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Relations between quantum metrology and criticality in general su(1,1) systems
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There is a prevalent effort to achieve quantum-enhanced metrology using criticality. However, the extent to
which estimation precision is enhanced through criticality still needs further exploration under the constraint
of finite time resources. We clarify relations between quantum metrology and criticality through a unitary
parametrization process with a Hamiltonian governed by su(1, 1) Lie algebra. We demonstrate that the de-
termination of the generator in the parametrization can be treated as an extended brachistochrone problem.
Furthermore, the dynamic quantum Fisher information about the parameter exhibits a power-law dependence on
the evolution time as the system approaches its critical point. By investigating the dynamic sensing proposals
of three quantum critical systems, we show that the asymptotic behavior of sensitivity is consistent with our
predictions. Our theory provides a deep understanding of the interplay of quantum metrology and criticality,
providing insights into the underlying connections that involve both quantum phenomena and classical problems.
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I. INTRODUCTION

Quantum metrology and quantum sensing are promising
quantum applications in quantum science and technology
[1–6]. Fundamental quantum properties, such as coherence
[7–9] and entanglement [10–13], are leveraged to enhance
the precision of parameter estimation. Specifically, entangled
quantum probe states have been applied in quantum metrology
to surpass the standard quantum limit, occasionally achiev-
ing the Heisenberg limit [14–18]. However, preparing and
maintaining highly entangled quantum states in many-body
quantum systems face challenges due to decoherence, limiting
the achievable estimation precision in practical applications
[19,20]. Recent exploration has focused on novel quantum
properties, such as nonlocality, correlations, and quantum dis-
cord, as avenues for achieving quantum-enhanced metrology
and sensing [21–25]. Criticality in quantum many-body sys-
tems is gaining theoretical and experimental attention for its
potential in quantum-enhanced sensing [26–34]. Intuitively,
the singularity at the critical point of a quantum phase transi-
tion indicates that a sight change in the parameter can notably
alter the system’s properties, implying the sensing utility.

Basically, two primary approaches exist to implement a
criticality-enhanced sensing protocol. The first method uti-
lizes the divergent fidelity susceptibility of the ground state
near the critical point [35,36]. It introduces parameter depen-
dence into the ground state through an adiabatic quench of
the system [37,38]. However, a notable practical challenge,
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termed “critical slowing down,” is caused by the vanishing
energy gap in many-body quantum critical systems, leading
to the divergence of adiabatic evolution time [31]. In con-
trast, the second method employs a sudden quench scheme,
resembling conventional interferometric metrology [39]. En-
coding of the parameter through the Hamiltonian is set in
the vicinity of the critical point, and the evolved quantum
state is measured to estimate the parameter [40–43]. This dy-
namic framework avoids the critical slowing-down problem,
making it a more practically feasible option for experimental
implementation. Interestingly, a recent study unified these two
methods and proved that the ultimate sensitivity of both is
bounded by the same Heisenberg limit when the evolution
time is explicitly considered, even though it exhibits super-
Heisenberg scaling in certain many-body models within the
first method [31]. In addition, proposals have been made to
harness criticality in quantum many-body systems to prepare
highly entangled probe states for conventional interferomet-
ric sensing schemes [44,45]. In addition, dissipative phase
transition in open quantum systems has been explored to real-
ize criticality-enhanced sensing [46–50]. Furthermore, much
research has concentrated on uncovering the origins of quan-
tum enhancement in critical systems, exploring novel inherent
properties such as nonlocality, symmetry breaking, gap clos-
ing, and long-range entanglement [23,51].

Apart from quantum many-body systems, the criticality in
finite-component quantum systems was recently investigated
to realize quantum-enhanced sensing, encompassing both
the ground-state overlapping method and the sudden-quench
method [52,53]. The appeal of finite-component quantum
critical systems lies in their experimental feasibility, charac-
terized by a few degrees of freedom. The thermodynamic limit
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is easily achieved by adjusting specific system parameters.
A recent dynamic sensing procedure harnesses the critical-
ity inherent in the finite-component quantum Rabi model
(QRM), particularly near the critical point where dynamic
quantum Fisher information (QFI) diverges [40]. Notably, this
scheme circumvents the critical slowing-down problem with
nonstringent demands on probe-state preparation. It enhances
the appeal for real-world implementation in criticality-based
metrology. However, in practical precision measurements,
considering finite evolution time is essential for the sensitivity
of the dynamic sensing scheme. Therefore, it is crucial to
investigate the scaling behavior of the QFI with respect to the
finite evolution time.

