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Variational quantum algorithms have emerged as a cornerstone of contemporary quantum algorithms research.
Practical implementations of these algorithms, despite offering certain levels of robustness against systematic
errors, show a decline in performance due to the presence of stochastic errors and limited coherence time. In
this work, we develop a recipe for mitigating quantum gate errors using zero-noise extrapolation. We introduce
an experimentally amenable method to control error strength in the circuit. We utilize the fact that gate errors
in a physical quantum device are distributed inhomogeneously over different qubits and qubit pairs. As a result,
one can achieve different circuit error sums based on the manner in which abstract qubits in the circuit are
mapped to a physical device. We apply the proposed protocol to variational quantum algorithms and find that
the estimated energy is approximately linear with respect to the circuit error sum (CES). Consequently, a linear
fit through the energy-CES data, when extrapolated to zero CES, can approximate the energy estimated by a
noiseless variational algorithm. We demonstrate this numerically and investigate the applicability range of the
technique.
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I. INTRODUCTION

Variational algorithms are designed to operate within the
practical limitations of near-term quantum computers which
are inherently noisy. Such algorithms are known to partially
alleviate certain systematic limitations of near-term devices,
such as variability in pulse timing and limited coherence
times [1–4]. This is accomplished by the use of a short depth
parametrized circuit where the parameters are trained using
a quantum-to-classical feedback loop. Equipped with these
practical advantages, variational algorithms have found sev-
eral applications, such as quantum approximate optimization
(QAOA) [5–17], variational eigensolvers (VQEs) [18–22],
and quantum assisted machine learning [23–27].

Variational algorithms are susceptible to stochastic noise
[28]. For example, noise can induce barren plateaus in the
training landscape, thereby making optimization difficult [29].
Although small amounts of noise can remove local minima in
the cost landscape [14], in general the presence of stochastic
noise results in the worsening of the final outcome of the
algorithm. This necessitates quantum error mitigation [30].
While there are several methods to mitigate errors in a quan-
tum circuit [31–39], for the purpose of this paper we focus
on zero-noise extrapolation (ZNE) [37,40,41]. In ZNE, an
algorithm is executed at different levels of noise in order to
establish a dependence between the output of the algorithm
and the noise strength. The dependence is then extrapolated to
the zero-noise limit, giving an approximation of the output of
the algorithm in noiseless conditions.

To execute ZNE, one must be able to scale the strength of
the noise in a controllable manner. In this paper we introduce
an experimentally amenable method to scale the circuit noise
strength. The rationale behind our approach comes from the
realization that qubits are not made equal; two-qubit gates
acting on different pairs of qubits can have different fideli-
ties [42,43]. Therefore the level of noise encountered while
executing a circuit is determined by how the abstract qubits
in the circuit are mapped to their physical counterparts. Thus,
by choosing different abstract-to-physical qubit mappings one
can control how noise changes in a circuit. Applying this
approach to the VQE algorithm, we show that the energy
estimated by a noisy VQE is approximately linear with respect
to the total circuit error sum. We extrapolate this linear trend to
the zero noise limit and show that ZNE recovers the noise-free
energy estimation with high accuracy. In fact, we establish
that for certain types of variational circuits it is guaranteed
that ZNE would recover the exact energy as estimated by
noise-free VQE. In addition, we investigate the behavior of
ZNE with increasing strength of the noise and observe that
the extrapolation error grows quite modestly, following an
approximately linear scaling. Finally, we show that the perfor-
mance of the proposed ZNE protocol is better or comparable
to the existing ZNE techniques, while not suffering from their
drawbacks.

The paper is structured as follows: In Sec. II, we briefly
recall the variational quantum eigensolver algorithm. In
Sec. III A, we describe the behavior of the energy estimated
by VQE in presence of small errors. In Sec. III B, we propose
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our method of scaling noise for ZNE and apply it to VQE.
In Sec. IV we present the results of numerical experiments
supporting our proposal. Section V concludes the paper.

II. VARIATIONAL QUANTUM EIGENSOLVER

The variational quantum eigensolver is purpose built to
approximate the ground state and the ground-state energy
of a given Hamiltonian H of n qubits. The algorithm starts
with the preparation of a so-called variational state |ψ (θ)〉 =
U (θ)|0〉⊗n = [

∏p
j=1 Uj (θ j )]|0〉⊗n, where U (θ) is a variational

Ansatz and θ ∈ [0, 2π )×p are tunable parameters. Subse-
quently, local measurements are performed on the variational
state to recover the expectation values of Pauli strings Pα,
which are then classically processed to construct the en-
ergy function of the given Hamiltonian 〈ψ (θ)|H |ψ (θ)〉 =∑

α hα〈ψ (θ)|Pα|ψ (θ)〉. Here hα ∈ R and Pα = ⊗n
j=1σα j with

α j ∈ {0, 1, 2, 3}. In this step we make use of the fact that any
Hamiltonian admits an expansion in the basis of Pauli strings.
Finally the energy function is minimized using a classical
coprocessor which outputs

θ� ∈ arg min
θ

〈ψ (θ)|H |ψ (θ)〉, (1)

E � = min
θ

〈ψ (θ)|H |ψ (θ)〉, (2)

|ψ (θ�)〉 = U (θ�)|0〉⊗n. (3)

Here, |ψ (θ�)〉 is a p-depth approximate ground state of H . The
proximity of |ψ (θ�)〉 to the true ground state of H typically
cannot be determined a priori based only on the minimization
of the energy function. Nevertheless, one can establish bounds
on their overlap following the stability lemma [44].

