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The resource theory of quantum thermodynamics has emerged as a powerful tool for exploring the out-
of-equilibrium dynamics of microscopic and highly correlated systems. Recently, it has been employed
in photoisomerization, a mechanism facilitating vision through the isomerism of the photoreceptor protein
rhodopsin, to elucidate the fundamental limits of efficiency inherent in this physical process. Limited attention
has been given to the impact of energetic quantum coherences in this process, as these coherences do not
influence the energy-level populations within an individual molecule subjected to thermal operations. However, a
specific type of energetic quantum coherences can impact the energy-level populations in the scenario involving
two or more molecules. In this study, we examine the case of two molecules undergoing photoisomerization to
show that energetic quantum coherence can function as a resource that amplifies the efficiency of photoisomer-
ization. These insights offer evidence for the role of energetic quantum coherence as a key resource in the realm
of quantum thermodynamics at mesoscopic scales.
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I. INTRODUCTION

Thermodynamics and quantum mechanics represent dis-
tinct disciplines that grapple with discrepancies between their
fundamental principles. The emerging field of quantum ther-
modynamics [1–4] bridges these two disciplines by proposing
innovative strategies to reconcile them. One of the main dis-
crepancies lies in the interpretation of energy within these
two domains. The first law of thermodynamics traditionally
characterizes an additive decomposition of energy into work
and heat. In quantum mechanics, however, while energy is a
measurable quantity, there are no directly observable counter-
parts for heat and work. By adopting a dynamical approach
[5] based on open quantum systems theory [6], quantum ther-
modynamics can precisely define and quantify heat and work
within quantum systems.

Thermodynamic quantities such as free energy are well
defined only in equilibrium conditions, and in the limit of
identical and independent distributions the conventional laws
of thermodynamics hold true. Nonetheless, the intricate na-
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ture of quantum systems complicates matters. Unlike classical
systems, we can only clone quantum systems with prior
knowledge [7], and the presence of quantum coherence often
pushes these systems far from equilibrium. Quantum corre-
lations complicate the picture further by preventing quantum
systems from becoming independent. To tackle these steep
challenges, quantum thermodynamics employs information-
theoretic approaches [8–11] falling under the framework
known as quantum resource theories [12,13]. These ap-
proaches differentiate between states that are accessible by
thermodynamical processes and those that are not.

The insight that heat and quantum coherence are convert-
ible represents a significant advance in the realm of quantum
thermodynamics [14–19]. Specifically, a form of energetic
quantum coherence responsible for generating heat arises
through the dynamical framework rooted in open quantum
systems theory [20–24]. This specific manifestation of co-
herence is characterized by superpositions within degenerate
energy states and has led to various nomenclatures such as
“heat-exchange coherence,” [20,21] “internal coherence,” [22]
or “horizontal coherence” [23,24]. This kind of coherence has
enabled the establishment of a quantum Onsager relation that
links coherence flow and heat flow [25].

The information-theoretical approach refers to the same
type of coherence as “zero-mode coherence.” In this frame-
work [26–28], one considers zero-mode coherences in
conjunction with the energy-level populations within the ther-
momajorization criterion (an extension of the second law of
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thermodynamics [10]). While the study of coherence in ther-
mal processes within the framework of open quantum systems
has garnered significant attention, by comparison, the study
of their effects within resource theories remains relatively
uncharted territory. Our work aims to fill this gap.

We consider the process of photoisomerization to il-
lustrate how these principles can usefully be applied.
Photoisomerization—or photoswitching—stands as an exam-
ple of the explanatory capacity of the thermomajorization
criterion in elucidating the behavior of systems far from equi-
librium such as biological molecules [29]. The same model
system has also been used to identify contributions from
non-Markovianity in thermomajorization [30]. In Ref. [29]
the probability of extracting work from zero-mode coher-
ence in a molecular pair was also examined. However, in
both prior studies, the investigation of photoisomerization
efficiency focused solely on a single photoswitching molecule
where the contributions of coherence to the efficiency cannot
be examined since in a single-molecule system the zero-mode
quantum coherence is absent. Here, we explore a scenario
where two identical rhodopsin molecules are simultaneously
stimulated by a single photon. For example, this can be
achieved using a beam splitter scheme like the one presented
in Sec. IV. Such single-photon excitations lead to the sharing
of zero-mode coherence between the molecules and giving
rise to nontrivial contributions of coherence to the final state
of the reaction.

