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Nonclassical resource for continuous-variable telecloning with non-Gaussian advantage
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The telecloning protocol distributes quantum states from a single sender to multiple receivers via a shared
entangled state by exploiting the notions of teleportation and approximate cloning. We investigate the optimal
telecloning fidelities obtained using both Gaussian and non-Gaussian shared resources. When the shared non-
Gaussian state is created by subtracting photons from both the modes of the Gaussian two-mode squeezed
vacuum state, we demonstrate that higher telecloning fidelities can be achieved in comparison with its Gaussian
counterpart. To quantify this advantage, we introduce a quadrature-based nonclassicality measure, which is
capable of estimating the fidelity of the clones, both with Gaussian and non-Gaussian resource states. We
further provide a linear optical setup for asymmetric telecloning of continuous variable states using a multimode
entangled state.
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I. INTRODUCTION

The laws of quantum mechanics enable information trans-
mission protocols such as dense coding [1], teleportation [2],
secure key distribution [3], and state transfer [4], that can
outperform classical communication schemes. On the other
hand, the same principles impose constraints on the physical
processes [5,6], leading to no-go theorems, which include
no-cloning [7–10], no-broadcasting [11–13], and no-deletion
theorems [14] (also see [15–17]). For instance, the no-cloning
theorem [8] prohibits the production of exact copies of an ar-
bitrary quantum state and, at the same time, is responsible for
detecting eavesdroppers in quantum key distribution (QKD)
[3]. Furthermore, approximate cloning strategies [18–21]
have been devised both universally [22] as well as in a
state-dependent manner [23], which provide bounds on the
security of QKD (see [24–29] for experimental realizations of
quantum cloning).

Beyond point-to-point communication, the quantum tele-
cloning protocol [30,31] leverages the inherent properties
of both quantum teleportation and the no-cloning theorem
to provide a resource-efficient method for distributing quan-
tum information symmetrically among multiple parties. The
protocol exhibits the importance of multipartite entangle-
ment in communication networks. Successful demonstrations
of telecloning schemes in laboratories have been reported
with photonic platforms [32–34], NISQ computers [35], and
superconducting processors [36]. Further, a variation of tele-
cloning, known as asymmetric telecloning [32,37–40], has
also been proposed, in which different receivers obtain clones
with different accuracies, thereby making it crucial for secure
quantum communication.

*Contact author: himadri.dhar@iitb.ac.in

Going beyond discrete variables, continuous-variable
(CV) systems [41,42], characterized by quadrature operators
with infinite spectrum, comprise physical systems that are
essential for the experimental realization of information-
theoretic protocols [43–53]. In this regime, the protocol of
telecloning was introduced using a multimode Gaussian en-
tangled state, distributed between a single sender and several
receivers [54], allowing the production of clones with the
same fidelity [55]. Moreover, a reversible telecloning scheme
[56], constituting the preparation of a local clone (also known
as anticlone), has been designed along with the proposal for
telecloning with the aid of phase-conjugate input states [57].
On the experimental front, telecloning has also been exhibited
using CV systems [58].

One of the central questions concerning any information
processing task is as follows: What particular resource drives
the quantum advantage evinced by the state applied for the
protocol? Since telecloning inherits the framework of tele-
portation, it is tempting to assume that entanglement [60]
is the key resource governing the performance of the pro-
tocol, although such correspondence has not been reported
yet. By studying the maximum fidelity of telecloning with
the entanglement of the shared resource state, we find that
in the CV regime, the connection between the two is not
straightforward. In particular, we study whether bimodal or
genuine multimode entanglement is required to successfully
produce distant clones in a CV photonic network. We establish
that although entanglement is certainly necessary for any tele-
cloning protocol to function, the fidelity of the clone received
by any receiver station actually depends on other forms of
nonclassicality [61–63] present between the sender and the
corresponding receiver modes. To this end, we define an oper-
ational nonclassicality measure, whose behavior is shown to
be closely related to the fidelity of the clones.

From the perspective of quantum correlation content,
it is known that non-Gaussian states [64] possess higher
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FIG. 1. Schematic setup of telecloning for creating two clones. Initially two vacuum modes |0〉, one position squeezed [Ŝ(r)] and the other
momentum squeezed [Ŝ(−r)], are passed through a balanced beam splitter to create the TMSV state. To de-Gaussify the modes, they are
impinged on beam splitters of perfect transmissivity along with mi photon states followed by a heralded detection of ni photons. To create the
l photon-added state, mi = l and ni = 0, whereas for the l photon-subtracted state, mi = 0 and ni = l [59]. For the irreversible protocol, one
of the modes S is combined with the input state |in〉 at a balanced beam splitter for homodyne detection h of the quadratures x and p. (For
the reversible protocol, the mode is initially combined with vacuum vS ≡ |0S〉, at a balanced beam splitter. One of the two output modes is
used for homodyne detection, whereas the other is used for the creation of an anticlone, aC.) The remaining resource mode R is split into two
using a balanced beam splitter and vacuum |0R〉 [for telecloning of squeezed input states, |0R〉 is further squeezed by Ŝ(ε)]. The resulting
modes are used for the production of the two clones C1 and C2. The homodyne outcomes are classically communicated (CC) to the clone and
anticlone modes whereafter a corresponding displacement D̂ is performed. In the figure, all the tilted dashed lines represent 50/50 (balanced)
beam splitters, whereas the solid tilted lines are beam splitters of transmissivity unity. The blank rectangle at the receiver station is a mirror.

entanglement [65–67] than their Gaussian counterparts. Such
states have been shown to outperform Gaussian states in
various CV quantum protocols, such as quantum illumina-
tion [67], quantum teleportation [68–73], cryptography [74],
and steering [75]. Therefore, one can expect that the per-
formance of telecloning can be improved by introducing
non-Gaussianity in the protocol. We report that although non-
Gaussian states lead to an increased fidelity, it is not universal.
Specifically, we show that non-Gaussian states, generated by
the subtraction of photons from both the modes of a two-mode
squeezed-vacuum (TMSV) state, can offer an advantage in
telecloning over their parent Gaussian state. Note that photon
addition and subtraction have been experimentally achieved
[76–83] and such states have been shown to possess enhanced
capabilities of realizing information-processing tasks [59,65]
as compared to their Gaussian counterparts. Furthermore,
most of these experiments are based on linear optics, and thus
the generation of the resource state can be readily integrated
into the telecloning protocol as shown in Fig. 1. We further
demonstrate that the nonclassicality measure provides an es-
timate of the squeezing strength of the resource, at which the
telecloning fidelity crosses the classical threshold both in the
case of Gaussian and non-Gaussian states, i.e., the usefulness
of the resource states for telecloning can be readily verified
using the nonclassicality measure, which can be determined
using homodyne detection in the proposed scheme. To our
knowledge, such a connection has not been established in CV
telecloning, Furthermore, we provide a setup for asymmetric

telecloning in the CV regime through the generation of a gen-
uinely entangled multimode resource state using only linear
optical elements.