Over time, several improvements in VQE have been re-
ported. For example, there is a number of techniques that
do not fix the Ansatz circuit U (θ) in advance, but instead
construct it during the optimization [45–49]. Other techniques
include efficient estimation of the gradient of the energy func-
tion to enable gradient descent [50–52], grouping terms to
lower the number of measurements [53], tailoring the Ansatz
circuit to the restrictions of the problem [54], and many more.
An extensive general review of current usage of VQE can be
found in Ref. [55], while Refs. [19,56] discuss the variational
algorithms specifically in the context of quantum chemistry.

In addition to the theoretical advances, several recent
experiments have demonstrated VQE implementation on
physical hardware [57–60]. Nevertheless, the results clearly
indicate diminishing algorithmic performances due to the
presence of hardware noise. Motivated by such observations,
error mitigation has been considered as a mean to boost the
VQE performance. See Sec. 8 in Ref. [55] for current error
mitigation techniques applied to VQE.

III. HARDWARE-INSPIRED ZERO-NOISE
EXTRAPOLATION

Consider a variational circuit comprising of single-qubit
gates and two-qubit gates arranged in d structurally identical
layers. We denote a single-qubit gate belonging to the layer l
applied to the qubit j as Gl

j , and a two-qubit gate belonging
to the layer l applied to the qubit pair ( j, k) as Gl

jk . We define

T to be the set of qubit pairs to which the two-qubit gates are
applied. The set T is typically determined by the Ansatz that is
being considered. We use this circuit to variationally minimize
a problem Hamiltonian H .

Here we assume that the single-qubit gates are noiseless.
This is in line with many experimental observations that
single-qubit gates have very low infidelities which do not
influence the performance of our algorithm [61–65]. The two-
qubit gates on the other hand are noisy. In those architectures
where the single-qubit gates contribute a significant error (see,
e.g., Ref. [66]), it can be treated in the same manner as we treat
the two-qubit gate errors below.

We consider a simplistic noise model where the application
of any two-qubit gate is followed by a transformation:

ρ → (1 − q)ρ + qE (ρ), (4)

where q is the gate error rate and E is a completely positive
trace-preserving (CPTP) map applied to the pair of qubits on
which the gate operates.

We consider inhomogeneous errors associated with two-
qubit gates. We denote the gate error rate associated with
Gl

jk to be ql
jk . We further assume that the error rate for

a gate depends only on the qubit pair it acts on; that is,
ql

jk = q jk ∀ ( j, k). For simplicity our analysis neglects the
role of state preparation and measurement (SPAM) errors and
crosstalk errors. Thus, the set {q jk} and the channel E describe
the error model completely.

Recall that the action of the map in (4) on a given state
is tantamount to applying E with probability q, and operating
trivially with probability (1 − q). Following this argument one
can show that, if ρ0 is the state that one expects to be prepared
by the noiseless circuit, one would instead obtain the state:

ρ =
∑

s

⎛
⎜⎜⎝

∏
( j,k)∈T
l∈[1,d]

(1 − q jk )1−sl
jk (q jk )sl

jk

⎞
⎟⎟⎠ρs. (5)

Here s is a two-dimensional array with elements sl
jk ∈ {0, 1},

that indexes the two-qubit gates after which E is appended: if
sl

jk = 1 the channel E is appended after the application of Gl
jk

while if sl
jk = 0 the state remains intact after the application of

Gl
jk . Therefore ρs is the state obtained from ρ0 by appending

the error channels E as determined by s; ρ0 = ρs with sl
jk =

0 ∀ ( j, k) ∈ T , l ∈ [1, d].

A. Perturbative analysis

In this section we consider q jk to be small perturbative
terms, such that (max{q jk})|T |d � 1. Here | · | represents the
cardinality of a set. This allows us to discard all terms that are
at least quadratic in q jk . The Taylor expansion of (5) in q jk

yields the linear approximation to ρ:

ρ =
⎛
⎝1 − d

∑
( j,k)∈T

q jk

⎞
⎠ρ0 +

∑
( j,k)∈T
l∈[1,d]

q jkρ
l
jk + O(q2), (6)

where ρ l
jk = ρs such that s has only one nonzero entry sl

jk = 1.
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Let us now consider the behavior of the energy E = Tr ρH
with respect to the error rates:

E − E0 = −dE0

∑
( j,k)∈T

q jk +
∑

( j,k)∈T
l∈[1,d]

q jkE l
jk + O(q2)

= d (A − E0)
∑

( j,k)∈T

q jk +
∑

( j,k)∈T
l∈[1,d]

q jkε
l
jk + O(q2). (7)

Here, E0 = Tr ρ0H is the energy of the Ansatz state in the
absence of noise, El

jk = Tr ρ l
jkH are the energies obtained by

applying an error channel E to qubits ( j, k) in the lth layer of
the Ansatz, A = 1

|T |d
∑

El
jk , and εl

jk = El
jk − A.

