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Effect of alternating layered Ansätze on trainability of projected quantum kernels
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Quantum kernel methods have been actively examined from both theoretical and practical perspectives due
to the potential of quantum advantage in machine learning tasks. Despite a provable advantage of fine-tuned
quantum kernels for specific problems, widespread practical usage of quantum kernel methods requires resolving
the so-called vanishing similarity issue, where exponentially vanishing variance of the quantum kernels causes
implementation infeasibility and trainability problems. In this work, we analytically and numerically investigate
the vanishing similarity issue in projected quantum kernels with alternating layered Ansätze. We find that
variance depends on circuit depth, the size of local unitary blocks, and the initial state, indicating the issue
is avoidable if shallow alternating layered Ansätze are used and the initial state is not highly entangled. Our work
provides some insight into design principles of projected quantum kernels and implies the need for caution when
using highly entangled states as input to quantum kernel-based learning models.
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I. INTRODUCTION

Recent advances in quantum devices and their public ac-
cessibility have led a number of researchers to explore the
applicability of quantum computing in various fields. Ma-
chine learning is one such field where quantum computers
can possibly enhance the capability of conventional methods.
Remarkably, it has been shown that some quantum machine
learning (QML) methods are theoretically guaranteed to out-
perform their existing classical counterparts for certain tasks
[1–8]. Motivated by these works, QML approaches have also
been heuristically examined with the hope to discover practi-
cal advantages over classical ones.

Quantum kernel methods are promising QML methods
where the Hilbert space accessed by quantum computers is
utilized as a feature space for machine learning tasks [9,10].
More specifically, quantum computers are used to map data
into quantum feature space (i.e., the Hilbert space) via quan-
tum circuits; then a quantum kernel, an inner product of a pair
of data-dependent quantum features, is computed. The core
idea is that the quantum kernel can measure the similarity
between data points in the quantum feature space without
explicitly determining the corresponding feature vectors that
are exponentially large in the number of qubits. Much atten-
tion has been paid to quantum kernel methods because the
provable advantage for a specific learning task has been shown
[4] and supervised QML models can be recast in terms of
kernel methods [11].

Despite the hope of quantum advantages for real-world
machine learning tasks, it has been suggested that quantum
kernel methods suffer from the so-called vanishing similarity
issue or exponential concentration issue [12,13], which under-
mines implementation feasibility and trainability of quantum
kernel–based learning models. Analogous to the well-known
barren plateau problems in variational quantum algorithms
[14–18], vanishing similarity is a phenomenon where the

expectation value and variance of the quantum kernel decay
exponentially quickly in the number of qubits. As a result,
output values of quantum kernels for any pairs of data points
result in the same value, i.e., concentrated around the ex-
pectation value. This implies that an exponential number of
measurement shots is needed to estimate each quantum kernel
on quantum hardware. It also implies that models constructed
from quantum kernels fail to distinguish between data points,
leading to overfitting and poor performance for new unseen
data [12,13].

Recent works have attempted to analytically clarify the
phenomenon and seek a remedy to this issue. In particular,
Ref. [13] analyzed the phenomenon for two types of fidelity-
based quantum kernels, the commonly used fidelity-based
quantum kernel [9] and projected quantum kernels [5]. In
addition, four causes of the problem were elucidated in the
literature: expressivity of quantum circuits, global measure-
ment, how entangled the data-embedded quantum states are,
and quantum noise. The analysis gives insight into design
principles for quantum kernels. Scaling the rotation angles
for data encoding gates could help avoid the issue at the cost
of expressivity of quantum circuits [19–21]. Moreover, it has
been shown that a new type of quantum kernel, called the
quantum Fisher kernel, can mitigate the vanishing similarity
issue because local similarities are measured via the informa-
tion geometric quantity of quantum circuits [12].

In this work we further examine projected quantum kernels
from the perspective of the vanishing similarity issue. As men-
tioned above, Ref. [13] analyzed projected quantum kernels
for globally random quantum circuits and reached the conclu-
sion that one cannot mitigate the exponential concentration for
the quantum circuits. On the other hand, according to Ref. [18]
on how to remedy the barren plateau problem, using local
cost functions and the so-called alternating layered Ansätze
(ALAs) possibly resolves vanishing gradients. This suggests
a possibility that projected quantum kernels can alleviate the

2469-9926/2024/110(1)/012409(17) 012409-1 ©2024 American Physical Society

https://orcid.org/0000-0003-2035-5135
https://ror.org/02kn6nx58
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.012409&domain=pdf&date_stamp=2024-07-01
https://doi.org/10.1103/PhysRevA.110.012409


YUDAI SUZUKI AND MUYUAN LI PHYSICAL REVIEW A 110, 012409 (2024)

FIG. 1. Gram matrices of projected quantum kernels for different numbers of qubits and initial states. The Gram matrices, where the entry
(i, j) contains the value of the quantum kernel for a data pair (xi, x j ), are computed using alternating layered Ansätze with depth L = 6 for 100
randomly generated data points. Here a tensor product state (top row), the GHZ state (middle row), and a quantum state randomly sampled
from the Haar measure (bottom row) are prepared as the initial state. The more entangled the initial state is, the more identical every element
of the Gram matrix is as the number of qubits increases; in other words, vanishing similarity arises.

issue because the difference of data is measured via a local
quantity, i.e., reduced density matrices of the data-dependent
quantum states. Therefore, this work analytically and numeri-
cally investigates the presence of the vanishing similarity issue
in projected quantum kernels for different types of quantum
circuits.

To be more specific, we provide analytical expressions
for the expectation value and variance of projected quantum
kernels using (1) n-qubit random quantum circuits and (2) the
ALA with m-qubit local unitary blocks. We assume here that
globally random quantum circuits and local unitary blocks in
the ALAs form 2-designs [22–26]. With this assumption, the
globally random quantum circuits fail to avoid the issue, as
demonstrated in Ref. [13]. As for the ALAs, we find that
the variance of projected quantum kernels depends on not
only the circuit depth and size of the local unitary blocks,
but also the initial state. This result indicates that the vari-
ance of the projected quantum kernel with shallow ALAs can
avoid the vanishing similarity issue if the initial state is not
highly entangled, such as a tensor product state. Figure 1
illustrates this result. Moreover, we observe a dependence
on position of the reduced density matrices (accordingly,
the light cone of the reduced subsystem) used to calculate
projected quantum kernels. This suggests that the contribu-
tion of the term in the summed projected quantum kernels
differs depending on the position of the subsystems. We
then validate these analytical results by performing numerical
simulation.

The rest of this paper is organized as follows. We provide
an overview of quantum kernel methods and details of
projected quantum kernels in Sec. II A. Then we elaborate the
setting of our analysis in Sec. II B. Our main analytical results

on the vanishing similarity issue in projected quantum kernels
is detailed in Sec. III A, which is followed by numerical
simulation to demonstrate examples supporting the analytical
results in Sec. III B. Section IV summarizes the paper and
discusses the implication of our results. In Appendix A we
provide the preliminaries of the integration over the Haar
random unitary used in our analysis. In Appendixes B 1 and
B 2 we provide the proof of our analytical results on the
expectation value and variance of projected quantum kernels
for the case of (1) n-qubit random quantum circuits and (2)
alternating layered Ansätze with m-qubit local unitary blocks,
respectively. In addition, we explain the difference between
Eqs. (5) and (8) in the variance in Appendix B 3.

II. PRELIMINARIES

In this section we first review quantum kernel methods
and provide the details of projected quantum kernels. We also
introduce the settings in our analysis.

A. Quantum kernel methods

Quantum kernel methods measure the similarity between
all possible pairs of data using a function called quantum
kernel. Originally, a fidelity quantum kernel defined as

kQ(xi, x j ) = Tr[ρ(xi, θ)ρ(x j, θ)], (1)

was proposed, where ρ(x, θ) = U (x, θ)ρ0U †(x, θ) is the den-
sity matrix representation of the quantum state generated by
applying a unitary operator U (x, θ) to the initial state ρ0. The
unitary operator is realized by a quantum circuit dependent on
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data x and tunable parameters θ and plays the role of feature
mapping, in which classical or quantum data are mapped to
certain quantum states that have rich information on the data
set. Note that we also introduce parameters θ, because such
a quantum feature map can be engineered by optimizing θ in
practical situations [27].

