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Quadrature coherence scale of linear combinations of Gaussian functions in phase space
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The quadrature coherence scale (QCS) is a recently introduced measure that was shown to be an efficient
witness of nonclassicality. It takes a simple form for pure and Gaussian states, but a general expression for
mixed states tends to be prohibitively unwieldy. In this paper we introduce a method for computing the quadrature
coherence scale of quantum states characterized by Wigner functions expressible as linear combinations of Gaus-
sian functions. Notable examples within this framework include cat states, Gottesman-Kitaev-Preskill states, and
states resulting from Gaussian transformations, measurements, and breeding protocols. In particular, we show
that the quadrature coherence scale serves as a valuable tool for examining the scalability of nonclassicality in
the presence of loss. Our findings lead us to put forth a conjecture suggesting that, subject to 50% loss or more,
all pure states lose any QCS-certifiable nonclassicality. We also consider the quadrature coherence scale as a
measure of quality of the output state of the breeding protocol.
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I. INTRODUCTION

Counterintuitive quantum phenomena including superposi-
tion and entanglement have transformed from problems [1] to
curiosities [2–5] to features that confer advantages in multiple
domains [6–13]. Superposition and entanglement are based
off of coherence, which underlies all interference effects. This
makes the generation [14–16], manipulation [17–20], quan-
tification [21–27], and measurement [28–33] of coherence
essential tasks, especially when viewed through the lens of
coherence as a resource [21,22,34–36].

Coherence between macroscopically distinct states is a
good indicator of quantumness or nonclassicality. Several
measures and witnesses of nonclassicality have been intro-
duced, with their strengths and weaknesses. For example, the
distance to the set of classical set [37] is a precise measure
of nonclassicality, but is typically difficult to evaluate because
it requires an optimization over a set of states. The negative
volume of the Wigner function [38] is also a very popu-
lar witness that can be hard to compute due to looking for
small rapid interferences via numerical integration. The latter
also fails to detect many nonclassical states, e.g., squeezed
states. The quadrature coherence scale (QCS) was recently
introduced as such an indicator, quantifying both the amount
of coherence and the macroscopicity of the coherence in a
quantum state; the QCS is a bona fide witness of optical non-
classicality [39,40] with the important advantage of bounding
the distance to the set of classical states while being relatively

easy to compute. Let us note also that for pure states QCS
is equivalent to many other nonclassicality witnesses [41].
In addition, an interferometric scheme with two identical
copies of a state suffices for measuring the QCS of the state
without requiring full state tomography [42], unlike the non-
classicality distance or Wigner negativity, which require full
tomography and then full optimization or integration; the QCS
measurement was recently demonstrated on a cloud quantum
computer [41].

For states that are pure or Gaussian, the QCS is simple to
compute. However, a general computation requires calcula-
tions involving multiple integrals over a state’s entire Wigner
function, which is essential to practical situations because
non-Gaussian states are crucial to linear optical quantum com-
putation [43–46] and pure states are rare.

In this work we show that computation of the QCS is sig-
nificantly easier for states that can be written as superpositions
and convex combinations of Gaussian states, which includes
non-Gaussian states that are important to quantum metrology
and computation. This takes advantage of a recently devel-
oped formalism for states whose Wigner functions are linear
combinations of not-necessarily-real Gaussian functions [47]
and for simulating quantum optics with finite-rank superposi-
tions of coherent states [48].

This description of states might sound restrictive, but
it actually represents a large family of relevant states.
As an example, Schrödinger cat states are important non-
Gaussian states used for demonstrating quantumness [49],
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quantum-enhanced measurement sensitivity [50], and error-
correcting codes [51] and belong to this class of superposi-
tions of Gaussian states. They can be combined via linear
optical networks and homodyne measurement can be per-
formed on some branches while remaining in this class,
allowing them to iteratively “breed” [15,52,53] into another
important type of states known as Gottesman-Kitaev-Preskill
(GKP) states [54]. Moreover, such states subject to the domi-
nant noise source for photonics, viz., loss, still remain in this
class, as do states subject to any Gaussian channels. In con-
trast, other nonclassicality measures such as quantum Fisher
information that may be easy to compute for pure states must
be computed from scratch with more challenging calculations
when the state becomes mixed due to loss. These allow the
QCS to measure the nonclassicality and thereby the quality of
a state intended for fault-tolerant quantum computation as it
improves via breeding and degrades via loss.

In addition, using the description of the P function [see
Eq. (6)], one can see that any state can be written as a combi-
nation of Gaussian (coherent) states, at least formally, because
the coefficients in this combination need not be positive.
Moreover, it was recently proven that any pure state can be
represented with arbitrary precision as a finite combination of
coherent states, while all mixed states are just convex combi-
nations of such [48]. Our framework is thus fully general and
allows the computation of the QCS of any state belonging to
the correct class subject to any Gaussian transformations and
measurements. It was developed with GKP states in mind and
may prove useful throughout multimode quantum optics with
continuous variables.

The paper is divided as follows. In Secs. II and III we start
by introducing the main concept of quantum optics in phase
space and then introduce the quadrature coherence scale,
respectively. In Sec. IV we define the formalism related to
the expression of the Wigner function of a state as a linear
combination of Gaussian functions and in Sec. V we show
how to compute the QCS for such states. In Sec. VI we give
concrete examples: We compute the QCS of cat states and
GKP states, we study the scalability of the QCS through a
loss channel, and we consider the QCS as a measure of fidelity
for the output of a breeding protocol. In Sec. VII we discuss
other nonclassicality measures. We summarize in Sec. VIII
and discuss some future research problems.

II. PHASE-SPACE FORMALISM

In this section we provide a brief overview of the sym-
plectic formalism employed for continuous-variable states in
quantum optics. More details can be found, for example,
in [55,56].