In this paper, we analytically study the dynamic sensing
schemes using a family of quantum critical systems, including
the QRM, that can be described using the su(1, 1) Lie algebra.
Through the derivation of an exact closed-form expression for
the dynamic QFI, we reaffirm that the sensitivity of parameter
estimation is enhanced when the system is closed to its critical
point. More importantly, we uncover a significant result: when
the finite evolution time as an essential quantum resource is
explicitly taken into account, the QFI exhibits a power-law
dependence on the evolution time as the system approaches
its critical point. Meanwhile, our study unveils a remarkable
connection between the dynamics of the QFI and the classical
brachistochrone problem. This connection provides valuable
insights into the characteristics and fundamental limitations
of criticality-enhanced dynamic sensing schemes.

II. QUANTUM FISHER INFORMATION FOR A GENERAL
TIME-INDEPENDENT su(1, 1) HAMILTONIAN

The Hamiltonian governed by the su(1, 1) algebra takes the
form

Hλ = r1Kx + r2Ky + r3Kz = r· K, (1)

where the vector r = r(λ) remains constant over the evolu-
tion time t within the parameter space of λ and the operator
K = (Kx, Ky, Kz ) is the generator of su(1, 1) algebra with
components satisfying the following commutation relations:
[Kx, Ky] = −iKz, [Ky, Kz] = iKx, and [Kz, Kx]= iKy. Differ-
entiating the Hamiltonian with respect to λ reads ∂λHλ =
ṙ· K, where ṙ = (∂λr1, ∂λr2, ∂λr3). The QFI associated with
a state ρ(λ) for the parameter λ is defined as [54–57] Fλ :=
Tr(ρL2), where Tr represents the trace and L is the symmetric
logarithmic derivative (SLD) operator, which is determined by
∂λρ = (Lρ + ρL)/2.

Considering a general unitary parametrization process U =
e−iHλt with a λ-independent initial state |ψ0〉, the QFI can be
expressed as the variance of a Hermitian operator H in the ini-
tial state, i.e., Fλ = 4�2[H]|ψ0〉, where H := i(∂λU †)U stands
for the generator of the parametrization process [58–60]. The
operator H has rich physical implications [see Fig. 1(a)]. First,
it satisfies a Schrödinger-like equation with the evolution op-
erator U , i.e., i∂λU † = HU †. Second, it connects the SLD
through a relationship: L = 2iU [H, ρ]U †. Third, it is linked
to an uncertainty relationship with the parameter’s precision
�λ, i.e., �λ�H � 1

2
√

ν
, where ν represents the number of

measurements and �H =
√

〈H2〉 − 〈H〉2 denotes the stan-

FIG. 1. (a) Flow diagram depicting the connections among a
Hamiltonian Hλ characterized by a general form of su(1, 1) Lie
algebra, the generator H of unitary parametrization, and a parameter-
dependent uncertainty relationship. (b) Three-dimensional graph
and its projection onto the x-y plane (the brachistochrone curve)
for the Hermitian operator H in the isotropic quantum Rabi
model (i.e., ζ = 1) for various effective coupling strengths (g̃ =
0.950, 0.980, 0.990, 0.999). The evolution time t ranges from 0 to
π/ω

√
1 − g̃2

0, where g̃0 = 0.950 and the critical point occurs at
g̃ = 1.

dard deviation of H. This uncertainty relationship places a
constraint on the parameter’s precision based on the generator
H.

For Hamiltonians that can be represented by Eq. (1), the
generator H can be derived as

H = −thz + i
∞∑

n=0

(it )2n+2

(2n + 2)!
i2n+1r2nhy

+ i
∞∑

n=0

(it )2n+3

(2n + 3)!
i2n+2r2nhx, (2)

where hx = r � (r � ṙ)· K, hy = (r � ṙ)· K, and hz = ṙ· K
are operators (see Appendix A for a derivation). r =√

r2
1 + r2

2 − r2
3 = √

r � r is a number. Here, we propose a
new operation rule for dot product a � b and cross product
a � b involving vectors a and b. Given the singularity of r,
the generator H is classified as follows:

(1) When r2
1 + r2

2 > r2
3 , r = |r|, where |r| =√

|r2
1 + r2

2 − r2
3 | is a real number. The generator can be

simplified as

H = R· H, (3)

where R = (X (t ),Y (t ), Z (t )) is a time-dependent coefficient
vector, with the components being

X (t ) = |r|t − sinh(|r|t ), (4)

Y (t ) = 1 − cosh(|r|t ), (5)

Z (t ) = |r|t . (6)
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H = (hx/|r|3,−hy/|r|2,−hz/|r|) is the time-independent
vector. Specifically, the operator hx becomes |r|3∂λ( r

|r| )· K.

(2) Conversely, when r2
1 + r2

2 < r2
3 , r = i|r| becomes an

imaginary number, and hx = −|r|3∂λ( r
|r| )· K. Then the gen-

erator is represented as

H′ = R′· H′. (7)

Here, H′ = (−hx/|r|3, hy/|r|2,−hz/|r|), and each component
of R′ = (x(t ), y(t ), z(t )) is given by

x(t ) = |r|t − sin(|r|t ), (8)

y(t ) = 1 − cos(|r|t ), (9)

z(t ) = |r|t . (10)

Notably, one can perceive that when r is an imaginary value,
the x and y components of R′ revert to the classical brachis-
tochrone problem, which satisfies the cycloid equation, i.e.,
Eqs. (8) and (9).

