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Quantifying the effect of noise on unitary operations is an essential task in quantum information processing.
We propose the quantum Wasserstein distance between unitary operations, which shows an explanation for
quantum circuit complexity and characterizes the local distinguishability of multiqudit operations. We show
analytical calculations of the distance between identity and widely used quantum gates including SWAP, CNOT,
and other controlled gates. As an application, we estimate the closeness between quantum gates in a circuit
and show that the noisy operation simulates the ideal one well when they become close under the distance.
Further, we introduce the W1 error rate by the distance and establish the relation between the W1 error rate and
two practical cost measures of recovery operations in quantum error correction under typical noise scenarios.
These applications allow the distance to quantify the effect of noise on unitary operations from the perspective
of experiment resources, which cannot be achieved by existing distance.
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I. INTRODUCTION

Recent progress in quantum information processing has
led to prominent applications, such as simulation [1], control
into computation [2], and machine learning [3,4]. Real-world
imperfections exist and current quantum computers are in-
evitably noisy. So it is essential to quantify how much noise
can influence a quantum operation. It is necessary to analyze
the similarity measure between ideal and actual operation in a
noisy environment. Generally, the similarity measure between
operations can be induced by that between quantum states.
Some prominent measures for states, including trace distance
[5], quantum fidelity, and relative entropy [6], are unitary
invariant. The unitary invariance property makes the distance
between any couple of states with orthogonal supports max-
imal, which is not desirable for some quantum information
processing tasks, such as quantum error correction. Recently,
some nonunitarily invariant Wasserstein distances of different
orders has been proposed [7–9]. In particular, the quantum
Wasserstein distance of order one (W1 distance) [7] derives nu-
merous applications, including quantum differential privacy
[10] and quantum circuit complexity [11]. This paper aims to
construct the similarity measure for unitary operations by the
W1 distance between states.

Various distances, or similarity measures, between opera-
tions have been proposed. Although no distance is generally
suitable for all quantum information processing tasks, each
kind of distance characterizes operations in a specific ap-
plication. The Schatten 1-norm-induced distance is used
to discriminate unitary operations [12], and the Schatten
2-norm-induced distance can be efficiently estimated in quan-
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tum circuit [13]. Gate fidelity is experimentally convenient
[14], but the connection with fault-tolerant computation is not
direct. An alternative is the diamond norm-induced distance
that yields tighter estimates of operation performance. These
widely used distances are unitarily invariant and characterize
global properties of quantum operations, while their local
distinguishability may not be depicted. With regard to the
nonunitarily invariant distance, recently the W1 distance be-
tween channels has been analyzed by proposing the notion
of “neighboring channels” [15], while its relation with quan-
tum information processing tasks remains to be established.
Following a different approach, the W1 distance between op-
erations can also be defined by the maximum deviation of
their effects on overall quantum states. The formulation is
inspired by the discrimination of unitary operations [12].
Compared with the existing distance, it characterizes the local
distinguishability of operations and relates to quantum cir-
cuit complexity and quantum error correction (QKD). These
properties allow it to quantify the effect of noise on unitary op-
erations from the perspective of experiment resources, which
cannot be realized by existing distances. This is the motivation
of this paper.

In this paper we introduce a similarity measure of unitary
operations, named the quantum Wasserstein distance between
unitary operations. We show the properties and analytical cal-
culations of the distance. Compared with the existing distance,
it characterizes the local distinguishability of operations and
shows explanations for circuit complexity. By these char-
acterizing properties, two applications of the distance are
presented. First, the distance is applied to estimate the close-
ness between two sequences of gates in a quantum circuit,
where the noisy operation simulates the ideal one well when
they are close under the distance. Next, the W1 gate error rate is
introduced by the distance, which quantifies the performance
of quantum gates in a noisy environment from the perspective
of physical resources. The relation between the W1 error rate
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and two practical cost measures of recovery operations is
established, which makes the W1 error rate a figure of merit
concerning a specific gate and the experimental requirement
to eliminate noise acting on the gate.

The rest of the paper is organized as follows. In Sec. II
we introduce the notations, some properties of the quantum
W1 distance between states, the formalism of gate error rate,
circuit cost, and experiment cost. In Sec. III we show the
definition, properties and calculation of quantum W1 distance
between operations. In Sec. IV we show the estimation of the
closeness between operations in quantum circuits. In Sec. V
we introduce the W1 gate error rate and show the noisy imple-
mentation of arbitrary single-qubit gate and CNOT gate under
typical noise scenarios. We conclude in Sec. VI.

II. PRELIMINARIES AND NOTATIONS

In this section we show the notations and some facts used in
this paper. In Sec. II A we present the notations of this paper.
In Sec. II B we show the definition and some properties of
quantum W1 distance between states. In Sec. II C we introduce
the definition of the average gate fidelity and gate error rate
induced by different norms. In Sec. II D we introduce two
practical circuit complexity measures, the circuit and exper-
iment cost.

A. Notations

Let {|1〉, |2〉, . . . , |d〉} be the canonical basis of Cd , and
Hn = (Cd )⊗n be the Hilbert space of n qudits. We denote the
set of quantum states on Hn by Sn, the set of traceless, self-
adjoint linear operators on Hn by Mn, and the set of unitary
operations acting on Sn by Un.

Some well-known single-qubit gate include the Hadamard

gate H = 1√
2

[
1 1
1 −1

]
and the Pauli matrices σx =

[
0 1
1 0

]
,

σy =
[

0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. The two-qubit gates include

the CNOT gate UCN =
[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
, the controlled-

Z gate UCZ =
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
, the SWAP gate USW =

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
, and the generalized controlled phase gate

UCP =
⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 eiθ

⎤
⎦. The single-qudit Pauli gate X =

∑3
q=0 |q ⊕ 1〉〈q| and Z = ∑3

q=0 ωq|q〉〈q| for ω = e2π i/d .
The Schatten p-norm for arbitrary matrix A ∈ CN×M and

p ∈ [1,∞) is defined as ‖A‖p = [ Tr(A†A)
p
2 ]

1
p . By setting

p = 1 into the definition of ‖ · ‖p, one has the Schatten 1-norm
(trace norm) given by ‖A‖1 = Tr

√
A†A, which is equal to the

sum of singular values of A. For two states ρ, σ ∈ Sn, 1
2‖ρ −

σ‖1 is typically denoted as the trace distance between ρ

and σ .

B. The quantum Wasserstein distance of order 1 between states

The well-known similarity measures between quantum
states characterize the global distinguishability of states. For

specific applications, such as quantum error correction and
quantum machine learning, it is desirable to show the local
distinguishability and robustness against local perturbations
on the input states. The quantum W1 distance between states
[7] is a good candidate for this task. We show the definition
and some essential properties of the quantum Wasserstein
distance, which will be used in this paper.

First, we show some basic definitions. The quantum
Wasserstein norm of order 1 is a kind of unique norm on Mn

[7]. Following the quantum W1 norm, the quantum Wasser-
stein distance between states ρ and σ is naturally obtained.
They are defined as follows.

Definition 1. We define the quantum W1 norm on Mn as,
for any X ∈ Mn,

‖X‖W1 = 1

2
min

( n∑
i=1

‖X (i)‖1 : X (i) ∈ Mn,

× Tr
i

X (i) = 0, X =
n∑

i=1

X (i)

)
, (1)

where Tri[·] denotes the partial trace over the ith subsystem.
By choosing X = ρ − σ , the quantum Wasserstein distance of
order 1 between two quantum states ρ, σ ∈ Sn is defined as

W1(ρ, σ )

= min

{ n∑
i=1

ci : ci � 0, ρ − σ =
n∑

i=1

ci(ρ
(i) − σ (i) ),

× ρ (i), σ (i) ∈ Sn, Tr
i

ρ (i) = Tr
i

σ (i)

}
. (2)

We list the properties of the available quantum W1 distance
below. They will be used for the derivation and applications
of the quantum W1 distance between operations.

The following fact shows that the quantum W1 norm keeps
the upper and lower bounds in terms of the trace norm.