Then a Gram matrix G whose (i, j) element corresponds to
a kernel function with an input pair (xi, x j ), i.e.,

Gi, j = kQ(xi, x j ),

is used to perform machine learning tasks. Typically, kernel
methods are used for classification tasks in combination with
support vector machines. The classification problem is re-
duced to minimizing the cost function L(α) with respect to
the parameter α,

L(α) = −
N∑
i

αi + 1

2

N∑
i, j

αiα jyiy jGi j, (2)

where N is the number of data points and yi ∈ {+1,−1} is
the label of data xi. With optimal parameter αopt obtained by
solving Eq. (2), the prediction y(xnew) of unseen data xnew can
be written as

y(xnew) = sgn

(∑
i

α
opt
i yikQ(xnew, xi )

)
. (3)

While it has been proven that there exists a data set that is
efficiently learnable not by classical models but by quantum
kernels [4], the fidelity-based quantum kernel in Eq. (1) suf-
fers from the vanishing similarity issue: The expectation and
variance of the quantum kernel decline exponentially as the
number of qubits increases. More concretely, the vanishing
similarity issue is mathematically defined as

Var{x,x′}[kQ(x, x′)] � B, B ∈ O(c−n), (4)

with c > 1 and the number of qubits n. Here the variance is
taken over all possible input data pairs {x, x′}. We remark that,
as the quantum kernel depends on the data via a quantum fea-
ture map U (x, θ), the variance can be equivalently taken over
{U (x, θ),U (x′, θ)} sampled from a data- (and parameter-)
dependent unitary ensemble, i.e., Var{U (x,θ),U (x′,θ)}[kQ(x, x′)].
The reason why this is detrimental is twofold [12,13]. One is
that an exponential number of measurements must be done to
precisely estimate the quantum kernel. The other is a trainabil-
ity issue. The Gram matrix will be close to the identity matrix
for a large number of qubits and thus the model of Eq. (3)
obtained by minimizing the cost function in Eq. (2) would
cause overfitting.

A possible remedy to this problem is projected quantum
kernels proposed in Ref. [5], where a few variations were
introduced. A simple one is a linear projected quantum kernel
defined as

kL
PQ(x, x′) =

∑
κ

Tr
{
TrS̄κ

[ρ(x, θ)]TrS̄κ
[ρ(x′, θ)]

}
, (5)

where Sκ denotes the subspace for the κth qubit and TrS̄κ
[·]

is the partial trace operation over the subspace S̄κ . Note that
S̄ is the complement of the subspace S. Also, the Gaussian

projected quantum kernel is proposed,

kG
PQ(x, x′)

= exp

(
−γ

∑
κ

‖TrS̄κ
[ρ(x, θ)] − TrS̄κ

[ρ(x′, θ)]‖2
2

)
, (6)

with a hyperparameter γ ∈ R+ and the Hilbert–Schmidt norm
‖ · ‖2. A key point of projected quantum kernels is that the
similarity of data is measured using the reduced density matrix
TrS̄κ

[ρ(x, θ)] instead of the density matrix ρ(x, θ), namely,
the local difference between data is compared in projected
quantum kernels. According to Ref. [18], the barren plateau
problem in variational quantum algorithms can be circum-
vented using local cost functions and the ALA. Similarly,
projected quantum kernels also possess a local property that
can help mitigate the vanishing similarity issue, which makes
it favorable over traditional quantum kernels for practical ap-
plications.

B. Setting in our analysis

Although Ref. [13] demonstrates that projected quantum
kernels with globally random quantum circuits cannot avoid
the issue, it is a seemingly promising approach because
of their locality. Thus, this work further analyzes projected
quantum kernels from the vanishing similarity perspective,
considering two types of quantum circuits. One is the n-
qubit random quantum circuit and the other is the ALA with
m-qubit local unitary blocks [18], as depicted in Figs. 2(a) and
2(b), respectively. We note that the former quantum circuit
is the same setting in Ref. [13], but the latter has not been
examined for use with projected quantum kernels. We per-
form analytical calculation for the globally random quantum
circuits as well to make sure of the validity of our analysis and
show an exact expression of the variance. For ease of analyt-
ical investigation, we then assume that the globally random
quantum circuits and local unitary blocks in the ALAs are
independent and 2-designs [22–26], meaning that the quantum
circuits (unitary blocks) have the same statistical property
with a Haar random unitary up to the second moment. In
a broad sense, this assumption indicates that the quantum
circuits or unitary blocks are expressive enough to uniformly
explore the ensemble of Haar random states. We remark that,
while quantum circuits might not be 2-designs in practice,
some previous works have made similar assumptions to check
the problems such as a barren plateau [14,18,28–30] and
vanishing similarity [12,13,19]. Specifically, we express the
ALA as

U (x, θ) =
L∏

d=1

Vd (x, θ)

=
L∏

d=1

⎛
⎝ ζ∏

l=1

Wl,d (x, θl,d )

⎞
⎠, (7)

where L is the circuit depth and ζ is the number of unitary
blocks in each layer. Here we assume that the total number of
qubits n satisfies n = mζ . We note that the number of qubits
on which both a unitary block in a layer and the one in the
adjacent layer act is m/2; for example, S(2,1) and S(1,2) have an

012409-3



YUDAI SUZUKI AND MUYUAN LI PHYSICAL REVIEW A 110, 012409 (2024)

FIG. 2. Quantum circuits used in our analysis. The globally random quantum circuit is shown acting on (a) all qubits and (b) the ALA.
(c) Details of the ALA and the setting of the projected quantum kernel in our analysis.

m/2-qubit subspace in common, where S(l,d ) is the subspace
of qubits which the unitary block Wl,d acts on. Details are
illustrated in Fig. 2(c).

Throughout this paper, in lieu of Eqs. (5) and (6), we
consider the quantity

k(κ )
PQ (x, x′) = Tr

{
TrS̄κ

[ρ(x, θ)]TrS̄κ
[ρ(x′, θ)]

}
. (8)

We focus on this quantity because exploring it is sufficient
to confirm the tendency of projected quantum kernels. Of
course, the variance of Eq. (5) depends on the covariance
terms and thus is not necessarily equal to that of the sum-
mation of Eq. (8) over possible κ . However, in this case,
every covariance term is equal to or more than zero and the
difference between them does not matter in terms of scaling
(see Appendix B 3 for more details). Moreover, without loss
of generality, we assume that the subspace for the κth reduced
density matrix (composed of nκ qubits) appearing in Eq. (8),
Sκ , is completely included in the subspace on which one
of the unitary blocks in the last layer acts, as is shown in
Fig. 2(c). We also assume that the initial state ρ0 is an arbitrary
pure state.

III. RESULTS

In what follows, we provide analytical results on the van-
ishing similarity issue in projected quantum kernels. Then
we show numerical results to check the reliability of our
analysis.

A. Main results

We analytically calculate the expectation value and vari-
ance of projected quantum kernels to check the existence of
the vanishing similarity issue. Here we focus on two types of
quantum circuits, that is, globally random quantum circuits
and ALAs. Although the case for globally random quantum
circuits has been analyzed in Ref. [13], here we check to
confirm our analytical procedure and give an exact expression
of the variance.

We first show analytical results for the globally ran-
dom quantum circuits, with the full proof included in
Appendix B 1.

Proposition 1. Let us denote the expectation value and
variance of the projected quantum kernel defined in Eq. (8)
with n-qubit random quantum circuits by 〈k(κ )

PQ,RQC〉 and

Var(k(κ )
PQ,RQC), respectively. If the n-qubit random quantum

circuits form t-designs with t � 2 and independent, then we
have 〈

k(κ )
PQ,RQC

〉 = 1

2nκ
, (9)

Var
(
k(κ )

PQ,RQC

) = 22nκ − 1

22nκ (2n + 1)2
≈ 1

22n
. (10)

We remind the reader that nκ is the number of κth qubits
and n is the total number of qubits. Proposition 1 implies that
the similarity between a pair of different data will be hard to
distinguish regardless of the size of reduced density matrix
for a large number of qubits. Therefore, projected quantum
kernels with globally random quantum circuits cannot avoid
the vanishing similarity issue. Note that the result is different
from the result in Ref. [13] in that we calculate the exact
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expectation rather than its upper bound, but the implication
is consistent.

Next we provide the result obtained for the case of ALAs.
We obtain here the lower bound of the variance to see the
absence of the vanishing similarity issue. (See Appendix B 2
for the proof).

Theorem 1. For the projected quantum kernel defined in
Eq. (8) and the ALA defined in Eq. (7), we denote the ex-
pectation value and variance by 〈k(κ )

PQ,ALA〉 and Var(k(κ )
PQ,ALA),

respectively. Also, we assume that every unitary block in
the ALA, U (x, θ) and U (x′, θ), is a t-design with t � 2 and
independent. Then the expectation value is

〈
k(κ )

PQ,ALA

〉 = 1

2nκ
. (11)

As for the variance, its lower bound is

Var
(
k(κ )

PQ,ALA

)
� 22m(L−1)(22nκ − 1)

(22m − 1)2(2m + 1)4(L−1)22nκ
F (ρ0, L),

(12)

with a function F (ρ0, L) of the initial state ρ0 and the depth
L. More specifically, we define the function as

F (ρ0, L)

=
⎛
⎝2m

∑
h∈P(S(ku ,1):S(kl ,1) )

thTr
(
ρ2

0,h̄

) −
L−1∑
τ=0

cτ

2mτ

⎞
⎠

2

, (13)

where th, cτ ∈ R+ and ρ0,h̄ = Trh̄(ρ0) is the partial trace of
the initial state over the subspace h̄. Also, P(S(ku,1) : S(kl ,1)) is
the set containing all the possible neighboring subspaces in⋃kl −ku

i=0 S(ku+i,1). Here Wku,1 (Wkl ,1) denotes the unitary block
located at the upper (lower) edge of the light cone in the
first layer. We note that F (ρ0, L) = 0 if ρ0,h̄ is the completely
mixed state for all subspaces h.