Our article is organized in the following way. First, we
demonstrate that entanglement is not the only resource that
governs the telecloning process in Sec. II. We then define our
measure of nonclassicality in Sec. II A and illustrate how it
properly explains whether a given resource state is suitable
for telecloning CV states. In Sec. III, we study the tele-
cloning of input coherent and squeezed states with the help of
non-Gaussian photon-added and photon-subtracted states. We
also discuss how the telecloning network needs to be mod-
ified when squeezed states need to be telecloned to various
receivers. Section IV lays out the asymmetric telecloning net-
work comprising the framework for generating the multimode
resource state. We conclude with discussions in Sec. V.

II. QUADRATURE VARIANCE
AS A TELECLONING RESOURCE

Entanglement is a necessary ingredient for the success-
ful implementation of several quantum information-theoretic
tasks. For example, it is well known that bipartite entangle-
ment serves as the key resource for dense coding [1] and
teleportation [2], whereas multiparty entanglement is neces-
sary for measurement-based quantum computation [84] and
state transfer [4]. However, for CV telecloning the role of
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entanglement is not so straightforward. In general, there are
two primary telecloning protocols.

Let us first briefly describe the two telecloning proto-
cols, which we refer to as the reversible protocol and the
irreversible protocol, respectively. The two aforementioned
schemes differ in whether an anticlone is created [56] or not
[54]. While the clones produced do not contain the entire
information of the original input state, the first protocol allows
for the reconstruction of the same owing to the additional
information present in the anticlone. Note that, in our work,
we consider the production of only two clones in both pro-
tocols (1 → 2), an extension to a higher number of clones
(1 → M ) being straightforward. A schematic representation
of the telecloning setup is provided in Fig. 1.

To create the 1 → 2 telecloning network, one mode S of
a two-mode resource state is given to the sender whereas the
other mode R is distributed among the two receivers by split-
ting it using a balanced beam splitter and vacuum vR ≡ |0R〉.
For both protocols under study, the two receiver modes are
C1(2) = R±vR√

2
. In the irreversible protocol, the mode at the

sender’s station is combined with the input state, followed
by a homodyne measurement of the position and momentum
quadratures. The outcomes are then communicated classically
to the two distant receivers. We represent the mode at the
homodyne station as h, i.e., h = S in the irreversible protocol.
On the other hand, the reversible protocol entails splitting the
sender’s mode further into two modes using a balanced beam
splitter and the vacuum (vS ≡ |0S〉); one of these modes is
then used for homodyne detection (h = S+v√

2
), whereas the

remaining mode is used to create the anticlone. The success
of the protocol can be measured in terms of the fidelity of the
clone state and the input state, in phase space. Following the
treatment elucidated in Ref. [56], we provide the quadrature
expressions for the two clones and one anticlone in the 1 → 2
telecloning arrangement. Note that straightforward yet tedious
calculations can be used to easily derive the same for the
1 → M telecloning protocol.

Irreversible protocol:

x̂C = x̂R√
2

+ x̂in − x̂S − x̂vR√
2

,

p̂C = p̂R√
2

+ p̂in + p̂S − p̂vR√
2

, (1)

where the subscripts C and “in” denote the clone and the input
state, respectively.

Reversible protocol:

x̂C = x̂R − x̂S√
2

+ x̂in + x̂vR − x̂vS√
2

,

p̂C = p̂R + p̂S√
2

+ p̂in − p̂vR − p̂vS√
2

, (2)

x̂aC = x̂in −
√

2x̂vS , p̂aC = −p̂in −
√

2 p̂vS . (3)

Here, aC denotes the mode of the anticlone. Remarkably, in
both protocols, the telecloning occurs symmetrically, i.e., all
the clones are produced with the same fidelity. For Gaussian
input states, resources, and unit gain, the fidelity is given
readily in terms of the quadrature variances of the output

FIG. 2. Fidelity and corresponding mode entanglement for co-
herent state telecloning with TMSV resource. The fidelity F (violet
dashed-dotted line), the entanglement between the sender and the
clone mode ELN (blue dashed line), and the genuine multimode
entanglement G of the irreversible telecloning network (orange solid
line) are shown (ordinate) against the squeezing strength r of the
resource (abscissa). Both the axes are dimensionless.

state [44]:

F = 2/
√

(1 + 〈�2x̂C〉)(1 + 〈�2 p̂C〉). (4)

While we have restricted our analysis to the traditional
telecloning protocol involving double-homodyne detection,
minimal disturbance measurements in continuous variable
setups have also been proposed [85]. A protocol involving
minimal disturbance measurements tends to reduce quantum
noise and can thus be utilized to enhance the gain and fidelity
in quantum communication protocols.

A. Variance-based nonclassicality measure

When the TMSV state is used to generate two copies of
the input at distant locations, the fidelity of the clones pro-
duced in the case of input coherent states is given by F =
4/(5 + 3 cosh 2r − 2

√
2 sinh 2r), where r is the squeezing

strength of the TMSV state. It is observable that the fidelity
increases steadily from Fcl = 1

2 at r = 0 (which we refer
to as the classical threshold, achievable in the absence of
entanglement [86]) up to Fmax = 2

3 [44] at ropt ≈ 0.881. Im-
portantly, the fidelity does not increase further upon increasing
the squeezing strength r.

In order to understand which specific quantum prop-
erty of the resource drives the telecloning process, we
study the bipartite entanglement as quantified by logarith-
mic negativity [42], between the mode at the sender’s
station and the mode with one of the receivers. This reads
as ELN = − log2 ν, with ν = 1

16 [3 + 4 cosh 2r + 9 cosh 4r −√
2(sinh r − 3 sinh 3r)2(9 cosh 2r + 7)]. From the functional

form, it is evident that ELN increases monotonically with
r, thereby failing to connect faithfully with the fidelity of
telecloning, as shown in Fig. 2. Furthermore, the genuine
multimode entanglement, calculated using the generalized
geometric measure (GGM) [87], between all three involved
modes, cannot explain the trends of the fidelity either.
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Specifically, the GGM in this setup, G = 1 − 2
1+cosh2 r

, also
increases with the squeezing amplitude r, in contrast to F
(see Fig. 2). This leads us to conclude that neither bimodal
entanglement nor genuine multimode entanglement can un-
ambiguously explain the success of a telecloning protocol,
despite entanglement being a necessary resource for the same.
It can be argued that logarithmic negativity and GGM fail
since they are designed in terms of the symplectic eigenval-
ues, which is not the case for fidelity. It also suggests that a
different kind of nonclassical property could be the resource
for CV telecloning.

