∣
2

= |〈�e|�〉|2, (23)

where we are assuming �e is well defined and unique (in
practice, this is typically the case with appropriate boundary
conditions, and our numerics in Sec. III C substantiate the
validity of the solution we find), yet we do not yet know its
norm. [We focus on �e(t ′) because our primary goal is that
the excitation is ultimately transferred (as part of the QST
scheme), not to know the exact dynamics of the excitations.
Accordingly, we do not attempt to compute �(t, t ′) for all
times t , though we do note that it must be causal so �(t, t ′ >

t ) = 0.] This is true for arbitrary �, which will be normalized
(in the single-excitation subspace) unless there are losses, say
due to photon absorption. Thus, we can select

|�〉 = |�e〉√〈�e|�e〉
(24)

(up to a phase) to maximize |α2(te)|2 = |〈�e|�〉|2 via the
Cauchy-Schwarz inequality. With this selection, by Eq. (23)
we have

1 � |α2(te)|2 = |
√

〈�e|�e〉|2 = 〈�e|�e〉 (25)

so |�e〉 is either a normalized or subnormalized quantum
state.

We know that with ideal parameters ω0 = ω0i and ξ = ξi

(again, for sufficiently long l with appropriate timing T = Ti)
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our unitary will produce the ideal wave packet

�(t ) = �(t )|ω0=ω0i,ξ=ξi,T =Ti,l→∞

= √
γ2eiω0i (Ti−t )β1(ξi(Ti − t )), (26)

which evidently is the time-reversed, stretched, and frequency
shifted counterpart of the wave packet to be emitted by system
1. Crucially, note that for properly designed α1 that start
at 1 at some early preparation time tp, from Eq. (17) we
have |αi

2(t = te)| = |eiω0iTi | = 1 for te � Ti − tp/ξi and hence
the corresponding normalized �(t ), 〈�|�〉 = 1, would lead
to perfect absorption at system 2 [109]. Thus, again using
Cauchy-Schwarz, we have that

1 = ∣∣αi
2(te)

∣∣2 = |〈�e|�〉|2
� 〈�e|�e〉〈�|�〉 = 〈�e|�e〉 � 1, (27)

where we used Eq. (25) in the last step. It clearly follows that

〈�e|�e〉 ≡ 1 (28)

and hence |�e〉 corresponds to a normalized state vector, and
moreover

|�e〉 = |�〉 ⇐⇒ �e(t ) = �(t ) (29)

(again, up to a phase) as the states must be linearly dependent
to saturate Cauchy-Schwarz.

It thus follows that the probability of success is

Psuccess ≡ |α2(te)|2 = |〈�|�〉|2

=
∣∣∣∣
∫ ∞

−∞
dt ′ �∗(t ′)�(t ′)

∣∣∣∣
2

(30)

as claimed in Eq. (2). That is, the probability of success is
given by the squared overlap of the incident photon wave
packet �(t ) with the ideal wave packet �(t ). Thus, if no errors
occur, the transformed wave packet �(t ) will be equal to the
normalized �(t ) and hence Psuccess = 1. It follows that system
2 can be thought of as a photodetector that in the case of a
click would project on the ideal state via the POVM element

�̂success = |�〉〈�|. (31)

Note we would only register such a click (or not) if we ap-
pended an atomic measurement of the receiving qubit state.
Then, we see that, for the pure input state ρin = |�〉〈�|,

Psuccess = Tr(ρin�̂success) = |〈�|�〉|2, (32)

which matches Eq. (30). Note that this does not assume that
� is normalized; it could be subnormalized due to an er-
ror at system 1, an error in the unitary, or loss during the
transformation.

More generally, such a POVM would be a weighted sum
of projectors (mixed) but here it is a lone projector (pure) as
our process is reversible. For instance, if the system parame-
ters, such as g j , varied due to fluctuations in the position of
the atoms or cavities, then averaging over these fluctuations
would give a mixed POVM [110]. Another relevant situation
would be fluctuations in the unitary transformation parameters
(ω0, ξ , and T ), which would result in the input state ρin of
Eq. (32) being an incoherent mixture of states � with different
parameters according to some underlying classical probability

distribution. Specifically, if there is classical uncertainty or
variation in the unitary transformation parameters, e.g., varia-
tion in ω0 due to the finite linewidth of a control laser, then the
actual probability of success would be Psuccess(ω0, ξ , T ) aver-
aged over the corresponding classical probability distribution.
Note that the ideal wave packet should remain the same as it
is purely determined by the parameters of node 2 and the laser
driving it, G2.