Lemma 2. (relation with the trace norm, [7]) For any
X ∈ Mn, 1

2‖X‖1 � ‖X‖W1 � n
2‖X‖1. Moreover, if Tri X = 0

for some i ∈ [n], then ‖X‖W1 = 1
2‖X‖1. That is, for any ρ, σ ∈

Sn such that Tri ρ = Tri σ for some i ∈ [n], ‖ρ − σ‖W1 =
1
2‖ρ − σ‖1.

Lemma 3 and Corollary 4 show that the quantum W1 dis-
tance is additive with respect to the tensor product and partial
trace. It is a characteristic property that cannot be satisfied by
the trace distance. In this paper, they are used for calculat-
ing the quantum W1 distance between unitary operations and
deriving its properties.

Lemma 3. (tensorization, [7]) For any X ∈ Mm+n,
‖X‖W1 � ‖ Trm+1...m+n X‖W1 + ‖ Tr1...m X‖W1 , and for any
ρ, σ ∈ Sm+n, ‖ρ − σ‖W1 � ‖ρ1...m−σ1...m‖W1+‖ρm+1...m+n −
σm+1...m+n‖W1 , where η1...m = Trm+1,m+2,...,m+n η and
ηm+1,m+2,...,m+n = Tr1...m η with η ∈ {ρ, σ }. Moreover, for
any ρ ′, σ ′ ∈ Sm and ρ ′′, σ ′′ ∈ Sn, ‖ρ ′ ⊗ ρ ′′ − σ ′ ⊗ σ ′′‖W1 =
‖ρ ′ − σ ′‖W1 + ‖ρ ′′ − σ ′′‖W1 .

Corollary 4. (lower bound for W1 distance, [7]) For
any ρ, σ ∈ Sn, ‖ρ − σ‖W1 � 1

2

∑n
i=1 ‖ρi − σi‖1, where ηi =

Tr1,...i−1,i+1,...,n η with η ∈ {ρ, σ }, and the equality holds
whenever both ρ and σ are product states.
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The following observation states that the quantum W1 dis-
tance recovers the Hamming distance for the quantum states
described by a canonical basis. It contributes to the calculation
of the quantum W1 distance between unitary operations.

Lemma 5. (recovery of Hamming distance, [7]) The quan-
tum W1 distance between vectors of the canonical basis
coincides with the Hamming distance ‖|x〉〈x| − |y〉〈y|‖W1 =
h(x, y), with x, y ∈ [d]n. Here the Hamming distance be-
tween x, y ∈ [d]n is the number of different components,
h(x, y) = |{i ∈ [n] : xi �= yi}| with x = (x1, . . . , xn)T and y =
(y1, . . . , yn)T .

C. Average gate fidelity and gate error rate

In practice, noise is inevitable during the implementation
of quantum gates. It is important to quantify how much the
noise affects quantum states in a system. Average gate fidelity
[14] is first proposed to accomplish such a task. Suppose the
ideal and actual implementation of quantum gate U is denoted
by channels Gid (·) = U (·)U † and V (·) and their resulting
states are ρid and ρac, respectively. Averaging over pure state
input with respect to the Haar measure derives the average
gate fidelity,

η :=
∫

dμ(ρ) Tr[(UρU †)V (ρ)].

Then the gate error rate [16–18] is proposed, whose upper
bound is an appropriate measure to assess progress towards
fault-tolerant quantum computation. It is derived by the error
rate of probability distributions for an arbitrary set of POVM
[16],

e1(U,V ) := max
ρ

d1(ρac, ρid ) = 1
2 max

ρ
‖UρU † − V (ρ)‖1.

The above definition is amended by maximizing over the orig-
inal space Hn and ancillary space H′

n. Besides the notations in
Sec. II A, we denote by S ′

n and U ′
n the set of quantum states

and operations on auxiliary space H′
n. The diamond norm

is then defined as ‖X‖� := supU ′
n

supρ∈Sn⊗S ′
n
‖X ⊗ I (ρ)‖1,

where X ∈ Un, I ∈ U ′
n. Another definition of gate error rate

is derived by [18],

e�(U,V ) = d�(Gid ,V ) := 1
2‖UρU † − V (ρ)‖�.

The error rate e�(U,V ) has a better explanation in fault-
tolerance quantum computation than fidelity and e1(U,V ).
However, neither of the existing error rates shows explana-
tions for quantum circuit complexity and QKD. To deal with
it, we propose the W1 error rate and establish its lower bounds
with the help of W1 distance between operations. It will be
presented in Sec. V.

D. Circuit and experiment cost

Quantum circuit complexity of a unitary operation is de-
fined as the minimal number of basic gates required to
synthesize a desired unitary operation [19]. Computing the
circuit complexity of unitaries is challenging, and no effi-
cient algorithms are known [20]. It has been proved that
the circuit complexity of a unitary is equal to the cir-
cuit cost, up to polynomial factors and technical caveats
[21,22]. Here circuit cost is defined as the length of the

shortest path between two points in curved Riemann ge-
ometry. To be specific, for traceless Hermitian operators
h1, h2, . . . , hm supported on two qudits and normalized as
‖h‖∞ = 1, the circuit cost of a unitary U ∈ Mn is defined
by C(U ) := infr j :[0,1]→R

∫ 1
0

∑m
j=1 |r j (s)| ds where r j satisfies

H (s) = ∑m
j=1 r j (s)h j and U = P exp[−i

∫ 1
0 H (s) ds] with the

path-ordering operator P. Another important complexity mea-
sure is experiment cost, which shows the quantum limit on
converting quantum resources, including energy and time,
to computational resources [23]. For a circuit with a se-
quence of gates U = �kUk , Uk = exp(−iHkTk ), where Tk

is the runtime of the kth gate, and the time-independent
Hamiltonian acting on mk qubits with spectral decomposition
Hk = ∑2mk

i=1 hi|hi〉〈hi|, hi � hi−1. Using the seminorm Ek :=
(h2mk − h1)/2, the experiment cost of implementing the gate
Uk from the perspective of physical resources is defined as
RU := ∑

k RUk = ∑
k mkEkTk . Recently, the lower bounds

for circuit cost and experiment cost have been obtained in
terms of the quantum Wasserstein complexity measure [11].
The fact will be used in Sec. V.

III. DEFINITION, PROPERTIES, AND CALCULATION
OF QUANTUM W1 DISTANCE BETWEEN

UNITARY OPERATIONS

In this section we propose the quantum W1 distance be-
tween unitary operations U,V by the quantum W1 norm. In
Sec. III A we present some properties of the distance. In
Sec. III B we show some analytical calculations, including the
distance between the identity and some widely used unitary
operations.

We show the definition of D(U,V ). It is given by taking the
maximization over all input states in terms of the W1 distance
in Definition 2.

Definition 6. Given two unitary operations U,V ∈ Un,
their quantum Wasserstein distance D(U,V ) : Un × Un → R
is the maximal quantum W1 distance between the states they
have performed on,

D(U,V ) = max
ρ∈Sn

‖UρU † − V ρV †‖W1 . (3)

By the convexity of the quantum W1 norm, we need only take
the maximization over all pure states,

D(U,V ) = max
|ψ〉〈ψ |∈Sn

‖U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †‖W1 , (4)

where the maximum is over all normalized pure states
|ψ〉 ∈ Sn.

A. Properties of D(U,V )

For the convenience of deriving the applications of the
quantum W1 distance between operations, we present some
basic properties of D(U,V ).

Proposition 7. The quantum Wasserstein distance
D(U,V ) between unitary operations U and V satisfies
the following properties:

(1) Faithfulness: D(U,V ) = 0 if and only if U = V ;
(2) Symmetry: D(U,V ) = D(V,U );
(3) Triangle inequality: D(U,V ) � D(U, M ) + D(M,V ),

for U,V, M ∈ Un;
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(4) Right unitary invariance: D(UM,V M ) = D(U,V ),
for U,V, M ∈ Un;

(5) D(NU, NV ) = D(U,V ), for U,V ∈ Un and N ∈ U⊗n
1 ;

(6) Bounds: 0 � D(U,V ) � n, for U,V ∈ Un;
(7) Conjugate transpose invariance with identity:

D(I,U ) = D(I,U †);
(8) D(U2U1,V2V1) � D(U †

1 ,U2) + D(V †
1 ,V2);

(9) Superadditivity under tensorization: D(U1 ⊗ U2,V1 ⊗
V2) � D(U1,V1) + D(U2,V2);

(10) D(U1 ⊗ U2,V1 ⊗ V2) � D(U1 ⊗ I,V1 ⊗ I ) + D(I ⊗
U2, I ⊗ V2).