Let us concentrate on the separability criterion for two-
mode CV states [61], which states that a bipartite state ρi j

is necessarily separable if ζi, j = 〈�2(x̂i − x̂ j )〉 + 〈�2( p̂i +
p̂ j )〉 � 1, where 〈�2(. . . )〉 represents the variance. Consid-
ering the two modes to be those for the sender homodyne
detection h and one of the clones C, let us define a nonclassi-
cality measure for estimating the telecloning performance as

QhC = 1 − ζh,C . (5)

Our conjecture for analyzing the performance of a telecloning
protocol may now be stated as follows

Proposition 1. In a telecloning protocol involving Gaussian
resource and input states, the fidelity of a clone can be esti-
mated through the function QhC = 1 − ζh,C = 1 − 〈�2(x̂h −
x̂C )〉 − 〈�2( p̂h + p̂C )〉, where (x̂h, p̂h) represent the position
and momentum quadrature pair of the sender homodyne mode
h and similarly for the clone mode C. Nonclassical fidelity is
obtained when 0 � QhC � 1.

Proof. We consider C = R+vR√
2

without loss of generality
since both protocols are symmetric with respect to the clones
produced. The homodyne mode h = S for the irreversible
scheme and h = S+vS√

2
in the reversible case. Therefore, we

obtain

〈�2(x̂h − x̂C )〉irreversible = 〈�2(x̂S )〉 + 1
2 〈�2(x̂R)〉

−
√

2〈x̂S x̂R〉 + 1
2 , (6)

〈�2(x̂h − x̂C )〉reversible = 1
2 (〈�2(x̂S )〉 + 〈�2(x̂R)〉)

− 〈x̂S x̂R〉 + 1, (7)

where we have used 〈�2x̂vS(R)〉 = 1 for the vacuum state.
Similar expressions can be obtained for 〈�2( p̂h + p̂C )〉 to
construct ζh,C . Using Eqs. (1) and (2), we can readily ob-
tain the clone quadrature variances and it follows that ζh,C =
〈�2x̂C〉 + 〈�2 p̂C〉 − 2 for both the protocols. The fidelity ex-
pression then becomes

F = 2√
1 + 〈�2x̂C〉 + 〈�2 p̂C〉 + 〈�2x̂C〉 × 〈�2 p̂C〉 . (8)

We can now consider that ζh,C = ζ x
h,C + ζ

p
h,C , with ζ

q
h,C =

〈�2q̂C〉 − 1 with q = {x, p}. Therefore, the last term in the
denominator of Eq. (8) becomes 〈�2x̂C〉 × 〈�2 p̂C〉 = 1 +
ζ x

h,C + ζ
p

h,C + ζ
xp
h,C , where we have denoted ζ x

h,C × ζ
p

h,C = ζ
xp
h,C .

Putting everything together in terms of ζh,C and translating
Eq. (8) in terms of QhC , we can approximate the clone

fidelity as

F = 2√
6 − 2QhC + ζ

xp
h,C

. (9)

For QhC ∈ [0, 1], we must have 0 � ζ x
h,C + ζ

p
h,C � 1 ⇒ 0 �

ζ
xp
h,C � 1. Therefore,

2√
7 − 2QhC

� F � 2√
6 − 2QhC

, (10)

and we obtain F � 1
2 when QhC is positive semidefinite.

Hence, the proof. �
Remark. As we will demonstrate, such a connection also

remains true for non-Gaussian resource states. Note that a
closed form of the fidelity expression, as in Eq. (4), is not
available for the non-Gaussian case, although it can be taken
as an approximation in the limit of small non-Gaussianity or
when the higher-order quadrature moments are negligible as
compared to the corresponding variance.

Since ζh,C < 1 implies that the two modes may be insep-
arable, the above measure links the protocol’s performance
to the entanglement between the sender’s and the clone’s
modes, albeit in a qualitative manner. We justify our claim
with the help of Figs. 3(a) and 3(b), where we consider
both the reversible (F = 2

3+e−2r [56]) and irreversible (F =
4

5+3 cosh 2r−2
√

2 sinh 2r
[54]) telecloning schemes. We observe

that as long as QhC > 0, the clone is produced with non-
classical fidelity, i.e., F > 1

2 in the irreversible and reversible
schemes. We notice that, even though the two protocols dif-
fer in their approach to preparing the clones, the respective
fidelities can be gauged with the help of QhC as shown in
Fig. 3. Furthermore, a higher value of QhC indicates a higher
fidelity of the clone produced in the mode C. We note also that
since ζ is a necessary condition for separability, Q < 0 might
also indicate the presence of entanglement. However, in that
scenario, F is always classical, thereby illustrating that en-
tanglement, although necessary, is not sufficient to guarantee
quantum advantage in the telecloning protocol.

Note that the measure Q is not merely a mathematical
construct. In particular, the quantity ζ is closely related to
an operational measure of nonclassicality [62], specifically in
terms of quadrature squeezing. Recall that squeezing reduces
the quadrature noise below the vacuum level, which is an
innate quantum property. Moreover, ζ has also been used to
construct a witness in the operational resource theory of con-
tinuous variable nonclassicality [63], and is experimentally
discernible using quantum noise-free measurements [62]. It
is also shown to be related with monogamy of entanglement
[88] in CV systems, based on measurements of the quadrature
variables. Our measure Q indicates that nonclassicality serves
as an essential resource in continuous variable telecloning
protocols (cf. [89] for discrete variable systems). In the suc-
ceeding sections, we use Q to investigate telecloning using
non-Gaussian resource states.

Remark. It is evident that in the irreversible protocol, the
Gaussian TMSV state attains maximum clone fidelity for
r < 1.0. In the reversible protocol, on the other hand, the
fidelity with TMSV resource increases monotonically with r
and attains optimality only in the limit of infinite squeezing.
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FIG. 3. Fidelity and nonclassicality measure for telecloning of
coherent states using TMSV resource. The clone fidelity F (vio-
let dashed line) and the nonclassicality parameter QhC (dark green
dashed-dotted line), of the modes h (sender’s homodyne) and C
(clone mode at receiver station), are shown (ordinate) with re-
spect to the resource squeezing r (abscissa) for (a) irreversible and
(b) reversible protocols. The classical benchmark Fcl = 0.5 (black
horizontal solid line) and Fmax = 2

3 (light green horizontal solid line)
are also plotted for reference. Both axes are dimensionless.

Given these observations, we shall restrict our analysis of
telecloning up to r = 1.0, so that non-Gaussian advantage
can be properly studied for small squeezing strengths wherein
Gaussian resource states provide sufficiently high clone
fidelities.