Note that Psuccess is actually just the probability that an
excitation from atom 1 is transferred, via the intermediate
photonic degree of freedom, to atom 2. This assumes that no
other excitations that can excite atom 2 are produced during
the transmission. We additionally assume that the phase of the
initial state of atom 1 is correctly transferred to atom 2, i.e.,
the channel needs to be interferometrically stable [13,82,83].
This can be accomplished using stable local oscillators as
frequency references at each system to establish a common
phase reference for both nodes. Then phase stabilization
techniques can be used to maintain (and control) the phase
induced by the channel, which is easier for shorter chan-
nels [67,82,83,111,112]. We assume such considerations are
taken so we can focus on the impact of U rather the examina-
tion of such phase errors. Even if such phase errors do occur,
error correction protocols could be used to eliminate them
(see Sec. III D). We will proceed under these assumptions so
that Psuccess, as defined in Eq. (30), is a good measure of the
success of the entire QST scheme. Note that what “success”
ultimately means is up to the particular scheme. For instance,
the quantum state fidelity F may be a more apt measure of
successful QST. Here F is given by the magnitude squared of
the overlap of the initial (qubit) state of atom 1 with the final
state of atom 2. Notably in the absence of phase errors F (|ce|)
is bounded below by Psuccess = |α2(te)|2 (see SM Sec. A3 for
details).

B. Optimal timing

Now that we have shown this new perspective, where sys-
tem 2 can be thought of as a single-photon detector, we will
derive an expression that the optimal unitary timing param-
eter T ∗ must satisfy. (Note this is new within the context
of this problem; that POVMs play a key role in describing
photodetection [113–118] and measurements more gener-
ally [119–121] is well known.) We compute T ∗ assuming that
the transformation is implemented correctly in all ways except
that it has a limited duration tl . Then the probability of success
based on the Green’s function argument above is

Psuccess(ts) = |〈�|�l〉|2, (33)

where �l (t ) = �(t )|ω0=ω0i,ξ=ξi,T =Ti is the actual transformed
wave packet for some finite l , assuming the ideal frequency
and stretching parameters as well as consistent timing; �l (t )
is equal to �(t ) for ts < t < t f . Maximizing Psuccess(ts) can
thus be accomplished by solving for the ts (and hence Ti) such
that

d

dts
Psuccess(ts) = 0 (34)

(and verifying that the optimum is a maximum).
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Note that

〈�|�l〉=√
γ1γ2

∫ ∞

−∞
dt [e−iζ (Ti−t )β1(ξi(Ti−t ))χ (t )β1( f (t ))],

(35)

where χ (t ) and f (t ) characterize the different stages of the
transformation and are implicitly evaluated at ω0 = ω0i, ξ =
ξi, and T = Ti here. The parameters Ti, ti, and t f (which
are related to the different stages) all implicitly depend on
ts and so Eq. (34) should be solved numerically in general.
However, in typical cases the contribution to Eq. (35) due to
the untransformed portion of the wave packet (i.e., outside the
interval ts < t < t f ) will be negligible. This is due to some
combination of l being long enough for the β1 product in the
integrand to be small over the relevant domain and the term
being far off-resonant, with |ω0i| 	 γ1,2, such that the phase
rapidly oscillates and the integrand averages to zero. In such
a case, effectively none of the untransformed wave packet
emitted from system 1 will induce a transition at system 2
and so we have

〈�|�l〉 ≈
∫ t f

ts

dt |�(t )|2

= γ2

∫ t f

ts

dt β2
1 (ξi(Ti − t ))

= γ1

∫ ts

ti

dt β2
1 (t ) (36)

(the approximation gets better for large |ω0i| and/or l). As this
inner product is real, we can maximize Psuccess(ts) by finding
the ts such that

0 = d

dts

∫ ts

ts−tl

dt β2
1 (t ) = β2

1 (ts) − β2
1 (ts − tl ). (37)

This is a much simpler condition than in the general case and
it can easily be solved for numerically once G1 is specified
and hence β1 is determined. The corresponding solution is the
ideal value of ts, which we will denote by t∗

s ≡ T ∗
i /(1 + 1/ξi ).