A continuous-variable system is represented by n modes.
Associated with each of them are the annihilation and cre-
ation operators ai and a†

i verifying the bosonic commutation
relation [ai, a†

i ] = 1. We define the vector of quadratures
r̂ = (x̂1, p̂1, x̂2, p̂2, . . . , x̂n, p̂n), where1

x̂ j = 1√
2

(a j +a†
j ), p̂ j =− i√

2
(a j −a†

j ) ∀ j =1, . . . , n.

1Note that we employ units in which h̄ = 1 throughout this paper.

Each quantum state ρ can be described by a Wigner function

W (α) = 1

π2n

∫
χ (z)ez̄·α−z·ᾱd2nz, (1)

where χ (z) = Tr[ρD(z)] is the characteristic function and
D(z) = ez·a†−z̄·a the displacement operator. The Wigner func-
tion is normalized to 1 but can take negative values, hence the
qualification of quasiprobability distribution.

The first-order moments of a state ρ constitute the displace-
ment vector, defined as μ = 〈r̂〉 = Tr(r̂ρ), while the second
moments make up the symmetric covariance matrix γ whose
elements are given by

γi j = 1
2 〈{r̂i, r̂ j}〉 − 〈r̂i〉〈r̂ j〉, (2)

where {·, ·} represents the anticommutator. To be the covari-
ance matrix of a valid quantum state, γ must satisfy the
uncertainty principle γ + i

2� � 0, with

� =
n⊕

j=1

(
0 1

−1 0

)

the symplectic form.
A Gaussian state ρG is fully characterized by its displace-

ment vector μ and covariance matrix γ . The name comes
from the fact that its Wigner (and characteristic) function is
a Gaussian function in the phase space:

WG(r) = exp
[ − 1

2 (r − μ)T γ−1(r − μ)
]

(2π )n
√

det γ
. (3)

A Gaussian transformation is a transformation that will
map a Gaussian state onto a Gaussian state. In the phase space,
this translates into updating the covariance matrix and mean
value of the Gaussian function as follows:

γ → XγX T + Y , μ → Xμ + d. (4)

When the Gaussian transformation is unitary, X is a symplec-
tic matrix and Y = 0. This includes displacement, rotation,
and squeezing operations. Another example of a Gaussian
transformation is the loss channel, where

X = √
η1, Y = (1 − η)1/2, d = 0. (5)

III. GENERAL COMPUTATION OF THE QCS

A state ρ is said to be (optically) classical [57] if and only
if there exists a positive function P(α), called the Sudarshan-
Glauber P function, such that

ρ =
∫

P(α)|α〉〈α|dα, (6)

where |α〉 = D(α)|0〉 is a coherent state, D(α) is the displace-
ment operator, and |0〉 is the vacuum state. Otherwise, the state
is said to be nonclassical. In other words, a state is said to
be nonclassical if it is not a probabilistic mixture of coherent
states.

It is typically challenging to determine if such a P function
exists and even more so to assess its positivity. Therefore,
there is a need for defining measures and witnesses of non-
classicality. The most famous one is probably the negativity
of the Wigner function: If the Wigner function of a state ρ
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takes negative values at any point on the phase space, the
state is nonclassical [38]. Nevertheless, many other measures
and witnesses exist [37,58–79]. In this work we focus on the
quadrature coherence scale, a recently introduced witness of
nonclassicality [39–41,80,81].

Nonclassicality is linked to the coherences present in a
state, but, while many nonclassicality witnesses and measures
consider the size of the coherences, the QCS also measures
where those coherences are located, showcasing a different
aspect of the nonclassicality of the state. As an example, the
nonclassicality of a squeezed state will be detected by the
QCS while it is concealed from the Wigner negativity.

The QCS was calculated for several benchmark states
including Fock states, squeezed thermal states, and cat
states [39], as well as states with more complicated QCSs
like photon-added and -subtracted Gaussian states [81]. For an
n-mode mixed state ρ, the QCS (squared), C2 can be computed
through the Wigner function as2

C2
ρ = 1

2n

∫ |∇W (r)|2d2r∫ |W (r)|2d2r
. (7)

For a pure state |ψ〉, it simplifies to the total noise (i.e., the
sum of the variances) and many other indicators of nonclas-
sicality as enumerated in Ref. [41]. It is thus the trace of the
covariance matrix γ:

C2
|ψ〉 = 1

n
Trγ = 1

n

n∑
j=1

[(	x j )
2 + (	p j )

2]. (8)

For a Gaussian state ρG, the QCS also takes a simpler form as
it is proportional to the trace of the inverse of the covariance
matrix:

C2
ρG

= 1

4n
Trγ−1. (9)

The QCS is not a measure, but a witness of nonclassicality.
All classical states have Cρ � 1. Therefore, a value of the QCS
greater than 1 certifies that the state is nonclassical. In addi-
tion, despite not being a proper measure of nonclassicality,
it was proven in [40] that the distance3D(ρ, Ecl) between the
state ρ and the set of nonclassical states Ecl is bounded by the
QCS in the following way:

Cρ − 1 � D(ρ, Ecl ) � Cρ. (10)

Hence, a state with Cρ � 1 will be either classical or so weakly
nonclassical that it precludes certification, while Cρ > Cσ + 1
implies that a state ρ is more nonclassical than σ .

IV. LINEAR COMBINATION OF GAUSSIAN FUNCTIONS
IN PHASE SPACE

It is convenient to work only with Gaussian states, but
this limits the pool of possibility. However, one can consider

2Here the vector r contains all the quadratures x j and pj of each
mode j and we use the correspondence α j = x j+ip j√

2
.