Equation (7) has two q jk-dependent terms. The first term
shows a linear dependence of (E − E0) with respect to the
circuit error sum d

∑
q jk . The second term, on the other hand,

quantifies the deviation from the linear trend. In Appendix A
we establish bounds on the relative deviation and show that
under specific conditions (E − E0) behaves linearly with re-
spect to the circuit error sum.

B. Zero-noise extrapolation with permutation fit

In this section we lay down the recipe for ZNE assisted
by inhomogeneous errors. Consider once again the variational
circuit which we now want to implement on a physical de-
vice. Here one must make a distinction between the abstract
qubits (ones in the circuit) and the physical qubits (ones in the
device).

We begin by assuming that it is possible to implement
two-qubit gates on all pairs of physical qubits and we denote
the corresponding error rates as q̄ jk ; j, k ∈ [1, n]. Later in the
paper we also consider cases of limited connectivity between
physical qubits.

To implement an n-qubit (abstract) circuit on an n-qubit
(physical) device, one would first require to map the abstract
qubits to their physical counterparts—what we call abstract-
to-physical qubit mapping. Mathematically the mapping can
be specified by a permutation π ∈ Sn such that an abstract
qubit indexed j is mapped to the physical qubit indexed π ( j).
Examples of different mappings are demonstrated in Fig. 1.
Under a chosen qubit mapping the error rate associated with
the gate Gl

jk , operating on the abstract qubit pair ( j, k) and
hence the physical qubit pair (π ( j), π (k)), will be denoted
as q̄π ( j)π (k) ≡ q̄π ( jk). For this choice of qubit mapping, the
energy of the VQE Ansatz state (7) transforms into the fol-
lowing:

E − E0 = d (A − E0)
∑

( j,k)∈T

q̄π ( jk) +
∑

( j,k)∈T
l∈[1,d]

q̄π ( jk)ε
l
jk + O(q2).

(8)
Evidently, for a generic Ansatz circuit the sum

∑
q̄π ( jk)

will depend on the permutation π and hence on the abstract-
to-physical qubit mapping. Thus, by taking a number of
permutations, we obtain the energies for different circuit error
sums which can be approximated by a linear dependence
of the form E = a

∑
q̄π ( jk) + b, where the slope a ap-

proximates the term d (A − E0), and the interception
point b approximates the noise-free energy E0. Con-
sequently, by making a linear fit through the noisy

FIG. 1. (a) A four-qubit (abstract) circuit (top) to be executed on
a four-qubit (physical) device (bottom) with all-to-all connectivity,
depicted with dashed lines. (b), (c) Two different abstract-to-physical
qubit mappings π1 and π2 (also indicated by colors). The correspond-
ing qubit connections used for circuit implementation are indicated
with dashed lines. Each of these mappings corresponds to a different
circuit error sum.

data, one could recover an approximation to the noise-
less energy E0. In general, one cannot guarantee that
the estimate constructed this way is exact. However, in
Appendix B we show that this method of ZNE, when per-
formed over all permutations π ∈ Sn, can recover the exact
value of the noise-free energy for Ansatz structures corre-
sponding to regular graphs, in the limit of small errors q̄ jk .

IV. NUMERICAL RESULTS

In this section we demonstrate the performance of ZNE
applied to noise-perturbed VQE circuits. To investigate the
applicability range of the protocol, we use it for a number
of different problem Hamiltonians, noise models and error
distributions.

We consider three types of Hamiltonians: The first two are
variants of the transverse field Ising model,

H =
n∑

j=1

JjZ jZ j+1 +
n∑

j=1

h jXj, (9)

where Zn+1 ≡ Z1. Two cases are given by (a) Jj = h j = 1 and
(b) J1 = 6, Jj = 1 ∀ j 
= 1, and h j = 1. We refer to these as
Ising A and Ising B.