Like the case for a globally random quantum circuit, the
expectation value is dependent not on the total number of
qubits but on the system size of the reduced density matrix.
However, Eq. (12) shows that the lower bound of the variance
depends not only on the depth L and the size of the local
unitary blocks m, but also on the initial state via the function
F (ρ0, L). As shown in Eq. (13), the function contains the
purity of some subspace of the initial state. Thus, depending
on the choice of initial state, the vanishing similarity issue can
be avoided. For example, if the initial state can be represented
as a tensor product of arbitrary single-qubit states, i.e., ρ0 =
σ1 ⊗ σ2 ⊗ · · · ⊗ σn with arbitrary single-qubit states {σi}, then
the function has a maximum value and the variance scales as
	(2−2mL ). On the other hand, if the initial state is so entangled
that Tr(ρ2

0,h̄
) is the completely mixed state for almost all h,

then the variance could decrease exponentially fast with re-
spect to the number of qubits regardless of circuit depth. Note
that it has been reported that the initial state matters for the
vanishing gradient problem in variational quantum algorithms
[31,32]. Thus, our result suggests that the initial state should
also be taken into account for the usage of projected quantum
kernels. Moreover, we check the dependence of the variance
on the position of the κth qubit. To be more specific, we con-
sider the situations in which the κth qubit(s) is (are) located (i)

FIG. 3. Light cone depending on the position of the κth qubit(s).
The blue regions represent the light cone in the quantum circuits.
(a) Case (i), where the number of local unitary blocks in the light
cone is the largest. (b) Case (ii), with the smallest number of unitary
blocks.

in the middle of the last layer and (ii) in the unitary block at
the edge i.e., W1,L or Wζ ,L, illustrated in Figs. 3(a) and 3(b),
respectively. In addition, we assume that the initial state is
a tensor product state to check the relationship between the
depth and the position of the κth qubit(s). In the first case,
this is exactly the same as the result shown in Eq. (12),
i.e., 	(2−2mL ). For the second case, as demonstrated in
Appendix B 2, the variance is 	(2−mL ). The difference comes
down to the number of unitary blocks in the light cone. This
implies that reduced density matrices at the edge of the layer
contribute to the linear projected quantum kernel in Eq. (5)
more than the ones in the middle due to the quadratic differ-
ence. We remark that the dependence of the variance on the
observables’ position was argued in the context of variational
quantum algorithms in Ref. [18], and the result we newly
obtained here from the viewpoint of quantum kernel methods
is similar to the statement shown in the literature (see Fig. 2
in the Supplementary Information of Ref. [18]). Moreover,
we note that this result could suggest that the expressivity
of models depends on the qubit positions, according to the
connection between trainability issues and expressivity [29].
Although we do not believe that taking into account the posi-
tion of observables helps to resolve such trainability problems,
it would be interesting to explore the link of the expressivity
and qubit positions of observables, which we leave for future
work.

B. Numerical results

We perform numerical simulations to demonstrate exam-
ples that support our analytical results. In particular, we focus
on the behavior of the variance for the ALA, because the one
for the globally random quantum circuits has been analyzed in
Ref. [13]. In the numerical experiments, ALAs with two-qubit
local unitary blocks shown in Fig. 4 are considered, where we
employ data reuploading techniques [33]. More specifically,
each local unitary block consists of an embedding layer and
the parametrized quantum circuit layers. Here we use rotation
Y and Z gates as single-qubit rotation gates acting on the
ith qubit, i.e., Rσi (β ) = exp(−βσi/2), σi ∈ {Yi, Zi}, and the
controlled-Z gate as an entangler. As for the input data, we set
the number of qubits equal to the dimension of the data and
each component is randomly chosen from the uniform distri-
bution in the range [−π, π ). Analogously, each parameter in
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FIG. 4. Alternating layered Ansatz used in our simulation. As an example, here we show an even n-qubit alternating layered Ansatz with
depth L = 2. The quantum circuit consists of two-qubit local unitary blocks denoted by red boxes, each of which has a data embedding layer
and a parametrized quantum circuit layer. We note that Rya (Rza) represents a single-qubit rotation gate on the Y (Z) axis, whose angle is
determined by a function of x or θ shown in the subscript. In the numerical experiments, the ith element of data xi is encoded into single-qubit
rotation gates (Ry and Rz) acting on the ith qubit in every embedding layer. Also, each parameter is assigned to different single-qubit rotation
gates in the parametrized quantum circuit layers.

the parametrized quantum circuit layers is selected uniformly
at random from the range [−π, π ). Then we prepare five sets
of parameters and five data sets containing 50 data points
to compute k(κ )

PQ (x, x′) in Eq. (8) with x 	= x′. We note that
nκ = 1 for our numerical simulations. Afterward, the variance
is calculated using the projected quantum kernels computed
for different 25 settings of the input data set and the parameter
set. The computation is performed for all possible κ . When we
encode the data into the quantum circuit, the ith component of
the input data, xi, is injected into the angle of the single-qubit
rotation gates acting on the ith qubit in every embedding layer,
that is, RYi (xi ) [RZi (xi )]. We also assign each parameter to a
single-qubit rotation gate in parametrized quantum circuit lay-
ers, namely, no parameters are shared with different rotation
gates. Figure 4 depicts the details of the quantum circuit. The
numerical simulation is performed using Qiskit [34].

We summarize here the numerical results from the follow-
ing perspectives: (i) the dependence of the variance on circuit
depth for different initial states, (ii) the dependence on the
position of the κth qubit, and (iii) the relation between the
variance and the number of qubits n.

1. Dependence on circuit depth

Figure 5 shows the variance of projected quantum
kernels as a function of the depth L for different initial
states, where the number of qubits n = 9 and the reduced
density matrix with respect to the fifth qubit are consid-
ered for three initial states: a tensor product state ρ0 =
|0⊗n〉〈0⊗n|, the Greenberger-Horne-Zeilinger (GHZ) state
ρ0 = |ψGHZ〉〈ψGHZ| with |ψGHZ〉 = 2−1/2(|0〉⊗n + |1〉⊗n), and
initial states randomly sampled from the Haar measure. We

choose these initial states with different degrees of entangle-
ment to examine how entanglement of initial states affects
the variance. As for the random initial states, we prepare five
different states and the variance is averaged over the trials. It
turns out that the variance decreases exponentially in circuit
depth L for the case of the tensor product state and the GHZ

FIG. 5. Variance of the projected quantum kernel as a function
of the depth of quantum circuits. Here we used the nine-qubit ALAs
with depth L ∈ {4, 6, 8, 10, 12, 14} and the reduced density matrix
for the fifth qubit to compute the projected quantum kernel. We
consider three initial states: a tensor product state (green), the GHZ
state (blue), and random quantum states (red). The shaded region
illustrates the standard deviation over five different random states.
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FIG. 6. Variance of the projected quantum kernel as a function of the position of the κth qubit. We used the ALAs with nine qubits. The
variances of the projected quantum kernel with depth L ∈ {4, 6, 8, 10, 12, 14} are shown for the cases of (a) a tensor product state, (b) the GHZ
state, and (c) random quantum states. In (c) the standard deviation is represented by the shaded region.

state. On the other hand, if a random quantum state is pre-
pared as the initial state, the variance is independent of the
depth and much smaller than the ones for other cases. This
is consistent with the analytical result shown in Theorem 1.
As demonstrated in Eq. (12), the variance is determined by
the depth and the function of the initial state F (ρ, L). For the
first two cases, F (ρ, L) does not contribute to the variance
so much because the reduced systems of the initial states are
far from the completely mixed states; the purity is 1 for the
tensor product state over any subspace h and the purity is 1/2
for the GHZ state if h̄ 	= ∅ or h 	= ∅ and otherwise 1. Thus, a
term other than F (ρ, L) comes into play; the variance vanishes
exponentially with respect to the depth. However, the partial
trace of a random quantum state can be close to the completely
mixed state and thus F (ρ, L) plays a significant role in the
variance rather than the remaining term. Hence, the variance
is consistently small regardless of the depth.

2. Dependence on positions of reduced subsystems

The variance as a function of the positions of the κth qubit
for the nine-qubit system is shown in Fig. 6. We notice that
the variance of the reduced system at the edge of the layer is

smaller than that of the systems in the middle for the tensor
product state and the GHZ state, shown in Figs. 6(a) and
6(b), respectively. Also, the gap of the variance between the
systems at the edge and in the middle gets larger as the depth
increases. This numerical result agrees with the statement in
the previous section that the scaling of the variance differs
depending on the number of local unitary blocks in the light
cone and accordingly the position of the κth qubit. As for
the random quantum state case in Fig. 6(c), the depth and the
position are less significant in the variance because the term
F (ρ, L) contributes dominantly.