3The distance is defined as D(ρ, Ecl ) = infσ∈Ecl‖|ρ̃ − σ̃ |‖ with
‖|A|‖ = √〈A|A〉 and ρ̃ = ρ/

√
Trρ2.

linear combinations of Gaussian functions that describe non-
Gaussian states. This then describes a much larger family of
states, yet allows us to still use many of the properties of
Gaussian states.

Let ρ be an n-mode state whose Wigner function can be
written as a linear combination of Gaussian functions in phase
space with mean values μm and covariance matrix γm:

W (r) =
∑

m

cmGμm,γm
(r), (11)

with

Gμm,γm
(r) = exp

[ − 1
2 (r − μm)T γ−1

m (r − μm)
]

√
det(2πγm)

. (12)

Since a Wigner function is normalized to 1, we have∑
m cm = 1. Note that if Gμm,γm

represents a valid quantum
state, then it is equivalent to Eq. (3) and is real. However,
Gμm,γm

(x) can also be a complex (normalized) function, with
Eq. (11) still describing a valid quantum state. More details
can be found in Ref. [47], where this definition was intro-
duced.

Writing the Wigner function in the form of Eq. (11) is
useful to describe, for example, cat states, Fock states, and
GKP states. We will develop this last example in the next
section. Even more interesting is that this formalism is useful
in describing the resultant state when a Gaussian transfor-
mation or measurement is applied to a state of the form of
Eq. (11). Indeed, a Gaussian transformation maps a Gaussian
state into another Gaussian state; hence by linearity, a state of
the form of Eq. (11) will still be written in this specific form
after the Gaussian transformation. In addition, a deterministic
Gaussian map (such as a loss channel) will change neither the
number nor the weights of the coefficients cm in the sum, and
each covariance matrix γm and mean value vector μm will be
updated according to Eq. (4). Once again, we refer the reader
to Ref. [47] for more details regarding the application of Gaus-
sian transformations to states written as a linear combination
of Gaussian functions. We also direct the reader’s attention to
Ref. [82] for a more advanced work with linear combinations
of Gaussian functions.

Note that, in theory, every state can be formatted in this
way, but the description might involve arbitrary infinite sums
or integrals, which makes this formalism impractical. If one is
willing to tolerate any arbitrarily small error in a description
of their state, then any state can be written in this form with
only a finite number of terms [48].

V. COMPUTATION OF THE QCS FOR A STATE WHOSE
WIGNER FUNCTION CAN BE WRITTEN AS A SUM OF

GAUSSIAN FUNCTIONS

The crucial observation is that all of the integrals required
for computing the QCS simplify to sums of integrals of prod-
ucts of Gaussians. Since products of Gaussians yield new
Gaussians and integration of Gaussians is well understood,
closed-form solutions for the QCS of this class of states can
be established, as follows.

The denominator of Eq. (7) is proportional to the purity
Trρ2 of the state, which can be computed as follows, using
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the definition (11) of the Wigner function:

Trρ2 = (2π )n
∫

|W (r)|2d2r

= (2π )n
∫ ∣∣∣∣∣

∑
m

cmGμm,γm
(r)

∣∣∣∣∣
2

d2r

= (2π )n
∫ ∑

m

∑
n

cmc̄nGμm,γm
(r)Gμ̄n,γ̄n

(r)d2r

= (2π )n
∑

m

∑
n

cmc̄n

×
∫

Gd,�(r)eA

√
det(2π�)

det(2πγm) det(2π γ̄n)
d2r.

Here we used the fact that the product of two Gaussian
functions gives a new Gaussian function [see, for example,
Eq. (337) in Ref. [83]], with

�−1 = γ−1
m + γ̄−1

n , (13)

d = �
(
γ−1

m μm + γ̄−1
n μ̄n

)
, (14)

A = 1
2

(
μT

mγ−1
m + μ̄T

n γ̄−1
n

)
�
(
γ−1

m μm + γ̄−1
n μ̄n

)
− 1

2

(
μT

mγ−1
m μm + μ̄T

n γ̄−1
n μ̄n

)
. (15)

Since the Gaussian function is normalized,
∫

Gd,�(r)d2r = 1.
In addition, we can write � = γm(γm + γ̄n)−1γ̄n [83], which
implies det � = det(γm) det(γ̄n)/ det(γm + γ̄n). Thus,

Trρ2 =
∑

m

∑
n

cmc̄neA√
det(γm + γ̄n)

. (16)

In a similar way, noting that the gradient of a Gaussian is
given by ∇Gμm,γm

(r) = γ−1
m (r − μm)Gμm,γm

(r), the numerator
of Eq. (7) can be computed as follows:∫

|∇W (r)|2d2r

=
∫ ∣∣∣∣∣

∑
m

cm∇Gμm,γm
(r)

∣∣∣∣∣
2

d2r

=
∫ ∣∣∣∣∣

∑
m

cmγ−1
m (r − μm)Gμm,γm

(r)

∣∣∣∣∣
2

d2r

=
∫ ∑

m,n

cmc̄nGμm,γm
(r)Gμ̄n,γ̄n

(r)

×(r − μ̄n)T γ̄−1
n γ−1

m (r − μm)d2r

=
∑
m,n

cmc̄n

∫
Gd,�(r)eA

√
det(2π�)

det(2πγm) det(2π γ̄n)

×(r − μ̄n)T γ̄−1
n γ−1

m (r − μm)d2r

=
∑
m,n

cmc̄neA

2π
√

det(γm + γ̄n)
E [(r − μ̄n)T γ̄−1

n γ−1
m (r − μm)].

(17)

Here E [x] is the mean value of x with respect to the probability
distribution Gd,γ . With Eq. (357) in Ref. [83] and a bit of
algebra, we have

E
[
(r − μ̄n)T γ̄−1

n γ−1
m (r − μm)

]
= (d − μ̄n)T γ̄−1

n γ−1
m (d − μm) + Tr

[
(γm + γ̄n)−1

]
.