C. Numerical results

To makes plots illustrating errors in the different unitary
parameters, we must specify the first laser pulse G1. A natural
case to consider is the G1 such that the amplitude for atom 1,
α1, logistically decreases from 1 to 0:

α1(t ) = 1 + tanh(−kt )

2
. (38)

Note, for any monotonically decreasing α1, one can compute
the corresponding laser pulse G1 that would generate it [see
Eq. (B7) of SM Sec. B2]. Then the amplitude for cavity 1
can be determined as β1 = −α̇1/G1, which in turn gives the
exact form of the ideal emitted photon wave packet � of
Eq. (26). (See SM Sec. B2 for β1 in this logistic α1 case.)
We can thus compute how errors in the unitary transformation
parameters, i.e., incorrect values of ω0, ξ , and T , degrade the
transfer resulting in a decreased Psuccess. The impact of such
errors on Psuccess can be seen graphically as in Fig. 2, where
we compare a wave packet � due to a unitary transformation
with stretching and timing errors to the corresponding ideal
wave packet �.

FIG. 2. (a) Plot of the ideal wave packet modulus |�| for k = 2,
with the unitary parameters taking on their ideal values ω0 = ω0i =
50, ξ = ξi = 1/2, T = T ∗

i = 19.7 for transformation duration tl =
10, and a nonideal wave packet modulus |�| still with ω0 = ω0i,
but with stretching and timing errors ξ = 0.75 and T = 17. (All
quantities are in units where γ2 = 1.) (b) Plot of the integrand in
Eq. (30) for computing Psuccess in the ideal case (solid line) and the
real and imaginary parts in the nonideal case (dashed and dotted
lines, respectively). Here, for visualization purposes, we decompose
Eq. (30) as Psuccess = [

∫
dt Re(�∗�)]2 + [

∫
dt Im(�∗�)]2 = 0.186,

whereas Psuccess = ∫
dt |�|2 = 1 for the ideal wave packet (which

assumes the entirety of the wave packet emitted from node 1 is
transformed).

Furthermore, we can compute how Psuccess varies as a
function of the amount of error in the various transformation
parameters. For instance, we illustrate the effect of errors in
the unitary parameters ω0, T , and ξ by plotting Psuccess versus
one of these parameters, assuming the other parameters are
ideal in Figs. 3–5, respectively. We work with a set of shifted
“error variables” that are centered at zero: 	ω0 ≡ ω0 − ω0i,
	�ξ ≡ log2 ξ − log2 ξi, and 	T ≡ T − T ∗

i . We consider the
logarithm of ξ in most of our plots as its ideal value is a
ratio of two decay widths, ξi = γ2/γ1, so errors in ξ should
scale multiplicatively, e.g., doubling ξ (with respect to its ideal
value) should be (about) as bad as halving it. In each of these
plots (Figs. 3–5), the solid black lines are a cubic interpolation
between 201 points with the independent variable’s values dis-
tributed evenly over the intervals shown. The corresponding
value of Psuccess is given by the overlap calculation |〈�|�〉|2.
The overlaid colored points are calculated by numerically
solving the coupled ordinary differential equations (ODEs) of
Eqs. (12a)–(12d) for various values of the independent vari-
able (with larger separations because the relevant numerics
are more computationally expensive).