(3) At the critical point of r = 0, i.e., r2
1 + r2

2 = r2
3 , we

have hx = 0. This implies that the generator contains only two
nonzero terms, which is expressed as

H′′ = R′′ · H′′, (11)

with H′′ = (0, hy,−hz ) and R′′ = (0, t2

2 , t ).
Depending on the distinct values of r, we divide the gen-

erator H into three categories. Clearly, a discernible temporal
dependence manifests within the generator. In particular, in
scenarios where r �= 0, H can be interpreted as an extended
brachistochrone problem on the x-y plane, coupled with a
linear dependence in the z direction relative to the evolution
time t . The QFI can be decomposed into six parts (see Ap-
pendix B), characterized by Fλ = 4

∑6
s=1 Fs. As the system

approaches its critical point (i.e., r → 0), we find that the QFI
exhibits a power-law dependence on t , i.e.,

Fλ = Axxt6 + Ayyt
4 + Azzt

2 + Axyt
5 + Axzt

4 + Ayzt
3,

(12)
where Aαβ (α, β = x, y, z) denote time-independent coeffi-
cients that vary with the initial probe state. Notably, for the
large evolution time, the dominance of the sixth power term
within the QFI becomes apparent, leading to the asymptotic
expression Fλ 	 Axxt6.

In addition, under precise operation at the critical point
(i.e., r = 0), the expression for the QFI is simplified as

Fλ = Byyt
4 + Byzt

3 + Bzzt
2, (13)

where Bαβ (α, β = y, z) are time-independent coefficients.
Overall, the dynamic QFI exhibits a power-law dependence
on the evolution time at or near the critical point when the
finite evolution time is explicitly taken into account. These
remarkable results are illustrated and verified in subsequent
examples.

III. QUANTUM RABI MODEL

In this section, we explore the criticality-based dynamic
sensing in the QRM, whose Hamiltonian corresponds to the

su(1, 1) algebra structure. The Hamiltonian of the QRM reads
(h̄ = 1) [61]

HRabi = ωa†a + 

2
σz + Hc, (14)

Hc = g[(σ+a + σ−a†) + ζ (σ+a† + σ−a)]. (15)

Here, a† (a) is the creation (annihilation) operator for the
bosonic mode with frequency ω; σk (k = x, y, z) and σ±
denote the Pauli operators and the raising and lowering op-
erators, respectively, for the two-level system with transition
frequency . The term Hc arises from the coupling between
the atom and bosonic field, characterized by the coupling
strength g. The parameter ζ is a dimensionless coefficient that
captures the ratio between the rotating and counterrotating
terms, and the Hamiltonian reduces to the isotropic QRM for
ζ = 1.

A. Criticality in the quantum Rabi model

Applying the Schrieffer-Wolff transformation to HRabi, in
the limit of /ω → ∞, one can derive a low-energy effective
Hamiltonian for the normal phase in the spin-down subspace
as [62–64]

H (↓)
np = ω

2

(
1 − g2

1

)
X 2

1 + ω

2

(
1 − g2

2

)
X 2

2 , (16)

where X1 = (a + a†)/
√

2 and X2 = i(a† − a)/
√

2 represent
the dimensionless position and momentum operators, respec-
tively (see Appendix C for a derivation). The parameters
g1 = g̃(1 + ζ )/2 and g2 = g̃(1 − ζ )/2 are defined in terms
of the effective coupling strength g̃ = 2g/

√
ω. The QRM

undergoes a quantum phase transition at the critical point
with g̃ = g̃c = 2/(1 + |ζ |) [62]. Under the one-mode bosonic
realization of su(1, 1) algebra, i.e., Kx = (a2 + a†2)/4, Ky =
i(a2 − a†2)/4, and Kz = (a†a + aa†)/4, Eq. (16) becomes

H (↓)
np = ω

(
g2

2 − g2
1

)
Kx + ω

(
2 − g2

1 − g2
2

)
Kz. (17)

According to Eq. (1), we have the vector r = (ω(g2
2 −

g2
1), 0, ω(2 − g2

1 − g2
2)) in relation to the estimated parameter

λ = g̃. One can find that in the QRM with g̃ < g̃c, r = i|r|,
corresponding to case 2; when g̃ = g̃c, r = 0, corresponding
to case 3. Specifically, for the isotropic case in the normal
phase, we have r = i2ω

√
1 − g̃2. Based on Eqs. (8)–(10),

one can see that the period of the cycloid equation gives
τ = π/ω

√
1 − g̃2, and it becomes infinite when the QRM

operates at the phase-transition point. As shown in Fig. 1(b),
the three-dimensional graph and its projection on the x-y plane
illustrate the impact of g̃ approaching the transition point on
the cycloid period. As g̃ increases, it is clear that the brachis-
tochrone curve becomes shorter and shorter, which indicates
that more time is required to complete an entire periodogram.
In other words, the evolution time tends to infinity when g̃ is
close to g̃c.