II. RESOURCE THEORY

A. Defining possible operations

In one quantum-thermodynamic model, free operations at
inverse temperature β = 1/kBT are called thermal operations.
These operations do not require any additional resources (no
external ‘battery’) and can be [10,13]

(i) contact with a thermal bath B (free use of states with a
density matrix ρB = e−βHB/Z).

(ii) any energy-preserving global unitary transformation
U on the whole system.

(iii) tracing out any subsystem, and in particular the bath
B.

This means that the thermal operation from a certain initial
state ρ to a final state σ can be described by the functional T :

T [ρ] = TrB[U (ρ ⊗ ρB)U †] = σ. (1)

In other words a thermal operation on a system ρ is any
process that only takes thermal energy from the bath and
preserves the total energy.

B. Constructing a Lorenz curve

Now, let us define thermomajorization. It is a mathemat-
ical tool that allows us to determine the relative ordering of
states based on their energy distributions. When one ther-
mal state thermomajorizes another, it means that the former
has a more organized and concentrated energy distribution
compared with the latter. It resembles the second law of
thermodynamics where organized systems have lower entropy
than those where the energy is distributed over all degrees
of freedom. The thermomajorization relation is important in

resource theory as it helps quantify the usefulness or value of
states for performing certain thermodynamic tasks.

H = ∑
j E j | j〉〈 j| denotes the Hamiltonian that governs the

mechanics of our system. Its state is represented by a density
matrix ρ whose diagonal elements are ρ j j | j〉〈 j|. The coeffi-
cients can be regrouped in what is called a population vector:

�p = (ρ11, ρ22, . . . , ρdd )

≡ (p1, p2, . . . , pd ). (2)

It contains the probabilities to be in one of the energy
eigenstates, with

∑d
j p j = Tr(ρ) = 1. To explain thermoma-

jorization we need to define a curve for this state called the
Lorenz curve and denoted by L( �p). We can construct this
curve with a procedure that includes two main steps. First,
one has to calculate the rescaled coefficients pjeβEj , and order
them from greatest to least:

p j′e
βEj′ � pk′eβEk′ , for all j′ > k′. (3)

Second, one has to consider the points⎛
⎝ α∑

j=1

e−βEj ,

α∑
j=1

p j

⎞
⎠, with α = 1, 2, . . . , d. (4)

Connecting them with straight lines beginning at the origin
defines a piecewise-linear curve, the Lorenz curve. The x
coordinates run from zero to Z , the partition function Z =∑d

i e−βEj . The y coordinates go from zero to one, the sum
of all probabilities.

Now let us say (σ , H ′) defines another state with a popu-
lation vector �q = (q1, . . . , qd ′ ). If the (ρ, H) curve lies above
or on the (σ , H ′) curve, then (ρ, H) is said to thermomajorize
(σ , H ′). This can be denoted by

[L( �p )](x) � [L(�q )](x) ∀ x ∈ [0, Z],

shorthand notation: L( �p ) � L(�q ). (5)

A mathematical theorem [10,27,31] links thermal opera-
tions to thermomajorization. For two quasiclassical states ρ

and σ , if and only if (ρ, H) thermomajorizes (σ , H ′) there
exists some thermal operation T that maps ρ to σ . In other
terms, if ρ (σ ) has a population vector �p (�q ), then

[L( �p) � L(�q )] ⇐⇒ (∃ T , T [ρ] = σ ). (6)

C. Importance of off-diagonal elements (coherences)

The density matrix ρ of a system can be written as the sum
of its elements in the energy eigenbasis

ρ =
∑
n,m

ρnm|n〉〈m|, (7)

where n designates an eigenstate whose (possibly degenerate)
energy can be expressed as En. The transition frequency be-
tween states ω = (En − Em)/h̄ defines a mode. All elements
ρnm with the same transition energy belong to the same ω

mode:

ρ (ω) ≡
∑

n,m| ωn−ωm=ω

ρnm|n〉〈m|. (8)
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This way the density matrix can be decomposed in its ω

modes,

ρ =
∑

ω

ρ (ω). (9)

One can prove that these ω modes evolve independently us-
ing the time-translation symmetry of thermal operations. This
symmetry is defined by (more on this in Refs. [10,13])