(18)

Hence,∫
|∇W (r)|2d2r =

∑
m,n

cmc̄neA

2π
√

det(γm + γ̄n)

{
Tr[(γm + γ̄n)−1]

+ (d − μ̄n)T γ̄−1
n γ−1

m (d − μm)
}
. (19)

With Eqs. (16) and (19), we can now compute the QCS of
Eq. (7) without the need for any integration.

VI. EXAMPLES

A. Cat states

Let us start with the simple example of a cat state defined as
|cat〉 = √

N (|α〉 + | − α〉), where |α〉 is a coherent state and
N = (2 + 2e−2|α|2 )−1 a normalization constant. The larger the
value of α is, the more macroscopically distinguishable the
two terms in the coherent superposition become and thus the
larger we expect the QCS to be. Since it is a pure state, the
QCS of a cat state can be computed as the sum of its variances
[see Eq. (8)] and we find [39]

C2
cat = 1 + 2α2 tanh |α|2. (20)

To use our method, we write the cat state as the sum of
four Gaussian functions with the following parameters and
coefficients [47]:

c1 = c2 = N , c3 = c4 = e−2|α|2N ,

γ1 = γ2 = γ3 = γ4 = 1
21,

μ1 = −μ2 =
√

2(R(α), I (α)),

μ3 = μ∗
4 =

√
2(iI (α),−iR(α)). (21)

As a test, one can use the equations introduced in the preced-
ing section and compute

γ = 1
41, d = 1

2 (μm + μ̄n),

A = 1
2 (μm + μ̄n)T (μm + μ̄n) − μT

mμm − μ̄T
n μ̄n, (22)

which inserted into Eqs. (16), (19), and (7) confirms that the
same value of QCS is obtained. This method will be useful
later when we study the effect of the loss channel on the QCS
of a cat state.

B. GKP states

Let us now consider a more interesting example, which
is the grid state introduced by Gottesman, Kitaev, and
Preskill [54]. An ideal GKP state is represented by an infinite
number of Dirac delta functions equally spaced by 2

√
π in the
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phase space

|0〉GKP ∝
∞∑

s=−∞
|
√

π h̄(2s)〉q,

|1〉GKP ∝
∞∑

s=−∞
|
√

π h̄(2s + 1)〉q, (23)

where |·〉q denotes an eigenstate of the position quadrature.
Due to this gridlike property, GKP states can be used to
correct displacement errors, making them essential resources
for continuous-variable quantum computation [84–86].

The ideal GKP state has infinite energy and cannot be
normalizable. One thus needs to define finite-energy GKP
states in order to deal with them. One option is to apply a Fock
damping operator E (ε) = e−εn̂ with ε > 0 [47,87]. It can then
be shown that the Wigner function of the GKP states can be
written as a linear combination of Gaussian functions in phase
space, as defined in Eq. (11). Let us introduce

|ψ〉GKP = a0|0〉GKP + a1|1〉GKP. (24)

Then the density matrix of the GKP state can be expressed as
a sum of Gaussian functions Gμm,γm

(r) with covariance matrix
γm, mean values μm, and coefficients cm given by

γm = 1

2

(
tanh(ε) 0

0 − coth(ε)

)
,

μm =
√

π

2

(
sech(ε)(2k + 2l + s + t )

i csch(ε)(−2k + 2l + s − t )

)
,

cm = asa∗
t

N exp

(
π

2
csch(2ε)(2k + 2l + s + t )2

− π

2
coth ε

(
(2k + t )2 + (2l + s)2)), (25)

where N is such that
∑

cm = 1, m = (k, l, s, t )|s, t ∈ {0, 1},
and k, l ∈ Z.

Using Eqs. (16) and (19), we can compute the QCS of the
GKP state defined above. As an example, we focus here on
the state |0〉GKP (s = t = 0, a0 = 1, and a1 = 0). The result
is shown in Fig. 1, where we plotted the QCS as a function
of the damping parameter ε. As expected, for an ideal GKP
state, that is, when ε → 0, the QCS tends to infinity. Indeed,
because they are superpositions of many different positions,
GKP states have many coherences located infinitely far away
from each other. The damping operator gradually erases the
most distant superpositions, which in turn reduces the QCS.
When ε is large enough, the QCS tends to 1, which means we
lose all nonclassicality.

The analytical formulation of the QCS is complicated, but
as shown by the green curve in Fig. 1 we can see that it evolves
like

C2
GKP ≈ e−ε (tanh ε + coth ε). (26)

C. Evolution of the QCS through a loss channel

It is essential to consider loss in any actual experiment.
In the domain of state generation, if the goal is to generate
a nonclassical state, it is important to understand how the

c

FIG. 1. Plot of the QCS (squared) of a GKP state as a function of
the damping operator ε. The green dashed curve shows the general
behavior of the QCS. All units here and in all subsequent figures are
dimensionless.

nonclassicality, e.g., the QCS, evolves with losses. A simple
model of loss is the loss channel whose action in the phase
space is described by Eq. (5). As mentioned in Sec. IV, since a
loss channel is described by a Gaussian transformation, when
the Wigner function of the input state can be written as a
sum of Gaussian functions, so will the Wigner function of the
output state. The coefficient cm in Eq. (11) remains the same
and the covariance matrices and mean values are updated as
follows:

γm(η) = η γm + (1 − η)1/2, μm(η) = √
ημm. (27)

Hence, Eqs. (16) and (19) can be used to compute the QCS of
the output state in terms of the loss parameter η, which allows
us to analyze how the nonclassicality scales with losses.