In Fig. 2, we demonstrate the precision of the estimated
parameter g̃, determined by the quantum Cramér-Rao bound
[65]: �g̃ � 1/

√
Fg̃, where Fg̃ denotes the QFI associated with

g̃. Through a detailed analytical derivation (see Appendix D),
the uncertainty �g̃ is found to be a function that depends
on the evolution time t , the effective coupling strength g̃,
and the ratio ζ . We numerically simulate �g̃ as a function
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FIG. 2. (a) Quantum Cramér-Rao bounds of the effective cou-
pling strength g̃ are plotted as a function of g̃ with different ratios ζ

(i.e., ζ = 0.5, ζ = 1.0, ζ = 2.0), where the evolution time is fixed as
t = π/ω. (b) The quantum Cramér-Rao bound of the isotropic QRM
(ζ = 1) is plotted as a function of the evolution time t with a fixed
coupling strength g̃0 = 0.9 and the corresponding evolution period
τ = π/ω

√
1 − g̃2

0. The inset describes the cycloid equation in the
x-y plane. The initial state of the system is a product state between
the two subsystems; that is, the two-level system is in its spin-down
state |↓〉, and the Bose field is (|0〉 + |1〉)/

√
2

of g̃ for various ζ while keeping the evolution time fixed at
t = π/ω [see Fig. 2(a)]. The curves reveal that for different
ζ , �g̃ decreases with the increase of g̃. Meanwhile, when
g̃ approaches g̃c (i.e., 2

3 for ζ = 2.0, 1 for ζ = 1.0, and 4
3

for ζ = 0.5), �g̃ can reach its minimum. In addition, we
analyze the relation of �g̃ with the evolution time t in the
isotropic QRM under a given coupling strength g̃0 = 0.9, as
depicted in Fig. 2(b). We observe a close connection between
the evolution of �g̃ and the brachistochrone problem. Specif-
ically, �g̃ periodically decreases with the evolution time, and
the period τ is consistent with the cycloid equation [see the
inset of Fig. 2(b)]. Moreover, when the system approaches
the phase-transition point, the period is required to be infinite,
reflecting the critical nature of the system.

B. Asymptotic behavior near the phase-transition point

Now, we focus on the asymptotic behavior of the QFI near
the phase-transition point (i.e., g̃ → g̃c). We show that as the

FIG. 3. (a) The QFI Fg̃ of the isotropic QRM (ζ = 1) is plotted
as a function the evolution time t with different coupling strengths g̃
(i.e., g̃ = 0.9, 0.99, 0.999, 0.9999). Here, the value of the evolution
period τ is fixed as π/ω

√
1 − g̃2

0, with g̃0 = 0.9. (b) The factor A in
the asymptotic expression of the QFI is plotted as a function of the
ratio ζ .

QRM tends to its phase-transition point, taking into account
the finite evolution time, an asymptotic expression of the QFI
is obtained as (see Appendix D for a derivation)

Fg̃ 	 At6, (18)

where the factor A = 320ζ 4ω6/[9(1 + ζ )6] is a function of
the ratio ζ . This expression implies that in the finite evolu-
tion time, the QFI near the phase-transition point exhibits a
proportionality to the sixth power of the evolution time and
correlates with the ratio ζ . Additionally, as the QRM operates
at its phase-transition point (i.e., g̃ = g̃c), the expression for
the QFI in the finite evolution time is derived as

Fg̃ = B1t4 + B2t2, (19)

where the factors B1 = 16ζ 2ω4/(1 + ζ )2 and B2 =
ω2[16ζ 2 + (1 + ζ 2)2]/(1 + ζ )2. Clearly, one can see that
the above expressions for the QFI verify our theory in
Eqs. (12) and (13).

To further illustrate the asymptotic behavior near the
phase-transition point, we numerically simulate the dynamic
QFI of the isotropic QRM, focusing on the QFI over the
evolution time. Figure 3(a) depicts the evolution of the QFI
and its asymptotic expression (Fg̃ 	 5ω6t6/9). One can see

012413-4



RELATIONS BETWEEN QUANTUM METROLOGY … PHYSICAL REVIEW A 110, 012413 (2024)

that as g̃ → 1, the dynamic QFI gradually fits the curve of
the asymptotic expression. In addition, we also simulate the
evolution of the factor A in the asymptotic expression with
respect to the ratio ζ , as presented in Fig. 3(b). It is apparent
that the factor A reaches a maximum value at the ratio ζ = 2.
This indicates that for the anisotropic QRM with ζ = 2, the
QFI can attain its maximum when the system approaches the
phase-transition point.