III. NON-GAUSSIAN ADVANTAGE IN CV TELECLONING

Although telecloning of continuous-variable states, specif-
ically coherent states, has been demonstrated using the
Gaussian TMSV state as well as SU(m, 1) coherent states
[90] and Gaussian valence bond states [91], the performance
of non-Gaussian states in the protocol has not been explored.
To this end, we employ photon addition and subtraction in
one or both the modes of the TMSV state, to generate non-
Gaussian resources. Creation of non-Gaussian states using
photon addition and subtraction have already been experimen-
tally demonstrated [56,76–81,83]. For non-Gaussian states,

we employ the Wigner function formalism to evaluate the
success of the telecloning protocol. Recall that Born’s rule
provides the framework for the achievable fidelity of the
cloned state ρC , with Wigner function WC (xC, pC ), against
the input state ρin, having corresponding Wigner function
Win(xin, pin ), as [92,93]

F = Tr[ρinρC] = 2π

∫
dxCd pCdxind pinWC (xC, pC )

× Win(xin, pin )δ(xC − xin )δ(pC − pin )

= 2π

∫
dxind pinWC (xin, pin )Win(xin, pin ), (11)

where δ(. . . ) denotes the delta function. See Appendix A for
a primer on CV phase-space formalism. The fidelity of the
cloned states using non-Gaussian resources is calculated by
numerically integrating Eq. (11).

A. Telecloning of coherent states using non-Gaussian resources

In order to demonstrate the advantage of incorporating
non-Gaussianity in the telecloning scheme, four different non-
Gaussian states have been taken into account, viz., the two-
mode photon-added state (PA-n, n), the two-mode photon-
subtracted state (PS-n, n), and the single-mode photon-added
(PA-n, 0) and photon-subtracted (PS-n, 0) states. Here, n rep-
resents the number of photons added (subtracted) to (from)
one or both modes. Note that the state with n photons added
in a single mode is operationally equivalent to the one with
n photons subtracted from the other mode [66]. It must be
mentioned here that from an experimental point of view, gen-
eration of such resources is an inherently probabilistic task
[59,65,79–81] as the process of adding (subtracting) photons
to (from) each mode of the TMSV state is not determinis-
tic. Following the Wigner functions representation of these
paradigmatic non-Gaussian states [59], it is straightforward
to derive the Wigner function WC (xC, pC ) for the clones state
and subsequently its fidelity, once the same for the input and
resource states are known. In Appendix B, we provide an out-
line of the calculations involved in obtaining the telecloning
fidelity using Wigner functions.

During the telecloning of coherent states using the irre-
versible protocol, clones with optimal fidelity are obtained
when the excess noise in the clone quadratures x̂C and p̂C

are symmetric [54]. This is possible when a vacuum state
impinges on the balanced beam splitter, which is used to split
the modes among the distant receivers. For the irreversible
protocol, we can observe that the PS-1,1 non-Gaussian state
furnishes the highest maximum fidelity among all the con-
sidered non-Gaussian resources, FPS-1,1

max ≈ 0.656 at rPS-1,1
opt ≈

0.4137 (here, we define rρ
opt as the squeezing amplitude at

which the resource state ρ provides the maximum fidelity).
This is, however, lower than the maximum fidelity FTMSV

max =
0.667, obtained through the TMSV resource at rTMSV

opt = 0.881
as shown in Fig. 4(b).

The advantage of non-Gaussianity is apparent on two
fronts: (i) below r ≈ 0.5, the photon-subtracted state al-
ways dominates over the Gaussian TMSV state in providing
clones with higher fidelity, and (ii) the maximum fidelity for
the non-Gaussian state is attained at much lower squeezing
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FIG. 4. Fidelity and nonclassicality measure with Gaussian and non-Gaussian resources. The coherent state is taken as the input for
telecloning. (Upper panel) Irreversible protocol. (a) The nonclassicality measure QhC (ordinate), between the sender homodyne mode h and
the clone mode C, versus the resource squeezing r (abscissa) for TMSV (violet dashed line), PS-1,1 (red dashed-dotted line), PA-1,1 (dark
blue solid line), PS-1,0 (orange solid line), and PA-1,0 (green dotted line) resource states. Q = 0 (gray horizontal solid line) is shown for
reference. (b) The fidelity F (ordinate) of a clone is illustrated against the squeezing strength r (abscissa) for the same resource states as in (a).
The classical fidelity Fcl = 0.5 (black horizontal solid line) and the maximum fidelity Fmax = 2

3 (green horizontal solid line) are shown for
reference. (Lower panel) Reversible protocol. (c) QhC (ordinate) against r (abscissa) and (d) F (ordinate) against r (abscissa). All specifications
are the same as in the upper panel. Both axes are dimensionless.

amplitude r. Conversely, the PA-1,1 non-Gaussian state pro-
vides no advantage compared to the TMSV state, being able
to implement quantum advantage (F � 0.5) only in a lim-
ited range of r ∈ (0.5, 1). The non-Gaussian states obtained
by adding (subtracting) a single photon to (from) a single
mode of the TMSV state perform the worst since they cannot
even overcome the classical threshold, over the entire range
of squeezing. The situation is qualitatively similar in the re-
versible protocol [see Fig. 4(d)]. The PS-1,1 state provides a
clear advantage over its Gaussian counterpart, although, the
maximum fidelity of 2

3 is obtained only at infinite squeez-
ing. No other non-Gaussian state, like the PA-1,1, PA-1,0,
or PS-1,0, can outperform the TMSV resource, even though
some of them can provide quantum advantage by beating
the classical threshold for moderate resource squeezing r �
0.4. Finally, we note that Eq. (3) indicates that the quadra-
tures corresponding to the anticlone are independent of the
resource state. Therefore, both Gaussian and non-Gaussian
states produce anticlones with the same classical fidelity of 1

2
[56]. It is important to note that we have considered F = 2

3
as the quantum benchmark for coherent state telecloning.
However, there can exist nonuniversal, local cloning maps
for higher-dimensional or CV states that can achieve fidelity

greater than universal cloning machines [94,95]. Unlike local
cloning maps, no amplification of the input state is needed
and the protocols considered here rely only on squeezed states
and linear optics [54]. So far, using several Gaussian and
non-Gaussian resources, such as two-mode squeezed vacuum
(TMSV), photon-added and -subtracted TMSV states (in-
cluding single-photon and multiphoton operations), and other
bimodal superposition states, we have not observed fideli-
ties above 2

3 . Let us now investigate how nonclassicality, as
estimated by our proposed measure Q, performs as the key
resource for the telecloning of coherent states.

B. Quadrature variance as an indicator
of coherent state telecloning fidelity

For both the irreversible and the reversible protocols, we
need to consider the nonclassicality measure concerning the
sender homodyne mode h and the mode holding one of the
clones, say, mode C. Since the protocol produces symmetric
clones, QhC is enough to gauge the fidelity of all the produced
clones. In the irreversible protocol, QhC assumes its maximum
value for the TMSV state at r ≈ 0.881, which is exactly the
squeezing amplitude where FTMSV

max = 2
3 . On the other hand,
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the maximum of QhC , which we denote as Qmax
hC , for the

PS-1,1 state occurs at a much lower value of r, which also
resembles the behavior of the fidelity. However, as illustrated
in Fig. 4(a), Qmax

hC (PS-1, 1) < Qmax
hC (TMSV), which explains

why the photon-subtracted state cannot generate a higher
optimal fidelity as compared to the Gaussian resource. The
PA-1,1 state exhibits nonclassicality within 0.5 � r � 1.0, but
can never overcome QhC (TMSV), and hence cannot provide
a definite non-Gaussian advantage in the telecloning protocol.
The single-photon-added (-subtracted) non-Gaussian states
only manifest classical properties, as quantified by QhC , and
are, therefore, deemed useless for the protocol.