The proof of Proposition 7 is shown in Appendix A.
In addition to basic properties, the W1 distance shows two

physical properties from the perspective of circuit complexity
and local distinguishability of unitary operations. The quan-
tum W1 distance shows the explanation for quantum circuit
complexity [11], i.e., the distance D(U,V ) shows the lower
bound for the minimum number of gates (smallest circuit) that
is required to transform operations U and V to each other.
This property of D(U,V ) will be explained in Sec. V. On
the other hand, the quantum W1 distance between operations
characterizes the local distinguishability of operations in mul-
tiqudit scenarios. Other unitarily invariant distances cannot
show such a property [7]. This viewpoint is supported by
calculation results, and some comparative examples will be
shown in the last paragraph of Sec. III B.

B. The analytical calculation of D(U,V )

By the definition of quantum W1 distance between states,
calculating the distance analytically is a challenge [7]. The
analytical calculation of the W1 distance between operations is
more challenging than that of two states. We show the analyt-
ical results of the quantum W1 distance between single-qudit
operations, some two-qubit operations, and the multiqubit
operations. Their proof is given in Appendix B.

Although the quantum W1 distance shows benefits mainly
in multiqudit scenarios, it is worth mentioning the quantum
W1 distance between arbitrary single-qudit operations.

Proposition 8. The quantum W1 distance between single-
qudit operations U,V shows

(1) For U,V in two-dimensional Hilbert space, it holds
that D(U,V ) =

√
1
2 (1 − cos α), where {1, eiα} are the eigen-

values of VU †.
(2) For U,V in d-dimensional Hilbert space with d >

2, it holds that D(U,V ) =
√

1 − min∑d−1
=0 p j=1 | ∑ j p jeiα j |2,

where p j � 0 and {eiα0 , eiα1 , . . . , eiαd−1} are the eigenvalues
of VU †.

Remark 9. According to the results presented in Ref. [24],

min∑
j p j=1

∣∣∣∣∣∣
∑

j

p je
iα j

∣∣∣∣∣∣ =
{

cos �(U †V )
2 0 � �(U †V ) < π,

0 �(U †V ) � π,
(5)

where �(U †V ) denotes the length of the smallest arc contain-
ing all the eigenvalues of unitary operation U †V on the unit
circle.

Next we consider the W1 distance between two-qubit uni-
tary operations U and V . Using Property 4 it holds that
D(U,V ) = D(I,VU †), which implies that it is of great

importance to consider D(I, M ), where M is a unitary opera-
tion. First, the W1 distance between I and the controlled-phase
gate is considered. Let U (k)

θ be a two-qubit diagonal operation
whose kth diagonal entry is eiθ and other diagonal entries are
1, for k = 1, 2, 3, 4. We have the following fact.

Proposition 10. The quantum W1 distance between I and
the gate U (k)

θ is equal to
√

2 sin θ
2 , i.e., D(I,U (k)

θ ) = √
2 sin θ

2 .
The CNOT and controlled-Z gate are widely used controlled

gate in computation. One can see that the controlled-Z gate
UCZ = U (4)

π in Proposition 10. On the other hand, it holds
that UCZ = (I ⊗ H )UCN (I ⊗ H ). We have the following fact
based on the two facts and the single-qubit unitary invariance
of ‖ · ‖W1 .

Corollary 11. The quantum W1 distance between I and
controlled-Z and CNOT gate is equal to

√
2, i.e., D(I, CZ) =

D(I, CNOT) = √
2.

The operations M described by four-order permutation
matrices are also widely used in quantum computation, for
example, SWAP gate. We consider D(I, M) and the following
result is obtained.

Proposition 12. Any two-qubit unitary gates switching
|0, 1〉〈0, 1| to |1, 0〉〈1, 0|, or equivalently |1, 0〉〈1, 0| to
|0, 1〉〈0, 1|, have the same quantum Wasserstein distance with
the identity I , i.e., D(I,Uk ) = 2, where

U1 =

⎡
⎢⎢⎣

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
1 0 0 0

⎤
⎥⎥⎦, U2 =

⎡
⎢⎢⎣

∗ 0 ∗ ∗
∗ 0 ∗ ∗
0 1 0 0
∗ 0 ∗ ∗

⎤
⎥⎥⎦, (6)

U3 =

⎡
⎢⎢⎣

∗ ∗ 0 ∗
0 0 1 0
∗ ∗ 0 ∗
∗ ∗ 0 ∗

⎤
⎥⎥⎦, U4 =

⎡
⎢⎢⎣

0 0 0 1
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦. (7)

For any unitary operations U,V , the unitary operations M
satisfying M = (U ⊗ V )Uk (U ⊗ V )† show the same distance
with identity I , i.e., D(I, M ) = 2.

Obviously, the SWAP gate is included in Proposition 12.
Corollary 13. The quantum W1 distance between I and the

SWAP gate is equal to 2, i.e., D(I, swap) = 2.
Finally, we show a fact considering the W1 distance

between I and a multiqudit operation. It shows the local dis-
crimination of quantum operations, which is a characteristic
property of the quantum W1 norm between operations.

Proposition 14. For an n-qudit operation consisted of ten-
sor product of k Pauli gate X and n − k identity I , the quantum
W1 distance between it and identity I is equal to k, i.e.,
D(I⊗n, I⊗(n−k) ⊗ X ⊗k ) = k for k = 1, 2, . . . , n, up to permu-
tations of the qudits.

Using the calculation results above, we illustrate that
D(U,V ) characterizes the local distinguishability of oper-
ations. Further we compare D(U,V ) with some unitarily
invariant distance in the following examples.

(1) Local operations: From Proposition 14, we have
D(I⊗2, I ⊗ X ) = 1 and D(I⊗2, X ⊗2) = 2. Adding the Pauli
gate X on the second qudit increases the W1 distance
between identity and the total operation. Such a local
distinction cannot be detected by unitarily invariant
distance, as unitary invariance makes the distance between
any couple of quantum states with orthogonal supports
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maximal. In particular, one has maxρ
1
2‖ρ − (I ⊗ X )ρ(I ⊗

X )‖1 = maxρ
1
2‖ρ − (X ⊗ X )ρ(X ⊗ X )‖1 = 1, and

minρ F (ρ, (I ⊗ X )ρ(I ⊗ X )) = minρ F (ρ, (X ⊗ X )ρ(X ⊗
X )) = 0.

(2) Nonlocal operations: We consider two nonlocal
gates CNOT and Q = (I ⊗ σx )UCN (σx ⊗ I ) differing locally
from CNOT gate. From Propositions 11 and 12, we have
D(I, cnot ) = √

2 and D(I, Q) = 2. Their local distinguisha-
bility cannot be described by trace distance fidelity, as we
have maxρ

1
2‖ρ − UCNρUCN‖1 = maxρ

1
2‖ρ − QρQ†‖1 = 1

and minρ F (ρ,UCNρUCN ) = minρ F (ρ, QρQ†) = 0.

IV. ESTIMATION OF THE CLOSENESS BETWEEN
OPERATIONS IN QUANTUM CIRCUIT

In this section we show that the W1 distance between uni-
tary operations is vital in estimating the closeness between
operations in quantum circuits. A small D(U,V ) implies that
any measurement performed on the states U |ψ〉 shows ap-
proximately the same measurement statistics as that of V |ψ〉,
so U and V plays almost the same role in quantum circuits.
The noisy operation simulates the ideal one well when they
become close under the W1 distance.

In a noisy scenario, we denote the ideally and actually
implemented unitary operations by U and V , respectively. The
W1 distance between them characterizes how close their mea-
surement outcomes will be in terms of POVM. It is realized
by deriving an upper bound of the difference in probability
between measurement outcomes.