T [e−iHt/h̄ρ eiHt/h̄] = e−iHt/h̄T [ρ]eiHt/h̄. (10)

The claim is that T [ρ (ω)] is also an ω mode.

e−iHt/h̄T [ρ (ω)]eiHt/h̄ = T [e−iHt/h̄ρ (ω)eiHt/h̄]

= T [e−iωtρ (ω)]

= e−iωtT [ρ (ω)]. (11)

This claim holds, which shows that all ω modes of a den-
sity matrix evolve independently during a thermal operation.
For a nondegenerate system the only elements ρnm where
ωn − ωm = 0 are the diagonal elements. This is why in certain
cases we can neglect the impact of the off-diagonal elements
in thermomajorization.

In previous studies of photoisomerization using thermoma-
jorization [29,30], the model only involved a nondegenerate
energy eigenbasis. This explains why it was not previously
necessary to consider coherences in the calculations.

For a system with degenerate energies one has to in-
clude the off-diagonal elements in the thermomajorization
procedure. The method described below was presented in
Refs. [27,28]:

ρ
U−−→ ρ∗ T−−→ σ ∗ U†−−→ σ.

First one diagonalizes the initial density matrix ρ with a uni-
tary transformation U . In fact ρ restricted to its zero modes
is already block-diagonal in the energy-eigenbasis, so U will
act on the blocks of degenerate energy subspaces. This trans-
formation is allowed because energy-preserving unitaries are
free and acting on subspaces of constant energy preserves the
energy. We obtain ρ∗ where all the zero modes are on the diag-
onal. So we have a new initial population vector �p ∗

i on which
to apply the thermomajorization procedure T . This gives us
a final state σ ∗ and we can apply the inverse transformation
U† to switch back to the original basis and get our final result
σ . This is an innovative method for studying coherences and
quantifying their effects on photoisomerization.

III. MODEL OF PHOTOISOMERIZATION

Thermomajorization can give us the optimal quantum ther-
modynamical yield of a given process. One goal of this
work is to complete our understanding of the quantum yield
of a molecule undergoing photoisomerization. Also called
photoswitching, it is triggered in certain molecules when
they absorb a photon, the acquired energy induces a rotation
around one of the molecule’s carbon double bonds. As for
example with the protein rhodopsin, the molecule switches
from a cis to trans configuration when it absorbs a photon
[32–34]. Rhodopsin is a protein responsible for vision in hu-
man and animal retinas, by photoisomerizing it transforms the
optical signal into a chemical chain reaction which transmits

FIG. 1. A simplified picture of the energy levels of two
molecules. The full energy eigenbasis consists of {|i〉 ⊗ | j〉} with
i, j ∈ {e, g, t}.

a signal to the brain. The resource-theoretical method for the
case of a single molecule undergoing photoisomerization was
developed in Refs. [29,30]. The total Hamiltonian presented
in Eq. (12) is restricted to the evolution of the molecule along
the reaction coordinate of the chemical transformation which
is the angle of rotation φ around the double bond. Similar
models have been developed for different biosystems [35]:

H =
∫ π

φ=0
Hmol(φ). (12)

In fact, by focusing on the initial and final state, φ = 0 or
π , we can ignore the intermediate states and energy barriers
when we want to obtain the optimal possible yield allowed
by thermal operations. This is justified in the context of re-
source theory that answers the question of whether a certain
transformation is possible or not. The theory makes general
statements about complex dynamics and this applies to study-
ing the efficiency of photoisomerization. The process can be
seen as the evolution of an effective three-level system. As
shown in Fig. 1 for one molecule (A or B) these states are
called {|g〉; |e〉; |t〉}. They correspond to the electronic ground
and excited states of the molecular cis configuration, and the
trans ground state. The omission of the trans excited state
can be justified by saying that it does not impact the final
population in |t〉. If a molecule reaches the trans excited state,
it can freely relax into the corresponding ground state and
emit its surplus of energy into the bath B. Here, the bath is
a general description of the molecule’s vibrational degrees
of freedom and its interactions with the environment. The
total molecular state is encoded by a density matrix whose
diagonal elements form a population vector �p = (pg, pe, pt ).
It corresponds to the energy eigenbasis restricted to φ = 0
and π . The off-diagonal elements of the density matrix cannot
influence the quantum yield in such a system, as explained in
Refs. [10,13]. Indeed the energy eigenbasis is nondegenerate,
with 	E describing the energy gap from cis to trans and
E1 the energy of the photoexcitation (see Fig. 1). Typical
values in the case of photoisomerization of rhodopsin are
E1 = 2.48eV and 	E = 1.39 eV [33,34,36,37]. In this case
the diagonal elements are the only zero modes, so coherences
do not affect their evolution.
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When describing photoisomerization, the initial conditions
correspond to the photoabsorption event. The initial popula-
tion vector is a mixture of the cis ground state S0 and its
first-excited state S1 with p being the probability of photoex-
citation:

�pi = (1 − p, p, 0). (13)

The final state can be described by any combination �q =
(qg, qe, qt ) as long as there is a thermal operation that maps
it to the initial one. That means that �q is thermomajorized by
�pi, or in mathematical terms L( �pi ) � L(�q ).

Let us expand the model to N = 2 molecules, because
coherences will start to play a role due to degeneracy. The
three-level approximation leads to an overall dimension of
3N = 32 = 9, which complicates calculations and increases
computational cost.

To characterize thermodynamic properties such as energy,
heat, work, and temperature at a local level within a joint
system, it is essential to describe the system in terms of its
local energy eigenstates. In systems involving photoisomers,
where different molecular configurations can interact, the total
Hamiltonian reads

H = HA ⊗ IB + IA ⊗ HB + VAB. (14)

Here, HA and HB correspond to the Hamiltonians of the in-
dividual molecules, IA and IB denote identity operators, and
VAB signifies the interaction between the components. To
adequately capture the local thermodynamic properties, we
should represent the molecular state and the total Hamiltonian
in the eigenbasis of HA ⊗ IB + IA ⊗ HB.

The pure state of the two molecules can be described as a
sum of combinations of basis states (g, e and t):

|ψ〉 =
∑

i, j∈{g,e,t}
αi j |i〉 ⊗ | j〉, (15)

or |ψ〉 =
∑

i, j∈{g,e,t}
αi j |i j〉. (16)

For thermomajorization, the initial state in the photoiso-
merization process is given by the population vector that
describes the occupation probabilities in the cis subspace
{gg, ge, eg, ee}:

�pi = (pgg, pge, peg, pee, 0, 0, 0, 0, 0), (17)

where
∑

i, j∈{g,e} pi j = 1. Indeed, the probabilities of hav-
ing some molecule in |t〉 are approximately zero before the
photoisomerization. Afterwards the final state can be any
�q = (qgg, qge, qeg, qee, qgt , qtg, qet , qte, qtt ) as long as L( �pi ) �
L(�q ). The optimal quantum yield can be defined as the sum of
probabilities where any of the two molecules has reached the
trans state, which means that at least one of them is in t :

QYany ≡ max
L( �pi )�L(�q )

∑
i∈{g,e}

(qit + qti ) + qtt . (18)

Another possible definition of the quantum yield is

QYboth ≡ max
L( �pi )�L(�q )

qtt , (19)

when both have reached the trans state.
For two molecules there is a degeneracy, Ege = Ege = E1,

two different two-molecule states |ge〉 and |eg〉 correspond to

this energy. And ρ|E1 is the density matrix restricted to this
subspace of energy E1 containing the states where exactly one
of the two molecules is excited at E1 while the remaining one
is in the ground state. The initial state does not have to be
a pure state, so we can consider a mixed state, where some
off-diagonal coefficients are set by a parameter λ:

ρ|E1 =
(

|αge|2 λ

λ |αeg|2
)

≡
(

pge λ

λ peg

)
, (20)

with 0 � |λ| � √
pegpge. This parameter encodes the amount

of decoherence the state has experienced. This is reflected in
a loss of purity:

Tr
(
ρ| 2

E1

) = p2
ge + 2|λ|2 + p2

eg � (pge + peg)2. (21)

After diagonalizing this mixed state one obtains

ρ∗|E1 =
(

p+ 0
0 p−

)
, (22)

with p± = p2
ge + p2

eg

2
±

√√√√(
p2

ge − p2
eg

2

)2

+ |λ|2. (23)

This gives us an updated version of the probability vector
introduced in Eq. (17) in the presence of decoherence:

�p ∗
i = (pgg, p+, p−, pee, 0, 0, 0, 0, 0). (24)

The unitary conserves the global probability to be in the E1

subspace p+ + p− = pge + peg.