Considering the reversible protocol, we observe that both
the TMSV state and the PS-1,1 state are strictly nonclas-
sical for any nonvanishing squeezing parameter as depicted
in Fig. 4(c). Furthermore, unlike the irreversible scheme,
QhC (PS-1, 1) > QhC (TMSV), for the entire range of r. Ex-
pectedly, we find that FTMSV < FPS−1,1 [see Fig. 4(d)]. In this
situation, all the non-Gaussian states, PA-1,1 and PA(S)-1,0,
can furnish quantum advantage for r � 0.4 although none can
perform better than the TMSV state. Again, the squeezing
amplitude r above which F > Fcl occurs matches with the
one that can be obtained from positive QhC . Notice that, in
this case, QhC can provide a threshold on r beyond which
QhC > 0 ⇒ F > Fcl since the fidelity is monotonic with r.
Such a threshold on r cannot be provided for the irreversible
protocol due to the nonmonotonic nature of the fidelity func-
tion, although an estimate on r can be faithfully recovered
through the behavior of QhC . Therefore, the connection es-
tablished for Gaussian input and resource states between QhC

and F remains valid even for non-Gaussian resource states
with coherent state inputs in both protocols.

Remark. The telecloning protocol also demands proper
processing of the input coherent states. The techniques
demonstrated in Ref. [96] enable the protection of the coher-
ent state during telecloning, ensuring improved preservation
of input information, which is of paramount application in
quantum key distribution (QKD). Additionally, environmental
measurements can assist in correcting quantum informa-
tion [97,98] when using non-Gaussian resources, which can
improve error tolerance. This is of great relevance in tele-
cloning where one lacks complete control over environmental
conditions.

C. Non-Gaussian telecloning of input squeezed states

Contrary to the telecloning of coherent states, optimal fi-
delity of squeezed state clones is obtained through asymmetric
excess noise in the quadratures of the clone modes [54].
This constraint demands that, when preparing the multimode
network, we split the receiver modes through squeezed state
inputs at the balanced beam splitter. With the vacuum state
impinged on the beam splitter, the nonclassicality measure is
the same as discussed in the previous section [see Figs. 4(a)
and 4(c)]. To estimate the impact of generating the telecloning
network using squeezed states, we study the variation of F
with respect to ε, which we define to be the squeezing strength
of the input at the beam splitter at the receiver station [see
Fig. 1 where it is denoted as Ŝ(ε)]. Note that ε = 0 represents
the vacuum state. Through this analysis, we try to estimate

TABLE I. εopt for telecloning squeezed states with squeezing s =
0.5 using the irreversible and the reversible protocols.

εopt

Irreversible Reversible

TMSV 0.38 0.45
PS-1,1 0.33 0.46
PA-1,1 0.22 0.46
PS-1,0 0.02 0.25
PA-1,0 0.42 0.23

the optimal squeezing amplitude εopt of the states impinged
on the beam splitter, for which the fidelity of the clones
would be near maximum for squeezed input states. To do
so, we fix the squeezing parameter r of the various resource
states at the value where they attain maximum QhC for coher-
ent state telecloning: rTMSV = 0.89, rPS−1,1 = 0.47, rPA−1,1 =
0.73, rPS−1,0 = 0.88, rPA−1,0 = 0.02 for the irreversible pro-
tocol and r = 1.0 for the reversible protocol. Note that we
consider the input state squeezing amplitude as s = 0.5. The
constructive effect of squeezed input to the beam splitter is
tangible from Figs. 5(a) and 5(d) wherein F increases with ε,
becoming maximum at ε = εopt for the resource states in both
the protocols. Therefore, for each Gaussian or non-Gaussian
state, the fidelity of the clones will be higher at εopt, as
compared to ε = 0. Table I enumerates εopt for the different
resource states for both the considered protocols. Note that
the generation of squeezed states is experimentally challeng-
ing. There, however, exist averaging protocols [99] which
allow for stabilizing the squeezing degree of squeezed-state
resources and are thus fundamental for our task. Furthermore,
the distillation of squeezed states using photon-subtraction
mechanism has also been demonstrated [100,101].

Comparing Figs. 5(b) and 5(e) with 5(c) and 5(f), re-
spectively, we observe that the relation between F and QhC

remains the same as in the previous situation with coherent
state inputs. Specifically, F and QhC are nonmonotonic with
r for the irreversible case, while a monotonic nature appears
for the reversible one. Note that, unlike the coherent state
scenario, Fcl ≈ 0.442 in this case, which is overcome by the
PS-1,1, PA-1,1, and the TMSV states in the irreversible proto-
col, while all the considered Gaussian and non-Gaussian states
considered here provide quantum advantage in the reversible
scheme. However, only the photon-subtracted state, PS-1,1,
can outperform the TMSV state.

Although we have not considered any imperfections in
the telecloning setup, practical realizations can lead to the
reduction of the efficacy of the nonclassical resource and the
telecloning protocol. Taking into account the possible detec-
tor inefficiencies, it was demonstrated that one can suitably
modulate the gain factors in the telecloning protocol to obtain
optimum clones [102].

D. Telecloning with higher-order non-Gaussian states

Let us briefly inspect the benefits rendered by higher-
order non-Gaussian states, especially states generated through
subtraction of an equal number of photons from both modes
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FIG. 5. Fidelity and nonclassicality measure for telecloning of squeezed input states with Gaussian and non-Gaussian resources. (Upper
panel) Irreversible protocol. (a) The fidelity F (y axis) for telecloning a squeezed state of squeezing parameter s = 0.5 is shown versus the
squeezing ε (x axis) of the state impinged on the balanced beam splitter. (b) The nonclassicality measure QhC (y axis) is plotted against the
resource squeezing r (x axis). (c) The fidelity F (y axis) is shown against the resource squeezing r (x axis). (Lower panel) Reversible protocol.
(d)–(f) The same as (a)–(c). All specifications are the same as in Fig. 4, except that Fcl ≈ 0.44. Both axes are dimensionless.

of an initial TMSV state, i.e., PS-n, n. Our choice stems from
the fact that in both the reversible and irreversible telecloning
protocols, we have already shown that PS-1,1 is the best
among all non-Gaussian states. For input coherent states and
the irreversible scheme, higher fidelity at smaller resource
squeezing is provided by the states with a larger number of
subtracted photons, as seen in Fig. 6. While this may prove
to be an advantage when sufficient squeezing is inaccessible,
it must be noted that with increasing n, the maximum fi-
delity value decreases. Therefore, higher-order non-Gaussian
PS states cannot provide any constructive advantage in the
irreversible telecloning protocol. In the case of the reversible
scheme, although PS-n, n states can always offer an advantage
over the TMSV state, their fidelity again decreases with n
for high resource squeezing. Further, the maximum fidelity
Fmax = 2

3 is still achieved only when r → ∞. Therefore,
we can conclude that creating higher-order non-Gaussian PS
states is only favorable for the telecloning network in the
limit of low squeezing strength in the shared initial state. It
should be noted that the probability of successfully creating
such states in experiments decreases drastically with an in-
crease in the number of subtracted photons (see Table 1 in
Ref. [81]).