Loss is the dominant source of errors in photon-based
protocols and can arise from multiple physical mechanisms
including imperfect coupling and detector inefficiencies. It
naturally arose in the reported measurements of the QCS
on a cloud quantum computer [41] and similarly arises in
many real-life experiments with quantum states [88–91]. For-
tunately, loss is additive, such that the effects of disparate loss
processes can be aggregated into a single parameter η. This
provides a microscopic description that, as expected, reduces
the average energy in a beam by a multiplicative factor of η.
Without loss, one might expect fault-tolerant quantum com-
putation with continuous variables to already be prevalent.

Let us study in more detail the evolution of the QCS
through a loss channel for two specific input states: the cat
states and the GKP states.

1. Cat states in a loss channel

Using Eqs. (27), (7), (16), and (19) and a little bit of
algebra, it is straightforward to compute the QCS of the output
of a loss channel when the input state is a cat state as defined
in Eq. (21). We obtain

C2
cat(η) = 1 + 4η|α|2 sinh(4α2η − 2|α|2)

cosh(4α2η − 2|α|2) + cosh(2|α|2) + 2
. (28)

The result is plotted in Fig. 2. Near η = 1, we can approxi-
mate the rate of losing nonclassicality as the derivative of the
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FIG. 2. Plot of the QCS (squared) of a cat state going through
a loss channel as a function of α and η. No loss is represented by
η = 1.

QCS (assuming α ∈ R):

∂C2
cat(η)

∂η

∣∣∣∣
η=1

= 2α2(2α2 + tanh(α2)) = 4α4 − 1 + C2
cat.

(29)
As already shown in [39], we observe that the decoherence
rate grows quadratically with the QCS (and quadratically with
the energy) of the cat state: The larger the nonclassicality is,
the quicker we lose it.

It is interesting to note that, no matter the value of α,
the QCS of the states reaches 1 (which is the nonclassicality
threshold) for η = 1

2 . This phenomenon was already observed
in Ref. [41].

We also remark that, in the regime of small losses (η close
to 1), the largest nonclassicality, as measured by the QCS, not
necessarily obtained with the largest value of α. An example
is given at the bottom of Fig. 2. When there is no loss (η = 1),
the QCS tends to infinity when α tends to infinity; however,
as soon as η < 1, the QCS will tend to 1 when α → ∞ (and
the smaller the value of η is, the smallest α needs to be in
order to reach 1). This means that, if one knows the loss of a
setup available in a laboratory and the aim is to create a state
as nonclassical as possible (for some computing task), then α

needs to be chosen wisely. Nevertheless, let us keep in mind
that the QCS is not a proper measure of nonclassicality, but
rather provides a bound on the distance D(ρ, Ecl ) between the

FIG. 3. Plot of the QCS (squared) of the GKP state as a function
of the damping parameter ε and loss parameter η. No loss is repre-
sented by η = 1. An ideal GKP state has ε → 0.

state ρ and the set of classical states Ecl [see Eq. (10)]. Hence,
to ensure that a state is more nonclassical in the sense that
it is more distant from the set of classical states, we need a
variation of QCS greater than 1. When η � 1

2 , we observe that
C2

cat(η) � 1, which implies that the state is always classical
or weakly nonclassical. Intriguingly, per Fig. 2, a cat state
with α = 3 subject to 5% loss is much further away from
the set of classical states than an initially nonclassical state
with α 
 3 subject to the same 5% loss. More emphatically,
a less quantum state with α = 2 subject to more loss η = 0.93
is further from any classical state than a more quantum state
with α 
 3 subject to more loss η = 0.95.

2. GKP states in a loss channel

Once again, using Eqs. (27), (7), (16), and (19), one can
compute the QCS C2

GKP(η, ε) of the output of a loss channel
when the input state is a GKP state as defined in Eq. (25). The
result is plotted in Fig. 3. No loss is represented by η = 1.
Hence, Fig. 1 represents the vertical slice of the top of Fig. 3
when η = 1.

As for the cat states, GKP states with better approximations
(i.e., smaller value of ε) lose quantumness more quickly with
loss. The rate of losing QCS could be evaluated by the deriva-
tive of C2

GKP(η), but since the equation is more involved, so is
its derivative. Nevertheless, one can see via Fig. 3 that here too
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FIG. 4. Comparison of the loss (parametrized by η) of nonclassi-
cality, as measured by the QCS for a cat state (solid line), a GKP state
(dashed line), and a squeezed state (dotted line). The orange curves
(highest three at far right) represent states starting with C2 ≈ 16.5
(i.e., α ≈ 2.8, ε ≈ 0.05, and r = 1.7) and blue curves (lowest three
at far right) states starting with C2 ≈ 4.4 (i.e., α ≈ 1.3, ε ≈ 0.2, and
r = 1.1).

the initially more nonclassical states lose their nonclassicality
more rapidly. In addition, in this case as well, the QCS of the
GKP state reaches 1 when there is 50% loss, regardless of the
initial value. However, unlike cat states, no matter the value of
η > 1

2 , a smaller ε implies a larger value of the QCS. When
η � 1

2 , although it varies slightly, the QCS is always smaller
than or equal to 1, which implies that the state is classical
or weakly nonclassical. We can consider that above 50% loss
(i.e., η � 1

2 ), all nonclassicality is dissipated.