For concreteness we focus on the specific case of a lo-
gistic α1 with k = 2 and the physical parameters ω0i = 50
and ξi = 1/2. Additionally, we assume a long transformation
length l = 10, for which T ∗ = 19.7, such that, in the absence
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FIG. 3. Plot of Psuccess as a function of the detuning 	ω0, assum-
ing the other unitary parameters are ideal. We take the underlying
parameter values to be the same as in Fig. 2 (that is, k = 2, ω0i = 50,
ξi = 1/2, and tl = 10 in units where γ2 = 1). The probability of
success quickly falls off away from resonance, 	ω0 = 0. The solid
line is from a state overlap calculation using Eq. (30) and the overlaid
points are from directly numerically solving coupled EOMs for the
state amplitudes (see main text).

of errors in the unitary, effectively all of the wave packet
would be transformed with Psuccess = 0.999 995 ≈ 1. Here all
quantities are given in natural units in which γ2 = c = 1.
Importantly, these underlying parameter values are not crucial
as, at least for large l as we have here, only the error variables
(made dimensionless with appropriate factors of γ2) and the
wave packet shape (as effectively controlled by α1) matter (see
SM Sec. C). Hence the results gleaned from this specific case
apply more generally. The largest discrepancy in calculating
Psuccess between the original coupled ODEs solution method
and the POVM wave packet overlap method is 1.1 × 10−6,
which we assume to be numerical error (in particular, we see
that this specific error value goes down if we increase our
error tolerance when solving the ODEs). Hence this numerical
comparison serves as a strong indicator of the validity of the
POVM based results we found.

FIG. 4. Plot of Psuccess versus 	T assuming the other unitary
parameters are ideal (with the same underlying physical parameters
as the previous figures). The solid line is from an overlap calculation
and the overlaid points are from solving coupled amplitude EOMs
(see main text).

The probability of success quickly falls off away from its
peak value near unity as ω0, T , and ξ are shifted from their
ideal values. The narrow peak around ω0 = ω0i in Fig. 3,
which has a full width at half maximum (FWHM) of 1.4γ2,
illustrates the importance of frequency conversion. We note
that the shape and width of the Psuccess versus ω0 curve do
not change appreciably as the central frequency |ω0i| is fur-
ther increased. This is because, as alluded to above, only
the detuning of the transformed wave packet from resonance
with system 2 relative to γ2, |	ω0|/γ2, significantly matters
during the transformation. Moreover, for large |ω0i| the un-
transformed portions of the wave packet will not induce an
excitation in atom 2. Thus, even when |ω0i| is very large,
e.g., |ω0i|/γ2 ∼ 106 is typical, the FWHM will be stable. Here
it remains at 1.4γ2 (for this logistic α1 with k = 2γ2 = γ1),
and hence it is critical to control against frequency errors.
Note that wave packets with narrower temporal shapes are
less susceptible to such frequency errors, though this will be
limited by emitting node parameters (see SM Sec. B4).

The couplings γ j tend to be on the order of kHz-MHz, and
are typically smaller in the microwave regime as compared
to the optical. Hence, typical values of γ j can vary by 2 to
3 orders of magnitude between different systems and so ξi =
γ2/γ1 ∼ 100–1000 is reasonable for hybrid interconnects (as-
suming γ2 > γ1, otherwise ξi would be the reciprocal of this).
Experiments across different platforms have demonstrated the
ability to shape photon wave packets, which includes stretch-
ing and compression by these orders of magnitude [94,122–
124]. Note that the results for different ξi can be mapped
between one another because, as mentioned above, Psuccess is
predominantly determined by the error variables, 	�ξ in this
case. Importantly, the seemingly narrow width of Psuccess as a
function of 	ω0/γ2 does not doom us as sub-kHz-MHz level
precision in frequencies (necessary to obtain |	ω0| � γ2)
is possible using standard, tunable, narrow-linewidth lasers
[125–128], as well as mid-infrared and terahertz laser sources
based on difference frequency generation [129,130].

We can quantify how much two of the dimensionless error
variables {	ω0/γ2,	�ξ , γ2	T } depend on one another by
computing their “index of separability” S [131]. For an m × n
matrix A we define S in terms of its singular values {σi(A)}
with maximum σmax(A) as

S (A) := σ 2
max(A)∑
i σ

2
i (A)

, (39)

which is the square of the ratio of the induced 2-norm and
Frobenius norm of A. This index of separability is bounded as
0 < 1/ min{m, n} � S (A) � 1, where the maximum S (A) =
1 entails that A is separable, i.e., can be written as an
outer product of two vectors, and the minimum S (A) =
1/ min{m, n} (which is nearly zero for large matrices) entails
that A is full rank with all equal singular values. However,
practically the smallest observed values will be much larger
than this (∼0.75 here), which comes from comparing to ran-
dom matrices (see SM Sec. C).