3. Dependence on the total number of qubits

Figures 7(a)–7(c) show the variance for different numbers
of qubits using a tensor product state, the GHZ state, and
random quantum states, respectively. For the tensor product
and the GHZ state, the variance levels off for all cases of
circuit depth when the number of qubits is larger than a certain
number. This is because the purity is constant for these cases
and thus F (ρ, L) is saturated. Thus, we can confirm that the
variance of these cases is irrelevant to the number of qubits.
However, Fig. 7(c) shows that the variance vanishes exponen-

(a) (c)(b)

FIG. 7. Variance of the projected quantum kernel as a function of the number of qubits. We used different numbers of qubits n ∈
{3, 4, 5, 6, 7, 8, 9} and the ALAs with different depths L ∈ {4, 6, 8, 10, 12, 14}. Here we consider the reduced system of the �n/2�th qubit,
i.e., the qubit in the middle of the width. Variances are shown for (a) a tensor product state, (b) the GHZ state, and (c) random quantum states.
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tially fast in the number of qubits. This would be attributed
to the fact that there is an exponential decay in F (ρ, L) with
respect to the number of qubits. Hence, this indicates that
initial states really matter in the variance of projected quantum
kernels.

IV. DISCUSSION AND CONCLUSION

In this paper we investigated the vanishing similarity issue
in projected quantum kernels from both analytical and numer-
ical perspectives. We analytically showed that this issue is not
avoidable for the case of globally random quantum circuits,
which is consistent with results in Ref. [13]. In contrast, we
found that projected quantum kernels with ALAs can avoid
exponential decay of the variance if the quantum circuits are
shallow and the initial state is not highly entangled. This im-
plies the potential of projected quantum kernels for practical
usability. In addition, we showed that the initial state plays
a significant role in the variance scaling and thus caution is
needed in preparing input states. We discuss the implication
of our results in QML tasks below.

First, our results suggest that there is a caveat when
quantum data are used as input states in QML tasks. Some
QML tasks handle quantum states as an input state and then
parametrized quantum circuits are applied to the state to seek
features suitable for the tasks. In this situation, the initial
state could be more entangled than a tensor product state.
Hence, there is a possibility that the vanishing similarity is-
sue for projected quantum kernels could be exacerbated for
some tasks.

We also showed that the variance differs depending on the
position of the reduced density matrix. Thus, the contribution
to projected quantum kernels in Eqs. (5) and (6) of reduced
systems at the edge of the layer is larger than that of systems
in the middle; the tendency gets worse as we increase
the circuit depth. This might result in a poor performance
for some tasks because the relevant information could be
undermined. Hence, in some situations, it would be better to
consider the gap, for example, by modifying the weight of the
projected quantum kernel for the κth qubit(s).

Moreover, our results indicate a situation where classi-
cal shadows can reduce the quantum resources required to
compute projected quantum kernels. Classical shadow is a
technique to estimate properties of quantum states with a
small number of measurement shots [35]. We note that the
classical shadow technique can also be applied to estimate the
quantum fidelity efficiently (see Ref. [35] for more details).
Thus, some works have exploited the technique for efficient
estimation of quantum kernel methods [5,36]. On the other
hand, the classical shadow does not work when vanishing
similarity arises. This is because the resolution needed to tell
the difference in a pair of data through the quantum kernel
is significantly high. Our Theorem 1 suggests that projected
quantum kernels can utilize the power of classical shadows
when shallow ALAs are used and the initial state is not highly
entangled.

We finally remark that our analytical results are based on
the assumption that quantum circuits and the local unitary
blocks in the ALAs are 2-designs. This result is of significance
in that we shed light on the trainability and limitations of

projected quantum kernels in general. On the other hand, as
the no-free-lunch theorems [37–39] suggest, domain knowl-
edge should be incorporated into the model. Actually, an
emerging field called geometric quantum machine learning
[40–44], where inductive bias such as symmetry is considered
in constructing quantum models, has attracted much attention.
Therefore, it would be worthwhile to explore the existence
of the vanishing similarity issue by incorporating domain
knowledge into the model for practical purposes. It would also
be important to investigate advantages of projected quantum
kernels for practical machine learning tasks handling quantum
data as well as classical data.
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APPENDIX A: PRELIMINARIES

We utilize formulas of integration over the Haar random
unitary to calculate the expectation value and variance of
projected quantum kernels (PQKs). Hence we here present
lemmas related to the calculation.

Formulas of integrals over Haar random unitaries

Our analysis assumes that quantum circuits form t-designs
[22–26]. When a quantum circuit W is a 1-design, i.e., the
ensemble has the same statistical properties with the Haar
random unitary up to the first moment, we can have the ex-
pression ∫

dμ(W )Wi, jW
∗

l,k = δi,lδ j,k

d
, (A1)

where d is the dimension of the unitary W and δi, j represents
the Kronecker delta. Similarly, we can exploit the following
formula for the 2-design case:∫

dμ(W )Wi1, j1W
∗

l1,k1
Wi2, j2W

∗
l2,k2

= δi1,l1δi2,l2δ j1,k1δ j2,k2 + δi1,l2δi2,l1δ j1,k2δ j2,k1

d2 − 1

− δi1,l1δi2,l2δ j1,k2δ j2,k1 + δi1,l2δi2,l1δ j1,k1δ j2,k2

d (d2 − 1)
. (A2)

Furthermore, as we consider the alternating layered Ansatz
in our analysis, we show below the five lemmas derived
and shown in the Supplementary Information of Ref. [18].
In these lemmas, we define a unitary operator W acting on
the Hilbert space Hw and W ′ acting on the bipartite system
Hw1 ⊗ Hw2 as

W =
∑
i, j

Wi, j |i〉〈 j|, W ′ =
∑

i1, j1,i2, j2

W ′
i1 j1,i2 j2 |i1i2〉〈 j1 j2|.

(A3)

Lemma 1. Let a unitary W acting on the d-dimensional
Hilbert space Hw be a t-design with t � 1. Then, for arbitrary
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operators A, B : Hw → Hw, we have∑
i

piTr(WiAW †
i B) =

∫
dμ(W )Tr(WAW †B) = Tr(A)Tr(B)

d
.

(A4)

Lemma 2. Let a unitary W acting on the d-dimensional
Hilbert space Hw be a t-design with t � 2. Then, for arbitrary
operators A, B,C, D : Hw → Hw, we have∑

i

piTr(WiAW †
i BWiCW †

i D)

=
∫

dμ(W )Tr(WAW †BWCW †D)

= 1

d2 − 1
[Tr(A)Tr(C)Tr(BD) + Tr(AC)Tr(B)Tr(D)]

− 1

d (d2 − 1)
[Tr(A)Tr(B)Tr(C)Tr(D)+Tr(AC)Tr(BD)].

(A5)

Lemma 3. Let a unitary W on the d-dimensional Hilbert
space Hw be a t-design with t � 2. Then, for arbitrary opera-
tors A, B,C, D : Hw → Hw, we have∑

i

piTr(WiAW †
i B)Tr(WiCW †

i D)

=
∫

dμ(W )Tr(WAW †B)Tr(WCW †D)

= 1

d2 − 1
[Tr(A)Tr(B)Tr(C)Tr(D) + Tr(AC)Tr(BD)]

− 1

d (d2 − 1)
[Tr(A)Tr(C)Tr(BD)+Tr(AC)Tr(B)Tr(D)].

(A6)

Lemma 4. Let a unitary W acting on the dw-dimensional
Hilbert space Hw be a t-design with t � 2. In addition, sup-
pose H = Hw̄ ⊗ Hw is dwdw̄ dimensional. Then, for arbitrary
operators A, B : H → H, we have∑

i

pi(Iw̄ ⊗ Wi )A(Iw̄ ⊗ W †)B

=
∫

dμ(W )(Iw̄ ⊗ W )A(Iw̄ ⊗ W †)B

= Trw(A) ⊗ Iw

dw

B (A7)

and ∑
i

piTr[(Iw̄ ⊗ Wi )A(Iw̄ ⊗ W †)B]

=
∫

dμ(W )Tr[(Iw̄ ⊗ W )A(Iw̄ ⊗ W †)B]

= 1

dw

Tr[Trw(A)Trw(B)]. (A8)

Here Iw (Iw̄) represents the identity matrix acting on
the Hilbert space Hw (Hw̄) and the partial trace over
Hw (Hw̄) is denoted by Trw (Trw̄). Also, Ā denotes the
complement of A.

Lemma 5. Let W be a unitary operator acting on the
dw-dimensional Hilbert space Hw. In addition, suppose H =
Hw̄ ⊗ Hw is dwdw̄ dimensional with dw = 2m and dw̄ = 2n−m.
Then, for arbitrary operators A, B : H → H, we have

Tr[(Iw̄ ⊗ W )A(Iw̄ ⊗ W †)B] =
∑
p,q

Tr(WAqp,W †Bpq) (A9)

where

Aqp = Trw̄[(|p〉〈q| ⊗ Iw )A], Bpq = Trw̄[(|q〉〈p| ⊗ Iw )B].

(A10)

Here q and p represent bit strings of length n − m.