Proposition 15. Given two operations U and V performed
on the same initial state |ψ〉. Let Mm � 0 be an element
in a POVM performed on U |ψ〉 and V |ψ〉, with P(m)

U and
P(m)

V being the probability of obtaining the outcome m in the
measurements, respectively. The difference between P(m)

U and
P(m)

V is upper bounded by the quantum W1 distance between U
and V as ∣∣P(m)

U − P(m)
V

∣∣ � 2λ0(Mm)D(U,V ),

where λ0(Mm) ∈ (0, 1] is the maximal eigenvalue of Mm.
Proof. Since P(m)

U and P(m)
V is the probability of obtaining

the measurement outcome m, we have∣∣P(m)
U − P(m)

V

∣∣ = |〈ψ |U †MmU |ψ〉 − 〈ψ |V †MmV |ψ〉|.
The POVM operation Mm is positive with the unique positive
square root, denoted by Nm, i.e., Mm = NmN†

m and
∑

m Mm =
I . Hence,∣∣P(m)

U − P(m)
V

∣∣
= | Tr[N†

m(U |ψ〉〈ψ |U †) − V |ψ〉〈ψ |V †)Nm]|

=
∣∣∣∣∣
∑

k

λk (N†
m(U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †)Nm)

∣∣∣∣∣
�

∑
k

|λk (N†
m(U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †)Nm)|

= ‖N†
m(U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †)Nm‖1,

where λk (X ) denotes the kth eigenvalue of the operator
X , and λ0 � λ1 � · · · � λk . . .. The last equality comes

from ‖X‖1 = ∑
k |λk (X )| for normal operators. Using the

fact that ‖ABC‖1 � ‖A‖∞‖B‖1‖C‖∞ and ‖ρ − σ‖1 � 2‖ρ −
σ‖W1 , we have

‖N†
m(U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †)Nm‖1

� ‖N†
m‖∞‖U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †‖1‖Nm‖∞

� 2‖N†
m‖∞‖Nm‖∞‖U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †‖W1

� 2‖N†
m‖∞‖Nm‖∞D(U,V )

= 2λ0(Mm)D(U,V ),

where the last equality follows from ‖Nm‖∞ = s0(Nm) =√
λ0(Mm). Here s0(X ) denotes the maximal singular value of

operator X . �
Proposition 15 implies that if a kind of noise takes the

ideal operation to another one and they are close under the W1

distance, then the noise has little effect on the ideal operation.
From the perspective of unitary operation discrimination, a
small D(U,V ) also implies that U and V cannot be perfectly
distinguished.

In a quantum circuit, the realization of target operations
always includes a sequence of unitary gates. So it is important
to obtain the distance between two sequences of gates. In
analogy to quantifying the distance between an entangled state
and a product state, one may be interested in the distance
between nonlocal quantum gates and tensor product gates.

Proposition 16. Two sequences of multiqubit unitary gates
UtUt−1 . . .U1 and VtVt−1 . . .V1 acting on Sn, where where Vj

can be decomposed as the tensor product of single-qubit gates,
for j = 1, 2, . . . , t . The quantum W1 distance between them
adds at most linearly with respect to the distance of each
couple of gates,

D(UtUt−1 . . .U1,VtVt−1 . . .V1) �
t∑

k=1

D(Uk,Vk ).

Proof. We prove it by induction. First we show the case for
t = 2,

D(U2U1,V2V1) � max
ρ

‖U2(U1ρU †
1 )U †

2 − V2U1ρU †
1 V †

2 ‖W1

+ max
ρ

‖V2U1ρU †
1 V †

2 − V2V1ρV †
1 V †

2 ‖W1

= D(U2,V2) + D(V2U1,V2V1).

Using property, one has D(V2U1,V2V1) = D(U1,V1). So
we have D(U2U1,V2V1) � D(U2,V2) + D(U1,V1). Suppose
the case for t − 1 holds, i.e., D(Ut−1 . . .U1,Vt−1 . . .V1) �∑t−1

k=1 D(Uk,Vk ). Then we have

D(UtUt−1 . . .U1,VtVt−1 . . .V1)

� D(Ut ,Vt ) + D(Ut−1Ut−2 . . .U1,Vt−1Vt−2 . . .V1)

�
t∑

k=1

D(Uk,Vk ),

which is the desired result. �
Propositions 15 and 16 can be applied to estimate the

measurement outcome of the circuits containing different
sequences of gates U1,U2, . . . ,Ut and V1,V2, . . . ,Vt . In prac-
tice, we set a tolerance α > 0 of the probability that two
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circuits show the same measurement outcome. We can esti-
mate how close the effects of these gates are in the circuits,
i.e., whether the probability of different measurement out-
comes is within the tolerance, only by the distance D(Uk,Vk ).
Specifically, to make the probability of different measurement
outcomes be within the tolerance α, it suffices that

∣∣P(m)
Ut ...U1

− P(m)
Vt ...V1

∣∣ � 2λ0(Mm)
t∑

k=1

D(Uk,Vk ) � α, (8)

where P(m)
Ut ...U1

, P(m)
Vt ...V1

and λ0(Mm) have been defined in Propo-
sition 15. The inequality (8) holds when

D(Uk,Vk ) � α

2t maxm{λ0(Mm)} (9)

for k = 1, 2, . . . , t . An example of the above process is given.
Example 17. A sequence of ideal qubit gates

U1,U2, . . . ,U5 in the quantum circuit is subject to the unitary
noise process Eθ = diag{eiθ , e−iθ }, where θ ∈ [0, π ] is the
parameter related to noise. The ideal gates are transformed
into a sequence of noisy gates V1,V2, . . . ,V5, where

Uk =
[

eαk i 0
0 eβk i

]
, Vk = UkEθ =

[
e(αk+θ )i 0

0 e(βk−θ )i

]
for k = 1, 2, . . . , 5. Using Proposition 8, one has D(Uk,Vk ) =
| sin θ |. Suppose the following POVM {Mm : m = 1, 2, . . . , 8}
is carried out in the circuit,

M1 =
[

1
8 − 1

8 i
1
8 i 1

8

]
, M2 =

[
1
8

1
8 i

− 1
8 i 1

8

]
, M3 =

[
1
8

1
8

1
8

1
8

]
,

M4 =
[

1
8 − 1

8

− 1
8

1
8

]
, M5 =

[
1
8

1
8 eπ i/4

1
8 e−π i/4 1

8

]
,

M6 =
[

1
8

1
8 e5π i/4

1
8 e−5π i/4 1

8

]
, M7 =

[
1
4 0

0 0

]
,

M8 =
[

0 0

0 1
4

]
.

We set the probability error tolerance α = 30%. To make the
probability of different measurement outcomes be within the
tolerance α for any initial state |ψ〉, i.e., |P(m)

Ut ...U1
− P(m)

Vt ...V1
| �

α, it suffices that

D(Uk,Vk ) = | sin θ | � α

10 maxm{λ0(Mm)} = 0.12.

It implies that each noisy gate Vk simulates the ideal gate Uk

within the tolerance effectively if the parameter of local noise
θ ∈ [0, arcsin(0.12)] or θ ∈ [π − arcsin(0.12), π ].

V. THE W1 GATE ERROR RATE UNDER NOISE

In this section we introduce a measure quantifying the
effect of noise on quantum gates, named the W1 gate error
rate. We establish the relation between the W1 error rate
and two real cost measures of recovery operation, including
circuit and experiment costs. Further we show two exam-
ples considering the implementation under depolarizing and
unitary noise for arbitrary single-qubit gate and CNOT gate,
respectively.

Following the idea of proposing the gate error rate in
Sec. II C, we define the error rate of a quantum gate as follows.

Definition 18. The W1 error rate of the implementation of
n-qubit unitary gate U is given by

e(U,V ) := 1

n
max

ρ
‖UρU † − V (ρ)‖W1 , (10)

where ρ ∈ Sn and V is a channel that describes the noisy
implementation of U .