IV. EXTENDING THE ANALYSIS
TO ADDITIONAL EXAMPLES

In this section, to better illustrate our insights into the re-
lation between quantum metrology and criticality, we extend
the above results to two additional quantum critical systems.
The first one is the Lipkin-Meshkov-Glick model with the
Hamiltonian [66,67]

HLMG = − 1

N

(
S2

x + γ S2
y

) − ηSz, (20)

where Sα = ∑N
i=1 σα,i/2 (α = x, y, z) are the collective spin

operators, σα,i denotes the Pauli matrices of the ith spin,
and N represents the total number of spins. The parameter
γ is the anisotropic parameter, and η describes the effective
external field. By employing the Holstein-Primakoff trans-
formation and utilizing the one-mode realization of su(1, 1)
algebra (see Appendix E), the Hamiltonian can be transformed
into HLMG = (γ − 1)Kx + (2η − γ − 1)Kz. This system ex-
periences a spontaneous symmetry breaking at η = 1, and
when η → 1, the asymptotic form of the QFI with regard to
the parameter η is derived as

Fη 	 Aηt6, (21)

where the coefficient Aη = 4(γ−1)4

9 �2[Kx − Kz]|ψ0〉 is deter-
mined by the initial state |ψ0〉.

The second example is the two-mode bosonic model with
pseudo-anti-parity-time symmetry, described by the Hamilto-
nian [68]

HAPT = δ(a†a + b†b) + iκ (a†b† − ab), (22)

where a (a†) and b (b†) are the bosonic annihilation (cre-
ation) operators in the two modes. The parameters δ and κ

correspond to the detuning and the coupling, respectively.
With the two-mode representation of the su(1, 1) algebra, i.e.,
Kx = (a†b† + ab)/2, Ky = i(ab − a†b†)/2, and Kz = (a†a +
b†b + 1)/2, the Hamiltonian can be rewritten as HAPT =
2δKz − 2κKy. This model undergoes a spontaneous symmetry
breaking when κ = δ. Choosing κ as the parameter to be
estimated, the asymptotic expression of the QFI takes the form
(see Appendix E)

Fκ 	 Aκt6 (23)

when κ → δ. Here, the coefficient is expressed as Aκ =
64
9 δ4�2[Ky − Kz]|ψ0〉.

The above examples once again verify the relation be-
tween quantum metrology and criticality. Indeed, for the
criticality-enhanced dynamic sensing schemes in quantum
systems described by the su(1, 1) algebra, the QFI about the
parameter is proportional to the sixth power of the evolution
time when the system tends to its critical point.

V. DISCUSSION AND CONCLUSION

While the Hamiltonians under consideration adhere to the
su(1, 1) algebra, our theoretical framework can also be ap-
plied to Hamiltonians governed by the su(2) algebra [69,70].
In these Hamiltonians, the connection between the dynamics
of the QFI and the brachistochrone problem, as well as the
power-law dependence of the QFI on the evolution time at the
critical point, can still be revealed. On the other hand, the QFI
described by the function t6 is divergent when the evolution
time tends to infinity. However, in the implementation of the
dynamic quantum sensing, the finite evolution time should be
properly considered as a quantum resource.

In summary, we investigated the sensitivity limits of
criticality-enhanced dynamic sensing schemes. By incorpo-
rating the evolution time as a quantum resource, we revealed
that the QFI near the critical point follows a power-law de-
pendence on the evolution time. Notably, our results also
unveiled a close connection between the dynamics of the QFI
and the classical brachistochrone problem, offering immediate
insights into the time dependence.
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APPENDIX A: GENERATOR IN A GENERAL su(1, 1)
PARAMETRIZATION PROCESS

Here, we give the detailed derivation process for the ex-
pression of H based on the su(1, 1) Hamiltonian Hλ in Eq. (1).
The generator H = i(∂λU †)U is represented in a Taylor ex-
pansion with the unitary operator U = e−iHλt as [60]

H = i
∞∑

n=0

(it )n+1

(n + 1)!
H×n

λ (∂λHλ)

= −tH×0
λ (∂λHλ) + i

∞∑
n=0

(it )2n+2

(2n + 2)!
H×(2n+1)

λ (∂λHλ)

+ i
∞∑

n=0

(it )2n+3

(2n + 3)!
H×(2n+2)