The third type of Hamiltonian is constructed from the
electronic structure model of the H2O molecule. We construct
the second-quantized Hamiltonian in the ccpvdz basis using
the pyscfdriver module of Qiskit, then choose different sizes
of the active space to create problems of different sizes. Fi-
nally, we apply the Bravyi-Kitaev transformation and apply a
penalty term to ensure the correct particle number:

Hp = H + μ(n̂ − ne)2. (10)

Here n̂ is the particle-number operator
∑

a†
i ai transformed

with the Bravyi-Kitaev transformation, and ne is the desired
number of electrons. We choose the weight of the penalty
term μ according to the “rough” rule from Ref. [67], which
means that μ is equal to twice the sum of absolute values of
the weights of Pauli strings in H . This choice ensures that the
ground state of Hp has the correct particle number.
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FIG. 2. (a)–(c) Zero-noise extrapolation (ZNE) using the proposed method for n = 6 qubit Ising A, Ising B, and water CAS Hamiltonians,
respectively. Blue blue dots on these plots represent energy E as per (8) for different permutations π ∈ Sn and the red line is a linear fit taken
over energies corresponding to all possible permutations. (d)–(f) The energies El

jk [see (7)] for Ising A, Ising B, and water Hamiltonians
respectively (shown in circles). The squares show the perturbation energies averaged over the layers of the Ansatz 1

d

∑
l E l

jk . The gray lines
represent the eigenvalues of the Hamiltonian. The dash-dotted lines depict the average perturbation energy A. On all the panels blue horizontal
lines show the noiseless VQE energy.

We minimize the energy of the Hamiltonians with re-
spect to variational states prepared by a hardware efficient
Ansatz (HEA) with ring and line topology. For both topolo-
gies, in every layer of the ansatz we apply single-qubit gates
to each qubit (RY , then RX ) and then apply two-qubit RZZ

gates to nearest neighboring qubits. For the ring topology
we apply an additional RZZ gate to the qubit pair (n, 1).
In the rest of the paper we mostly focus on the results
for the ring topology, as both Ansätze gave qualitatively
similar results.

The optimization is done in the Qiskit statevector simu-
lator using the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS-B) algorithm. The starting point for the
optimization is chosen by picking every parameter at ran-
dom from the normal distribution with mean zero and σ =
10−3. To improve convergence, we use a variant of lay-
erwise learning [68,69]: first we start with a one-layered
Ansatz and optimize it. Then we add another layer, ini-
tialized at parameter values close to zero, and optimize
the new Ansatz, then continue the same procedure with
the addition of each subsequent layer. Before every new
layer we slightly perturb the solution to avoid the saturation
effect [14].

Using an approximately optimal Ansatz state, we simu-
late the ZNE protocol. For that, each two-qubit gate g jk is
appended with a local noise channel with random strength
q̄ jk = q̄k j . A number of random qubit permutations is sam-
pled, and for each permutation the CES and the noisy
VQE energy are calculated. Finally, these data are used to
make a linear fit and obtain the error-mitigated value of
the energy.

A. Zero-noise extrapolation

We begin by considering a case of n = 6 qubits with de-
polarizing noise of strength {q̄ jk} sampled from a uniform
distribution on the interval [0, 0.001]. The depth of the Ansatz
circuit is chosen such that the noiseless VQE energy differs
from the ground energy of the problem by no more than 1%
of the spectral gap. In the considered case, the required depths
were four, eight, and one layer for the Ising A, Ising B, and
water Hamiltonians, respectively.

The results of ZNE for all considered Hamiltonians are
demonstrated in Fig. 2. Each point in Figs. 2(a)–2(c) repre-
sents energy E obtained for a specific permutation π ∈ Sn; all
possible 720 permutations were used for ZNE. A linear fit of
energies for the considered perturbations indeed allows one to
recover the energy of the noiseless VQE approximation with
a high accuracy. In all three cases, the extrapolated energy
differs from the true ground energy by at most 5 × 10−4.
Indeed, in Appendix B we show that, in the case of Ansatz
circuits with a regular graph structure, the ZNE over all per-
mutations approximates noiseless expectation value exactly
[up to higher-order terms in (8)].

The energies obtained for the Ising A model and the water
Hamiltonian better approximate a linear trend compared with
the energies obtained for the Ising B model. To explain this
behavior we recall that the deviation from the linear trend
is governed by the nonuniformity of the energies εl

jk , which
is captured by the quantity max|∑l εl

jk| (see Appendix A).
Figures 2(d)–2(f) illustrate that point: for the Ising A model
and water Hamiltonians the energies El

jk are more concen-
trated around the mean, and the linear trend with the CES
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FIG. 3. ZNE error versus the number of permutations used. Blue
circles: Ising A, orange squares: Ising B, green triangles: H2O. The
markers for Ising B and water are offset horizontally for visibility.
The error bars indicate standard deviation from considering 20 dif-
ferent noise realizations (sets of {q̄ jk} sampled). For every realization
a different set of randomly generated permutations was considered.

is more apparent. At the same time, for the Ising B model
the distribution of the energies is wider, and consequently, the
linear trend is less evident.