APPENDIX B: VANISHING SIMILARITY ISSUE
IN PROJECTED QUANTUM KERNELS

In this Appendix we analytically derive the expectation
value and variance of PQKs for two types of quantum circuits,
i.e., globally random quantum circuits acting on all n qubits
and the ALA. The PQK we consider in our analysis is [5]

k(κ )
PQ (x, x′) = Tr

{
TrS̄κ

[ρ(x, θ)]TrS̄κ
[ρ(x′, θ)]

}
, (B1)

where ρ(x, θ) = U (x, θ)ρ0U †(x, θ), with initial state ρ0 and
the input- and parameter-dependent unitary operator U (x, θ);
TrS̄κ

[·] is the partial trace over the subspace S̄κ . Also, the
number of κth qubits is denoted by nκ . In our analysis, we
assume that Sκ is completely included in the subspace on
which one of the unitary blocks in the last layer of the ALA
acts, as is shown in Fig. 2(c). We also assume that the initial
state ρ0 is an arbitrary pure state. Finally, we will state the
difference of the variance between Eq. (B1) and the linear
PQK in Appendix B 3.

1. Case 1: Globally random quantum circuits

Here we calculate the expectation value and variance of the
PQK in Eq. (B1), considering the n-qubit random quantum
circuits.

a. Expectation value

We derive the expectation value of the PQK. We assume
that either U (x, θ) or U (x′, θ) is a t-design with t � 1 without
loss of generality. We utilize here the symmetry of the PQK
in Eq. (B1). In particular, we assume that U (x, θ) is a t-design
with t � 1. Then the expectation value of the PQK over the
Haar random unitary, 〈k(κ )

PQ 〉
U (x,θ)

, is calculated as

〈
k(κ )

PQ

〉
U (x,θ)

= 〈
Tr

{
TrS̄κ

[U (x, θ)ρ0U
†(x, θ)]TrS̄κ

[ρ(x′, θ)]
}〉

U (x,θ)

= 1

2n
Tr

{
TrS̄κ

(I)TrS̄κ
[ρ(x′, θ)]

}
= 2n−nκ

2n
Tr[ρ(x′, θ)] = 1

2nκ
, (B2)

where Lemma 1 is used for the second equality and the prop-
erty of the density matrix, i.e., Tr(ρ) = 1, is utilized for the
last equality.
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b. Variance

Next we calculate the variance. The variance Var(k(κ )
PQ )

is expressed as Var(k(κ )
PQ ) = 〈k(κ )

PQ

2〉 − 〈k(κ )
PQ 〉2

. As we already

have 〈k(κ )
PQ 〉2 = 1/22nκ , we focus on 〈k(κ )

PQ

2〉. Here we assume
that U (x, θ) and U (x′, θ) are t-designs with t � 2. Due to

the independence of U (x, θ) and U (x′, θ) from our assump-
tions, the expectation value can be obtained by integrating

the square of the PQK over these unitaries, that is, 〈k(κ )
PQ

2〉 =
〈k(κ )

PQ

2〉
U (x,θ),U ′(x,θ)

. Thus, we first calculate the expectation

value over U (x, θ), i.e., 〈k(κ )
PQ

2〉
U (x,θ)

. Then we obtain

〈
k(κ )

PQ

2〉
U (x,θ)

= 〈
Tr

{
TrS̄κ

[U (x, θ)ρ0U
†(x, θ)]TrS̄κ

[ρ(x′, θ)]
}
Tr

{
TrS̄κ

[U (x, θ)ρ0U
†(x, θ)]TrS̄κ

[ρ(x′, θ)]
}〉

U (x,θ)

= 〈
Tr

{
[U (x, θ)ρ0U

†(x, θ) ⊗ ρ(x′, θ)]SWAPSκ1 ,Sκ2
⊗ IS̄κ1 ⊗S̄κ2

}
× Tr

{
[U (x, θ)ρ0U

†(x, θ) ⊗ ρ(x′, θ)]SWAPSκ1 ,Sκ2
⊗ IS̄κ1 ⊗S̄κ2

}〉
U (x,θ)

= 1

22n − 1

{
22(n−nκ )Tr(ρ0)Tr(ρx′,θ )Tr(ρ0)Tr(ρx′,θ ) + 2n−nκ Tr

(
ρ2

0

)
Tr

[
TrS̄κ

(ρx′,θ )TrS̄κ
(ρx′,θ )

]}
− 1

2n(22n − 1)

{
2n−nκ Tr(ρ0)Tr(ρ0)Tr

[
TrS̄κ

(ρx′,θ )TrS̄κ
(ρx′,θ )

] + 22(n−nκ )Tr
(
ρ2

0

)
Tr(ρx′,θ )Tr[ρx′,θ]

}

= 2n−nκ

2n(2n + 1)

{
2n−nκ + Tr

[
TrS̄κ

(ρx′,θ )TrS̄κ
(ρx′,θ )

]}
. (B3)

In the second equality, we utilize the fact that

Tr[TrS̄ (A)TrS̄ (B)] = Tr
[
(A ⊗ B)SWAPS1,S2 ⊗ IS̄1⊗S̄2

]
, (B4)

where A and B are arbitrary matrices and IS1⊗S2 and SWAPS1,S2 denote the identity operator and the SWAP operator acting on
systems S1 and S2, respectively. Note that the subspace labeled with the number in the subscript, i.e., i ∈ {1, 2} in Si, dictates one
of the duplicated subsystems. In the third equality, we use the result

〈Tr[TrS̄ (wAw†)TrS̄ (B)]Tr[TrS̄ (wAw†)TrS̄ (B)]〉w
= 〈

Tr
[
(wAw† ⊗ B)SWAPS1,S2 ⊗ IS̄1⊗S̄2

]
Tr

[
(wAw† ⊗ B)SWAPS1,S2 ⊗ IS̄1⊗S̄2

]〉
w

= 1

d2 − 1

[(
d

dim(S)

)2

Tr(A)Tr(B)Tr(A)Tr(B) + d

dim(S)
Tr(A2)Tr[TrS̄ (B)TrS̄ (B)]

]

− 1

d (d2 − 1)

[
d

dim(S)
Tr(A)Tr(A)Tr[TrS̄ (B)TrS̄ (B)] +

(
d

dim(S)

)2

Tr(A2)Tr(B)Tr(B)

]
, (B5)

with the arbitrary matrices A and B of size d and a d × d unitary matrix w. Here dim(S) represents the dimension of the space
S. We note that Eq. (B5) can be obtained using Eq. (A2) and the property of SWAP operators regarding the trace operation,
i.e., Tr(SWAPS1,S2 ) = dim(S), where dim(S1) = dim(S2) = dim(S). Also, in the last equality, the property of the pure state, i.e.,
Tr(ρ) = Tr(ρ2) = 1, is used.

In Eq. (B3), only the second term in the last equality depends on U (x′, θ). Then the expectation value of the term can be
calculated as〈

Tr
[
TrS̄κ

(ρx′,θ )TrS̄κ
(ρx′,θ )

]〉
U (x′,θ)

= 〈
Tr

{
[U (x′, θ)ρ0U

†(x′, θ) ⊗ U (x′, θ)ρ0U
†(x′, θ)]SWAPSκ1 ,Sκ2

⊗ IS̄κ1 ⊗S̄κ2

}〉
U (x′,θ)

= 1

22n − 1

{
Tr(ρ0)Tr(ρ0)Tr

(
SWAPSκ1 ,Sκ2

⊗ IS̄κ1 ⊗S̄κ2

) + Tr(ρ2
0 )Tr

[
SWAPSκ1 ∪S̄κ1 ,Sκ2 ∪S̄κ2

(
SWAPSκ1 ,Sκ2

⊗ IS̄κ1 ⊗S̄κ2

)]}
− 1

2n(22n − 1)

{
Tr(ρ0)Tr(ρ0)Tr

[
SWAPSκ1 ∪S̄κ1 ,Sκ2 ∪S̄κ2

(
SWAPSκ1 ,Sκ2

⊗ IS̄κ1 ⊗S̄κ2

)] + Tr
(
ρ2

0

)
Tr

(
SWAPSκ1 ,Sκ2

⊗ IS̄κ1 ⊗S̄κ2

)}
= 1

22n − 1

(
1 − 1

2n

)
(22n−nκ + 2n+nκ ) = 1

2n + 1
(2n−nκ + 2nκ ), (B6)

where Eqs. (B4) and (A2) are used for the first and second equalities and the property of the SWAP operator with respect to the
trace operation is utilized for the third equality. Therefore, we can obtain

〈
k(κ )

PQ

2〉 = 2n−nκ

2n(2n + 1)

(
2n−nκ + 1

2n + 1
(2n−nκ + 2nκ )

)
. (B7)
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As a result, we have

Var(k(κ )
PQ ) = 〈

k(κ )
PQ

2〉 − 〈
k(κ )

PQ

〉2
= 2n−nκ

2n(2n + 1)

(
2n−nκ + 1

2n + 1
(2n−nκ + 2nκ )

)
− 1

22nκ

= 22nκ − 1

22nκ (2n + 1)2
. (B8)

We note that the same result can be obtained for the case in which different initial states are prepared for ρ(x, θ) and ρ(x′, θ).