IV. RESULTS AND DISCUSSION

One can imagine the following thought experiment to study
coherence effects. An incoming photon goes through a first
beam splitter that transmits only a portion p of its wave
function. That portion is then guided towards a perfect 50 : 50
beam splitter and ends up in a state of superposition across
paths A and B. So there is a probability 1 − p that the pho-
ton will be in neither A nor B, and a probability p/2 to be
respectively in A or B exclusively. After the beam splitter the
photonic state is

|γ 〉 =
√

1 − p|A : 0, B : 0〉

+
√

p

2
(|A : 1, B : 0〉 + |A : 0, B : 1〉), (25)

where 1 and 0 encode the presence and absence of the photon
in the path A or B. In each path there is a photoisomerizable
molecule, also respectively called A and B. Now, p is—as
in Eq. (13)—analogous to the probability that the molecule
absorbs the photon, one obtains the following two-molecular
state:

|ψ〉 =
√

1 − p|A : g, B : g〉

+
√

p

2
(|A : e, B : g〉 + |A : g, B : e〉). (26)

The density matrix, restricted to its zero modes, can be written
in a simpler form as

ρ = (1 − p)|gg〉〈gg| + p

2
(|ge〉 + |eg〉)(〈ge| + 〈eg|). (27)
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Restricted to the initial subspace of excited and ground state
of the cis configuration, one obtains the following matrix
representation:

ρ|e,g =

⎛
⎜⎜⎝

1 − p 0 0 0
0 p/2 p/2 0
0 p/2 p/2 0
0 0 0 0

⎞
⎟⎟⎠. (28)

There are now two off-diagonal which are also zero modes ap-
pearing in the initial configuration. Their presence will impact
the final quantum yield.

Now, if we assume that the process described so far is not
taking place in a closed system, then some decoherence can
take place. The off-diagonal elements will be subjected to it
and their amplitude may vary. In particular we can replace the
coherence with a parameter λ, such that

ρ̃|e,g =

⎛
⎜⎜⎝

1 − p 0 0 0
0 p/2 λ 0
0 λ p/2 0
0 0 0 0

⎞
⎟⎟⎠, (29)

with 0 � |λ| � p/2. When diagonalized,

ρ̃∗|e,g =

⎛
⎜⎜⎝

1 − p 0 0 0
0 p/2 + |λ| 0 0
0 0 p/2 − |λ| 0
0 0 0 0

⎞
⎟⎟⎠. (30)

This gives us the following initial population vector:

�p ∗
i = {1 − p, p/2 + |λ|, p/2 − |λ|, 0, 0, 0, 0, 0, 0}

≡ �psup(p, λ), (31)

called �psup for superposition of molecular excitations.
Now we can study the influence of the coherence parameter

λ on the photoisomerization efficiency using thermomajoriza-
tion.

For the following figures, the typical parameters for
rhodopsin (E1 = 2.48 eV and 	E = 1.39 eV) were used. We
also rescaled the inverse temperature to be β = 1 eV−1. For
the initial �psup, we used p = 0.7 and compared low coherence
(λ = 0.02) and high coherence (λ = 0.2) regimes.

As shown in Fig. 2 the latter case has a slightly increased
Lorenz curve in the range between zero and 0.25 on the hori-
zontal axis. This feature can be understood with the following
argument: For the initial population vector �psup, we have p± =
p/2 ± |λ|. When constructing the Lorenz curve L( �pi ), the
population vector has to be reordered, and the resulting vector
can be called �pi

′. For all values of λ, p+ will be ordered before
p−, because p+eβE1 > p−eβE1 , and let us say for simplicity
that they end up being adjacent at positions k + 1 and k + 2.
This means that there are k other terms in �pi

′ before p+ and
p−. This is in fact the case in Fig. 2 and here k = 1 [there is
only one data point preceding p+ and p−, the origin (0,0)].
Now, the point k + 1 of the Lorenz curve will take the value
given below on its y axis:

k∑
j=1

( �pi
′) j + p+ =

k∑
j=1

( �pi
′) j + p/2 + |λ|. (32)

FIG. 2. Comparison of Lorenz curves of initial states with differ-
ing coherence, but same p = 0.7. High-coherence state �psup(λ = 0.2)
has a higher curve than low-coherence state �psup(λ = 0.02). Coher-
ence leads to higher thermomajorization potentiality.