For instance, with the same underlying physical parameters
as in Figs. 2–5, we take the joint probability distribution
for γ2	T and 	�ξ assuming ω0 takes on its ideal value,
Psuccess(	T,	�ξ )|ω0=ω0i , compute it on a grid of equally
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FIG. 5. Plots of Psuccess versus ξ on (a) a linear scale and (b) a logarithmic scale with 	�ξ = log2 ξ/ξi, assuming the other unitary parameters
are ideal (with the same underlying physical parameters as the previous figures). The solid line is from an overlap calculation and the overlaid
points are from solving coupled amplitude EOMs (see main text).

spaced values for 	T and 	�ξ yielding a matrix, and then
compute its index of separability to be

ST,ξ ≡ S
[
Psuccess(	T,	�ξ )|ω0=ω0i

] = 0.87. (40)

Similarly, for the other two variable pairs (keeping the third
variable at its ideal value) we find

Sω0,ξ ≡ S[Psuccess(	ω0,	�ξ )|T =T ∗ ] = 0.87 (41)

and

Sω0,T ≡ S[Psuccess(	ω0,	T )|ξ=ξi ] = 0.998. (42)

[Each of these S values is computed on a 121 by 121 grid
(matrix) with the same spacings as described in the Fig. 6
caption over a rectangular region twice as large in each di-
rection as those depicted. These reported values ultimately
serve as upper bounds for the separability index for large
grids. Corresponding lower bounds can be calculated using
the zero-mean counterparts of the Psuccess matrices used here,
yielding respective S values of 0.80, 0.80, and 0.97 compared
to Eqs. (40)–(42). (See SM Sec. C for additional method
details.)]

Hence ω0 and T errors are largely independent of one an-
other (as the corresponding probability distribution is almost
separable, S ≈ 1), whereas errors in ω0 and T are distinctly
dependent on what ξ error occurs. The corresponding joint
probability distributions are given in Fig. 6 and can be used to
get visual intuition for the index of separability. For instance,
Fig. 6(a) illustrates that errors in T and ξ are dependent on
each other, which can intuitively be explained as wave packet
timing errors in T will reduce the overlap, yet there will be rel-
atively more overlap if one also elongates the wave packet in
the time domain by choosing ξ < ξi (	�ξ < 0). This analysis
accounts for dependencies of the errors on one another that are
intrinsic to our model. We leave considerations of other error
dependencies that may be due to a particular implementation
of the transformation U to other work.

D. Error correction

We have highlighted many things can go wrong in the
implementation of the unitary itself, which is in addition to
standard errors due to incorrect driving laser pulses, incorrect

FIG. 6. Density plot of Psuccess as a function the error variable pairs for the transformation parameters (a) T and ξ , (b) ω0 and ξ , and (c) ω0

and T assuming the other unitary parameter is ideal (with the same underlying physical parameters as the previous figures). Each plot is
computed as the cubic interpolation of a 61 by 61 grid of points that are evenly spaced over the region shown and is colored according to the
legend.
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laser frequencies, fluctuating system parameters, as well as
photon absorption or other losses in the transmission line,
cavities, material qubits, or transformation device. With all of
these possibilities, the presence of errors on a single attempt
of a QST scheme like ours is inescapable, though crucially
we can correct for these errors. Accordingly, we will now
discuss the applicability of a few error correction protocols
to our scheme as well as their limitations.

1. ECZ protocols

By using the occupation number encoding our scheme
could naturally be improved by utilizing one of two rela-
tively low overhead error correction protocols [74,75] that
capitalize on the feasibility of suppressing photon production
errors |0〉 → |1〉. We refer to these as the “ECZ protocols”
after their authors’ last names. These protocols can correct for
photon loss and phase errors, which are recurrent in standard
transmission lines, e.g., optical fibers and waveguides. They
do so using auxiliary quantum emitters, again envisaged as
atoms in a cavity, that can encode the state of a qubit at
each node and serve as a form of redundancy. They cannot
correct for errors caused by the creation of photons in the
relevant mode, which is often reasonable as the production of
photons can be suppressed in a well-isolated setup operating
at an appropriate temperature (such that there is low thermal
occupation, nth � 1, which as previously discussed is more of
a problem in microwave-based systems).