For two states ρ, σ ∈ Sn, we have ‖ρ − σ‖W1 ∈ [0, n] by
Definition 2 and hence the error rate e(U,V ) ∈ [0, 1]. Com-
pared with the error rate induced by Schatten 1-norm and
diamond norm in Sec. II C, the following relation can be
obtained, e(U,V ) � e1(U,V ) � e�(U,V ), where the first in-
equality comes from Lemma 2, and the second one follows
directly from their definitions.

We show the benefits of W1 error rate from the perspec-
tive of QEC and circuit complexity. These results imply that
e(U,V ) is a figure of merit quantifying the effect of noise
on a specific unitary operation, from the perspective of ex-
periment cost to recover the influence of noise. We consider
the noise process described by the channel V = G ◦ E , where
G(·) = U (·)U † with U ∈ Un denotes the ideal implementation
of gate, and E (·) = ∑N

k=1 pkVk (·)V †
k denotes a general noise

process described by the mixed unitary channel [25], with a
probability vector (p1, p2, . . . , pN ) and V1,V2, . . . ,VN ∈ Un.
The error rate of gate U and its upper bound is given by

e(U,V ) = 1

n
max

ρ

∥∥∥∥UρU † − U

( N∑
k=1

pkVkρV †
k

)
U †

∥∥∥∥
W1

(11)

� 1

n

∑
k

pkD(I,UVkU
†), (12)

where the inequality follows from the convexity of ‖ · ‖W1 .
From (12), analyzing the upper bound of e(U,V ) suffices
to consider the noise process described by each unitary er-
ror Vk . We set the noise channel EVk (·) = Vk (·)V †

k and noisy
implementation of gate VVk = G ◦ EVk = UVk (·)V †

k U †. Using
Properties 4 and 7, one has e(U,VVk ) = 1

nD(I, PVk ), where
PVk = UV †

k U † is the recovery operation of ideal gate U under
noise VVk , as performing PVk on the noisy gate UVk can correct
the influence of noise, i.e., PVk (UVk ) = U .

As we all know, quantum error correction (QEC) in-
cludes the error detection and recovery step [19]. Recovery
operations in the second step are to eliminate the noise on spe-
cific qubits, such as PVk = UV †

k U † above. Compared with the
existing error rate introduced in Sec. II C, the W1 error rate
has an explanation in terms of the physical resource cost
for recovery operations. Since D(U,V ) characterizes lo-
cal distinguishability, the local alteration for operations will
proportionally change the total distance, while no unitarily
invariant distance has this property [7,26]. For example, an
ideal gate Uid = σx ⊗ σx is performed on ρ = |00〉〈00|. Two
noisy implementation of Uid shows U (1)

ac = I⊗2 and U (2)
ac =

I ⊗ σx, which generates the resulting state ρ (k)
ac . The dis-

tance d (·, ·) induced by unitary-invariant norms or fidelity
shows d (Uid ,U (1)

ac ) = d (Uid ,U (2)
ac ), while D(Uid ,U (1)

ac ) = 2,
and D(Uid ,U (2)

ac ) = 1. In the recovery step of QEC, two gates
σx ⊗ σx are required for ρ (1)

ac , and only one σx is required for
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ρ (2)
ac . So U (1)

ac is farther away from Uid than U (2)
ac in terms of

experiment resource, which is characterized by W1 distance
and error rate.

Next we introduce a fact considering the quantum W1 dis-
tance and circuit complexity. The main results of Ref. [11]
show the lower bounds for circuit cost C(U ) and experiment
cost R(U ) for an unitary operation U . We rephrase them by
quantum W1 distance as follows:

C(U ) � 4
√

2D(I,U ), (13)

R(U ) � 1
2D(I,U ). (14)

It shows that D(I,U ) provides the lower bounds for the
minimum number of basic gates and resources to realize the
operation U . Hence, D(U,V ) provides the lower bounds to
transform the unitary operation U to V .

We establish the relation between W1 error rate and circuit
complexity based on the above fact. We choose U as the
recovery operation PVk , and thus C(PVk ) and R(PVk ) are the
practical cost to recover the influence of noise VVk on the ideal
operation U . We consider all possible unitary errors in the
mixed unitary channel E (·). Combined with (12)–(14), it can
be obtained that

e(U,V ) �
∑

k

pk

4
√

2n
C(PVk ), (15)

e(U,V ) �
∑

k

2pk

n
R(PVk ). (16)

It implies that the W1 error rate e(U,V ) provides a lower
bound of circuit and experiment cost for recovery operation
of U under arbitrary noise V . That is to say, e(U,V ) is related
to the minimal quantum resources required to eliminate the
influence of noise E (·) during the realization of operation
U . Thus, the W1 error rate is a figure of merit concerning
the noisy gate and the experimental requirement to eliminate
noise acting on the gate. So it quantifies the effect of noise
from the perspective of physical resources.

Finally, we show two examples of noisy implementation of
CNOT gates.

Example 19. We consider the depolarizing noise and uni-
tary noise acting on a single qubit. The noise process is
given by the channels respectively, Edep,1

p (ρ) := (1 − p)ρ +
pI2

2 , Euni
θ (ρ) := EθρE†

θ , where p ∈ [0, 1] and Eθ is a unitary
operator with eigenvalues e±θ i for θ ∈ [0, π ]. The error rate
of a single-qubit gate U shows

e(U,Vdep,1) = p

2
, e(U,Vuni ) = √

1 − cos 2θ. (17)

The average gate fidelities for depolarizing noise and unitary
noise are, respectively [18],

ϕdep
p = 1 − p

2
, ϕu

θ = 1

3
+ 2

3
cos2 θ. (18)

The error rate induced by the diamond norm is [18]

e�(U,Vdep,1) = 3

4
p, e�(U,Vuni ) = sin θ. (19)

Generally, the advantage of quantum W1 norm appears for
the multiqubit case. We show the example for the W1 error rate

of noisy implementation of the CNOT gate in the presence of
two typical kinds of noise.

Example 20. We consider the noisy implementation of the
CNOT gate under unitary and depolarizing noise as follows.

First, we consider the W1 error rate of noisy implementa-
tion of the CNOT gate under unitary noise channel ECP(ρ) =
UCPρU †

CP, for UCP = diag{1, 1, 1, eiθ }, θ ∈ [0, 2π ). We de-
note the actual implementation of the CNOT gate under unitary
noise as Vuni,2 = GCN ◦ ECP, for GCN (·) = UCN (·)UCN . From
Proposition 10, we have

e(CNOT,Vuni,2) = 1

2
D(I,UCNUCPUCN ) = 1√

2
sin

θ

2
.

Using (15), the lower bounds for circuit cost and experiment
cost are, respectively,

C(UCNUCPUCN ) = 8 sin
θ

2
, (20)

R(UCNUCPUCN ) = 1√
2

sin
θ

2
. (21)

It is the minimum quantum resource required to eliminate
the influence of noise Vuni,2 during the implementation of the
CNOT gate.

Next, we consider the depolarizing channel acting
on S2 as Edep,2

p (ρ) := (1 − p)ρ + pI4
4 = (1 − p)ρ +

p
16

∑3
s,t=0(X sZt )(ρ)(X sZt )†, where X = ∑3

q=0 |q ⊕ 1〉〈q|
and Z = ∑3

q=0 iq|q〉〈q|. We denote Vdep,2 = GCN ◦ Edep,2
p as

the actual implementation of the CNOT gate. The W1 error rate
of the CNOT gate can be estimated as follows:

e(CNOT,Vdep,2) = 1

2
max

ρ

∥∥GCN (ρ) − GCN ◦ Edep,2
p (ρ)

∥∥
W1

∈
[

3

8
p,

3

4
p

]
, (22)

where the range is derived from Lemma 2, i.e.,
3
8 p = p

2 maxρ
1
2‖UCNρUCN − I4

4 ‖1 � e(CNOT,Vdep,2) �
p
2 maxρ ‖UCNρUCN − I4

4 ‖1 = 3
4 p. Using (12), we have

e(CNOT,Vdep,2) � p

32

3∑
s,t=0

D(I,UCN X sZtUCN ). (23)

From (15), the average lower bounds of circuit cost and ex-
periment cost concerning the depolarizing noise are

p

16

∑
s,t �=0

C(UCN X sZtUCN ) � 3
√

2p, (24)

p

16

∑
s,t �=0

R(UCN X sZtUCN ) � 3

8
p, (25)

respectively.