3. Squeezed state in a loss channel

As another example, it is also possible to compute the
QCS of a lossy squeezed vacuum state S(r)|0〉, where
S(r) = e

1
2 (r̄a2−ra†2 ) is the squeezing operator. We obtain (this

result was already derived in Ref. [41])

C2
sq(η) = 1

(1−2η)(η cosh(2r)−η)
−η+η cosh(2r)+1 + 1

. (30)

In Fig. 4, starting with different values of the QCS, we com-
pare the loss of nonclassicality, as measured by the QCS, for
GKP states (dashed line), cat states (solid line), and squeezed
states (dotted line). We first observe that, similar to GKP
states, lines representing the QCS loss of different squeezed
states will never cross. This means that even though higher
initial squeezing (so high initial QCS value) will lose QCS
quickly, a smaller squeezing value (thus smaller initial QCS)
will always lead to lower QCS for a fixed amount of loss, even
if the decay is slower.

Comparing the different families of states, we observe
that there is no particular order for which state loses QCS
faster. For large initial QCS values, GKP states are the most
resilient and squeezed states lose QCS most quickly, but this

conclusion does not hold anymore when initial QCS values
get smaller.

Again, we see that, for all those example states, the QCS
reaches 1 at exactly 50% loss. This phenomenon can be
proven for any pure one-mode Gaussian state or Fock state
(see the Appendix). This leads us to believe that all pure states
become classical (according to the QCS) after this threshold.
It was shown in Ref. [92] that the Wigner function of the
output of a loss channel is always positive as soon as there
is at least 50% loss. Indeed, the s-ordered quasiprobability
function of the output of the loss channel Pout(α, s) can be
written as

Pout(α, s) = 1

η
Pin

(
α√
η
,

s + η − 1

η

)
, (31)

where Pin(α, s) is the s-ordered quasiprobability function of
the input. The Wigner function corresponds to s = 0, which
implies that s′ = (s + η − 1)/η � −1 as soon as η � 1

2 . All
s-ordered quasiprobability distributions with s � −1 are posi-
tive, which certifies the positivity of the Wigner function of the
output when losses are greater than 1

2 . This does not prove that
the state becomes classical according to Sudarshan-Glauber
condition, but gives a hint that some quantum signature is
lost at this specific point. Note that this conjecture does not
extend to mixed states. The simplest example is to take a lossy
squeezed state as the initial state: After 50% loss, the QCS of
this state will be below 1. A direct corollary of our conjecture
is that all states become classical according to the QCS for
loss equal to or greater than 50%.

D. Breeding

Several schemes exist that strive to efficiently generate
GKP states in optical setups [85,87,93–102]. The breeding
protocol [14,15,52,103,104] is a procedure that gradually gen-
erates (or breeds) GKP states by impinging squeezed cat states
[1 + D(α)]S(r)|0〉 on a 50:50 beam splitter and measuring the
p quadrature of one output mode. By postselecting on specific
values of the p quadrature, one can obtain a GKP state in
the other output mode of the beam splitter. This procedure
can be repeated several times in order to increase the fidelity
of the output state. In one recent protocol, the vast majority
of p-measurement values suffice for generating GKP states,
singling out GKP states as nonclassical fixed points of linear
optics. The result is an approximation of a GKP state with√

2α spacing and er squeezing.
In what is called a slow breeding protocol, the output of the

first round of breeding is inserted again with another squeezed
cat state of displacement α/

√
2 at the second input, and the

p quadrature of one of the outputs is once again measured.
This continues, where in the Mth round the input squeezed cat
state is of the form (1 + D(α/

√
2M−1))S(r)|0〉. More details

can be found in Ref. [15]. Note that, at each round, one had
to do a postselection on the value of the p quadrature. As
in Refs. [15,52,103], we choose here to postselect on p = 0.
Nevertheless, keep in mind that the variance of the probability
distribution of measuring p = 0 scales as e2r .

One important question is to understand how many rounds
of breeding one needs to get a GKP state with high enough
fidelity. Further, how can this fidelity be measured? We
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FIG. 5. Scheme of the first round of a breeding protocol.

suggest here to look at the QCS. Indeed, we know that the
QCS of a cat state grows with its amplitude α and we thus
expect the QCS to increase through the breeding protocol.
Since the output can be written as a sum of Gaussian functions
and the breeding circuit is a Gaussian transformation, the QCS
of the output can be easily computed with the equations pre-
sented in Sec. V.

The first round of the breeding protocol is depicted in Fig. 5
and the output state is given by

|ψ〉 =
[

1 + eiαpD

(
α√
2

)][
1 + e−iαpD

(
α√
2

)]
S(r)|0〉.

To describe the output state after M rounds of the slow breed-
ing protocol, let us define the measurement operator

M(φ, α) = 1 + eiφD(α). (32)

The output state will then have the form [15]

|out〉 =
M∏

j=1

M(φ̃ j, α̃ j )M(ψ̃M, β̃M )S(r)|0〉

=
M∏

j=1

M
(

φ j +α j p,
α j√

2

)
M

(
ψM −βM p,

βM√
2

)
S(r)|0〉

=
M∏

j=1

M
(

θ j,
α√
2M

)
M

(
− αp√

2M−1
,

α√
2M

)
S(r)|0〉

=
M∏

j=1

(1 + eiθ j p j DM )(1 + e−iαpM/
√

2M−1
DM )S(r)|0〉,

(33)

where

θ j =
M∑

k=1

α√
2k−1

(−1)( j+1)k,

DM = D

(
α√
2M

)
. (34)

When postselecting on p = 0 at each step, this simplifies to

|out〉 =
M+1∑
k=0

(
M + 1

k

)
D(α/

√
2M )kS(r)|0〉

=
M+1∑
k=0

(
M + 1

k

)
D(kα/

√
2M )S(r)|0〉. (35)

The output grid state has a final spacing of α/
√

2M−1. Hence,
for a GKP state with spacing 2

√
π , the initial cat state

must have a coherent amplitude of
√

2M+1π . Figure 6 shows
the evolution of the Wigner function after M = 0, 1, 2, 3, 4
rounds of slow breeding; M = 0 corresponds to a squeezed
cat state.