λ (∂λHλ), (A1)

where the superoperator H×n
λ (·) = [Hλ, . . . , [Hλ, ·]] denotes

an nth-order nested commutator operation. Due to the
commutation relations between the generators of su(1, 1) al-
gebra, one finds that there are two terms with the forms
(a1b1 + a2b2 − a3b3) and (a2b3 − a3b2, a3b1 − a1b3, a2b1 −
a1b2), where a j ( j = 1, 2, 3) and bj ( j = 1, 2, 3) are compo-
nents of vectors a and b, respectively. For convenience, we
set (a1b1 + a2b2 − a3b3) = a � b and (a2b3 − a3b2, a3b1 −
a1b3, a2b1 − a1b2) = a � b, which are different from the tra-
ditional dot product a· b and cross product a × b, respectively.
Under the new vector operation rule, we obtain a new commu-
tation relation, i.e.,

[a · K, b · K] = i(a � b) · K, (A2)
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and a new Lagrange formula,

a � (b � c) = −(a � c)b + (a � b)c. (A3)

Then with the above new formulas, we have

H×
λ (∂λHλ) = [r · K, ṙ · K] = i(r � ṙ)· K (A4)

and

H×2
λ (∂λHλ) = [r · K, i(r � ṙ)· K] = −r � (r � ṙ)· K

= r(ṙr − rṙ)· K, (A5)

where r =
√

r2
1 + r2

2 − r2
3 = √

r � r and we have employed

the formula r � ṙ = 1
2

d (r2 )
dλ

= rṙ.
Without loss of generality, denoting hx =−H×2

λ (∂λHλ),
hy = −iH×

λ (∂λHλ), and hz = H×0
λ (∂λHλ), it is proven that hx

and hy are eigenoperators of the superoperator, i.e.,

H×2n+1
λ (∂λHλ) = i2n+1r2nhy,

H×2n+2
λ (∂λHλ) = i2n+2r2nhx. (A6)

Then the generator H in Eq. (A1) can be rewritten as

H = −thz + i
∞∑

n=0

(it )2n+2

(2n + 2)!
i2n+1r2nhy

+ i
∞∑

n=0

(it )2n+3

(2n + 3)!
i2n+2r2nhx. (A7)

Given the particularity of r, the generator H should be
classified and discussed. First, for r �= 0, we have

H = −thz +
∞∑

n=0

(rt )2n+2

(2n + 2)!

hy

r2
−

∞∑
n=0

(rt )2n+3

(2n + 3)!

hx

r3

= −thz − 1 − cosh(rt )

r2
hy + rt − sinh(rt )

r3
hx, (A8)

and the operator hx can be simplified to r3∂λ( r
r )· K by employ-

ing the relationship ∂λ( r
r ) = rṙ−ṙr

r2 . Then, based on whether
r is a real number or an imaginary number, the above equa-
tion can be further divided into two cases, which correspond
to cases 1 and 2. In addition, for r = 0 (i.e., r2

1 + r2
2 = r2

3 ),
hx = 0, so we have

H = −thz + (it )2

2!
i2hy = −thz + t2

2
hy, (A9)

which corresponds to case 3.

APPENDIX B: EXPRESSION FOR THE QFI IN QUANTUM
SYSTEMS GOVERNED BY su(1, 1) ALGEBRA

Upon determining the distinct value of r, one can obtain
the corresponding generator H using su(1, 1) parametrization.
Subsequently, the QFI for the estimated parameter λ is given
by

Fλ = 4�2[H]|ψ0〉. (B1)

Whether r is real or imaginary, the asymptotic equation is the
same. Taking case 2 as an example, the QFI can be decom-
posed into six parts, i.e., Fλ = 4

∑6
s=1 Fs. The specific forms

for each components are

F1 = z2 �2[hz]|ψ0〉
|r|2 , F2 = −2yz

Cov[hy, hz]|ψ0〉
|r|3 ,

F3 = 2xz
Cov[hx, hz]|ψ0〉

|r|4 , F4 = y2 �2[hy]|ψ0〉
|r|4 , (B2)

F5 = −2xy
Cov[hx, hy]|ψ0〉

|r|5 , F6 = x2 �2[hx]|ψ0〉
|r|6 ,

where �2[o]|ψ0〉 = 〈o2〉 − 〈o〉2 and Cov[om, on]|ψ0〉 =
1
2 〈{om, on}〉 − 〈om〉〈on〉 represent the variance and covariance
of the operators hx,y,z in the initial state |ψ0〉, respectively.
When the finite evolution time is taken into account, in the
limit of r → 0, we have

Fλ = Axxt6 + Ayyt
4 + Azzt

2 + Axyt
5 + Axzt

4 + Ayzt
3,

(B3)

where Axx = 1
9 lim|r|→0�

2[hx]|ψ0〉, Ayy = lim|r|→0�
2[hy]|ψ0〉,

Azz = lim|r|→04�2[hz]|ψ0〉, Axy = − 2
3 lim|r|→0Cov[hx, hy]|ψ0〉,

Axz = 4
3 lim|r|→0Cov[hx, hz]|ψ0〉, and Ayz = −lim|r|→04

Cov[hy, hz]|ψ0〉.
In addition, for the critical point of r = 0, the QFI can be

derived as

Fλ = Byyt
4 + Byzt

3 + Bzzt
2, (B4)

where Byy = �2[hy]|ψ0〉, Byz = −4Cov[hy, hz]|ψ0〉, and Bzz =
4�2[hz]|ψ0〉.