IV. ASYMMETRIC TELECLONING NETWORK

When a two-mode Gaussian or non-Gaussian state is used
to create the telecloning network, all the clones produced
at the receiver modes have the same fidelity in the case of
both the irreversible and the reversible protocols. Therefore,
the entire discussion so far concerns symmetric telecloning
schemes. But what if Alice wants to prioritize some receivers
over others, for example, in case one or more receivers

are untrustworthy? To deal with such a situation, one must
consider the asymmetric telecloning protocol [39,56]. Note
that, in the discrete variable (qudit) regime, such analysis
has been widely performed [32,37–40]. Here, we propose
an asymmetric telecloning setup for the continuous-variable
paradigm. One efficient way to do this is to create an asym-
metric (N + 1)-mode genuinely entangled resource state and
distribute it among the sender and N distant receivers. After
the telecloning network has been established, we can resort to
either the irreversible protocol or the reversible one to realize
asymmetric telecloning. In contrast to the protocols already
elucidated for CV systems [56,103], the scheme proposed
here does not need additional entangled states to achieve
asymmetry in the clone fidelities and is extendible to an ar-
bitrary number of clones.

Resource generation. Let us first describe how the mul-
timode entangled asymmetric resource state can be created.
First, one starts with N + 1 vacuum modes, i.e., |0〉⊗N+1.
The modes are then squeezed equally in the position and
momentum quadratures alternatively. In other words, mode 1
is squeezed in the position quadrature with strength r, mode
2 in the momentum quadrature with the same squeezing mag-
nitude, and so on. Finally, the squeezed modes are combined
pairwise through N beam splitters, each of transmissivity τi.
Specifically, modes 1 and 2 are impinged on a beam splitter
with transmissivity τ1, and one of the output modes is then
combined with mode 3 at a beam splitter of transmissivity τ2,
and so forth. The N + 1 output modes from the N beam split-
ters constitute a genuinely entangled (N + 1)-mode Gaussian
state, characterized by N + 1 parameters {r, τ1, . . . , τN } [72].
Note that, if one considers only two modes, τ1 = 1

2 leads to
the TMSV state, whereas, with three modes, the well-known
Bassett-Hound state [103–105] is obtained for τ1 = 1

3 and

012410-8



NONCLASSICAL RESOURCE FOR CONTINUOUS-VARIABLE … PHYSICAL REVIEW A 110, 012410 (2024)

FIG. 6. The fidelity of telecloning input coherent states with
higher-order non-Gaussian photon-subtracted states. The fidelity F
(ordinate) is illustrated against the resource squeezing r (abscissa) for
PS-1,1 (red dashed-dotted line), PS-2,2 (green dashed line), PS-3,3
(blue dotted line), and PS-4,4 (orange solid line) resource states in
(a) irreversible and (b) reversible protocols. Fcl = 0.5 (gray hori-
zontal solid line) and Fmax = 2

3 (green horizontal solid line) are also
shown for reference. Both axes are dimensionless.

τ2 = 1
2 . Moreover, the creation of such a resource is experi-

mentally feasible since it involves only linear optical elements
and squeezing.

A. Asymmetric telecloning in the irreversible
and the reversible schemes

We assume that the mode N + 1 belongs to the sender S ,
while the other modes are distributed between the N receivers.
Note that, contrary to the symmetric telecloning protocols,
one need not use any balanced beam splitters to create the
network. Hereafter, the clones are created by following the
exact steps of the irreversible and the reversible telecloning
processes. The output quadratures for the clone at mode m
(1 � m � N) are given by

x̂out
m = x̂m + x̂in − x̂N+1,

p̂out
m = p̂m + p̂in + p̂N+1. (12)

for the irreversible protocol, while in the reversible case,

x̂out
m = x̂m + x̂in − x̂N+1 + x̂vS√

2
,

p̂out
m = p̂m + p̂in + p̂N+1 + p̂vS√

2
,

x̂out
aC = x̂in −

√
2x̂vS,

p̂out
aC = −p̂in −

√
2 p̂vS. (13)

It is evident that the anticlone produced in the reversible
protocol is resource independent and thus has a fidelity of 1

2
as before. In order to calculate the clone fidelity according to
Eq. (4), one needs the quadrature correlations corresponding
to the modes m and N + 1. Analysis of the covariance matrix
of an (N + 1)-mode state recursively leads to the following
expressions for the same:
Variances:

〈(
x̂2

m=2k

)〉 = e2r − 2 sinh 2r

⎧⎪⎪⎨
⎪⎪⎩

2k−1∑
i=1,
i+=2

τi

2k−1∏
j=i+1

(1 − τ j )

⎫⎪⎪⎬
⎪⎪⎭

τ2k,

〈(
x̂2

m=2k−1

)〉 = e2r + 2 sinh 2r

⎧⎪⎪⎨
⎪⎪⎩

1 −
2k−3∑
i=1,
i+=2

τi

2k−2∏
j=i+1

(1 − τ j )

⎫⎪⎪⎬
⎪⎪⎭

τ2k−1.

(14)
Correlators:

〈(x̂N+1x̂m=2k )〉 = −2 sinh 2r
√

τ2k

2k−1∑
i=1,
i+=2

τi

2k−1∏
j=i+1

(1 − τ j )

×
N∏

l=2k

√
1 − τl ,

〈(x̂N+1x̂m=2k−1)〉 =

⎧⎪⎪⎨
⎪⎪⎩

1 −
2k−3∑
i=1,
i+=2

τi

2k−2∏
j=i+1

(1 − τ j )

⎫⎪⎪⎬
⎪⎪⎭

N∏
l=2k

√
τl2

× sinh 2r
√

1 − τ2k−1. (15)

While, for N = 2k, we have

〈(
x̂2

N+1

)〉 = e2r − 2 sinh 2r

⎧⎪⎪⎨
⎪⎪⎩

2k−1∑
i=1,
i+=2

τi

2k∏
j=i+1

(1 − τ j )

⎫⎪⎪⎬
⎪⎪⎭

, (16)

and for N = 2k − 1

〈(
x̂2

N+1

)〉 = e2r − 2 sinh 2r

⎧⎪⎪⎨
⎪⎪⎩

2k−1∑
i=1,
i+=2

τi

2k−1∏
j=i+1

(1 − τ j )