VI. CONCLUSION

In summary, we have introduced the quantum Wasserstein
distance between unitary operations, we presented its proper-
ties and analytical calculations. The characterizing properties
of this distance is that it characterizes local discrimination and
shows an explanation for circuit complexity. The closeness
between operations can be estimated in quantum circuits with
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W1 distance. The smaller the distance is, the similar their mea-
surement outcomes will be in the circuit. As an application,
we introduced the W1 error rate by the distance. We showed its
estimation and established the relation between the W1 error
rate and two practical cost measures of recovery operations,
including circuit cost and experiment cost. We showed two
examples considering the implementation under depolarizing
and unitary noise for an arbitrary single-qubit gate and CNOT

gate, respectively. So the W1 distance quantifies the effect of
noise on unitary operations from the perspective of experi-
ment resource.

Many problems arising from this paper can be further ex-
plored. The analytical calculation of the W1 distance between
arbitrary operations is left as an open problem. It may be
efficiently approximated by sampling method in [13]. As a
similarity measure of operations, the W1 distance may be
employed to design the loss functions in quantum operation
learning. On the other hand, we have shown that D(I, CNOT)
= √

2 and D(I, SWAP) = 2. In [27], it has been obtained that
the entangling power of CNOT and SWAP gates are one and
two ebits, respectively. So this distance may be developed to
characterize more properties of unitary operations, such as
entangling power.

ACKNOWLEDGMENTS

We thank L. Yu for a careful reading of the paper. L.C. was
supported by the NNSF of China (Grant No. 11871089) and
the Fundamental Research Funds for the Central Universities
(Grant No. ZG216S2005). L.-J.Z. was supported by the NNSF
of China (Grants No. 12101031 and No. 11947241)

APPENDIX A: PROOF OF PROPERTIES FOR D(U,V )

Here we show the proof of Proposition 7.
Proof. Properties 1 and 2 follow from the faithfulness and

symmetry of the quantum W1 norm, respectively.
Property 3 follows from the triangle inequality of the quan-

tum W1 norm,

‖UρU † − V ρV †‖W1 � ‖V ρV † − MρM†‖W1

+‖MρM† − UρU †‖W1 .

The equality holds when M = eiθU , M = eiϕV or V ρV † −
MρM† = k(MρM† − UρU †), for k � 0.

Property 4 can be proved as follows:

D(UM,V M )

= max
|ψ〉

‖UM|ψ〉〈ψ |M†U † − V M|ψ〉〈ψ |M†V †‖W1

= max
|ξ〉

‖U |ξ 〉〈ξ |U † − V |ξ 〉〈ξ |V †‖W1 ,

where |ξ 〉 = M|ψ〉 is a pure state. Thus, the maximization
takes over all pure states. The last equality is equal to
D(U,V ).

Property 5 can be obtained as the quantum W1 distance
is invariant concerning unitary operations acting on a single
qudit.

Property 6 is obtained with Property 4 by choosing
M = U †,

D(U,V ) � max
|ψ〉

{n

2
‖U |ψ〉〈ψ |U † − V |ψ〉〈ψ |V †‖1

}
= max

|ψ〉
{n

√
1 − |〈ψ |U †V |ψ〉|2} = n,

where the inequality comes from the fact in Lemma 2. On
the other hand, D(U,V ) � 0 is obtained directly from the
nonnegativity of the quantum W1 norm. So the desired result
is obtained.

Property 7 is proved as follows:

D(I,U ) = max
|ψ〉

‖|ψ〉〈ψ | − U |ψ〉〈ψ |U †‖W1

= max
|ξ〉=U |ψ〉

‖|ξ 〉〈ξ | − U †|ξ 〉〈ξ |U‖W1

= D(I,U †).

Property 8 is proved with the help of Properties 3 and 4.
One can obtain that

D(U2U1,V2V1)

� max
ρ

‖U2U1ρU †
1 U †

2 − ρ‖W1 + ‖ρ − V2V1ρV †
1 V †

2 ‖W1

= D(I,U2U1) + D(I,V2V1) = D(U †
1 ,U2) + D(V †

1 ,V2).

The equality holds when U2U1 = eiθ I , V2V1 = eiϕI , or
U2U1ρU †

1 U †
2 − ρ = k(ρ − V2V1ρV †

1 V †
2 ), for k � 0.

Property 9 holds from the tensorization of the quantum W1

norm in Lemma 3. We have

‖(U1 ⊗ U2)ρ(U †
1 ⊗ U †

2 ) − (V1 ⊗ V2)ρ(V †
1 ⊗ V †

2 )‖W1

� ‖U1ρ1U
†
1 − V1ρ1V

†
1 ‖W1 + ‖U2ρ2U

†
2 − V2ρ2V

†
2 ‖W1 ,

where ρi denotes the corresponding reduced state. Take the
maximum of all pure states ρ, ρ1, ρ2 on both sides of the
above inequality. Then the property can be proved.

Next, we prove property 10 by the triangle inequal-
ity of the W1 norm. Let σ = (U1 ⊗ U2)ρ(U †

1 ⊗ U †
2 ) and

ξ = (V1U
†
1 ⊗ I )σ (U1V

†
1 ⊗ I ). One has

‖(U1 ⊗ U2)ρ(U †
1 ⊗ U †

2 ) − (V1 ⊗ V2)ρ(V †
1 ⊗ V †

2 )‖W1

= ‖σ − (V1 ⊗ V2)(U †
1 ⊗ U †

2 )σ (U1 ⊗ U2)

× (V †
1 ⊗ V †

2 )‖W1 � ‖σ − ξ‖W1

+‖ξ−(I ⊗ V2U
†
2 )(V1U

†
1 ⊗I )σ (U1V

†
1 ⊗I )(I ⊗ U2V

†
2 )‖W1

= ‖(U1 ⊗ I )η(U †
1 ⊗ I ) − (V1 ⊗ I )η(V †

1 ⊗ I )‖W1

+‖(I ⊗ U2)μ(I ⊗ U †
2 ) − (I ⊗ V2)μ(I ⊗ V †

2 )‖W1

� D(U1 ⊗ I,V1 ⊗ I ) + D(I ⊗ U2, I ⊗ V2),

where η = (U †
1 ⊗ I )σ (U1 ⊗ I ), and μ = (I ⊗ U †

2 )(V1U
†
1 ⊗

I )σ (U1V
†

1 ⊗ I )(I ⊗ U2). Hence it holds that D(U1 ⊗ U2,V1 ⊗
V2) � D(U1 ⊗ I,V1 ⊗ I ) + D(I ⊗ U2, I ⊗ V2). �

APPENDIX B: THE ANALYTICAL CALCULATION
OF W1 DISTANCE

We present the calculation of the distance between I and
some well-known gates. In Sec. B 1 we show the proof of

012412-8



QUANTUM WASSERSTEIN DISTANCE BETWEEN UNITARY … PHYSICAL REVIEW A 110, 012412 (2024)

Proposition 10. In Sec. B 2 we show the proof of Propositions
8, 12, and 14.

1. The W1 distance between I and generalized
controlled phase gate

We denote the generalized controlled phase gate as U (k)
θ

which is the diagonal two-qubit operation whose kth diagonal
entry is eiθ and other diagonal entries are 1, for k = 1, 2, 3, 4.
First we consider D(I,U (3)

θ ), where UCP and UCN are given
in Sec. II A. We rephrase Proposition 10 from Sec. III B for
convenience.

Proposition 21. The quantum W1 distance between I
and controlled-phase gate U (3)

θ = UCNUCPUCN = diag{1, 1,

eiθ , 1} is equal to
√

2 sin θ
2 , i.e., D(I,UCNUCPUCN ) =√

2 sin θ
2 .