The density matrix of the output state has the form ρbreed =
|out〉〈out|, which is indeed a sum of Gaussian functions since
a state of the form D(β )S(r)|0〉〈0|S†(r)D†(δ) has the Wigner
function of a normalized Gaussian of covariance matrix γ and
mean value μ given by (see Appendix A of Ref. [47])

γ = 1
2

(
e−2r 0

0 e2r

)
, μ =

√
1
2

(
β + δ

ie2r (δ − β )

)
, (36)

multiplied by the prefactor e−e2r (β−δ)2/2. Note that, for sim-
plicity, we assume that the displacement is real.

Using the equations of Sec. V, we can compute the QCS
at each round. Note that M = 0 corresponds to the input
squeezed cat state and the QCS is given by

C2
in = 1

2
α2

(
1 − e4r + 1

eα2e2r/2 + 1

)
+ cosh(2r). (37)

In Fig. 7 we compare the QCS of a GKP state as defined
in Sec. VI B with the QCS of the output state of M rounds
of the (slow) breeding protocol. We compare two cases: r =
− ln(0.2) (blue line) as in Ref. [15] and r = − ln(0.3) (orange
line). We observe that the QCS increases rapidly and reaches
the target value (i.e., the GKP state as described in Sec. VI B
with tanh ε = e−2r) after only a few rounds. However, more
importantly, we see that the QCS increases with each round of
breeding and thus tends to infinity, as we would expect from
a perfect GKP state. This is in contrast with the GKP state as
described by the damping operator, but can be explained by
looking at the Wigner function.

In Fig. 8 we plotted a slice of the Wigner function
W (x, p = 0) of a GKP state (ε ≈ 0.09) and the output state
of five rounds of the breeding protocol [r = − ln(0.3) ≈ 1.2].

FIG. 6. Wigner functions of a GKP state generated after M = 0, 1, 2, 3, 4 rounds of the slow breeding protocol with final spacing of 2
√

π

and squeezing r = − ln(0.2). Note that at each step, we applied a final displacement of (M + 1)
√

π/2 in the x direction to center the state on
0. The color bar indicates the magnitude and sign of the Wigner function.
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FIG. 7. Evolution of the QCS (squared) after M rounds of the
slow (solid line) and efficient (dashed line) breeding protocol. The
dotted reference line corresponds to the value of the QCS of a GKP
state with spacing 2

√
π and a Fock damping operator tanh ε = e−2r .

Here we chose r = − ln(0.2) � 1.6 (blue line; upper of each pair)
and r = − ln(0.3) � 1.2 (orange line; lower of each pair).

As we can see, the spacing of each Gaussian peak is the same,
but the Gaussian envelope is not. The variance of the Gaus-
sian envelope of the GKP state as described by the damping
operator is smaller, so the total energy of the state as well as
the QCS are smaller. On the other hand, after each round of
the breeding protocol, the Wigner function has more and more
nonzero peaks further from the origin so that both energy and
QCS tend to infinity when the number of rounds M grows.
This explains why the QCS of the breeding protocol does not
tend to the value of the QCS of the targeted GKP state as
described by the damping operator in Sec. VI B.

A more efficient scheme of breeding is realized by using a
parallelized procedure. The first round is the same as the slow
protocol, but then, instead of inserting a squeezed cat state in
the second input of the beam splitter, we insert the same bred

FIG. 8. Comparison of the Wigner function W (x, p = 0) of a
GKP state (blue dashed line) and the output state of five rounds of
the breeding protocol (orange solid line).

state to both inputs. The output state is then described by

|out〉 =
2M∑

k=0

(
2M

k

)
D(kα/

√
2M )S(r)|0〉. (38)

We now need 2M input squeezed cat states for M rounds
of breeding (as opposed to M + 1 inputs states for the slow
protocol), but, as can be seen in Fig. 7, this scheme is much
more efficient and we reach an acceptable value of QCS after
only two to three rounds.

VII. OTHER MEASURES FOR SUMS OF GAUSSIAN
FUNCTIONS

Suppose we restrict our states to those whose Wigner func-
tions can be written as sums of Gaussian functions. Does that
simplify the computation of other measures of quantumness?

The general answer is negative. Consider computation of
the quantum Fisher information for a state’s sensitivity to dis-
placements, averaged over all displacement directions. More
quantumness means higher average quantum Fisher informa-
tion, which is a metric specifically tied to the usefulness of the
state for metrology. For pure states, this is simply proportional
to the average number of photons in the state, the same as the
QCS [105]. For mixed states ρ, such as a cat state subject to
loss, the quantum Fisher information is given by [106]

Qρ = −
∫ ∞

0
ds Tr{([x̂, ρ]e−ρs)2 + ([ p̂, ρ]e−ρs)2}. (39)

If not for the factors e−ρs and the integral over s, this would
look very similar to the QCS (hence their agreement for pure
states); that ρ has a Wigner function that is a linear combina-
tion of Gaussians does not simplify this formula in any known
way.

One metric that is easy to compute for states that are linear
combinations of Gaussians is the total noise, i.e., the trace
of the state’s covariance matrix. Unfortunately, this quantity
tends to be most useful for pure states, where it is equal to the
QCS, but it becomes less insightful for mixed states, where
expressions like the quantum Fisher information Qρ are more
useful and yet do not inherit the ease of computation with
linear combinations of Gaussians.

Next consider computation of a state’s negative Wigner
volume

Nρ =
∫

d2r
|W (r)| − W (r)

2
. (40)

This formula is straightforward to manipulate when the state
is subject to loss, as the Wigner function’s transformation
is known [see Eq. (31)]. However, computing the absolute
value |W (r)| for a linear combination of Gaussian functions is
challenging because each coefficient in the linear combination
is, in general, complex. Moreover, the Gaussian functions
themselves may be complex, and adding loss changes those
complex functions, even if the complex coefficients cm are
unchanged by loss.