⎫⎪⎪⎬
⎪⎪⎭

. (17)

Similar expressions can be found for the momentum quadra-
tures pm and pN+1 by performing the substitution r → −r in
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FIG. 7. The nonclassicality measure and the corresponding clone fidelities for asymmetric telecloning of input coherent states. (Upper
panel) Irreversible protocol QhCi (a) and the fidelity F (b) (ordinate) against the resource squeezing r (abscissa) for clones C1 (red dashed-
dotted line), C2 (green dashed), C3 (blue dotted), and C4 (orange solid line) using a five-mode genuinely entangled Gaussian resource state.
(Lower panel) Reversible protocol QhCi (c) and the fidelity F (d) are shown with the same specifications as in (a) and (b), respectively. The
classical benchmark Fcl = 0.5 (dark black horizontal solid line), the maximum allowed fidelity Fmax = 2

3 (light green horizontal solid line),
and QhCi = 0 (light gray solid line) are plotted for reference. Both axes are dimensionless.

Eqs. (14)–(17). Therefore, the fidelity of the clone produced
at mode m is now a function of {r, τ ′

i s}. By tuning the beam-
splitter parameters, one can control the telecloned state at each
receiver’s station.

When a five-mode Gaussian state is distributed between
a sender and four receivers, there are four beam splitters,
τ1, τ2, τ3, and τ4, involved in the resource generation process.
As an exemplary state, we consider τ1 = 0.5, τ2 = 0.05, τ3 =
0.125, and τ4 = 0.1, hence one finds that the fidelity of the
clone produced at mode 1 can easily overcome the classical
threshold, but can reach FC1max

= 2
3 only for the irreversible

scheme [see Fig. 7(a)]. The clone at mode 2 can be trans-
mitted with quantum advantage only in a small region of
the squeezing strength. However, by increasing τ2 and τ3,
it can achieve the maximum fidelity at the expense of the
former clone. The last two clones are always produced with a
subclassical fidelity FC3,4 � 0.5, and should thus be assigned
to the untrustworthy receivers. Our measure QhCi , concerning
the clone i, can again predict the fidelity accurately, with
nonclassical clones being produced only when QhCi > 0, as
is evident upon comparing Figs. 7(a) and 7(c) with 7(b)
and 7(d), respectively. This scheme is easily extendable to
an arbitrary number of clone modes N , thereby creating an
asymmetric telecloning CV network where N/2� number
of receivers can obtain clones with quantum fidelity and the

remaining cannot (here z� denotes the smallest integer
greater than z).

Optimal asymmetric cloning of coherent states using Gaus-
sian maps has been analyzed previously in terms of the excess
noise introduced during the protocol [90,106]. We note that
the telecloning protocol considered here is different from the
one in Ref. [90], as the asymmetry in our work is characterized
using transmittivity of beam splitters, without optimizing over
the Gaussian resource (apart from squeezing parameter r),
thereby leading to different optimal fidelities. Comparing our
fidelities with the optimal conditions in Ref. [90], we observe
the following: For the reversible protocol, the fidelity of the
best clone in 1 → 4 asymmetric telecloning is equal to 2

3 ,
which is below the Gaussian optimal value. This is due to
the fact that an anticlone is always generated in the reversible
protocol with a fixed fidelity of 1

2 . On the other hand, for
the irreversible protocol, upon varying the transmittivities, the
fidelity reaches very close to the Gaussian optimal value for
higher values of r, i.e., F ≈ 0.98 at r = 2.

V. CONCLUSION

Telecloning entails the nonlocal approximate transmis-
sion of quantum information. Initially formulated for qudit
systems, the protocol has been devised in the continuous
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variable regime, which allows for experimentally feasi-
ble realization using linear optical elements. Through this
scheme, optimal clones of a quantum state can be distributed
among several spatially separated receivers with the help
of multimode-entangled photons. A fundamental question
concerning any quantum communication process involves
understanding what specific quantum property drives the
quantum advantage of the task, and also whether different
classes of quantum resources can furnish different levels of
advantage. In this work, we explored both these issues and
established how nonclassicality present in the shared resource
state can explain the telecloning technique. We studied CV
telecloning in terms of two exemplary protocols: the irre-
versible and the reversible protocol.

We argued that neither bimodal entanglement, as quantified
by logarithmic negativity, nor genuine multimode entangle-
ment, can shed light on the optimal behavior of fidelity in
a telecloning network. Entanglement is thus a necessary in-
gredient for telecloning although it may not be sufficient. We
showed that it is the quadrature-based nonclassical property,
inherent in the modes shared between the sender and one of
the receivers, that governs how perfectly the clones will be
created. To this end, we defined a nonclassicality measure
whose behavior clearly predicts the optimal fidelity of the
clones. The nonclassicality measure is operationally estimable
and also related to the quantumness attributed to quadrature
squeezing.

Towards identifying the best possible resource state which
can provide quantum advantage, we extended the telecloning
protocol by including non-Gaussian resource states. We
demonstrated that two-mode states with photons subtracted
from both modes can outperform the two-mode squeezed
vacuum state. The advantage is ubiquitous when the reversible
protocol is adopted but persists only for low resource squeez-
ing in the irreversible scheme. The two-photon-added state
can never achieve such superiority over the Gaussian TMSV
resource, whereas states generated by the addition (subtrac-
tion) of photons to (from) any one mode may provide quantum
advantage, albeit below that provided by the TMSV state.
We also highlighted that the nonclassicality measure can ex-
plain the patterns of fidelity in the telecloning protocol for
a fixed shared state. Eventually, we showed that only for
low squeezing strengths, the fidelity can be increased when a
greater number of photons is subtracted from both modes. Our
analysis thus creates an operational hierarchy among Gaussian
and non-Gaussian states concerning the telecloning protocols.

In our work, we have focused only on the dissipationless
implementation of the telecloning protocol. In the presence of
environmental interactions, the reduction in bimodal entangle-
ment would adversely affect the telecloning fidelities. On the
other hand, it has been demonstrated that a non-Markovian
nature of the interaction leads to revivals in entanglement
and other nonclassical resources [107] making them reusable
at several instances [108]. Hence, understanding the role of
dissipation and environmental effects on the non-Gaussian
resource and telecloning can further enhance the efficacy
of the protocol in the CV regime. Another interesting path
for future research is to find the resources for non-Gaussian
advantage in protocols such as precision metrology and the
capacity of quantum communication channels. It will also

be fascinating to investigate whether it is possible to tweak
the linear multimode teleportation protocol by introducing
optical amplification (as in Ref. [95]) for achieving higher
single-mode cloning fidelity for a subset of states.