APPENDIX C: EFFECTIVE HAMILTONIAN OF THE QRM
IN THE FORM OF su(1, 1) ALGEBRA

For completeness of the content, we present the derivation
process of the low-energy effective Hamiltonian for the QRM
and then obtain the Hamiltonian in the form of su(1, 1) alge-
bra.

The Hamiltonian of the QRM can be expressed in terms of
dimensionless position and momentum operators, X1 = (a† +
a)/

√
2 and X2 = i(a† − a)/

√
2, with the form

HRabi = H0 + Hc, H0 = ω

2

(
X 2

2 + X 2
1

) + 

2
σz,

Hc = g[(1 + ζ )σxX1 − (1 − ζ )σyX2]/
√

2, (C1)

where H0 is the unperturbed part and Hc describes the
coupling between the spin-up subspace (↑) and spin-down
subspace (↓). The derivation of the decoupled Hamiltonian
involves employing the Schrieffer-Wolff (SW) unitary trans-
formation on HRabi in the limit of /ω → ∞ [64,71]. The
transformation process unfolds as follows.

Employing a unitary transformation with the operator
USW = exp(S) on HRabi, where S represents an anti-Hermitian
operator, one can obtain the transformed Hamiltonian as

Heff = U †
SWHRabiUSW. (C2)

The operator S can be approximated as S 	 S1 + S3,
where operators S1 and S3 satisfy specific conditions, i.e.,
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FIG. 4. Variation of the six parts of the QFI Fs with respect to
the effective coupling strength g̃, where the evolution time is fixed
as t = π/ω

√
1 − g̃2

0, with g̃0 = 0.9, and the ratio ζ = 1. The initial
state is consistent with the one presented in Fig. 2.

[H0, S1] = −Hc and [H0, S3] = − 1
3 [[Hc, S1], S1]. In the limit

of /ω → ∞, neglecting the high-order terms, one can derive
the resulting second-order effective Hamiltonian as

Heff 	 H0 + 1
2 [Hc, S1], (C3)

with the operator S1 in the following form:

S1 = −ig̃

√
ω

8
[(1 − ζ )σxX2 + (1 + ζ )σyX1]. (C4)

In the spin-down (↓) subspace, the effective Hamiltonian
takes the form

H (↓)
np = ω

2

(
1 − g2

1

)
X 2

1 + ω

2

(
1 − g2

2

)
X 2

2 . (C5)

Utilizing the one-mode bosonic realization of su(1, 1) algebra,
we have X 2

1 = 2(Kx + Kz ) and X 2
2 = 2(Kz − Kx ). Then the

effective Hamiltonian can be reformulated as

H (↓)
np = r1Kx + r2Ky + r3Kz, (C6)

where r1 = ω(g2
2 − g2

1), r2 = 0, and r3 = ω(2 − g2
1 − g2

2).
Note that the constant terms in the Hamiltonian have no
impact on the QFI, so for simplicity, we ignore them in our
expressions.

APPENDIX D: ASYMPTOTIC EXPRESSION
OF THE QFI IN THE QRM

Below, we derive the asymptotic expression for the QFI in
the normal phase of the QRM. Referring to Eq. (C6), for the
QRM with g̃ < g̃c, we have

hx = (r1ṙ3 − r3ṙ1)(r3Kx + r1Kz ),

hy = (r3ṙ1 − r1ṙ3)Ky, (D1)

hz = ṙ1Kx + ṙ3Kz.

Based on Eq. (B1), the exact expression for the QFI is ob-
tained. We analyze the evolution of the QFI with the estimated
parameter g̃. As shown in Fig. 4, we numerically simulate the
change in six parts of the QFI and find a significant increase
in the contribution of the sixth part F6 as the system tends to

FIG. 5. Evolution contrast between the QFI Fg̃ and its asymptotic
curve when the system approaches the phase-transition point g̃c for
different ratios ζ (i.e., ζ = 0.5, ζ = 2.0, ζ = 4.0).

the phase-transition point infinitely. Thus, for the QRM with
g̃ → g̃c, one can find that the QFI can be approximated as

Fg̃ 	 4F6 = 4x2

|r|6
45ω6ζ 4

(1 + ζ )6
�2[Kx − Kz]|ψ0〉 	 At6, (D2)

where the factor is A = 320ζ 4ω6

9(1+ζ )6 . The factor A is influenced by
the ratio ζ . In the isotropic quantum Rabi model, i.e., ζ = 1,
the above expression for Fg̃ becomes

Fg̃ 	 5
9ω6t6. (D3)

In Fig. 3, we confirmed the asymptotic behavior of the QFI in
accordance with Eq. (D3) under the isotropic condition. Here,
we compare the results for different parameters ζ close to the
phase-transition point, as illustrated in Fig. 5. From the curves,
one can see that the asymptotic curves can fit the QFI very
well.