Deviation from the linear trend, however, does not nec-
essarily worsen the quality of the approximation, when all
permutations are considered. Indeed, notwithstanding any de-
viation, the ring topology allows us to recover an exact energy
approximation (see Appendix B). However, taking all per-
mutations is not feasible except for the smallest problems.
In addition, in many quantum computer architectures, imple-
menting an arbitrary permutation of a circuit is impossible
without introducing additional swap gates. For example, while
ion-based quantum processors have all-to-all qubit connec-
tivity, quantum processors based on superconducting qubits
or trapped atoms do not. To address that, we investigated
the performance of ZNE when only a limited number of
permutations is available. Figure 3 shows the performance of
ZNE as a function of the size of the permutation pool. For
each of the three Hamiltonians, the uncertainty in the ZNE
energy increases for smaller size of the permutation pool.
However, the energies are still centered around the noise-free
energy, with the standard deviation being much smaller than
any energy scale of the problem in each case.

Notwithstanding the success of the protocol with limited
number of permutations, we investigate a specific case where
available permutations are dictated by connectivity of the
hardware. For this we ran an experiment with n = 6 qubits
assuming that the connectivity graph is a 2 × 3 square lattice.
In this case, we consider an Ansatz of the line topology and
embedded it in all 16 possible ways into the device. We
ran ZNE over 20 random realizations of the noise for the
Ising A problem and found that the mean extrapolation er-
ror is −3.6 × 10−4 units with standard deviation 2.1 × 10−3.
This demonstrates that the proposed ZNE protocol can work
adequately within the practical limitations of hardware con-
nectivity.

FIG. 4. Scaling of the extrapolation error for depolarizing noise
with 〈q〉 = 5 × 10−4 with respect to n. The mean values and devia-
tions are estimated from considering 20 different noise realizations.

B. Scaling with noise strength and problem size

The proposed method relies on the inhomogeneity of the
error rates, essentially taking sums of error rates over particu-
lar subsets of qubit pairs. For larger system sizes and circuits,
however, the sum of error rates converges towards the mean,
leading to the concentration of circuit error sums. This might
induce an instability in the ZNE estimated energy. To investi-
gate this, we perform ZNE for system sizes n ∈ {6, 8, 10, 12}
for Ising A Hamiltonian, using 50 random permutations and
averaging the results over 20 different noise realizations of
average strength 〈q〉 = 5 × 10−4 (corresponding to uniform
sampling from [0, 0.001]). The depth of the noiseless VQE
circuit again is taken to approximate the ground energy within
1% of the spectral gap. The resulting distributions of ZNE
extrapolation error are shown in Fig. 4. We note that the
standard deviation increases gradually with respect to n. One
can offset this increase in the standard deviation by averaging
the ZNE energy over at most polynomially (with respect to n)
many experiments.

In the theoretical analysis, we demanded that
(max{qjk})|T |d � 1 in order to discard the quadratic terms.
However, this requirement can be restrictive for practical
purposes. Thus, we investigate the real applicability range
of the method. The behavior of the ZNE approximation for
the n = 12 qubit Ising A Hamiltonian across a wide range
of mean noise strength 〈q〉 is shown in Fig. 5. It is seen that
the ZNE error is smaller than the spectral gap of the problem
up to noise threshold value |T |d〈q〉thr ≈ 1. Moreover, even
for larger values of |T |d〈q〉, the extrapolation was closer to
the true ground-state energy than any of the noisy energy
values. In general, the absolute value of the extrapolation
error appears to scale polynomially with the amplitude of the
noise (Fig. 5, inset).

C. Zero-noise extrapolation with different noise models

The success of the proposed ZNE protocol may depend on
the distribution of error rates, as well as on the considered
noise model. To investigate this, we simulate ZNE for (i)
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FIG. 5. ZNE estimated energy as a function of the magnitude of
circuit errors for n = 12 qubits. The mean values and deviations are
estimated from considering three different noise realizations. Solid
horizontal line shows the noise-free VQE energy, dashed line is
separated from it by the value of the spectral gap.

two-qubit depolarizing noise, as well as for (ii) more realistic
two-qubit Pauli error [70]. For each noise model the error rates
are sampled from (a) uniform and (b) more realistic lognor-
mal distributions [66,71]. To make comparison possible, the

distributions were normalized to have the same means and
variances. For the Pauli error, the means were divided by 15,
so that the sum of the error coefficients has the same mean and
variance.

For each noise type we simulate the experiments described
in Secs. IV A and IV B. For the noiseless VQE we considered
circuits of up to 10 layers. As before, for most of the problems
this was enough to find energy approximation within 1% of
the spectral gap from the true ground state. The exceptions
were Ising B for n = 10 and n = 12, where the error was
about 0.5 of the gap, and H2O for n = 12, where the error
was approximately equal to the gap.

In Table I we present results of ZNE using 50 random
permutations and averaged over 20 noise realizations for the
discussed noise types and system sizes. Here 
E represents
ZNE error for a mean noise strength 〈q〉 = 5 × 10−4. It can
be seen that ZNE for different noise models and error distribu-
tions demonstrate qualitatively similar results, thus indicating
the potential of the proposed protocol. The error growth for
larger system sizes is caused by the fixed number of permu-
tations considered and can be countered by its increase, in
accordance with Fig. 3.