2. Case 2: Alternating layered Ansätze

In what follows, we calculate the expectation value and variance of the PQK in Eq. (B1) considering the ALA.

a. Expectation value

We note that expectation value 〈k(κ )
PQ 〉

U (x,θ)
can be obtained by integrating the quantity over every unitary block, that is,

〈k(κ )
PQ 〉

W1,1(x,θ),W2,1(x,θ),...Wζ ,L (x,θζ ,L )
. Thus, we start with the integration over the unitary block in the last layer that acts on the κth

qubit(s), which we denote by W̃ . Then we obtain〈
k(κ )

PQ

〉
W̃

= 〈
Tr

{
TrS̄κ

(W̃ ρx,rW̃
†)TrS̄κ

[ρ(x′, θ)]
}〉

W̃ = 〈
Tr

{
[W̃ ρx,rW̃

† ⊗ ρ(x′, θ)]SWAPSκ1 ,Sκ2
⊗ IS̄κ1 ⊗S̄κ2

}〉
W̃

= 1

2m
Tr

{[
TrSW̃

(ρx,r ) ⊗ ρ(x′, θ)
]
TrSW̃

(
SWAPSκ1 ,Sκ2

⊗ IS̄κ1 ⊗S̄κ2

)}
= 1

2m
Tr

([
TrSW̃

(ρx,r ) ⊗ ρ(x′, θ)
] 2m

2nκ
I

)
= 1

2nκ
Tr(ρx,r )Tr[ρ(x′, θ)] = 1

2nκ
, (B9)

where Lemma 4 is used for the third equality, the property of the SWAP operator for the trace operation is used for the fourth
equality, and the property of the density matrix, i.e., Tr(ρ) = 1, is utilized for the last equality. Here ρx,r is the quantum state
resulting from the initial state to which the unitary operator U (x, θ), except for W̃ , is applied, namely, the equality ρ(x, θ) =
W̃ ρx,rW̃ † holds. As is dictated in Eq. (B9), the rest of the unitary blocks in the ALA do not contribute to the calculation of the
expectation value, namely, the unitary blocks can be canceled out in terms of the calculation after the integration over W̃ . Thus
the expectation value reads

〈
k(κ )

PQ

〉 = 〈
k(κ )

PQ

〉
W̃

= 1

2nκ
. (B10)

b. Variance

Finally, we compute the variance of the PQK for ALAs. As the variance can be written as Var(k(κ )
PQ ) = 〈k(κ )

PQ

2〉 − 〈k(κ )
PQ 〉2

, we
again focus on the quantity 〈k(κ )

PQ

2〉. Also, analogously to the calculation for the expectation value, we integrate the quantity
over all local unitary blocks in the ALAs, U (x, θ) and U (x′, θ). In particular, we begin with the integration over the unitary
blocks in the last layer. Without loss of generality, we assume that the unitary block in the last layer that acts on the κth qubit(s)
is the pth unitary block in the last layer, i.e., Wp,L(x, θp,L ). Moreover, for the sake of clarity, we define Wl,d (x, θl,d ) ≡ Wl,d

[Wl,d (x′, θl,d ) ≡ W ′
l,d ] hereafter.

To obtain the expectation value over the unitary blocks in the last layer, we have to calculate the integration of the following
quantity repeatedly:

〈Tr[TrS̄ (wAw†)TrS̄ (B)]Tr[TrS̄ (wAw†)TrS̄ (B)]〉w. (B11)

Thus, based on the calculation to be performed below, we consider the following situations: a unitary block w of size dw acting
on (1) a subspace of S̄ and (2) a subspace of both S and S̄. Then, for arbitrary operators A, B : S ⊗ S̄ → S ⊗ S̄, the expectation
value of Eq. (B11) over w : Sw → Sw can be obtained as follows: For (1) Sw ⊆ S̄,

〈Tr[TrS̄ (wAw†)TrS̄ (B)]Tr[TrS̄ (wAw†)TrS̄ (B)]〉w = 〈Tr[TrS̄ (Aw†w)TrS̄ (B)]Tr[TrS̄ (Aw†w)TrS̄ (B)]〉w
= Tr[TrS̄ (A)TrS̄ (B)]Tr[TrS̄ (A)TrS̄ (B)], (B12)

and (2) Sw = S ⊗ Sh̄ with Sh̄ ⊂ S̄,

〈Tr[TrS̄ (wAw†)TrS̄ (B)]Tr[TrS̄ (wAw†)TrS̄ (B)]〉w
= 〈

Tr
[
(wAw† ⊗ B)SWAPS1,S2 ⊗ IS̄1⊗S̄2

]
Tr

[
(wAw† ⊗ B)SWAPS1,S2 ⊗ IS̄1⊗S̄2

]〉
w

012409-11



YUDAI SUZUKI AND MUYUAN LI PHYSICAL REVIEW A 110, 012409 (2024)

= 1

d2
w − 1

[(
dw

dim(S)

)2

Tr(A)Tr(B)Tr(A)Tr(B) + dw

dim(S)
Tr

[
TrS̄w

(A)TrS̄w
(A)

]
Tr[TrS̄ (B)TrS̄ (B)]

]

− 1

dw(d2
w − 1)

[
dw

dim(S)
Tr(A)Tr(A)Tr[TrS̄ (B)TrS̄ (B)] +

(
dw

dim(S)

)2

Tr
[
TrS̄w

(A)TrS̄w
(A)

]
Tr(B)Tr(B)

]
. (B13)

Then we can obtain〈
k(κ )

PQ

2〉
W1,L,...,Wζ ,L

= 〈
Tr

{
TrS̄κ

[ρ(x, θ)]TrS̄κ
[ρ(x′, θ)]

}
Tr

{
TrS̄κ

[ρ(x, θ)]TrS̄κ
[ρ(x′, θ)]

}〉
W1,L,...,Wζ ,L

= 〈
Tr

{
TrS̄κ

(Wκ,Lρx,L−1W
†
κ,L )TrS̄κ

[ρ(x′, θ)]]Tr
[
TrS̄κ

(
Wκ,Lρx,L−1W

†
κ,L

)
TrS̄κ

[ρ(x′, θ)]
}〉

Wp,L

= 1

22m − 1

[(
2m

2nκ

)2

Tr(ρx,L−1)Tr[ρ(x′, θ)]Tr(ρx,L−1)Tr[ρ(x′, θ)]

+ 2m

2nκ
Tr

{
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

]
Tr

[
TrS̄κ

[ρ(x′, θ)]TrS̄κ
[ρ(x′, θ)]

}]

− 1

2m(22m − 1)

[
2m

2nκ
Tr(ρx,L−1)Tr(ρx,L−1)Tr

{
TrS̄κ

[ρ(x′, θ)]TrS̄κ
[ρ(x′, θ)]

}

+
(

2m

2nκ

)2

Tr
[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

]
Tr[ρ(x′, θ)]Tr[ρ(x′, θ)]

]

= 1

22m − 1

[(
2m

2nκ

)2

+ 2m

2nκ
Tr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

]
Tr

{
TrS̄κ

[ρ(x′, θ)]TrS̄κ
[ρ(x′, θ)]

}]

− 1

2m(22m − 1)

[
2m

2nκ
Tr

{
TrS̄κ

[ρ(x′, θ)]TrS̄κ
[ρ(x′, θ)]

} +
(

2m

2nκ

)2

Tr
[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

]]

= 1

(22m − 1)22nκ

({
2mTr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

] − 1
}
2nκ Tr

{
TrS̄κ

[ρ(x′, θ)]TrS̄κ
[ρ(x′, θ)]

}
+ 2mTr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

] − 22m
)
, (B14)

where Eqs. (B12) and (B13) are used in the second and third equalities, respectively, and the trace property of the density
matrix is used in the last equality. Also, ρx,d denotes the quantum state resulting from the initial state to which the unitary
operator U (x, θ), except for the unitary blocks from the (d + 1)th layer through the last layer, is applied, i.e., ρ(x, θ) =
[
∏L

l=d Vl (x, θ)]ρx,d [
∏L

l=d Vl (x, θ)]†. We remind the reader that S(l,d ) denotes the subspace of qubits on which the unitary block
Wl,d (W ′

l,d ) acts.

Next we compute the integration of 〈k(κ )
PQ

2〉
W1,L,...,Wζ ,L

in Eq. (B14) over the unitary blocks in the last layer of U (x′, θ).