Proof. We calculate D(I,UCNUCPUCN ) by finding its upper
and lower bounds. If the upper bound coincides with the lower
bound, we obtain the desired value.

For a pure state |ψ〉 = ∑1
m,n=0 am,n|m, n〉 with∑

m,n |am,n|2 = 1, we set the state ρ = |ψ〉〈ψ | and
σ = (UCNUCPUCN )ρ(UCNUCPUCN )†. From Corollary 4, it
can be obtained that

‖ρ − σ‖W1 � 1

2
‖ρ1 − σ1‖1 + 1

2
‖ρ2 − σ2‖1 (B1)

= 2 sin
θ

2
|a1,0|(|a0,0| + |a1,1|), (B2)

where ρk and σk are the reduced density operator of ρ and σ ,
respectively. From

∑
m,n |am,n|2 = 1, we have 2|a1,0|(|a0,0| +

|a1,1|) �
√

2, and the equality holds for the input state
ρinf = |ψ1〉〈ψ1| and σinf = (UCNUCPUCN )ρinf (UCNUCPUCN )†,
where |ψ1〉 = ∑

m,n am,n|m, n〉 with the coefficients satisfying
|a0,0| = |a1,1| = 1

2 , |a0,1| = 0, |a1,0| = 1√
2
. From Definition

6, D(I,UCNUCPUCN ) is obtained by taking the maximiza-
tion over all input states. From (B1), we have obtained that
‖ρinf − σinf‖W1 �

√
2 sin θ

2 . Hence we have

D(I,UCNUCPUCN ) �
√

2 sin
θ

2
. (B3)

According to Definition 2, one has

D(I,UCNUCPUCN )

= max
ρ∈S2

min

{ 2∑
i=1

ci : ci � 0, Tr
i

F (i) = 0,

ρ − (UCNUCPUCN )ρ(UCNUCPUCN )† =
2∑

i=1

ciF
(i)

}
,

(B4)

where F (i) = ρ (i) − σ (i) ∈ M2 satisfying Tri F (i) = 0. Since
D(I,UCNUCPUCN ) is derived by taking the minimization
of c1 + c2 over all F (i)′s, the coefficient c1 + c2 induced
by a particular set of F (1) and F (2) is the upper bound
of D(I,UCNUCPUCN ). We consider the particular case for
F (i) = ρ (i) − Mρ (i)M ∈ M2 satisfying Tri F (i) = 0, for M =
diag{1, 1,−1, 1}. Here ρ (i) is any two-qubit pure state. We
aim to show that the upper bound of (B4) is equal to

√
2 sin θ

2 .

It can be realized by finding a couple of F (1) and F (2) such
that c1 + c2 �

√
2 sin θ

2 for all pure states ρ.
For any pure state ρ = ∑

j,k,s,t a j,ka∗
s,t | j, k〉〈s, t |, one has

ρ − (UCNUCPUCN )ρ(UCNUCPUCN )† = [dm,n]4×4,

where d1,3 = a0,0a∗
1,0(1 − e−iθ ), d2,3 = a0,1a∗

1,0(1 − e−iθ ),
d3,1 = a∗

0,0a1,0(1 − eiθ ), d3,2 = a∗
0,1a1,0(1 − eiθ ), d3,4 =

a1,0a∗
1,1(1 − eiθ ), d4,3 = a∗

1,0a1,1(1 − e−iθ ) and other entries
are equal to zero. Any F (k) ∈ M2 satisfying Trk F (k) = 0 can
be written as

F (1) =

⎡
⎢⎢⎢⎢⎣

0 0 2g0,0g∗
1,0 0

0 0 2g0,1g∗
1,0 0

2g∗
0,0g1,0 2g∗

0,1g1,0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦, (B5)

F (2) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 2h0,1h∗
1,0 0

0 2h∗
0,1h1,0 0 2h1,0h∗

1,1

0 0 2h∗
1,0h1,1 0

⎤
⎥⎥⎥⎥⎦, (B6)

where the entries satisfy
∑

j,k |g j,k|2 = ∑
j,k |h j,k|2 = 1.

We need to find the gjk , h jk , and ck , such that

ρ − (UCNUCPUCN )ρ(UCNUCPUCN )† = c1F (1) + c2F (2), (B7)

c1 + c2 =
√

2 sin
θ

2
(B8)

holds for any ρ, i.e.,

a0,1a∗
1,0

(1 − e−iθ )

2
= c1g0,1g∗

1,0 + c2h0,1h∗
1,0 (B9a)

a0,0a∗
1,0

(1 − e−iθ )

2
= c1g0,0g∗

1,0, (B9b)

a1,1a∗
1,0

(1 − e−iθ )

2
= c2h1,1h∗

1,0, (B9c)∑
j,k

|g j,k|2 =
∑

j,k

|h j,k|2 =
∑

j,k

|a j,k|2 = 1, (B9d)

c1 + c2 =
√

2 sin
θ

2
, ck � 0, for k = 1, 2

(B9e)

holds for any a j,k . We consider two margin cases for the
coefficients a j,k , which will be used later.

(1) From (B5), one can obtain that ‖ρ −
(UCNUCPUCN )ρ(UCNUCPUCN )†‖W1 = 0 when a1,0 = 0
or a1,0 = 1. Using (B4), it can be obtained that
c1 + c2 �

√
2 sin θ

2 .
(2) If a0,0 = a1,1 = 0, we can choose c1 = c2 = 1√

2
sin θ

2 ,

g0,0 = h1,1 = 0, g∗
1,0 = h0,1 = 1√

2
a0,1, g∗

0,1 = h1,0 = a1,0

exp{i( θ
2 − π

2 )} and g1,1 = h0,0 =
√

1 − 1
2 |a0,1|2 − |a1,0|2 ,

such that (B9a)-(B9e) hold.
Next, we only consider the case for

a1,0 �= 0, 1, a0,0 �= 0 or a1,1 �= 0. (B10)
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Using the normalization condition in (B9d), we can
parametrize the coefficients g j,k and h j,k by α j, β j ∈ [0, π

2 ],

g0,0 = cos α0 sin α1eiα2 , g0,1 = cos α0 cos α1, (B11)

g1,0 = sin α0 sin α3eiα6 , g1,1 = sin α0 cos α3eiα4 , (B12)

h0,0 = sin β0 cos β3eiβ4 , h0,1 = cos β0 cos β1, (B13)

h1,0 = sin β0 sin β3eiβ6 , h1,1 = cos β0 sin β1eiβ2 , (B14)

such that

a0,1a∗
1,0

(1 − e−iθ )

2
= c1 cos α0 cos α1 sin α0 sin α3e−iα6

+ c2 cos β0 cos β1 sin β0 sin β3e−iβ6 ,

(B15a)

a0,0a∗
1,0

(1 − e−iθ )

2
= c1 cos α0 sin α1eiα2 sin α0 sin α3e−iα6 ,

(B15b)

a1,1a∗
1,0

(1 − e−iθ )

2
= c2 cos β0 sin β1eiβ2 sin β0 sin β3e−iβ6 ,

(B15c)

c1 + c2 =
√

2 sin
θ

2
. (B15d)

For any a j,k ∈ C, we can always choose appropriate phase
α2, β2, α6, β6 so that the phase of a j,k can be satisfied. Without
loss of generality, we can only consider the case that aj,k are
nonnegative real values,

a j,k � 0 and
∑

j,k

a2
j,k = 1. (B16)

Using (B10), we assume that a1,0 ∈ (0, 1), and a0,0 ∈ (0, 1)
or a1,1 ∈ (0, 1) here.