Going beyond the symmetric scheme, we provided an
asymmetric telecloning network for continuous-variable sys-
tems, where clones at different receiver stations are produced
with different fidelities. It only requires linear optical ele-
ments to generate the required state, whose asymmetry with
respect to different modes ensures the eventual asymmetry in
the telecloning routine. Such a protocol has immense appli-
cations in scenarios that demand secure communication of
information. Our protocol allows the sender to manipulate
the state parameters in order to decide which receivers would
obtain clones with optimal fidelities, thereby protecting the
communication scheme against malicious parties. We studied
the asymmetric telecloning network under the paradigm of
Gaussian states and leave its non-Gaussian implementation as
an open question for further research.
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APPENDIX A: CONTINUOUS-VARIABLE
PHASE-SPACE FORMALISM

Continuous-variable (CV) systems are characterized by po-
sition x̂ and momentum p̂ operators [42,109]. Since both the
quadrature operators have an infinite spectrum, CV systems
are difficult to study in the matrix notation. Therefore, one
resorts to the phase-space formalism. An N-mode CV state
ρ comprises 2N quadrature operators, which can be cumu-
latively denoted by a vector R̂ = (x̂1, p̂1, . . . , x̂N , p̂N )T . Each
quadrature operator can be written in terms of the creation and
annihilation operators â and â†, respectively, as

âk = x̂k + ιp̂k and â†
k = x̂k − ιp̂k, (A1)

where ι = √−1 and for a given mode k, the commutation
relation [â†

k, âk] = −1 holds true. The commutation relation
for all N modes can be succinctly defined in terms of R as

[R̂k, R̂l ] = ι�kl with � =
N⊕

j=1

ω j . (A2)

Here, � is known as the N-mode symplectic form, and ω j is
given by

ω j =
(

0 1
−1 0

)
∀ j. (A3)

When the Hamiltonian Ĥ pertaining to a particular system
is at most a quadratic function of the quadrature operators,
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one obtains the well-known Gaussian states [110,111] as
the ground and thermal states of Ĥ . As the name suggests,
such states are completely specified by their first and second
moments as

dk = 〈R̂k〉ρ, (A4)

kl = 〈R̂kR̂l + R̂l R̂k〉ρ − 2〈R̂k〉ρ〈R̂l〉ρ, (A5)

where d is the 2N-dimensional displacement vector and  is
the 2N × 2N real symmetric and positive-definite covariance
matrix.

Beyond Gaussian states, however, one must consider all
the higher-order moments to characterize the state, which
makes the analysis intractable. We can then take recourse to
m-ordered characteristic functions, given by [92,93]

χm
ρ (q) = Tr[ρD̂(q)]em|q|2/2, (A6)

where q is the total displacement parameter of the N modes,
i.e., q = (q1, q2, . . . , qN ) and D̂k (qk ) = exp[qkâ†

k − q∗
k âk] is

the displacement operator of the mode k with complex dis-
placement parameter qk = qxk + ιqpk . The complex Fourier
transformations of χρ (q, m) are known as quasiprobability
distributions W m

ρ , i.e.,

W m
ρ (q′) = 1

π2

∫
R2N

d2N q′′χm
ρ (q′′)eιq′′T �q′

, (A7)

where R is the space of real numbers and q′, q′ are dis-
placement parameters. For m = 0, one recovers the Wigner
function Wρ , which is always real, but can be both positive or
negative. Thus, experimentally, one cannot directly measure
the Wigner function. Its operational interpretation lies in the
fact that its marginals are probability distributions that can be
sampled via homodyne detection as

〈x̂k〉ρ =
∫
R2N−1

d p1 . . . d pN dx1 . . . dxN−1

× Wρ (x1, p1, . . . , xN , pN ). (A8)

APPENDIX B: TELECLONING IN THE WIGNER FUNCTION FORMALISM

We shall discuss the telecloning protocol producing two clones of a given state (and one anticlone). The extension to M clones
is straightforward. Let us consider that the two-mode resource state is defined through the Wigner function Wres(x1, p1, x2, p2)
where xi and pi, respectively, represent the position and momentum quadratures of the mode i. Further, let the input state and the
squeezed vacuum be characterized by Win(xin, pin ) and Wv (xv, pv ), respectively. To generate the telecloning network, initially,
the resource state and the squeezed vacua are impinged on balanced beam splitters. The total state may be represented as

Wnet = W 1v (xv, pv ) × Wres(x1, p1, x2, p2) × W 2v (xv, pv ) (B1)

→ Wnet

(
xS + xaC√

2
,

pS + paC√
2

,
xC1 + xC2√

2
,

pC1 + pC2√
2

,
xS − xaC√

2
,

pS − paC√
2

,
xC1 − xC2√

2
,

pC1 − pC2√
2

)
, (B2)

where S denotes the mode at the sender, Ci denotes the clone i, and aC denotes the anticlone mode. Note that in the irreversible
protocol, the state W 1v is absent and no anticlones are produced.

Upon establishing the setup, the sender combines the input state and his or her mode at a balanced beam splitter to undertake
homodyne detection:

W ′ = Win(xin, pin ) × Wnet(xS , pS , xaC, paC, xC1 , pC1 , xC2 , pC2 ) (B3)

→ W ′
(

xu + xw√
2

,
pu + pw√

2
,

xw − xu√
2

,
pw + pu√

2
, xaC, paC, xC1 , pC1 , xC2 , pC2

)
, (B4)

where u and w represent the output modes from the beam splitter. The sender performs homodyne detection on the modes xu and
pw, which translates to integrating Eq. (B4) over the corresponding variables. To facilitate calculations, we substitute xu + xw →√

2x, pu + pw → √
2p and obtain W ′(xu, pw, x, p, xaC, paC, xC1 , pC1 , xC2 , pC2 ). The protocol specifies that the anticlone mode be

displaced by −√
2xu + ι

√
2pw and each clone mode be displaced by −√

2xu − ι
√

2pw (here ι = √−1). Therefore,

W ′ → W (xu, pw, x, p, xaC −
√

2xu, paC +
√

2pw, xC1 −
√

2xu, pC1 −
√

2pw, xC2 −
√

2xu, pC2 −
√

2pw ). (B5)

Then the Wigner function of any clone, say C1, can be readily obtained as WC1 (xC1 , pC1 ) by integrating Eq. (B5) over
xu, pw, x, p, xaC, paC, xC2 , pC2 . The fidelity of the clone is then given by

FC1 = 2π

∫
dxC1 d pC1 dxind pinWC1 (xC1 , pC1 ) × Win(xin, pin )δ(xC1 − xin )δ(pC1 − pin )

= 2π

∫
dxind pinWC1 (xin, pin ) × Win(xin, pin ). (B6)

Note that the Wigner function of any other clone, or the anticlone, can be obtained by integrating Eq. (B5) over all the
remaining mode quadratures. For a complicated network of 1 → M telecloning, more balanced beam splitters are used to split
one resource mode into the M modes in Eq. (B2). In our work, all integrations involving non-Gaussian states have been performed
numerically.
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