The higher the coherence parameter λ, the higher the Lorenz
curve L( �psup(p, λ)) at this point. The next data point, num-
bered k + 2, has the y coordinate

k∑
j=1

( �pi
′) j + p+ + p− =

k∑
j=1

( �pi
′) j + p. (33)

This result does not depend on λ because we al-
ways have p+ + p− = pge + peg. So, whatever the value
of λ, the Lorenz curve reaches the same height after
k + 2 points. Hence, by increasing λ we obtain higher
Lorenz curves with increasing convexity. This is shown
by the red dotted line above the blue one in Fig. 2,
L( �psup(p = 0.7, λ = 0.2)) � L( �psup(p = 0.7, λ = 0.02)).

The increase in coherence leads to higher quantum yields,
see Fig. 3. The higher the initial Lorenz curve, the more
states are thermomajorized by it so it can allow higher final
occupation probabilities. Indeed QYboth = 0.39 when λ = 0.2
[Fig. 3(a)] but only QYboth = 0.27 when λ = 0.02 [Fig. 3(b)].
There is a significant net increase from 27% to 39%. The
Lorenz curves of these final optimal states are shown in green
dashed. They are expectedly both below the initial blue line,
because the final states are thermomajorized by �psup(p, λ).

Let us consider the role of coherence in this increase from
27% to 39%. If one tries to find the final state with the best
quantum yield QYboth, by definition one has to construct the
optimal Lorenz curve that is below the initial blue curve in
Fig. 3 and that maximizes qtt . A maximal qtt will likely end
up in first place in the reordering of elements [see Eq. (3)].
This gives us the first data point (after the origin) of L(�q ):
(e−βEtt , qtt ). It has to be below the blue line, because L( �pi ) �
L(�q ). So the magnitude of qtt is directly impacted by the
initial Lorenz curve. This can be seen in Fig. 3 following the
green dashed lines. In Fig. 3(b) the first point is at 0.27 on
the vertical axis, which is the highest possible point below the
blue curve for x = e−βEtt . This value indeed corresponds to
the quantum yield QYboth = 0.27 [and the same for Fig. 3(a)
where QYboth = 0.39].
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FIG. 3. Effect of coherences on quantum yield. The figures show
an initial state (blue) and below its final states that maximize the
quantum yield whether it is defined as QYany (purple) or QYboth (green
dotted). Higher coherence [Fig. 3(a)] leads to higher quantum yields,
see QYboth.

To summarize, the higher the initial coherence, the higher
the initial Lorenz curve, the more possibilities for the final
curve and the higher its quantum yield.

The figure also presents the other possible definition of the
quantum yield. For λ = 0.02 and for λ = 0.2 the optimal is
QYany = 0.81. The increase in coherence does not seem to
affect this definition of the quantum yield at first sight, but
this is not true for all energy values.

In Fig. 4 we show the best possible quantum yield one
can obtain with thermomajorization as a function of the en-
ergy gap 	E between the two ground states |g〉 (cis) and
|t〉 (trans). The darker colors show results where the initial

FIG. 4. Quantum yields as a function of energy gap by superpos-
ing two excited molecules. Different definitions of quantum yield:
QYboth (green) and QYany (purple). Initial �psup as in Eq. (31). All
curves plotted with p = 0.7. Dark colors represent higher initial
coherence (λ = 0.2), lighter colors have lower coherence (λ = 0.02)
(accordingly they have lower quantum yields).

state corresponds to λ = 0.2, and the lighter ones to λ = 0.02.
The purple curves correspond to the QYany definition of the
quantum yield, while the green ones show the optimal QYboth.
In both cases, the darker line remains above the lighter one,
because higher coherence induces a higher optimal quantum
yield independently of which definition we choose. A hierar-
chy exists among these definitions, since QYany contains more
terms, it will always be higher than QYboth.

The curves appear step-like due to the sampling resolution
along the vertical axis resulting from high computational over-
head. The simulation evaluates all possible population vectors
in a vector space with dimension 32 = 9 and checks whether
they have the highest quantum yield, and are thermomajorized
by the initial state.