Each ECZ protocol is based on repeating a certain primi-
tive transfer operation, which we will refer to as a trial, that
includes 1 or 2 QST attempts (typically 2), local single-qubit
and two-qubit entanglement gate operations, and measure-
ments of auxiliary qubits or states. These local gate and
measurement operations are assumed to be implemented per-
fectly, though in practice these operations will also be error
prone and hence limit how close to unity the ultimate transfer
fidelity can be. In the earlier protocol [74], measurements
are performed on each trial, a successful outcome of which
validates the state transfer. In the later protocol [75], a given
trial serves as a “purification” step to be iterated so that a target
state is approached exponentially, at a rate that gets faster for
smaller net errors in the protocol, and hence can be reached up
to some error threshold in fidelity. (See SM Sec. D for further
discussion of these protocols.)

Both ECZ protocols consider an effective channel in which
on a single transmission attempt (which forms an integral part
of both protocols) the initial state will evolve for large times
(so that no excitations remain in the cavities) according to a
map of the form [132]

|g1〉|g2〉
|e1〉|g2〉 −→ α|g1〉|g2〉

β|g1〉|e2〉 + ϒ1|g1〉|g2〉 + ϒ2|e1〉|g2〉, (43)

where α, β, and ϒ1,2 are constants. These are the form of
the long time limit of the solutions to EOMs analogous to
Eq. (12) with |β| = |α2(te)| and |ϒ2| = |α1(te)|, but with ad-
ditional possible errors included. Importantly for our scheme,
an error in the unitary transformation falls under this class
of channel as it will contribute to photon loss. Chiefly, an
incorrectly shaped incident wave packet will not be absorbed
by node 2 and hence will be directed out a different spatial

mode [87]. This is in addition to loss due to absorption at
the transformation device. Such errors can be accounted for
via the amplitudes β and ϒ1. Thus, our scheme can naturally
be incorporated as an extended version of the transmission
steps in the ECZ protocols, which can aptly be utilized in our
context for reliable QST between hybrid nodes.

We acknowledge that such a protocol would slow down
the rate of entanglement generation due to the time it takes to
repeat the primitive transfer scheme as well as to perform the
requisite local computations. Importantly, however, if we can
achieve reasonably small error probabilities in the necessary
operations the slowdown in rate can be manageable. We will
now illustrate this by considering the expected number of rep-
etitions E [n] of the earlier ECZ protocol (until success) [74]
in the case where |α| = 1, as we have previously assumed in
our scheme, yet its phase could be nontrivial due to a relative
phase error (see SM Sec. D2). Consider an error on a given
transmission of |ϒ1|2 + |ϒ2|2 = ε such that |β|2 = 1 − ε by
normalization. In this model the worst case, that with the
largest E [n], is when we are dominated by ϒ1 errors (i.e.,
|ϒ1|2 = ε and ϒ2 = 0). In this worst case we find

E [n] = 4

(1 − ε)(2 − ε)2
, (44)

which starts at 1 for ε = 0, corresponding to only needing a
single trial without errors, and monotonically increases as a
function of ε ∈ [0, 1], tending towards +∞ as ε → 1 as the
state transfer entirely fails for β = 0 (see SM Sec. D for the
general derivation and further details). Note in fact we expect
to be in this regime, |ϒ1| 	 |ϒ2|, with photon loss and unitary
transformation errors being dominant such that

ε ≈ |ϒ1|2 ≈ 1 − P̃success; (45)

see Eq. (14). In Fig. 7 we use Eqs. (44) and (45) to show
how E [n] depends on the bare Psuccess value with the inclusion
of realistic standard errors (informed by the parameter val-
ues of Table I). Knowing the dependence of E [n] on Psuccess

for experimentally achievable parameter regimes can inform
how much unitary transformation loss or error (quantified
by Psuccess) can be tolerated in a given implementation. Im-
portantly, we find that if small unitary transformation error
probabilities, 1 − Psuccess, can be achieved, then few trials
(protocol repetitions) will typically be needed when linking
nodes with good (yet realizable) cooperativities linked by
relatively short channels (e.g., with lengths around an order
of magnitude smaller than the attenuation distance xtl or less).