In addition, in Table I we summarize the threshold strength
of the noise 〈q〉thr, below which ZNE estimated energy differs
from noiseless VQE energy by no more than the spectral
gap. Those results were obtained by simulating ZNE with

TABLE I. Experimental results for ZNE using 50 permutations with different Hamiltonians and noise models. 
E gives ZNE error
produced for mean noise strength 〈q〉 = 5 × 10−4 (corresponding to sampling from [0, 0.001] in the case of uniform distribution). The results
are averaged over 20 noise realizations. qthr represents the mean noise strength at which ZNE estimation exceeds noiseless VQE energy by the
value of spectral gap. The results are averaged over three noise realizations.

Hamiltonian

Ising A Ising B H2O

Noise type 
E |T |d〈q〉thr 
E |T |d〈q〉thr 
E |T |d〈q〉thr

n = 6

Depolarizing, uniform (−3.4 ± 23.2) × 10−4 0.83 ± 0.11 (0.0 ± 1.6) × 10−2 0.14 ± 0.04 (−0.6 ± 2.0) × 10−3 0.77 ± 0.15
Depolarizing, lognormal (−1.4 ± 26.3) × 10−4 0.35 ± 0.03 (−0.2 ± 1.0) × 10−2 0.09 ± 0.03 (0.2 ± 1.2) × 10−3 0.50 ± 0.17
Pauli, uniform (2.2 ± 5.2) × 10−3 0.65 ± 0.10 (0.2 ± 2.0) × 10−2 0.10 ± 0.03 (0.1 ± 5.5) × 10−3 0.41 ± 0.14
Pauli, lognormal (−7.3 ± 43.9) × 10−4 0.33 ± 0.04 (0.0 ± 2.1) × 10−2 0.06 ± 0.02 (0.4 ± 5.2) × 10−3 0.15 ± 0.03

n = 8

Depolarizing, uniform (0.5 ± 7.0) × 10−3 0.81 ± 0.11 (0.2 ± 3.6) × 10−2 0.18 ± 0.05 (0.6 ± 2.2) × 10−2 0.18 ± 0.02
Depolarizing, lognormal (−0.8 ± 4.2) × 10−3 0.33 ± 0.03 (−0.4 ± 3.6) × 10−2 0.09 ± 0.01 (−0.2 ± 2.1) × 10−2 0.13 ± 0.01
Pauli, uniform (0.2 ± 7.8) × 10−3 0.53 ± 0.04 (−0.8 ± 5.9) × 10−2 0.13 ± 0.03 (0.7 ± 3.6) × 10−2 0.07 ± 0.01
Pauli, lognormal (0.2 ± 1.0) × 10−2 0.31 ± 0.02 (−0.1 ± 5.5) × 10−2 0.06 ± 0.01 (0.2 ± 5.2) × 10−2 0.07 ± 0.02

n = 10

Depolarizing, uniform (2.8 ± 7.2) × 10−3 0.72 ± 0.06 (−0.6 ± 1.7) × 10−2 0.14 ± 0.04 (0.6 ± 4.7) × 10−2 0.10 ± 0.03
Depolarizing, lognormal (0.0 ± 1.0) × 10−2 0.30 ± 0.01 (−0.3 ± 1.5) × 10−2 0.09 ± 0.02 (−1.3 ± 4.7) × 10−2 0.09 ± 0.02
Pauli, uniform (0.5 ± 1.5) × 10−2 0.51 ± 0.04 (−0.3 ± 2.8) × 10−2 0.08 ± 0.02 (−1.6 ± 8.6) × 10−2 0.09 ± 0.03
Pauli, lognormal (0.0 ± 1.4) × 10−2 0.30 ± 0.03 (−0.3 ± 2.3) × 10−2 0.10 ± 0.03 (1.4 ± 8.1) × 10−2 0.04 ± 0.02

n = 12

Depolarizing, uniform (0.2 ± 1.6) × 10−2 0.57 ± 0.03 (0.2 ± 1.7) × 10−2 0.18 ± 0.03 0.006 ± 0.153 0.08 ± 0.01
Depolarizing, lognormal (0.2 ± 1.4) × 10−2 0.31 ± 0.03 (0.2 ± 1.7) × 10−2 0.09 ± 0.02 −0.04 ± 0.11 0.06 ± 0.01
Pauli, uniform (−0.4 ± 2.0) × 10−2 0.49 ± 0.04 (−0.8 ± 3.5) × 10−2 0.14 ± 0.04 0.12 ± 0.48 0.09 ± 0.03
Pauli, lognormal (0.1 ± 2.7) × 10−2 0.25 ± 0.03 (−0.2 ± 4.2) × 10−2 0.27 ± 0.03 0.06 ± 0.43 0.04 ± 0.01
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TABLE II. Extrapolation error for Hamiltonians of n = 6 qubits with different ZNE techniques. The circuit depth was the same as in Fig. 2.
The folding extrapolations were obtained from linear extrapolation over four points.