Now we show that (B15a)–(B15d) is viable by choosing
appropriate parameters. We set α2 = 0 and α j = β j , for j =
0, 1, 2, 3, 6. From (B15b)–(B15d), we assume

c1 =
√

2 sin θ
2 a0,0

a0,0 + a1,1
, c2 =

√
2 sin θ

2 a1,1

a0,0 + a1,1
. (B17)

Using (B15b), (B15c), and (B17), Eq. (B15a) can be equiva-
lently transformed into

a0,0 cot α1 + a1,1 cot β1 = a0,1. (B18)

It holds by choosing appropriate parameters α1 = β1. Next,
we show that Eqs. (B15b) and (B15c) can also be satisfied.
First, we use (B18) to obtain that

sin α1 = sin β1 = a0,0 + a1,1√
a2

0,1 + (a0,0 + a1,1)2
. (B19)

Then based on (B17) and (B19), we perform the transforma-
tion on (B15b) and (B15c) to put the free parameters α0 = β0

and α3 = β3 on the l.h.s. alone. They become the same equa-
tion as follows:

cos α0 sin α0 sin α3e−iα6

= ei( π
2 − θ

2 ) a1,0√
2

√
a2

0,1 + (a0,0 + a1,1)2, (B20)

Note that a1,0√
2

√
a2

0,1 + (a0,0 + a1,1)2 ∈ (0, 1
2 ]. So Eq. (B20)

can always be satisfied for any a j,k in (B16) by choosing
α6 = β6 = θ

2 − π
2 and appropriate parameters α0, α3, β0, β3.

Hence, (B15b) and (B15c) can be satisfied.
Based on (B5) and (B11)–(B14), the above analysis prove

the existence of the c(k) and F (k) in (B5) and (B8) for any ρ.
It means that there is a kind of decomposition following the
rule in (B4), such that c1 + c2 = √

2. Recall that the quantum
Wasserstein distance between operations D(I,UCNUCPUCN ) is
defined by taking the minimization of c1 + c2 over all decom-
positions in (B4). One can obtain that D(I,UCNUCPUCN ) �√

2 sin θ
2 . Combining with (B3), it holds that D(I,U (3)

θ ) =
D(I,UCNUCPUCN ) = √

2 sin θ
2 , which is the desired result. �

By applying appropriate local unitary operation, the
Uθ

(k)′s can transform to each other, (σx ⊗ I )Uθ
(3)(σx ⊗ I ) =

U (1)
θ , (σx ⊗ σx )U (3)

θ (σx ⊗ σx ) = U (2)
θ , (I ⊗ σx )U (3)

θ (I ⊗
σx ) = U (4)

θ . Since ‖ · ‖W1 is invariant under single-qubit uni-
tary transformations, we obtain that D(I,U (k)

θ ) = √
2 sin θ

2 ,
which is the result of Proposition 10.

2. The W1 distance between I
and single-qudit and permutation matrices

The proof of Proposition 8 is given here.
Proof. Using Lemma 2, we have D(U,V ) = D(I,VU †) =

max|ψ〉〈ψ |∈S1

√
1 − |〈ψ |VU †|ψ〉|2 , where the first equality

holds from Property 7, and the second equality comes from
‖αuu∗ − βvv∗‖1 =

√
(α + β )2 − 4αβ|〈u, v〉|2 .

First, we consider the case for d = 2, i.e., the op-
erations act in the two-dimensional space. In order to
obtain D(U,V ), it suffices to compute the minimum of
|〈ψ |VU †|ψ〉|. Let VU † = R†D2R be the spectral decom-
position of VU †, where D2 = diag{1, eiα} and R is an
unitary matrix. The state |ξ 〉 := R|ψ〉 is a single-qubit state.
Suppose |ξ 〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉, for 0 � θ � π, 0 �

φ < 2π . From minθ,φ |〈ξ |D2|ξ 〉|2 = minθ | cos4 θ
2 + sin4 θ

2 +
2 cos2 θ

2 sin2 θ
2 cos α| = (1 + cos α)/2, we have

D(U,V ) =
√

1 − min
θ,φ

|〈ξ |D2|ξ 〉|2 =
√

1 − cos α

2
. (B21)

Then we consider the case for d > 2. As we have shown
above, we assume that VU † = R†

d Dd Rd is the spectral decom-
position of VU †, where Dd = diag{eiα0 , eiα1 , . . . , eiαd−1} and
Rd is a d × d unitary matrix. Suppose |ψ〉 is an arbitrary qudit
state and |η〉 = Rd |ψ〉 = ∑

j a j | j〉, for
∑

j |a j |2 = 1. We have

D(U,V ) =
√

1 − min
|η〉

|〈η|D|η〉|2

=
√

1 − min∑
j |a j |2=1

|
∑

j

|a j |2eiα j |2. (B22)

The optimization is equivalent to minimizing the convex sum
of the eigenvalues of VU †. �

The proof of Proposition 12 is shown as follows.
Proof. Obviously, D(I,Uk ) = 2 can be obtained from 2 �

D(I,Uk ) � ‖|0, 1〉〈0, 1| − |1, 0〉〈1, 0|‖W1 = 2. From the local
unitary invariance, we have ‖(U ⊗ V )|0, 1〉〈0, 1|(U ⊗ V )† −
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(U ⊗ V )|1, 0〉〈1, 0|(U ⊗ V )†‖W1 = 2, where U,V are single
qubit unitary operations. From Property 5, D(I, M ) = 2 is
obtained. Next we show that the W1 distance between iden-
tity and all order-4 permutation matrices can be derived.
We consider the representation of order-4 permutation group
{P1, P2, . . . , P24}, where 15 permutation matrices are included
in (6). By Proposition 12, one can obtain that the W1 distance
between every one of them and identity is equal to two. Other
nine permutation matrices are listed below:

H1 = I, H2 = UCN , H3 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦,

H4 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦, H5 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦,

H6 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦, H7 =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦,

H8 =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎥⎦, H9 =

⎡
⎢⎢⎣

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦.

We analyze the distance for D(I, Hk ). We have
(σx ⊗ I )H3(σx ⊗ I ) = H2, so D(I, H2) = D(I, H3) = √

2.

The fact that D(I, H4) = D(I, H5) = 1 has been obtained in
Proposition 14. Using the fact that (I ⊗ σx )H6(I ⊗ σx ) = H7

and USW H6USW = H2, one has D(I, H2) = D(I, H6) =
D(I, H7) = √

2. By (I ⊗ σx )H8(I ⊗ σx ) = H9, one has
D(I, H8) = D(I, H9). Using Lemma 3, we find that their
lower bound is equal to two. Combined with Property 6, we
have D(I, H8) = D(I, H9) = 2. We have now obtained the
W1 distance between identity and all the order-4 permutation
matrices. �

The proof of Proposition 14 is shown below.
Proof. We show the claim for k = 1, 2, and the claim for

k > 2 can be obtained similarly.
First, we show that D(I⊗n, X ⊗ I⊗(n−1)) = 1 up to per-

mutations of the qudits. For any pure states ρ ∈ Sn and σ =
(X ⊗ I⊗(n−1))ρ(X ⊗ I⊗(n−1)), it holds that Tr1 ρ = Tr1 σ ,
i.e., ρ and σ are neighboring states. From Definition 2, the
quantum W1 distance assigns the distance at most one to any
couple of neighboring states, so D(I⊗n, X ⊗ I⊗(n−1)) � 1. On
the other hand, D(I⊗n, X ⊗ I⊗(n−1)) = maxρ ‖ρ − σ‖W1 �
‖|00 . . . 0〉〈00 . . . 0| − |10 . . . 0〉〈10 . . . 0|‖W1 = 1 by Lemma
5. Hence, D(I⊗n, X ⊗ I⊗(n−1)) = 1. Using the fact that
‖ · ‖W1 is invariant with respect to permutations of the qudits,
D(I⊗n, I ⊗ X ⊗ I (n−2)) = · · · = D(I⊗n, I⊗(n−1) ⊗ X ) = 1
is obtained.

Next we prove that D(I⊗n, X ⊗2 ⊗ I⊗(n−2)) = 2 up
to permutations of the qudits. From Definition 2, it holds
that D(I⊗n, X ⊗2 ⊗ I⊗(n−2)) � ‖|000 . . . 0〉〈000 . . . 0| −
|110 . . . 0〉〈110 . . . 0|‖W1 = 2. By Property 10, we have
D(I⊗n, X ⊗2 ⊗ I⊗(n−2)) � D(I⊗n, X ⊗ I⊗(n−1)) + D(I⊗n, I ⊗
X ⊗ I⊗(n−2)) = 2. The invariance under permutations can
also be derived as the above case. �
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