2. Alternate protocols and their scope

Depending on the achievable E [n], the magnitude of errors
in the local operations needed for the ECZ protocols, and other
implementation details, the employment of another correction
protocol or even a nondeterministic heralded approach may
be appropriate (see Sec. III E). There are several alternate
error correction protocols that can be used for deterministic
quantum communication via photons. For consistency, here
we focus on protocols that use the mode occupation number
encoding (see SM Sec. A6 for a discussion of other encod-
ings). Such protocols can be realized using multiphoton states
as a type of redundancy, e.g., using so-called binomial [133]
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FIG. 7. Plot of the expected number of ECZ [74] error correction
trials, E [n] from Eq. (44), on a logarithmic scale versus the error
in the itinerant photon’s temporal-frequency shape, 1 − Psuccess. This
is done for realistic cooperativities informed by the values listed in
Table I. Here for simplicity we take Cem = Ccav = C0, as in both
cases currently achievable cooperativity values are around C0 = 5
(dashed lines), while C0 = 15 (solid lines) is more optimistic yet
plausible. These plotted cases could equivalently represent other
cooperativity pairs with the same respective combined probabilities
Ptot = P1P2 of 48% and 78%. For each C0 value, we consider two
cases: no transmission loss (x/xtl = 0, P3 = 1) and transmission loss
over one attenuation distance (x/xtl = 1, P3 = 1/e ≈ 37%), which
are shown in the lower (blue online) and upper (orange online) lines,
respectively, for a given line type (solid or dashed). See Sec. II F for
standard values of xtl for optical and telecom light in fiber. As Psuccess

gets small, tending towards zero (ε → 1), the expected number of
trials quickly grows, diverging like 1/Psuccess to leading order (indi-
cated via the dashed vertical asymptote). For instance, E [n] reaches
10 when ε ≈ 0.75, which in the above cases with cooperativities of
15 and 5 corresponds to bare Psuccess values of about 33% and 53%,
respectively, for x/xtl = 0.

or cat [52] codes, or using photonic graph states (such as clus-
ter states) generated from a single emitter [134–136]. Each
of these alternate protocols comes with their own technical
challenges, especially in hybrid interfacing contexts like ours
where we would need to transform all the itinerant photons
in a logical state preserving way. Moreover, both the sender
and receiver would need to be able to interface with these
multiphoton logical states. For instance, such binomial codes
are realizable with superconducting circuit technology [47]
but are more challenging for other implementations with less
control of the requisite multiphoton states. Similarly, only a
few emitters, including quantum dots and atoms in cavities,
have demonstrated viability in the generation of such pho-
tonic graph states. Accordingly, one advantage of the ECZ
protocols, especially for hybrid interconnects, is their relative
simplicity as the generation of single photon states is a stan-
dard, feasible task for a wide variety of node implementations.

To make such protocols (including those of ECZ) appli-
cable in the NISQ (noisy intermediate-scale quantum [137])
era with error prone operations on small numbers of qubits
one has to compromise between the potential noise reduction
of a given error correction protocol versus the realistic “cost”
of its implementation in a given deterministic QST proposal
or experiment. This cost includes additional resources such
as local operations and controls as well as auxiliary emitters

that can simultaneously be coupled at each node, which all
come with their own potential errors as well as slower rates.
For instance, when adapted to our hybrid case, the earlier
ECZ protocol [74] is contingent on the errors in the unitary
parameters, laser pulses, and system parameters [specifically
α and β in Eq. (43)] being consistent between subsequent
transmissions in a given trial. If this systematic condi-
tion breaks down, then the later ECZ protocol [75] should
potentially be used as it can iteratively purify more general
random errors in the channel even with potentially non-
Markovian decoherence. However, this more comprehensive
nature of the later protocol is at the expense of additional
overhead, in the form of additional local operations, especially
for large errors, so a compromise must be made.