Setup Pauli twirling Unitary folding (gates) Unitary folding (circuit) This work

Ising A, depolarizing lognormal −0.027 ± 0.030 (4.0 ± 4.4) × 10−7 −0.036 ± 0.078 (−1.4 ± 26.3)×10−4

Ising B, depolarizing lognormal −0.16 ± 0.19 (5.0 ± 4.6) × 10−6 −0.12 ± 0.03 (−0.2 ± 1.0)×10−2

H2O, depolarizing lognormal −0.028 ± 0.055 (7.4 ± 6.4) × 10−8 −0.015 ± 0.004 (0.2 ± 1.2)×10−3

50 permutations across a wide range of noise amplitudes,
averaging the results over three noise realizations, in the same
manner as depicted in Fig. 5. By interpolating the resulting
curves we identify the threshold values 〈q〉thr, at which the
curve crosses spectral gap. Again, it is seen that noise strength
|T |d〈q〉thr � 1 allows one to recover ZNE energy within one
spectral gap from the noiseless VQE. Moreover, even for
larger values of |T |d〈q〉 the extrapolation is closer to the true
ground-state energy than any of the noisy energy values.

D. Comparison with existing zero-noise
extrapolation techniques

State-of-the-art zero-noise extrapolation techniques rely on
increasing the noise by adding extra gates or by implementing
the existing ones in a different manner. Up to minor differ-
ences, we identified the following techniques in the literature,
which can be directly compared with the proposed protocol:

(1) Unitary folding [72]. Parts of the circuit are repeated
together with their inverses so that the length of the circuit
is increased while preserving the total unitary that would be
implemented in the absence of noise. This can be done at the
level of the entire circuit or individual gates and layers. In the
latter case it is referred to as gate folding [73,74].

(2) Pauli twirling and Pauli gate insertion [40]. With
Pauli twirling, any local noise channel is transformed into a
stochastic Pauli channel. Afterward, stochastic Pauli noise is
amplified by randomly adding Pauli gates.

To compare the techniques, we took the depolarizing noise
with lognormal error rate distribution and implemented the
different ZNE techniques. As earlier, the ZNE error is aver-
aged over 20 random realizations of noise. The results are
shown in Table II. Our technique shows better results than
circuit-level unitary folding and Pauli twirling, while looses
to the gate-level unitary folding. We note here that unitary
folding necessitates longer circuits, which naturally increase
gate count and execution time, making it more vulnerable
to crosstalk errors and limited coherence time. Therefore,
we conclude that our protocol produces at worst comparable
results to the state of the art techniques, without suffering from
some of their drawbacks.

V. CONCLUSIONS

Existing studies on the behavior of VQE-estimated energy
with respect to noise primarily focus on homogeneous error
models [28,75–77]. While a linear dependence between en-
ergy and the noise strength is well established in this case, it
does not automatically translate to the case of inhomogeneous
noise. Motivated by the fact that gate errors are inhomo-
geneously distributed across pairs of qubits in a physical
hardware, we propose a method for zero-noise extrapolation.
In particular, we showed that, by changing the abstract-to-

physical qubit mapping, it is possible to vary the level of noise
in a quantum circuit in a controllable way. This enables us to
execute ZNE in an experimentally amenable manner.

While the proposed ZNE protocol can be applied to es-
timate noiseless expectation value of any observable with
respect to any quantum circuit, for the purpose of demonstra-
tion we apply this method to VQE. We found that the energy
approximated by a noisy VQE circuit is approximately linear
with respect to the circuit error sum. An analytic bound was
derived to quantify the quality of the linear approximation. We
found that this bound depends on the nature of the problem
Hamiltonian and the error rates. We numerically demonstrated
that with the proposed ZNE protocol one can approximate the
noiseless VQE energy with high accuracy, reducing the noise-
induced error by approximately two orders of magnitude.
This was verified for a range of problem Hamiltonians, noise
models and error distributions. Moreover, we proved that for
a specific class of Ansätze the proposed protocol recovers the
exact noise free VQE energy.

Next we examined how the performance of our proposed
protocol gets impacted when considering permutation pools
of limited sizes for the extrapolation; indeed considering all
permutations maybe unfeasible especially for larger system
sizes. We show that the ZNE extrapolation error is smaller
than all energy scales of the problem, even when extrapolating
over less than 10% of all possible permutations. Furthermore,
we demonstrated that while increasing the system size (while
keeping the size of the permutation pool fixed) does induce
some instability in the ZNE protocol, it can be removed with
at most polynomially many permutations considered for ex-
trapolation.

Finally, we compared the performance of the proposed
protocol to the state-of-the-art ZNE techniques. We showed
that the performance of our hardware inspired ZNE, in the
worst case, is comparable to the state of the art techniques,
while not suffering from some of their drawbacks.