In this case, only Tr{TrS̄[ρ(x′, θ)]TrS̄[ρ(x′, θ)]} in Eq. (B14) matters. To compute the integral of the quantity over the
unitary blocks in the last layer, the following situations can be expected: a unitary block w acting on (a) a subspace of
S, (b) a subspace of S̄, (c) a subspace of both S and S̄, and (d) S and a subspace of S̄. Then, for arbitrary operator
A : S′ ⊗ S̄′ → S′ ⊗ S̄′, the expectation value of Tr[TrS̄ (wAw†)TrS̄ (wAw†)] over w : Sw → Sw can be obtained as follows: For
(a) Sw ⊆ S,

〈Tr[TrS̄ (wAw†)TrS̄ (wAw†)]〉w = 〈Tr[wTrS̄ (A)w†wTrS̄ (A)w†]〉w = Tr[TrS̄ (A)TrS̄ (A)]; (B15)

(b) Sw ⊂ S̄,

〈Tr[TrS̄ (wAw†)TrS̄ (wAw†)]〉w = 〈Tr[TrS̄ (Aw†w)TrS̄ (Aw†w)]〉w = Tr[TrS̄ (A)TrS̄ (A)]; (B16)

(c) Sw = Sh ⊗ Sh̄ with d1/2-dimensional spaces Sh ⊂ S and Sh̄ ⊂ S̄,

〈Tr[TrS̄ (wAw†)TrS̄ (wAw†)]〉w
= 〈

Tr
[
(wAw† ⊗ wAw†)

(
SWAPS1,S2 ⊗ IS̄1⊗S̄2

)]〉
w

= 1

d2 − 1

{
Tr

[(
ISw,1⊗Sw,2 ⊗ TrSw,1 (A) ⊗ TrSw,2 (A)

](
SWAPS1,S2 ⊗ IS̄1⊗S̄2

)}
+ Tr

({
SWAPSw,1,Sw,2 ⊗ TrSw

⊗ TrSw,1∪Sw,2

[
A ⊗ A

(
SWAPSw,1,Sw,2 ⊗ I ¯Sw,1⊗ ¯Sw,2

)]}(
SWAPS1,S2 ⊗ IS̄1⊗S̄2

)])
012409-12
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− 1

d (d2 − 1)

[
Tr

({
ISw,1⊗Sw,1 ⊗ TrSw,1∪Sw,2

[
A ⊗ A

(
SWAPSw,1,Sw,2 ⊗ I ¯Sw,1⊗ ¯Sw,2

)]}(
SWAPS1,S2 ⊗ IS̄1⊗S̄2

)) + Tr
]

× {[
SWAPSw,1,Sw,2 ⊗ TrSw,1 (A) ⊗ TrSw,2 (A)

](
SWAPS1,S2 ⊗ IS̄1⊗S̄2

)}]
= d1/2

d + 1

{
Tr

[
TrS̄∪Sh

(A)TrS̄∪Sh
(A)

] + Tr
[
TrS̄\Sh̄

(A)TrS̄\Sh̄
(A)

]}
; (B17)

and (d) Sw = S ⊗ Sh̄ with d1/2-dimensional spaces S and Sh̄ ⊂ S̄,

〈Tr[TrS̄ (wAw†)TrS̄ (wAw†)]〉w = 〈
Tr

[
(wAw† ⊗ wAw†)

(
SWAPS1,S2 ⊗ IS̄1⊗S̄2

)]〉
w

= d1/2

d + 1

{
Tr(A)Tr(A) + Tr

[
TrS̄\Sh̄

(A)TrS̄\Sh̄
(A)

]}
. (B18)

Hence, using Eqs. (B15) to (B18), we obtain〈
Tr

{
TrS̄κ

[ρ(x′, θ)]TrS̄κ
[ρ(x′, θ)]

}〉
W ′

1,L,...,W ′
ζ ,L

= 〈
Tr

[
TrS̄κ

(W ′
p,Lρx′,L−1W

′†
p,L )TrS̄κ

(W ′
p,Lρx′,L−1W

′†
p,L )

]〉
W ′

p,L

= 1

22m − 1

[(
2m

2nκ

)2

2nκ +
(

2m

2nκ

)
22nκ Tr

[
TrS̄(p,L)

(ρx′,L−1)TrS̄(p,L)
(ρx′,L−1)

]]

− 1

2m(22m − 1)

[(
2m

2nκ

)
22nκ +

(
2m

2nκ

)2

2nκ Tr
[
TrS̄(p,L)

(ρx′,L−1)TrS̄(p,L)
(ρx′,L−1)

]]
,

= 1

22m − 1

[(
2m+nκ − 2m

2nκ

)
Tr

[
TrS̄(p,L)

(ρx′,L−1)TrS̄(p,L)
(ρx′,L−1)

] + 22m

2nκ
− 22nκ

]
. (B19)

Thus, from Eqs. (B14) and (B19), the expectation value 〈k(κ )
PQ

2〉
W1,L,...,Wζ ,L,W ′

1,L,...,W ′
ζ ,L

can read

〈
k(κ )

PQ

2〉
W1,L,...,Wζ ,L,W ′

1,L,...,W ′
ζ ,L

= 1

(22m − 1)22nκ

{{
2mTr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

] − 1
}

× 2nκ
1

22m − 1

[(
2m+nκ − 2m

2nκ

)
Tr

[
TrS̄(p,L)

(ρx′,L−1)TrS̄(p,L)
(ρx′,L−1)

] + 22m

2nκ
− 22nκ

]

+ 2mTr
[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

] − 22m

}

= 1

22nκ
+ 22m(22nκ − 1)

(22m − 1)222nκ

(
Tr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

] − 1

2m

)(
Tr

[
TrS̄(p,L)

(ρx′,L−1)TrS̄(p,L)
(ρx′,L−1)

] − 1

2m

)

= 1

22nκ
+ 22m(22nκ − 1)

(22m − 1)222nκ

(
Tr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

] − 1

2m

)2

. (B20)

In the last equality, we utilize our assumption that any unitary blocks in U (x, θ) and U (x′, θ) are 2-designs and an additional
assumption that the same initial state is prepared for ρ(x, θ) and ρ(x′, θ). Therefore, the variance of the PQK for ALAs can be
written as

Var
(
k(κ )

PQ

) = 〈
k(κ )

PQ

2〉 − 〈
k(κ )

PQ

〉2
= 〈〈

k(κ )
PQ

2〉
W1,L,...,Wζ ,L,W ′

1,L,...,W ′
ζ ,L

〉
W1,1,...,Wζ ,L−1,W ′

1,1,...,W
′
ζ ,L−1

− 〈
k(κ )

PQ

〉2
= 1

22nκ
+ 22m(22nκ − 1)

(22m − 1)222nκ

(〈
Tr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

]〉
W1,1,...,Wζ ,L−1

− 1

2m

)2

− 1

22nκ

= 22m(22nκ − 1)

(22m − 1)222nκ

(〈
Tr

[
TrS̄(p,L)

(ρx,L−1)TrS̄(p,L)
(ρx,L−1)

]〉
W1,1,...,Wζ ,L−1

− 1

2m

)2

. (B21)

The implication of Eq. (B21) is that the variance depends on the purity of the quantum state, i.e., Tr[(ρS(p,L)

x,L−1)2] with ρ
S(p,L)

x,L−1 ≡
TrS̄(p,L)

(ρx,L−1). We remind the reader that ρx,L−1 is the quantum state resulting from the initial state to which the unitary operator
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U (x, θ), except for the unitary blocks in the last layer, is applied and TrS̄(p,L)
(·) is the partial trace over the subspace S̄(p,L), with

S(p,L) the subspace on which the unitary block Wp,L acts. This means that the variance is zero if ρ
S(p,L)

x,L−1 is the completely mixed
state, i.e., I/2m. Thus, Eq. (B21) indicates that how fast the quantum state converges to the mixed state is crucial to avoid the
trainability issue, while the situation where ρ

S(p,L)

x,L−1 is close to a pure state means the unitary operation is efficiently simulatable
by classical computers.

Finally, we check the relationship between the variance and initial state as well as circuit depth of the ALA. We consider
here two cases regarding the position of the κth qubit(s): The κth qubit(s) is (are) located (1) in the middle so that the number
of qubits on which the unitary blocks in the first layer inside the light cone act is smaller than n and (2) in the unitary block at
the edge i.e., W1,L or Wζ ,L. Case 1 corresponds to the situation where the number of unitary blocks inside the light cone is the
smallest and case 2 is the one where the number of blocks is the largest.

For ease of understanding, we first consider one-layer ALAs. In this case, the variance for both cases 1 and 2 can be
written as

Var
(
k(κ )

PQ

) = 22m(22nκ − 1)

(22m − 1)222nκ

(
Tr

[
TrS̄(p,1)

(ρ0)TrS̄(p,1)
(ρ0)

] − 1

2m

)2

. (B22)

Next we deal with two-layer ALAs. Then, using Eqs. (B15)–(B18), we obtain

Var
(
k(κ )

PQ

) = 22m(22nκ − 1)

(22m − 1)222nκ

(〈
Tr

[
TrS̄(p,2)

(ρx,1)TrS̄(p,2)
(ρx,1)

]〉
W1,1,...,Wζ ,1

− 1

2m

)2

= 22m(22nκ − 1)

(22m − 1)222nκ

(
2m

(2m + 1)2

{
1 + Tr

[
TrS̄(p,1)

(ρ0)TrS̄(p,1)
(ρ0)

] + Tr
[
TrS̄(p+1,1)

(ρ0)TrS̄(p+1,1)
(ρ0)

]

+ Tr
[
TrS(p,1)∪S(p+1,1)

(ρ0)TrS(p,1)∪S(p+1,1)
(ρ0)

]} − 1

2m

)2

= 22m(22nκ − 1)

(22m − 1)2(2m + 1)422nκ

(
− 2 − 1

2m
+ 2mTr

[
TrS̄(p,1)