E. Relevance in heralded schemes

At this point, it is useful to contrast our deterministic
scheme against commonly employed heralded schemes for
QST and/or remote entanglement generation. Here we give
the basic idea of such heralded schemes and discuss how the
ideas underlying our work can be applied to them. Such a
heralded scheme may be appropriate if the ECZ or alternate
error correction protocols discussed above for a deterministic
scheme are not realizable (see SM Sec. A7 for some discus-
sion of the pros and cons of deterministic versus heralded
schemes). In many such schemes [80,82,83,138–140], two
nodes each emit a photon that encodes the state of a qubit
in one of its degrees of freedom (typically using a polarization
encoding). Said photonic qubits states are (ideally) maximally
entangled to their emitter’s qubit state. Then a photonic Bell-
state measurement is implemented in which the two photons
interfere at a 50:50 beam splitter and a subsequent coinci-
dent detection of photons with orthogonal qubit states ideally
heralds the creation of a remote entangled state between the
matter qubits at each node, otherwise the procedure is re-
peated until success.

The quality of the generated remote entanglement is ulti-
mately determined by how indistinguishable the two photons
are, whose states we denote by |ψA〉 and |ψB〉. Namely, the
fidelity of the remote entangled state relative to a target max-
imally entangled state is determined by the mode overlap of
the two photons C ≡ 〈ψA|ψB〉 as [138]

F = 1 + |C|2
2

(46)

(note this ignores detector background counts and imper-
fect emitter-photon entanglement, which will further degrade
F [80]). The key physics behind this is that for indistinguish-
able photons, |C| = 1, the beam splitter removes which-path
information leading to the entanglement swapping from the
emitter-photon pairs to the emitters with unit fidelity (after an
appropriate heralded measurement). Meanwhile, the interfer-
ence of distinguishable photons at the beam splitter results in
the addition of a classical mixture to the otherwise entangled
(heralded) joint state of the emitter qubits. This combination
preserves the joint state populations yet reduces the coher-
ences, thereby lowering the state fidelity (i.e., it is a two-qubit
dephasing channel).
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Thus, having nearly indistinguishable photons as inputs
to the photonic Bell-state measurement of such a heralded
scheme is crucial for obtaining high fidelity remote en-
tanglement. This can be connected to our work in that a
transformation like our U (but without time reversal) could
be used to make the photons emitted by heterogeneous nodes
nearly indistinguishable and thus to achieve heralded hybrid
remote entanglement generation (or QST via an additional
quantum teleportation step). Moreover, the analysis of the
errors in such a transformation, to be employed in a heralded
scheme, carries over almost directly from our work with |C|2
effectively replacing Psuccess as a figure of merit for the success
of the scheme.

IV. DISCUSSION

In this paper we have demonstrated theoretically how
unitary transformations to the temporal-spectral mode of a
photon serving as a flying qubit between hybrid quantum
nodes can be used to drastically improve the probability of
successfully transferring quantum information between the
nodes. We showed that the probability of transferring an ex-
citation from one node to another, which is a good measure
of successful quantum state transfer, is given by the modulus
squared of the overlap of the spectral shapes of the actual
and ideal photon wave packets. Doing so makes the role of

the unitary transformation apparent: it should transform the
emitted photon to one with this ideal spectral shape (which
can be calculated). Importantly, our scheme applies quite gen-
erally to any nodes in which controlled quantum light-matter
interaction can be realized to reversibly transfer the state of a
material qubit to a photonic degree of freedom and back, not
just for the type of nodes we focus on, i.e., a three-level atom
in a cavity.

We analyzed the impact of errors in the implementa-
tion of the unitary transformation. This includes showing
how the success of the protocol depends on the deviations
from the ideal parameters as well as quantifying how much
these parameter errors depend on one another. This analy-
sis, along with our considerations of more standard errors,
can be used to determine what kinds of errors dominate in
a given physical setup, say to form an error budget. Fur-
thermore, we discussed how our scheme can naturally be
incorporated with and aid known error correction protocols
to significantly suppress or potentially eliminate unavoidable
errors in deterministic quantum state transfer, even between
hybrid systems. Such an error-corrected adaptation of our
scheme could be used to distribute entanglement in a quantum
network or for distributed quantum computing. As a next step,
our methods could be applied to other material systems and
the unitary transformation’s physical implementation could be
further considered, especially for cases outside of the optical
regime.
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