The code and the data produced in the work are available
upon reasonable request.
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APPENDIX A: RELATIVE DEVIATION FROM LINEAR
TREND IN EQ. (7)

We begin our analysis with a simplified form of (7) for the
sake of brevity:

y = 
x + δy, (A1)
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where y = (E − E0), 
 = (A − E0), x = ∑
( j,k)∈T dq jk , and

δy = ∑
( j,k)∈T (

∑
l∈[1,d] ε

l
jk )q jk = ∑

( j,k)∈T ε̃ jkq jk . Taking into
account that both x and δy are error-rate-dependent terms, one
can consequently conclude that δy represents a deviation from
the linear dependence y = 
x. Nevertheless, one can upper
bound the deviation δy between the actual function y as per
(A1) and the linear dependence y = 
x. To accomplish this
we consider the relative deviation:

|δy|

x

= | ∑( j,k)∈T ε̃ jkq jk|
d (A − E0)

∑
( j,k)∈T q jk

. (A2)

One can readily establish a bound on this quantity as

|δy|

x

� max{|ε̃ jk|}( j,k)∈T

d (A − E0)
= B1. (A3)

This bound is not necessarily tight; however, one can im-
prove it by taking into account the distribution of the error
rates themselves:

|δy|

x

� |T |max{|ε̃ jk|}( j,k)∈T Diam{q jk}( j,k)∈T

d (A − E0)
∑

( j,k)∈T q jk
= B2. (A4)

Here Diam{A} is the diameter of a set A. Combining (A5)
and (A4) we arrive at the final result:

|δy|

x

� min{B1, B2}. (A5)

APPENDIX B: THE ZERO-NOISE EXTRAPOLATION
OVER ALL PERMUTATIONS IS EXACT

Consider the function

y = 
x + δy. (B1)

We note that (B1) maps to (8) when y = (E −
E0), 
 = (A − E0), x = ∑

( j,k)∈T dq̄π ( jk), and δy =∑
( j,k)∈T (

∑
l∈[1,d] ε

l
jk )q̄π ( jk) = ∑

( j,k)∈T ε̃ jk q̄π ( jk). In our
approach of zero-noise extrapolation we fit a linear
approximation of the form y = α + βx to the function in
(B1). The constants α and β are inferred by the least squares
method where they have standard expressions in terms of
sample statistics:

α = 〈y〉 − β〈x〉, (B2)

β = Cov(x, y)

Var x
. (B3)

Here the angular brackets denote averaging over all samples
(in our case, over all abstract-to-physical qubit mappings

labeled by π ∈ Sn). Substituting (B1) and (B3) in (B2), we
obtain

α = −〈x〉Cov(x, δy)

Var x
. (B4)

Recall that for an exact zero-noise extrapolation we would
get α = 0. In deriving (B4) we have used the result 〈δy〉 = 0.
This follows from two facts:

(1) 〈q̄π ( jk)〉 = 1
n!

∑
π∈Sn

q̄π ( jk) = q̄a, where q̄a is the aver-
age error.

(2)
∑

( j,k)∈T ε̃ jk = 0 by definition.
Now we consider the covariance Cov(x, δy) in more detail.

Owing to the fact that 〈δy〉 = 0 we get

Cov(x, δy) = 〈xδy〉 = 1

n!

∑
( j1,k1 )∈T
( j2,k2 )∈T

ε̃ j1k1〈q̄π ( j1k1 )q̄π ( j2k2 )〉. (B5)

We now group the summands in (B5) such that (a) j2 =
j1, k2 = k1, (b) j2 = j1, k2 
= k1 or j2 
= j1, k2 = k1, and (c)
j2 
= j1, k2 
= k1. Denoting the average 〈q̄π ( j1k1 )q̄π ( j2k2 )〉 for the
aforementioned cases to be κ2, κ1, and κ0, respectively, we
arrive at the expression

Cov(x, δy) =
∑

( jk)∈T

ε̃ jk
[
n( jk)

2 κ2 + n( jk)
1 κ1 + n( jk)

0 κ0
]
. (B6)

Here n( jk)
2 is the number of two-qubit gates acting on the qubit

pair ( j, k), n( jk)
1 is the number of two-qubit gates acting either

on the qubit j or k, and n( jk)
0 is the number of gates that does

not act either on j or k. If these three values are independent
on ( j, k), the covariance Cov(x, δy) vanishes owing to the fact
that

∑
( j,k)∈T ε̃ jk = 0 implying that α = 0, which is what we

expected for an exact zero-noise extrapolation.
We note here that n( jk)

2 , n( jk)
1 , n( jk)

0 are independent of ( j, k)
only for specific Ansatz circuits. To characterize the structure
of such Ansätze completely we depict the Ansatz circuit as a
multigraph with vertices corresponding to qubits and edges
corresponding to two-qubit gates. Indeed n( jk)

2 is the count
of gates acting on ( j, k), n( jk)

1 = deg( j) + deg(k) − n( jk)
2 , and

n( jk)
0 = |T |d − n( jk)

1 − n( jk)
2 . Thus, these values only depend

on degrees of vertices and multiplicities of edges. This im-
plies that the gate-independence condition can be satisfied by
taking a regular graph (e.g., a cycle ) as the structure of the
Ansatz.
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