For the QRM at the critical point g̃ = g̃c, except for hx =
0, the expressions for hy and hz remain consistent with the
formulations previously presented in the normal phase. Em-
ploying the expression for the QFI in Eq. (B4), we obtain

Fg̃ = B1t4 + B2t2, (D4)

where the factors B1 = 16ζ 2ω4/(1 + ζ )2 and B2 =
ω2[16ζ 2 + (1 + ζ 2)2]/(1 + ζ )2. Specifically, for the isotropic
QRM, the QFI simplifies to Fg̃ = 5(ωt )2 + 4(ωt )4.

APPENDIX E: TWO OTHER MODELS GOVERNED
BY THE su(1, 1) ALGEBRA

In this Appendix, we derive the asymptotic expressions for
two additional models governed by the su(1, 1) algebra.

The first example is the Lipkin-Meshkov-Glick model, a
basic quantum model of interacting spins characterized by
the Hamiltonian in Eq. (20). In the thermodynamic limit, the
effective Hamiltonian for the model can be derived through
the Holstein-Primakoff transformation, which leads to the
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following relations [67]:

S+ =
√

N

√
1 − a†a

N
a,

S− =
√

Na†

√
1 − a†a

N
, (E1)

Sz = N

2
− a†a.

In the low-excitation regime, characterized by 〈a†a〉/N � 1,
the approximation

√
1 − a†a/N ≈ 1 holds. Then we have

HLMG ≈ [γ (a† − a)2 − (a + a†)2]/4 + ηa†a, (E2)

which is further written in the form of the one-mode bosonic
realization in su(1, 1) algebra, i.e.,

HLMG = (γ − 1)Kx + (2η − γ − 1)Kz. (E3)

Note that in the above derivation process, the constant terms
have been omitted. By comparing it with Eq. (1), one can find
that the components of the vector r are r1 = γ − 1, r2 = 0,
and r3 = 2η − γ − 1, so that r = 2

√
(η − γ )(1 − η). Choos-

ing η as the parameter to be estimated, for η �= 1, we have

hx = 2r1(r3Kx + r1Kz ), hy = −2r1Ky, hz = 2Kz. (E4)

Then the asymptotic expression for the QFI for the parameter
η can be expressed as

Fη 	 4(γ − 1)4

9
t6�2[Kx − Kz]|ψ0〉, η → 1. (E5)

For the critical point of η = 1, we have hx = 0, and the QFI
becomes

Fη = 4(γ − 1)2�2[Ky]|ψ0〉t
4 + 16�2[Kz]|ψ0〉t

2

+ 16(γ − 1)Cov[Ky, Kz]|ψ0〉t
3. (E6)

The second example is the two-mode bosonic model
with pseudo-anti-parity-time symmetry. Under the two-mode
representation of the su(1, 1) algebra with generators, the
Hamiltonian in Eq. (22) can be written as

HAPT = 2δKz − 2κKy. (E7)

Similarly, by comparing it with Eq. (1), one can see that the
components of the vector r are r1 = 0, r2 = −2κ , and r3 = 2δ

and r = 2
√

(κ + δ)(κ − δ). Choosing κ as the parameter to be
estimated, for κ �= δ, we have

hx = −r3ṙ2(r3Ky + r2Kz ), hy = −r3ṙ2Kx, hz = ṙ2Ky.

(E8)

Then the asymptotic expression of the QFI for the parameter
κ can be obtained as

Fκ 	 64
9 δ4t6�2[Ky − Kz]|ψ0〉, κ → δ. (E9)

For the critical point of κ = δ, we have hx = 0, and the QFI
becomes

Fκ = 16(δ2�2[Kx]|ψ0〉t
4 + �2[Ky]|ψ0〉t

2

+ 2δCov[Kx, Ky]|ψ0〉t
3). (E10)

One can also choose δ as the parameter to be estimated; then
one has

hx = r2ṙ3(r3Ky + r2Kz ), hy = r2ṙ3Kx, hz = ṙ3Kz.

(E11)

In this situation, Eq. (E9) becomes

Fδ 	 64
9 κ4t6�2[Kz − Ky]|ψ0〉, δ → κ, (E12)

and Eq. (E10) becomes

Fδ = 16(κ2�2[Kx]|ψ0〉t
4 + �2[Kz]|ψ0〉t

2

+ 2κCov[Kx, Kz]|ψ0〉t
3). (E13)
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