(ρ0)TrS̄(p,1)
(ρ0)

]

+ 2mTr
[
TrS̄(p+1,1)

(ρ0)TrS̄(p+1,1)
(ρ0)

] + 2mTr
[
TrS(p,1)∪S(p+1,1)

(ρ0)TrS(p,1)∪S(p+1,1)
(ρ0)

])2

(B23)

for cases 1 and 2.
Subsequently, for case 1 with a three-layer ALA, we have

Var
(
k(κ )

PQ

) = 22m(22nκ − 1)

(22m − 1)222nκ

(〈
Tr

[
TrS̄(p,3)

(ρx,2)TrS̄(p,3)
(ρx,2)

]〉
W1,1,...,Wζ ,2

− 1

2m

)2

= 24m(22nκ − 1)

(22m − 1)2(2m + 1)822nκ

(
− 5 − 4

2m
− 1

22m
+ 2m

{
Tr

[
TrS̄(p−1,1)

(ρ0)TrS̄(p−1,1)
(ρ0)

] + Tr
[
TrS̄(p,1)

(ρ0)TrS̄(p,1)
(ρ0)

]
+ Tr

[
TrS(p−1,1)∪S(p,1)

(ρ0)TrS(p−1,1)∪S(p,1)
(ρ0)

]} + 2m
{
Tr

[
TrS̄(p,1)

(ρ0)TrS̄(p,1)
(ρ0)

] + Tr
[
TrS̄(p+1,1)

(ρ0)TrS̄(p+1,1)
(ρ0)

]
+ Tr

[
TrS(p,1)∪S(p+1,1)

(ρ0)TrS(p,1)∪S(p+1,1)
(ρ0)

]} + 2m
{
Tr

[
TrS̄(p,1)

(ρ0)TrS̄(p,1)
(ρ0)

] + Tr
[
TrS(p,1)∪S(p+1,1)

(ρ0)TrS(p,1)∪S(p+1,1)
(ρ0)

]
+ Tr

[
TrS(p−1,1)∪S(p,1)

(ρ0)TrS(p−1,1)∪S(p,1)
(ρ0)

] + Tr
[
TrS(p−1,1)∪S(p,1)∪S(p+1,1)

(ρ0)TrS(p−1,1)∪S(p,1)∪S(p+1,1)
(ρ0)

]})
. (B24)

For case 2 we get

Var
(
k(κ )

PQ

) = 22m(22nκ − 1)

(22m − 1)2(2m + 1)422nκ

(
−1 − 1

2m
+ 2m/2

{
2Tr

[
TrS(p,3)\S(p,2)

(ρ0)TrS(p,3)\S(p,2)
(ρ0)

]

+ Tr
[
TrS(p,3)∪S(p,2)

(ρ0)TrS(p,3)∪S(p,2)
(ρ0)

]})2

= 23m(22nκ − 1)

(22m − 1)2(2m + 1)422nκ

(
− 2

2m/2
− 1

23m/2
+ 2m/2{2Tr

[
TrS̄(p,1)

(ρ0)TrS̄(p,1)
(ρ0)

]

+ Tr
[
TrS(p,1)∪S(p+1,1)

(ρ0)TrS(p,1)∪S(p+1,1)
(ρ0)

]})2

. (B25)

We note that here we consider p = 1 without loss of generality.
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Therefore, the variance in case 1 reads

Var
(
k(κ )

PQ

) = 22m(L−1)(22nκ − 1)

(22m − 1)2(2m + 1)4(L−1)22nκ

⎛
⎝2m

∑
h∈P(S(ku ,1):S(kl ,1) )

thTr[Trh̄(ρ0)Trh̄(ρ0)] −
L−1∑
τ=0

cτ

2mτ
,

⎞
⎠

2

, (B26)

where cτ , th ∈ R+ and P(S(ku,1) : S(kl ,1)) = {⋃ξ+l
i=ξ S(ku+i,1)|l ∈ {1, . . . , L}, ξ ∈ {0, . . . , (kl − ku) − i + 1}} is the set containing all

the possible neighboring subspaces in
⋃kl −ku

i=0 S(ku+i,1). We define here Wku,1 and Wkl ,1 as the the unitary blocks located at the edge
of the light cone in the first layer. We also remind the reader that S(l,d ) denotes the subspace of the qubits that the unitary operator
Wl,d acts on.

As for case 2 with odd L layers (L � 3), we get

Var
(
k(κ )

PQ

) = 2mL(22nκ − 1)

(22m − 1)2(2m + 1)2(L−1)22nκ

⎛
⎝2m/2

∑
h∈P′(S(ku ,1):S(kl ,1) )

t ′
hTr[Trh̄(ρ0)Trh̄(ρ0)] −

(L+1)/2∑
τ=1

c′
τ

2m(2τ−1)/2

⎞
⎠

2

, (B27)

where c′
τ , t ′

h ∈ R+ and P′(S(ku,1) : S(kl ,1)) = {S(p,1) ∪ S(p±1,1) ∪ Si|Si ∈ P(S(ku,1) : S(kl ,1))}. If L is even, the variance is written as

Var
(
k(κ )

PQ

) = 2mL(22nκ − 1)

(22m − 1)2(2m + 1)2(L−1)22nκ

⎛
⎝2m

∑
h∈P(S(ku ,1):S(kl ,1) )

t ′′
h Tr[Trh̄(ρ0)Trh̄(ρ0)] −

L/2∑
τ=0

c′′
τ

2mτ

⎞
⎠

2

, (B28)

with c′′
τ , t ′′

h ∈ R+. We note that Wku,1 and Wkl ,1 denote
the unitary blocks located at the edge of the light cone
in the first layer. Also, Eqs. (B26)–(B28) go to zero if
Tr[Trh̄(ρ0)Trh̄(ρ0)] is the completely mixed state for any h
and reaches the maximum when Tr[Trh̄(ρ0)Trh̄(ρ0)] = 1 for
all h. We comment that the result for different initial states is
also easily obtainable.

Here we summarize key implications obtained from
Eqs. (B26)–(B28). These results indicate that variance of the
PQK depends on not only the depth L but also the initial
state ρ0. If the initial state is a tensor product of arbitrary
single-qubit states, i.e., ρ0 = σ1 ⊗ σ2 ⊗ · · · ⊗ σn with an
arbitrary single-qubit states {σi}, then the variances are
	(2−2mL ) and 	(2−mL ) for cases 1 and 2, respectively; this
means that it might be possible to preserve the trainability
up to poly[log(n)] depth. On the other hand, if we prepare
an entangled quantum state such as the GHZ state |ψGHZ〉 =
2−1/2(|0〉⊗n + |1〉⊗n), then the variance would be smaller than
the case for a tensor product of arbitrary single-qubit states.
Note that Tr[Trh̄(|ψGHZ〉〈ψGHZ|)Trh̄(|ψGHZ〉〈ψGHZ|)] =
1/2 for h̄ 	= ∅ or h 	= ∅; otherwise Tr[Trh̄(|ψGHZ〉
〈ψGHZ|)Trh̄(|ψGHZ〉〈ψGHZ|)] = 1. In the worst-case scenario
where the initial state is random enough so that Trh̄(ρ0) is
the completely mixed state for almost all h, then the variance
would be closer to zero.

3. Variance of the linear projected quantum kernel

In this section we further check the difference of the vari-
ance between PQKs in Eq. (8) and the linear PQK defined as

kL
PQ(x, x′) =

∑
κ

Tr
{
TrS̄κ

[ρ(x, θ)]TrS̄κ
[ρ(x′, θ)]

}
. (B29)

The variance of Eq. (B29) can be written as

Var
(
kL

PQ

) = Var

(∑
κ

k(κ )
PQ (x, x′)

)

=
∑

κ

Var
(
k(κ )

PQ

) + 2
∑
κ>κ ′

Cov
[
k(κ )

PQ , k(κ ′ )
PQ

]
, (B30)

where Cov[A, B] represents the covariance of A and B. Then
Eq. (B30) means that the variance of the linear PQK is differ-
ent from the simple summation of the variances of Eq. (B1)
because of the covariance terms. Actually, the covariance of
k(κ )

PQ and k(κ ′ )
PQ differs depending on whether or not the κth

qubit(s) and κ ′th qubit(s) are located in the same subspace of
a local unitary block in the last layer. If Sκ , Sκ ′ ⊆ SW with a
unitary block in the last layer W , then we obtain

Cov
[
k(κ )

PQ , k(κ ′ )
PQ

] = Var
(
k(κ )

PQ

)
. (B31)

Moreover, if Sκ ⊆ SW , Sκ ′ ⊆ SW ′ , and SW ∩ SW ′ = ∅, then the
covariance reads

Cov
[
k(κ )

PQ , k(κ ′ )
PQ

] = 0. (B32)

We note that the result can be obtained by following exactly
what we did for the variance calculation in Appendixes B 1
and B 2, that is, the integration of the covariance over the
unitary blocks in the last layer. These results indicate that
the variance would not be recovered exponentially by the
covariance terms in Eq. (B30), whereas the variance could
possibly increase.
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