The dotted vertical lines show when the energy gap 	E
equals E1 and 2E1. These energies are related to states
where one molecule is excited, or both, respectively. The
lines correspond to the cusp where QYany begin to decrease.
When the energy gap is larger than the initial excitations
it becomes harder to reach the trans state. So there is an
exponential decrease of the quantum yield with increasing
	E . At 	E > E1, states with a single excited molecule
can no longer access to the trans state, so now the quantum
yield takes lower values. Finally, when 	E exceeds double
the excitation energy, it becomes impossible for any initial
state to reach the trans state and the quantum yield tends
to zero. However, as mentioned earlier, QYany is always
higher than QYboth (in green) regardless the initial coherence,
because photoisomerizing both molecules takes twice the
energy. Indeed, the green curves already start decreasing
towards zero at 	E ≈ E1 instead of 2E1 like the purple ones.
Interestingly, coherence does not have the same effect for
all values of 	E . To illustrate the intricate dependency on
multiple parameters, Fig. 5 shows the increase of the quantum
yield QYany as a function of both the initial probability p and
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FIG. 5. The increase of quantum yield QYany as a function of
excitation probability p and β	E . It corresponds to the difference
of QYany between the maximally coherent and noncoherent case. The
red points indicate for each p the average 	E where the difference
is maximal. The blue dotted line is the fitted curve p = f (β	E ) =
p0(eβ	E − 1) passing through these points.

the energy gap 	E . The plotted quantity is the difference
between the case where the states are maximally coherent,
λmax = p/2, and the incoherent case, λ = 0: QYany(λmax) −
QYany(λ = 0). Due to the important computational
overhead, the figure is coarse-grained. However one can
clearly distinguish a line p = f (β	E ) where the effect
of coherence is the strongest. The average points of
maximal effect (in red) seem to fit an exponential curve
f (β	E ) = p0(eβ	E − 1) (in blue) where p0 ≈ 0.025. It will
be the task of subsequent work to analyze this dependence
exactly and to explain its origin.

The results in this study were obtained for β = 1 eV−1

corresponding to unphysical temperatures limiting physical
insight into photoisomerization. If one works at room tem-
perature (β = 38.9 eV−1), the exponential decrease of Fig. 4
becomes very sharp, because the energy levels are too far apart
compared with the thermal excitations. In other words, a cold
thermal bath cannot facilitate transitions from lower to higher-
lying states. This leads to a limited quantum yield; indeed, to

optimize the quantum yield, some of the population of the cis
ground state must be able to transition towards the trans con-
figuration. This can be remedied by using molecules which
have lower transition energies than rhodopsin. The advantage
of using rhodopsin as a test case is that its state energies
benefit from extensive characterization. We are investigating
other photoswitchable molecules [38] to extend the scope of
this work.

V. CONCLUSION

In general, quantum thermodynamical models avoid the
high-temperature limit. However, this work finds that higher
temperatures enable transitions to higher-energy states that
are inaccessible at lower temperatures. Real systems are more
complicated. The discrete energy levels considered here cor-
respond in reality to broad continuous absorption peaks. To
capture the intricate dynamics of complex molecular switches
and accurately assess the influence of coherence on pho-
toisomerization yield, a more sophisticated environmental
modelization—such as an open systems approach—could
prove indispensable. A particularly interesting case study is
rhodopsin, which benefits from advanced simulation tech-
niques [39,40] and is of wide interest for biochemical
applications [41–43]. There are hints of the importance co-
herence during the photoisomerizing process [34,44]. Our
methodology of considering the role of coherence and thermo-
majorization could in principle help to estimate the efficiency
of photoisomerization and to gain a deeper understanding of
its drivers. In future works it could be interesting to relate co-
herence to other types of resources like classical and quantum
correlations.
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47, 141 (2023).
[12] B. Coecke, T. Fritz, and R. W. Spekkens, Inf. Comput.Quantum

Phys. Log., 250, 59 (2016).
[13] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001

(2019).
[14] J. B. Brask, G. Haack, N. Brunner, and M. Huber, New J. Phys.

17, 113029 (2015).
[15] B. Çakmak, A. Manatuly, and O. E. Müstecaplıoğlu, Phys. Rev.
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