As for distance to classical states, it is not known whether
there exists a faster optimization procedure for states whose
Wigner functions are linear combinations of Gaussians. It
is indeed the case that the classical states belong to this
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FIG. 9. Plot of N, the negative volume of the Wigner function of
a cat state going through a loss channel, as a function of α and η.
The peak in N versus α shifts with η in the same way as the QCS in
Fig. 2.

category, but that does not imply that the most direct path
from a given state to a given classical state is through the set of
states whose Wigner functions are combinations of Gaussians.
New optimizations are required for each state and each set of
parameters such as loss, so this special class of states does
not ameliorate the prohibitiveness of distance measures for
straightforward computations.

With that all in mind, we compare the behavior of Nρ

to C2 for the particular class of lossy cat states in Fig. 9.
The surprising features that we learned from the QCS again
feature in the Wigner negativity, showcasing a correlation in
their ability to find physical properties. Nonetheless, N is not
known to bound the distance to classical states and thus alone
could not be interpreted in any other way than witnessing
nonclassicality. In addition, the computation of the QCS was
rapid with our formalism, while the computation of Nρ re-
quired a costly integration over phase space for each point on
the curve, as would be required for computing the negativity
of any filtered quasiprobability distribution [79]. That similar
information can be gleaned from each confirms the usefulness
of our results.

VIII. CONCLUSION

This paper presented a general formulation of the QCS
of mixed quantum states whose Wigner functions can be ex-
pressed as a linear combination of Gaussian functions. This
family of states encompasses important non-Gaussian states
like Schrödinger cat states and GKP states, but also the output
of a breeding protocol or, more generally, all resulting states
of Gaussian operations applied to any states of such a form.
Note that, in this work, we only considered transformations
that are deterministic Gaussian completely positive and trace-
preserving maps, but the class of Gaussian operations falling
into this formalism is much larger and one could consider
conditional dynamics (when the measurement of some modes
updates the remaining modes), which shows the versatility
and applicability of the proposed framework. With such a
transformation, the number as well as the weight of each
coefficient cm in Eq. (11) would change. More details can be
found in Ref. [47].

The methods presented here could be applied to states
whose Wigner functions are more complicated than linear

combinations of Gaussian functions, with some modification.
If some of the functions in the linear combination are given
by f (r)G(r) for some polynomial f (r), there are closed-form
solutions for each Gaussian integral for each monomial in
the polynomials. This happens, for example, when a Gaussian
state is acted on by a polynomial function of creation and anni-
hilation operators. The expressions become more complicated
as the degrees of the polynomials increase, especially when
faced with linear combinations of different polynomials, but
the crux of the methods here that rely on Gaussian integration
can be broadly applied.

Loss as described by a loss channel falls into this
framework, which allowed us to assess the scalability of non-
classicality, as measured by the QCS, with loss. As expected,
for all states, the QCS decreases when loss increases, as long
as the loss is less than 50%. At this exact point, the QCS of
all our examples of pure states reached a value of exactly
1, which led us to conjecture that this is true for all pure
states. We extended the conjecture by suggesting that all states
lose their nonclassicality (as measured by the QCS) at the
latest after 50% loss, a statement which is supported by all
Wigner functions becoming strictly non-negative at the 50%-
loss mark.

Because GKP states are so important, in particular for their
error-correcting properties in quantum computing codes, we
studied the breeding protocol, which is one way to experi-
mentally create GKP states and can be expressed using the
formalism described in this paper. We used the QCS as a
way to measure the quality of the resulting GKP state and
showed that a parallelized procedure is more efficient. In a
realistic scenario, one should include loss in the protocol and
understand the threshold limit of the parameters allowing one
to keep a sufficient amount of nonclassicality. In particular, it
would be interesting to study how to optimize the squeezing
parameter for state generation under realistic conditions. One
could ask the following question: Is it better to start with
highly squeezed states (so very sensitive to loss of nonclas-
sicality) and directly generate cat or GKP states, or is it better
to input less squeezed states in a breeding protocol, which we
have seen has the power to increase the nonclassicality?
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APPENDIX

1. QCS of a pure Gaussian state after 50% loss

Since the QCS is invariant under displacement, we can as-
sume that the state is centered at the origin. A pure one-mode
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Gaussian state has the covariance matrix

γ =
(

σ11 σ12

σ12 σ22

)
(A1)

such that det(γ ) = 1
4 . After 50% loss (η = 1

2 ), the covariance
matrix becomes 1

2 (γ + 1/2). We can compute the QCS with
Eq. (9),

C2 = 1

2
Tr

(
γ + 1/2

2

)−1

= 2(σ11 + σ22 + 1)

4 det(γ ) + 2σ11 + 2σ22 + 1
= 1, (A2)

and see that the result is 1 for all one-mode pure Gaussian
states.

2. QCS of a Fock state after 50% loss

We know from Ref. [92] that the Wigner function of the
output state of the loss channel is proportional to the Q

function of the input state [see Eq. (31)]. The Q function of
a Fock state |k〉 is given by [107]

Qk (x, p) = 1

π

(x2 + p2)k

2kk!
e−(x2+p2 )/2. (A3)

Therefore, after 50% loss (η = 0.5), the Wigner function is
given by

Wk (x, p; η = 1
2 ) = 1

π

(x2 + p2)k

k!
e−(x2+p2 ), (A4)

where we used the correspondence α = (x + ip)/
√

2. Using
Eq. (7), we can compute the QCS of the lossy Fock state and
confirm that we obtain 1 for all k.
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